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Abstract This paper introduces developments in modified techniques for the
generation of unstructured, non—uniform, dual orthogonal meshes which are
suitable for use with co—volume solution schemes. Two new mesh generation
techniques, a modified advancing front technique and an octree-Delaunay
algorithm, are coupled with a mesh optimisation algorithm. When using a
Delaunay—Voronoi dual, to construct mutually orthogonal meshes for co-volume
schemes, it is essential to minimise the number of Delaunay elements which do
not contain their Voronoi vertex. These new techniques provide an improve-
ment over previous approaches, as they produce meshes in which the number
of elements that do not contain their Voronoi vertex is reduced. In particular,
it is found that the optimisation algorithm, which could be applied to any
mesh cosmetics problem, is very effective, regardless of the quality of the ini-
tial mesh. This is illustrated by applying the proposed approach to a number
of complex industrial aerospace geometries.
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1 Introduction

Computational methods are widely employed in a variety of different applica-
tion areas. For practical simulations, the requirement of modelling complex ge-
ometries means that unstructured mesh methods are particularly attractive, as
fully automatic unstructured mesh generation procedures are now widely avail-
able. Popular algorithms implemented on unstructured meshes fall into the
categories of finite volume and finite elements methods. These algorithms are,
generally, low order and often require a significant computational resource to
perform accurate simulations involving industrial geometries. In contrast, co—
volume techniques exhibit a high degree of computational efficiency, in terms
of both CPU and memory requirements, on structured dual orthogonal Carte-
sian meshes. The marker and cell (MAC) algorithm [3] and the Yee scheme [21]
are examples of co—volume methods that have been widely employed for the
solution of the Navier Stokes and Maxwell’s equations respectively. A basic re-
quirement for the successful implementation of the co—volume scheme is the ex-
istence of two, high quality, mutually orthogonal meshes. For an unstructured
mesh implementation, the obvious dual mesh choice is the Delaunay—Voronoi
diagram. Detailed mesh requirements for co-volume schemes are presented in
section 1.1. Despite the fact that real progress has been achieved in unstruc-
tured mesh generation methods over the last two decades, generating suitable
co—volume meshes in complex shaped domains is still an open problem. This
is due to the difficulties encountered when attempting to generate sufficiently
smooth, non—uniform, high quality dual meshes for such problems. Standard
mesh generation methods are designed to create high quality Delaunay trian-
gulations, but do not attempt to provide a high quality dual Voronoi mesh.
Previous attempts at solving the problem of co—volume mesh generation are
discussed in section 1.2. These techniques can only produce uniform meshes
of suitable quality.

For the simulation of geometries that contain regions with high curvature
and singularities, non—uniform meshes are often used to capture the complex
variation of the solution field. In such cases, the quality of the generated ele-
ments depends upon the gradation of the spacing function. This paper presents
a number of new techniques designed to generate non—uniform meshes for
co-volume solvers. We start from a Delaunay triangulation of the boundary
surface and split the generation of the domain into a region adjacent to the
boundaries and a free space region. In the free space region, two approaches
are introduced to generate meshes and compared to the standard automatic
Delaunay sub division method. The first approach is based upon the recur-
sive insertion of ideal lattice points, that locally satisfy the demands of the
spacing distribution function, into the Delaunay generated mesh of the bound-
ary points. In the second scheme, an octree—Delaunay algorithm is utilised to
generate meshes with properties that are close to those of the ideal mesh.
In the region adjacent to the boundary, we introduce a modified advancing
front technique, in which points are located in such a way that ideal meshes
can be recovered in the case of a uniform mesh. Finally, the quality of the
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resulting mesh is improved by the use of a mesh optimisation scheme. The
feasibility of generating suitable meshes in this manner, around increasingly
complex geometries, is presented. To demonstrate the validity of the meshes,
we present numerical examples of the scattering of electromagnetic waves by a
complex 3D object. This example shows the efficiency and accuracy that can
be achieved by a co—volume method utilising the proposed meshing scheme.

1.1 Co—Volume Mesh Requirements

Co—volume schemes were initially devised for structured grids and are ap-
plied to coupled system of equations such as the Maxwell equations and the
Navier—Stokes equations. The unknowns are staggered in space, i.e some of
the unknowns are evaluated at the centre of the cell and the other unknowns
are evaluated on the edges of the cell. Finite difference approximation is then
used and the solution is advanced in time in a staggered manner, with some
of the unknowns evaluated at time n and the others evaluated at time n + 1.
This can be interpreted as using two structured grids which are staggered
and orthogonal. On structured grids, a primal mesh is first generated to cover
the domain. The dual mesh is then constructed by joining the centre of each
cell. This construction guarantees the required orthogonality for finite differ-
ence schemes and ensures that the quality of the primal and dual meshes are
identical.

The generalisation of the method to unstructured meshes utilises the De-
launay mesh as the primal mesh and its Voronoi mesh as the dual [9]. The
Voronoi vertices are the circumcentres of the corresponding Delaunay ele-
ments, which guarantees the required orthogonality. However, it is possible
for the circumcentre to lie outside its corresponding element. In this case the
staggering in space will not be guaranteed. In addition, to replicate the second
order accuracy these schemes exhibit on structured grids, the Delaunay and
Voronoi grids must intersect each other, i.e. the nodes of the dual mesh should
coincide with the centroid of corresponding primal mesh and the dual mesh
edges should pass through the centroids of the corresponding primal mesh
faces [10]. In two and three dimensional meshes the Voronoi edge by defini-
tion intersect the Delaunay edge/face at its centroid, but this construction
does not guarantee that the Delaunay face is a bisector of the corresponding
Voronoi edge. Furthermore, the time step for an explicit scheme is directly
proportional to the smallest edge of the primal and the dual meshes. While
this length does not change in structured grids, in unstructured meshes, it is
possible for Voronoi edges to vanish, i.e. for two or more elements to share the
same circumcentre. Of these two requirements, ensuring that circumcentres lie
inside their corresponding elements will be prioritised at the expense of mutual
bisection. This is because elements with their circumcentre outside can cause
stability problems if located in areas of high gradient in the solution field.
Whereas a deviation from mutual bisection results in a local loss of second
order accuracy.
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Fig. 1 Detail of a mesh of ideal tetrahedral elements, showing the surface Delaunay faces
and the internal Voronoi cells.

Only a mesh made up of equilateral tetrahedra, in which all faces are equi-
lateral triangles, guarantees the quality of the primal and dual meshes that is
found in structured grids. However, in contrast to two dimensions, the equi-
lateral tetrahedron is not a space filling element. Hence, a three dimensional
analogue of a space filling ideal mesh will consists of equal non—equilateral
tetrahedra. Each face in such a mesh will be an isosceles triangle, with one
side of length llgng and two shorter sides of length I35 = /3 /2 lgng . Six such
tetrahedra form a parallelepiped tiling the space, as illustrated in Figure 1. It
can be shown that this configuration maximises the length of the minimum
Voronoi edge for a fixed element size. All Voronoi edges have the same length
ly ~0.388 where § = (Ip) = (315" + 415hort) /7 ~ 0.921)9"8. This configura-
tion guarantees that every node has a connectivity index of 14 and each vertex
has a maximum angle of 70.5°.

However, the fact some of the element dihedral angles are equal to 90°,
makes the element very sensitive to deformation, which become a barrier for
the generation of non—uniform meshes. In the case of non—uniform meshes,
in order to minimise the deviation of the circumcentre from the barycentre,
the requirement that the dual edge has to cross the corresponding element
face at the centroid has to be relaxed. This enables the use of the power
diagram to locate a new circumcentre, based on a weight associated with each
of the element nodes [19]. Furthermore, co-volume schemes are not restricted
to using tetrahedral elements, which means that tetrahedral elements can be
automatically merged into a polyhedron if the length of the dual edge is below
a user specified tolerance. This will reduce the number of elements that have
circumcentre located outside their elements and remove any short Voronoi
edges that reduce the stability constraint of the scheme.

1.2 Existing Mesh Generation Techniques

To date, most mesh generation software is aimed at generating high quality
primal meshes and pays no attention to the quality of the dual mesh. To ensure
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that the primal mesh and the dual mesh are staggered in space, it is essential to
ensure that each Delaunay element contains its Voronoi vertex. A mesh which
is staggered in space is termed well centred, as every Delaunay element contains
its circumcentre [13]. In two dimensions, this can be achieved by utilising mesh
optimisation techniques that are designed to eliminate obtuse triangles [10,11,
15]. However, the extension of these techniques into three dimensions is not
trivial and does not guarantee the desired outcome.

To address the problem of generating suitable meshes for co—volume tech-
niques, a stitching method was proposed in two dimensions [9]. In this ap-
proach, the problem of triangulating a domain of complicated shape is split
into a set of relatively simple local triangulations. Each local mesh is con-
structed with properties which are close to those of an ideal mesh and these
local meshes are combined, to form a consistent mesh, using a stitching algo-
rithm. The quality of the stitched mesh is improved by the use of standard
mesh cosmetics.

Although the stitching method was successful in generating two dimen-
sional non—uniform meshes suitable for co-volume methods, its extension into
three dimensions has proved to be troublesome. The method requires the layer
by layer generation of high quality elements near the solid boundary, utilis-
ing a modified advancing front technique. Using a two dimensional stitching
method, the required quality was maintained by gradually deforming an ideal
equilateral mesh in free space. The three dimensional ideal meshes are very
sensitive to grading and hence, satisfying spacing distribution functions that
have more than a 10% linear variation is difficult [10].

To minimise the deviation of the circumcentre from the element centroid,
the requirement that the dual edges have to cross the element faces at the
centroid of the face must be relaxed. This enables the use of the power dia-
gram, to locate a new circumcentre based on a weight associated with each
of the element nodes [19]. The resulting weighted Voronoi diagram allows the
movement of the Voronoi nodes while maintaining mutual orthogonality. The
process of using the weighted Voronoi diagram is illustrated in Figure 2. An
obtuse triangular element ABC, with its Voronoi node O initially sitting on
its circumcentre outside the element is shown. The point O is located by cre-
ating circles of equal radius on each Delaunay node and finding the point of
intersection of their common chords. By reducing the radius of the circle at B,
the point of intersection is pulled into the element. The reduced radius at B
moves the Voronoi nodes of the adjacent elements to maintain orthogonality.
The weight at any node is defined as the change in radius at that point. The
weights on each node are optimised as part of an optimisation process.

Co—volume schemes are not restricted to tetrahedral elements and adjacent
tetrahedra can be automatically merged into a polyhedron, if the length of
the dual edge is below a user specified tolerance. Typically, this tolerance is
set to 10% of the local ideal Voronoi edge length, Iy, interpolated from the
spacing distribution function. This will reduce the number of elements that
have their circumcentres located outside the element and remove any short
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(a) ()

Fig. 2 The weighted Voronoi diagram. By intersecting the common chords of circles centred
at each vertex we find the Voronoi vertex O. In (a) these circles have the same radius and
therefore O lies on the circumcentre of the element. To pull O inside the element, the radius
at B is reduced in (b).

Voronoi edges that reduce the stability constraints of the scheme. Examples
of merged elements are shown in Figure 3.

Fig. 3 Examples of merged elements, circled and edges plotted in bold, in a co—volume
mesh.
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2 Methodology

The central idea of this paper is to develop techniques specifically targeted
at generating suitable meshes for co-volume schemes, therefore meeting the
requirements of the solvers. In all cases the methods developed are designed
to ensure the elements generated contain their circumcentre. This is done by
examining and identifying patterns in the uniform ideal mesh described above.

The starting point of three dimensional volume mesh generation is a suit-
able surface triangulation that complies with the required mesh spacing func-
tion. In the current work, the spacing function is specified using a combination
of background mesh, point, line and triangular sources [18]. Two dimensional
surface meshing based on the advancing front technique is now well estab-
lished. The generation of surface meshes that satisfy the requirement of the
co—volume scheme can be routinely achieved.

The method adopted here for the generation of the three dimensional
meshes is based upon the use of the Delaunay triangulation, with a modified
point creation technique that enables the generation of elements that meet the
quality required for co—volume methods. The point creation employed distin-
guishes between the near field region, that is close to the surface, and the free
space region. The complete algorithm can be summarised as follows:

1. Generate a volume mesh by connecting the boundary points using the
Delaunay criterion.

2. For the desired number of layers, create a near field set of points and insert
them into the existing Delaunay mesh.

3. Create points in the free space and insert them into the Delaunay mesh

4. Apply mesh enhancement technique to improve the quality of the resulting
mesh.

The initial volume mesh is a constrained Delaunay mesh of the boundary
points that ensures the presence of all surface triangles. For the generation
of the points in the near field region, a modified advancing front technique
has been developed. Two methods have been considered for creating points
within the free space region. The first method is based upon the generation
of local lattice points, which resembles the distribution of an ideal mesh for a
given spacing. The second method utilises an octree at the desired spacing to
position nodes in the free space region.

2.1 Near Field Point Generation by a Modified Advancing Front Technique

Advancing front techniques are characterised by marching the volume mesh
into empty space from the surface mesh by sequentially generating points and
elements [7,6]. In the case of tetrahedral elements, this traditionally consists
of placing a new node above each face on the surface to create an equilateral
tetrahedron. However, in the ideal mesh shown in Figure 1 nodes lie above
edges, not faces, of the elements below. The technique adopted here is to
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Fig. 4 Detail of a mesh of ideal tetrahedral elements, showing the surface Delaunay faces
and the internal Voronoi cells. The arrows indicate where the next layer of nodes would be
placed.

advance the generation of nodes from edges rather than from faces. This is
done to recreate the structure of the ideal mesh for co—volume schemes.

To construct an additional layer on top of the ideal mesh shown in Figure 1,
a single node advances from each pair of surface triangles. This is illustrated
for a few edges in Figure 4. This means that, for a general surface, a method
is required of identifying the set of edges from which nodes will be advanced.
The edges can be found by pairing faces, such that each face only belongs to
one pair. Pairing in this fashion is also encountered when merging triangular
meshes into quadrilateral meshes. Remacle et al. [8] showed that this is a maxi-
mal matching problem, which can be solved using blossom type algorithms [2].
When this list of edges has been obtained, the next step is to decide where to
place the node above each edge. VanderZee et al. [13] have carried out exten-
sive work in investigating conditions for well centred elements. These are used
as conditions to place nodes during the advancing front stage. Given a single
face, the acceptable region, in which a node may be placed to create a well
centred element, can be identified. This region is constructed by finding the
reflection of the face through its own circumcentre, as shown in Figure 5(a). A
prism is created by extruding the reflected face, infinitely in both directions,
and part of the volume of this prism is cut out by the sphere whose equator
is the circumcircle of the original non reflected face [13]. This is illustrated, in
a side view, in Figure 5(b), where a point placed in the region R produces a
well centred tetrahedron when connected with the remaining nodes.

With this in mind, a node located above an edge must sit within this region
for both triangles connected to that edge. Assuming that the dihedral angle
of the two faces allows the regions to cross, this position can be calculated as
the mid point between two points found by advancing from the centroid of
the two reflected elements. Using Figure 6 to illustrate the notation used, the
region in which a node above an edge BC, which connects triangle ABC' to
BDC, may be located is determined as follows:

1. Calculate the inward normal of the triangles ABC and BDC, 4P and
aBPe respectively.

2. Construct the reflections, A’B’C" and B'D’'C’, of both triangles through
their circumcentres.

3. Calculate the circumradius, RAZ¢ and RBPC, of ABC and BDC respec-
tively.
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Fig. 5 (a) Given the face ABC the volume in which a point can be placed to construct a
well centred tetrahedron is found as follows. Take the reflection of ABC through its own
circumcentre, A’B’C’. The volume a point can be placed in is the prism, extruded from
A’'B’'C’, with the sphere whose equator is the circumcircle of ABC' cut out of it. (b) shows
a side view of the resulting region R. (a) and (b) are not drawn to scale.

X
X

BC'D
/ \
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Fig. 6 Diagram showing the modified advancing front procedure for the edge BC'.

4. Calculate the circumcetres, ¢A'B'C" and ¢B'P'C’, of A’B'C’' and B'D'C’
respectively.
5. The distance to advance the front is calculated as § = 1.1xmax(RAB¢ RBPC)

6. The new node position is then given by
x = 0.5 x (CABC + CBDC + (S(ﬁABC + ﬁBDC)) (1)

The process of determining which edges to advance from is as follows:

1. Establish the graph of the edges of the triangular surface mesh.

2. For each edge in this graph, permanently eliminate edges where the feasible
regions of the adjacent faces do not cross.

3. Apply the blossom algorithm to maximise the number of paired elements
in the resulting graph.

4. Store the common edge of paired elements into a list of edges from which
to advance.

Any face ABC which is not present in the resulting graph, i.e. does not
have an edge from which a point was advanced, is considered separately by
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Fig. 7 A single point from the lattice of Figure 1, with its 14 neighbours lying either on
the sphere of radius v/3/2 or on the sphere of radius 1/v/2.

advancing, in the direction of the normal to ABC, from the circumcentre of
its reflection ABC’, by a distance § = 1.1R4A5¢ . This means every face should
have a line of sight to an advancing node.

The points generated in this way, for a complete layer, are inserted into
the constrained Delaunay triangulation. Points which lie close to each other,
or to existing mesh points, are automatically rejected by the Delaunay kernel
implementation presented in [18].

2.2 Free Space Lattice Point Generation

The motivation of utilising a lattice point generation technique [16] is to recre-
ate, as closely as possible, the ideal mesh shown in Figure 1 for a non—uniform
spacing function. In the ideal mesh, a repeating lattice can be identified, in
which each node is connected to 14 neighbouring nodes and each tetrahedron,
shown in Figure 7, in the lattice contains its circumcentre.

Figure 8 illustrates the process in two dimensions where the ideal mesh
is of equilateral triangles, resulting in 6 lattice points. The technique starts
with a set of seed nodes as shown in Figure 8(a). In the three dimensional
case the seed nodes are not the boundary, but the set of nodes inserted using
the modified advancing front method described above. With these seed nodes
located and triangulated, the following steps are followed:

1. For each seed node:
(a) Calculate the local spacing § at the node.
(b) Generate the lattice nodes around the seed node at the local spacing 9,
illustrated in Figure 8(b).
(¢) For each of the new lattice nodes:

i. If the node lies inside the computational domain and at a distance
greater than §,, from an existing boundary node, add the node to
the list Pt

ii. Merge it with an existing node in Py, if the distance between them
is less than §,,.
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D)

(a) Initial seed nodes (x). (b) A set of 6 lattice nodes (o) are placed
around the first seed node.

& =

(c) The set of nodes resulting from placing (d) The nodes which were not deleted are
lattice nodes at each seed node. now triangulated.

Fig. 8 A two dimensional illustration of the lattice point generation technique.

2. Insert the nodes in P; into the mesh using Delaunay point insertion. This
is shown in Figure 8(d).

3. Treat the nodes in P; as seed nodes and repeat steps 1 and 2 to create
P, 1. Keep repeating until a set of seed nodes results in a empty Py.

In the current implementation, the value of §,, is taking to be 50% of the
local desired spacing. Due to the large number of potential points in Py, the use
of the Delaunay kernel alone to identify points that are close to existing points
proved to be inefficient. A KD-tree library is employed for spatial searching.
This enables searches for neighbours within a given range to be performed in
O(log N) operations, where N denotes the total number of nodes [4]. Utilising
a 3D local axis system for each seed point that has one of its axis aligned with
the normal to the triangulation of the previous layer and a second axis aligned
with the projection of one edge connected to the seed point onto the tangent
plane at the point, produces the best quality local lattice configuration.
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o Quad-tree nodes
= Delaunay nodes
. . .

Fig. 9 Illustration of the octree point generation technique performed on a two dimensional
quad—tree. The Delaunay nodes are triangulated and the quad-tree nodes are not.

2.3 Free Space Octree Point Generation

An alternative technique for creating a suitable mesh in the free space region
is based on a combination of octree space subdivision and Delaunay point
insertion. This algorithm first creates an octree that complies with the given
spacing distribution function. This tree is then used as a template in which
nodes are placed at the centroid of each octant. The Delaunay triangulation
of those nodes results in a mesh of tetrahedra which can be merged to form
alternating layers of cubes and pyramids with hexahedra. A similar approach
is presented by Yang et al. [20]. They use the octree space division as the basis
for a face centred cubic crystalline lattice structure. In their structure, points
are not only placed at the centroid of each octant, but also at the vertices. We
found that approach resulted in fewer suitable quality elements, for co—volume
techniques, than the one presented here.

A two dimensional diagram illustrating the technique is shown in Figure 9.
In two dimensions the quad—tree is constructed at the user specified spacing.
Delaunay nodes are then inserted at the centroid of each quad and trian-
gulated. In the figure, the two right angled triangles would be merged into
a quadrilateral and the remaining triangles contain their circumcentres. Re-
gardless of the spacing function specified the construction of the quad—tree
restricts the gradation such that the structure of elements illustrated appears.
Essentially the quad—tree gives us the building blocks to change element size
without compromising quality, at the expense of compromising user specified
spacing. In three dimensions the situation is complicated by the possible exis-
tence of hanging nodes at the centroid of octant faces. These hanging nodes do
not themselves appear in the final set of mesh nodes, but the octant structure
around hanging nodes in the octree results in elements which do not contain
their circumcentres.

Figure 10 shows a cut through a three dimensional mesh created in the
manner described above. The target spacing function was a single point source
at the centre of the volume. At the end of the division process, the octree
contains no hanging nodes at octant faces and, after merging, all the elements
are well centred. Figure 11 shows a cut through a second mesh created in the
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Fig. 10 A single point source with no boundary surface mesh. The mesh was generated
using the octree Delaunay technique. The connections to the initial hull are also shown.
After merging, all elements contain their circumcentres.

oL SR
. NN

P

Fig. 11 A collection of sources with no boundary surface mesh. The mesh was generated
using the octree Delaunay technique. The connections to the initial hull are also shown. The
red solid elements do not contain their circumcentres.

same manner. The target spacing function is now a group of sources designed
for meshing an ONERA M6 wing. In this case, hanging nodes exist in the
octree, which leads to 0.4% non well centred elements in the final volume. It is
possible to create completely well centred meshes by subdividing octants with
hanging nodes. This has the disadvantage of increasing the number of elements
which do not conform to the target spacing function. In some applications, this
may be an option but, in many industrial applications, the resulting number
of elements would be prohibitively large. It will be shown, however, that the
mesh optimisation procedure is able to fix most of these elements.
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2.4 Mesh Optimisation

Once the near field points are generated using the modified advancing front
technique and free space points generated by one of the two other techniques,
the mesh will be improved using optimisation techniques. Traditional mesh
cosmetic techniques, such as edge splitting, edge collapsing and edge swap-
ping, have been developed to improve the quality of Delaunay meshes. For
co—volume schemes, a number of potential mesh cosmetics strategies exist.
Lloyd’s algorithm [5,1] has been shown to be ineffective in generating a com-
pletely well centred mesh, with around 10% of elements remaining non com-
pliant, in the case of uniform meshes [19], and around 30%, in the case of non
uniform meshes [15]. In an attempt to achieve a well centred mesh, VanderZee
et al. [11] employed a minimisation approach, targeted directly at the prob-
lem. The effectiveness of this method has only been illustrated for simple three
dimensional cases, such as cubes [12]. In this work, we apply an extension of
the work presented by Walton et al. [15]. We direct the interested reader to
that paper for the details of the optimisation algorithm. In the remainder of
this section, we will briefly describe the algorithm, adding detail where this
approach differs from the one presented previously.

2.4.1 Objectives of the Mesh Optimisation Procedure

The primary objective of the mesh optimisation presented here is to enhance
the mesh by reducing the number of elements which do not contain their
Voronoi vertex. When developing the mesh generation techniques, the aim
was to produce elements which contained their circumcentre. This is because,
at the generation stage, the Voronoi vertex coincides with the circumcentre.
At the optimisation stage, we will be moving the Voronoi vertex using the
power diagram, as described in section 1.2, such that it does not lie on the
circumcentre. Co—volume techniques permit the use of polyhedral cells that
satisfy the orthogonality condition. Voronoi edges that have a length close
to zero will be removed by cell merging. The optimisation procedure must
also take this into account. These requirements will be expressed in terms of
objective function, which the optimisation algorithm will attempt to minimise.

2.4.2 The Objective Function

An obvious objective function to achieve our aim would be the distance be-
tween the Voronoi vertex and centroid of each element. Since by definition
the centroid lies inside an element, moving the Voronoi vertex towards it will
pull it inside. The key aim is to ensure the Voronoi vertex lies inside the el-
ement, without necessarily ensuring that it is located at the centroid. When
this key aim is achieved, the objective function is set to zero. It is also set
to zero for merged elements. Often, it is essential to prioritise the elements
near boundaries, where the solution is expected to vary rapidly. An index is
assigned to each element, based upon its distance from the boundary. This
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index, which decreases with distance from the boundary, is used to scale the
objective function.

The contribution of a particular element k to the objective function is
defined as Fj, where

Fy, = Wi Ly |Cr, — Vi (2)

. Here, Cj, and V are the locations of the centroid and Voronoi node of k
respectively. Wy, is a coefficient that takes the value zero, when Vy lies inside
k or when k can be merged with an adjacent element, or one, otherwise. Ly, is
the index assigned to each element, based upon its distance from a boundary.
The value of Fj, may be regarded as a quality measure for element k.

2.4.3 The Optimisation Algorithm

The objective function constructed is non—smooth and non—differentiable. This
is due to a combination of sudden jumps when Voronoi vertices enter elements
or when elements are merged. Genetic type gradient—free optimisation algo-
rithms possess the ability to effectively deal with such functions. The Modified
Cuckoo Search (MCS) gradient—{ree optimisation technique [17] was developed
with mesh optimisation in mind. The technique has been shown to be capable
of creating completely well centred meshes in two dimensions [15].

The degrees of freedom in this mesh optimisation problem consist of the
node positions and weights. This number can very quickly reach the order of
millions, which motivates the separation of the problem into a series of local
optimisations. The objective function is constructed by selecting the position
and weight of a single node as degrees of freedom. The value of the objective
function at a node is taken as the sum of F}j over each element, k, connected
to that node, along with their neighbours to account for merging. This con-
struction is illustrated in Figure 12. As a constraint, the fitness is assigned a
large value, if one of these elements has a minimum dihedral angle less than 10
degrees. This ensures that flat and negative elements are avoided. This mea-
sure does not avoid tetrahedra, in the form of spires, which have poor aspect
ratios. Spire elements do not pose a problem for co—volume solvers provided
that the Voronoi vertex is pulled inside the element or the element itself is
merged with an adjacent element.

The Modified Cuckoo Search has two key components, viz. exploration and
exploitation. A population of agents, typically ten times the number of degrees
of freedom, is generated. Each agent represents a potential set of node coor-
dinates and weights. In the exploration step, a scaled random Lévy flight [14]
is performed, from the locations of the group of agents with the worst values
of Fy. These agents are replaced, by the new positions and values of Fj, found
after the random walk, and are called the discarded agents. In the exploitation
step, a search is performed along a line between two random agents, selected
from the group of agents with the best values of Fj,. Agents in this elite group
are only replaced if the newly found coordinates result in an improved value
of Fk-.
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Fig. 12 A two dimensional illustration of how the objective function is constructed. Here
the central node is to be optimised. The degrees of freedom are the node’s coordinates (z, y)
and weight w. The effected elements are drawn, the objective function f(z,y,w) is then
calculated by summing F}, over all these elements.

The order in which elements are optimised will be critical for success.
There are two aims of the traversal strategy. Firstly, to ensure that the worst
elements are optimised first and, secondly, to ensure that the system does not
get trapped within a local minimum on subsequent iterations. Both aims are
achieved using a binning scheme. The quality, F} of each element is calculated
and Nyp;, quality bins are created to group the elements. Treating the elements
in order, starting with the worst quality bin, ensures that the worst elements
are acted upon first. The order in which elements are treated within each bin is
randomised, to avoid trapping the system into a local minimum by optimising
elements in the same order on subsequent iterations. The number of bins is
determined based on a minimum of 25 elements per bin and a maximum of 20
bins.

The full mesh optimisation procedure employed can be summarised as
follows:

1. Perform edge splitting and edge collapse to remove any long or short edges
that do not conform to the spacing distribution function. This will ensure
that the mesh conforms to the spacing function after the near field and
free space meshes are combined.
2. Perform an optimisation sweep
(a) Identify all elements Ne, with objective function not equal to zero.
(b) Sort all elements with non—zero objective function, into Ny;,, bins, where
Npir, = min(20, Ne./25).

(¢) Mark all nodes as unvisited.

(d) For every bin, loop over the elements in the bin in a random manner.
For each element, loop over the unvisited nodes and
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i. Generate the desired number of agents, i.e. 40 sets of coordinates
and weights.
ii. Employ the MCS to determine the coordinates of the node and the
weight that minimise the objective function.
iii. Mark the point as visited.
iv. Compute the new objective function of all affected elements and
adjust their bin number accordingly.
3. Perform swap diagonals to ensure the Delaunay criterion of maximising
the minimum angle is met.
4. Return to step 2 if the user defined maximum number of iterations has not
been reached.

The optimisation process described above is performed on a static connectivity.
It is likely that, after node movement, a better quality connectivity might
exist. At the end of each optimisation sweep, i.e. stage 3, the optimality of the
connectivity is improved by swapping diagonals [18]. Elements with a minimum
dihedral angle of less than 20 degrees are targeted for diagonal swapping,
if an improvement can be made. The process is repeated until no further
improvement is possible. In the examples presented in this paper, the complete
procedure is iterated until either no change results in the mesh quality mesh
or a user defined time limit is reached.

3 Results

To evaluate the effectiveness of the proposed procedures, the key measure is the
percentage of elements that do not contain their Voronoi vertex. In addition,
we will also present the distribution of the following quality measures:

— ¢1: The minimum dihedral angle of each Delaunay element.

— @2: The distance from the Delaunay element centroid to the Voronoi vertex,
normalised by the inner radius of the element.

— g3 The distance from the mid point of the Voronoi edge to the point on
the edge which intersects the face, normalised by the local spacing.

— ¢4: The distance from the intersection of the face by the Voronoi edge to
the face centroid, normalised by the local spacing.

— @¢5: The Voronoi edge lengths normalised by the local ideal Voronoi edge
length, 0.38 times the mean Delaunay edge length of the element.

All meshes are produced using the constrained Delaunay triangulation [18]
with four different point generation techniques:

— Automatic edge sub—division [18]. This technique will be referred to as
Auto Delaunay (AD).

— Modified advancing front method for the first layer of elements followed
by the automatic edge sub division. This technique is referred to as Auto
Delaunay/Adv Front (ADAF).
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— Modified advancing front method for the first layer of elements followed
by the lattice point insertion technique. This technique is referred to as
Lattice/Adv Front (LAF).

— Modified advancing front method for the first layer of elements followed
by the points created from the octree-Delaunay method. This technique is
referred to as Octree/Adv Front (OAF).

In all cases, the boundary nodes are inserted using the Delaunay kernel and
the boundary triangulation recovered. We have found that there is no advan-
tage to generating more than one layer of elements using the advancing front
technique. Subsequent nodes are inserted using the Delaunay kernel implemen-
tation presented in [18], which automatically rejects points which lie too close
to the existing nodes in the mesh. The proposed mesh optimisation technique
is then applied with a CPU time limit of 24 hours. To compare the proposed
mesh optimisation technique to traditional methods, the percentage of ele-
ments not containing their Voronoi vertex is presented for meshes generated
using automatic edge sub—division and the traditional cosmetics suite [18].
This is referred to as the traditional technique.

Three aerospace geometries, of increasing complexity, are considered. These
are the ONERA M6 wing shown in Figure 13(a), the F6 aircraft geometry, with
wing and installed nacelle, shown in Figure 13(b) and the full F16 aircraft
geometry shown in Figure 13(c). It should be noted that the F16 stores are
not attached to the aircraft surface, which creates gaps that are smaller than
the prescribed local mesh spacing. The number of elements on each of the
surface meshes is given in Table 1, along with the number of elements which
do not contain their Voronoi vertices, for each generation method. In this table
the percentage of boundary elements not containing their Voronoi vertices is
also given.

3.1 ONERA M6

The ONERA M6 is the simplest example presented. Before optimisation, the
most striking result shows the effectiveness of the modified advancing front
technique introduced in this paper. Using the AD technique without the mod-
ified advancing front technique results in 36% of the boundary elements not
containing their Voronoi vertices. This is reduced to 7.6% when the modi-
fied advancing front technique is used. The improved starting point remains
important after the optimisation process has been applied. In 24 hours 400
iterations of the optimisation technique were performed. After optimisation,
the ADAF technique has roughly half as many poor quality elements as the
AD technique. Figures 14(a) and 14(b) show cuts of the optimised mesh at
the trailing edge for AD and ADAF respectively. The structure of the mesh
close to the boundary appears better using ADAF. Before optimisation LAF
generates the best quality mesh close to the boundary. This is to be expected,
since the technique will closely recreate the ideal mesh in the first few lay-
ers. The LAF technique does not perform as well in the volume with 42%
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(a) ONERA M6 Wing

(b) F6

(c) F16

Fig. 13 The surface meshes for the three geometries considered.
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Table 1 Summary of the number of elements with Voronoi vertices outside for each example
and each mesh generation method. N, refers to the number of elements.

Surface  Volume  Before Proposed Optimisation  After Proposed Optimisation

Ne Ne Boundary Total Boundary Total
Outside Outside Outside Outside
M6  Traditional 8710 216759 38% 36% N/A N/A
AD 8710 203834 36% 36% 1.1% 0.096%
ADAF 8710 207458 7.6% 35% 0.51% 0.084%
LAF 8710 234277 5.0% 42% 0.52% 0.096%
OAF 8710 207650 7.6% 28% 0.49% 0.088%
F6 Traditional 82946 2537189  35% 34% N/A N/A
AD 82946 2402578  37% 36% 1.16% 0.18%
ADAF 82946 2454198  7.2% 34% 0.68% 0.16%
LAF 82946 2404118  5.3% 40% 1.3% 0.37%
OAF 82946 2446254  7.2% 27% 0.92% 0.35%
F16 Traditional 170104 5804032 40% 33% N/A N/A
AD 170104 5518276  42% 34% 6.2% 2.3%
ADAF 170104 5612485 12% 33% 3.9% 1.7%
LAF 170104 4430551 9.3% 37% 3.5% 1.8%
OAF 170104 5516251 12% 27% 4.2% 2.0%

(c¢) Lattice/Adv Front (d) Octree/Adv Front

Fig. 14 Comparison between different generation strategies for the ONERA M6 wing at
the trailing edge. The coloured elements in the cuts have been merged and the solid red
elements are the only elements which do not contain their Voronoi vertex.

of Voronoi vertices outside compared with 28% outside using OAF. This will
be due to the advantages of LAF diminishing as the mesh grows outwards,
whereas using OAF a mesh is generated over all space directly. This effect can
be clearly seen when comparing Figure 15(c) to 15(d) which shows a view of
a cut through meshes generated using LAF and OAF respectively. Another
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(c) Latti(;e/Adv Front (d) Octree/Adv Front

Fig. 15 Comparison between different generation strategies for the ONERA M6 wing show-
ing the full domain. The coloured elements in the cuts have been merged and the solid red
elements are the only elements which do not contain their Voronoi vertex.

important result is the effectiveness of the optimisation approach. Running
optimisation almost eliminates any differences between the four techniques,
reducing the percentage of poor quality elements by 3 orders of magnitude.
The only notable exception is that running simply AD results in poorer ele-
ments close to the boundary. This highlights the importance of the modified
advancing front technique. All of the new techniques significantly outperform
the traditional generation techniques.

Figure 16 shows the secondary quality measures for each mesh in a his-
togram. In these plots, the first bar of the histograms represents the percentage
of the quality measures that fall between the minimum and the first chosen
value. The last bar of the histograms represents the percentage of the quality
measures that fall between the last chosen value and the maximum. There is
little difference between the techniques introduced in this paper, but there is
a clear difference between these and the traditional technique. The mesh gen-
erated using the traditional technique has a better distribution of minimum
dihedral angles. This is not surprising, since in many respects, this is a key
quality measure traditional techniques aim to improve. It is the cost for fo-
cusing on co—volume mesh requirements. A quality measure which may seem
to produce a counter intuitive result is g4, the distance from the intersection
of the face by the Voronoi edge to the face centroid, normalised by the local
spacing. Theoretically, the quality measure g4 should be zero for meshes that
are generated using the Delaunay kernel. However, in the standard meshes, the
deviation is due to boundary constraints and the traditional mesh cosmetics.
Using the proposed generation technique, this quality measure is reduced by
the introduction of the weight to pull the Voronoi vertices inside elements.
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Large values for ¢4 will result in reduced second order accuracy for co—volume
schemes. This is an accepted cost which improves stability by pulling Voronoi
vertices inside elements. The histogram shows that the traditional generation
technique has lower values of ¢4 but larger Voronoi-centroid distances. Finally,
the Voronoi edge lengths are increased in the newly presented techniques which
will have a positive effect on the minimum time step of the co—volume scheme.

3.2 F6

The geometry includes the full body of an aircraft with a wing mounted nacelle.
The wing has a blunt trailing edge. Similar trends to the M6 can be observed.
The modified advancing front technique significantly reduces the number of
poor quality elements at the boundary. LAF does the best job of generating
elements close to the boundary and OAF the best in the free space region. In 24
hours 45 iterations of the optimisation technique were performed. Optimisation
reduces the differences between the new techniques. After optimisation, the
best mesh is the ADAF. Figure 17 compares the meshes at the leading edge
of the nacelle. The lattice structure in the LAF mesh can be seen in this
region close to the boundary clearly in Figure 17(c). In the mesh generated
using OAF, poor quality elements appear in the region where the near field
points have been connected to the free space octree generated points. Figure 18
shows cuts through the meshes in the region around the wing. The differences
between LAF and OAF can clearly be seen here. The remaining poor quality
elements are near the trailing edge in OAF and in the free space in LAF. In
all cases, the new techniques are orders of magnitude better than traditional
methods.

The mesh statistics for the F6 are shown in the histogram in Figure 19.
These show similar trends to the M6 example. One notable difference is that
the mesh generated using ADAF has a noticeably better distribution of Voronoi—
centroid distances.

3.3 F16

The F16 is the most complex example considered and is a challenging test for
the techniques presented. Overall the trends are the same as in the other ex-
amples. Initially, LAF generates the best mesh close to the boundary and OAF
the best in free space. In 24 hours 6 iterations of the optimisation technique
were performed. After optimisation, the differences between the techniques
are not significant. The new techniques produce significantly better meshes
than traditional methods. The best mesh using new techniques has 1.7% total
elements not containing their Voronoi vertices, compared with 33% using tra-
ditional techniques. Figure 20 compares the different techniques in the region
close to the stores. The gaps, which are smaller than the prescribed spacing,
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Fig. 16 Histogram showing mesh statistics for the M6.
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(c¢) Lattice/Adv Front k (d) Octree/Adv Front

Fig. 17 Comparison between different generation strategies for the F6 geometry at the
leading edge of the nacelle. The coloured elements in the cuts have been merged and the
solid red elements are the only elements which do not contain their Voronoi vertex.
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(c¢) Lattice/Adv Front (d) Octree/Adv Front

Fig. 18 Comparison between different generation strategies for the F6 geometry cuts taken
through the wing. The surface mesh is not plotted. The coloured elements in the cuts have
been merged and the solid red elements are the only elements which do not contain their
Voronoi vertex.
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Fig. 19 Histogram showing mesh statistics for the F6.
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(c¢) Lattice/Adv Front (d) Octree/Adv Front

Fig. 20 Comparison between different generation strategies for the F16 zoomed in to show
the gaps between the wing and stores. The coloured elements in the cuts have been merged
and the solid red elements are the only elements which do not contain their Voronoi vertex.

between the wing and the stores create difficulties. The LAF technique has
better elements directly in contact with the boundaries, but it struggles to
generate good quality elements between them. In fact, in Figure 20(c), LAF
does not seem to have generated enough points inside. This may indicate a
need to adjust J,, depending on the geometry, which would limit the appli-
cation of this method to the general case. Figure 20(d) shows that OAF can
handle this situation better.

Figure 21 shows the region behind a store, which has a complex fin con-
figuration. The configuration is shown without the volume mesh in Figure 22.
This surface results in volume elements with small dihedral angles. The plots
in Figure 21 show how LAF is the most sensitive to this complex geometry.
This is to be expected, since the mesh grows from the boundary in LAF. Fig-
ure 21(d) shows how OAF manages to generate good quality elements close to
and far away from the surface. The mesh statistics for the F16, presented in
Figure 23, show similar trends to previous examples.

3.4 Electromagnetic Wave Scattering Simulation

The aim of this work was to generate suitable unstructured meshes for co—
volume solvers. To illustrate the effectiveness of the proposed strategies, a
three—dimensional electromagnetic wave scattering simulation is considered.
An unstructured co—volume solver for the Maxwell’s equations was used, full
details of which have been described in previous work [19].
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Fig. 21 Comparison between different generation strategies for the F16 zoomed in to show
the complex fin configuration on the rear of the stores. The coloured elements in the cuts
have been merged and the solid red elements are the only elements which do not contain
their Voronoi vertex.

Fig. 22 Elements, plotted in green, with small dihedral angle caused by the complex F16
surface.

Interaction between a plane single frequency incident wave and a perfect
electrical conductor (PEC) body with two pairs of rear fins is considered. A
surface mesh of the geometry is shown in Figure 24.

The wave frequency is such that the length of the body is 6X, where A
is the wavelength. The incident wave propagates in the (z,y) plane and the
main axis of the body is aligned with the z axis of a standard Cartesian
coordinate system. In all cases the simulation was run for 15 cycles of the
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Fig. 23 Histogram showing mesh statistics for the F16.
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Fig. 24 The surface mesh of the PEC body in the electromagnetic wave scattering problem.

Table 2 Comparison of CPU time for the solution of scattering by a PEC object.

Generation method  Time Step CPU Time per cycle

Xie et al. [19] 3.47 x 1075 148 minutes
Lattice/Adv Front 2.93 x 10~* 17 minutes

plane wave, which was enough to provide a converged solution. The number
of time steps required per cycle was determined by the time step size, which
in turn is calculated using the minimum Delaunay and Voronoi edge lengths
in the mesh [19].

Initially, to enable comparison with the method presented previously by Xie
et al. [19], hybrid meshes with uniform target spacing functions were generated.
An element size of \/15 was selected. To create the hybrid meshes, a structured
hexahedral mesh, extending 1.5\ beyond the boundary of the geometry, was
generated. A hole, which contains the geometry, was cut out from the hexaheral
mesh and extended to a distance of 0.4\ from the object. The domain bounded
by the triangulated surface mesh of the object and the triangulated surface
of the hole was triangulated in two different ways. In the first method, using
the method described by Xie et al. [19], nodes were inserted from a uniform
ideal tetrahedral mesh and improved using Lloyd’s algorithm. In the second
method, a mesh was generated using the lattice/Advancing Front technique
and improved using the mesh optimisation presented in this paper. The mesh
optimisation was limited to 30 cycles.

The findings are summarised in Table 2. Globally the mesh generated using
the Xie et al. [19] technique has less elements with their Voronoi vertex outside.
The prioritisation of boundary elements in the new technique is shown as
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Table 3 Comparing the meshes generated for the PEC body with a uniform target spacing
function using Lattice/Adv Front with varying time limits placed on the mesh optimisation.

Number of Op- Percentage with Time Step CPU Time per
timisation Cycles Circumcentre Solver Cycle

and CPU Cost of Outside

optimisation

30 (24 hours) 0.8% 2.93 x 1074 16 mins

15 (12 hours) 0.8% 2.93 x 1074 16 mins

6 (6 hours) 1.2% 2.93 x 1074 16 mins

3 (3 hours) 2.3% 2.89 x 104 19 mins

1 (1 hour) 7.1% 2.89 x 10~4 Solution Diverged

the percentage of boundary elements with their Voronoi vertices outside is
0.04% compared with 0.4% using [19]. The increase in time step, resulting
from increased minimum Voronoi edge length, from 3.47 x 107> to 2.93 x 10~*
has lead to the reduction in simulation CPU cost by a factor of 9. A study
was performed in which the number of adaptive mesh optimisation cycles
was reduced and the results are shown in Table 3. These results show that
3 cycles of the mesh optimisation were needed to generate a suitable mesh
for the problem. The CPU cost of 3 cycles of optimisation was 3 hours, this
effort resulted in a reduction of CPU cost per cycle from 148 minutes to 19
minutes. This reduction means the extra CPU cost from mesh generation is
paid for in just 2 solver iterations. Figure 25 shows how the mesh quality
changes as the number of cycles is increased. It is clear that there is a little
improvement in quality measures beyond the third cycle. To show how the
number of cycles affects the accuracy of the solution, the radar cross section
(RCS), a parameter of practical interest in these problems [19], is plotted in
Figure 26. The validated solution obtained by Xie at al. [19] on a uniform mesh
is also plotted. The figure shows very little difference between the solutions.

The final example considered the previous geometry with a non—uniform
spacing distribution function. Three sources were placed at the end of the PEC
body to improve the resolution of the high curvature of the fins. A spacing of
51 = A/30, was specified in the proximity of the body. This was increased to
d1 = A/15 at the surface of the hole of the ideal hexahedral mesh. Three cycles
of mesh optimisation was performed, cuts through the generated mesh after
optimisation are shown in Figure 27. In the final mesh, 0.23% of the elements
globally, and 0.03% of the boundary connected elements, did not contain their
Voronoi vertex. Figure 28 compares the solution obtained on the graded mesh,
and on the uniform mesh using the present technique, with the solution of Xie
et al. [19] on a uniform mesh. It is clear from this figure that there is very
little difference between the three solutions.
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Fig. 25 Histogram showing how the mesh optimisation affects the mesh quality for the
PEC body. Number of cycles refers to the number of cycles of optimisation.



32 S. Walton, O.Hassan and K.Morgan

Cross-Polarized RCS

20+

10+

Bistatics RCS (dB)

-- 12 cycles 1
30 cycles
--- Xie et al

0 50 100 150 200 250 300 350
Azimuth (deg)

Co-Polarized RCS

— 3cycles
== Gcycles
-= 12 cycles
30 cycles
- Xie et al. 1

Bistatics RCS (dB)

0 50 100 150 200 250 300 350
Azimuth (deg)

Fig. 26 Comparing the radar cross section for the electromagnetic wave scattering simula-
tion, calculated on a mesh generated by the technique presented by Xie et al. [19] and the
techniques proposed in this work, with varying numbers of optimisation cycles.

4 Conclusion

The aim was to determine the feasibility of generating meshes suitable for
use with co—volume solution techniques. The primary measurement employed
was the number of elements which do not contain their Voronoi vertex. A
number of generation strategies were introduced, along with a mesh optimi-
sation technique. These were specifically designed with this key measurement
in mind. Three industrial aerospace configurations, of increasing geometrical
complexity, were used as examples.

When comparing the different generation strategies, the results show that
the Auto Delaunay/Adv Front strategy results in the best mesh in every case,
after running the optimisation. Before optimisation, the Octree/Adv Front
consistently results in the best mesh. We believe this is because the strategy
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Fig. 27 Cuts through the graded volume mesh around the PEC body in the electromagnetic
wave scattering problem. This was generated using the Lattice/Advancing Front technique
and improved using the adaptive mesh optimisation presented in this paper.

is largely made up of a near ideal mesh, the octree. From an optimisation
perspective, it is similar to starting the process close to a local minimum,
from which it may be difficult to escape. A significant result from the test
cases is the reduction in the number of boundary elements with their Voronoi
vertices outside due to the modified advancing front technique. In the most
complex example, the F16, previous methods resulted in 42% of the boundary
elements not containing their Voronoi vertex, whereas using the new advancing
front technique there are now just 12%.

The mesh optimisation algorithm effectively improved the quality of the
meshes in all examples. This approach was able to reduce the number of ele-
ments with Voronoi vertices outside by at least an order of magnitude in all
cases, sometimes more. This procedure eliminates almost any differences in
mesh quality between the techniques. The distance from face centroids to the
point at which the Voronoi vertex intersects the face is quite large in the more
complex examples. This is due to using node weights to move the Voronoi
vertex. Constructing a multi-objective objective function to account for this
distance may result in improvements. Running the optimisation procedure is
computationally expensive, roughly O(N,). We have shown that, when solving
electromagnetics problems, the reduction in time step caused by the optimisa-
tion procedure more than pays for the cost of the optimisation. In the problem
presented, the total computational cost from geometry to solution was reduced
by an order of magnitude.

The examples presented here were deliberately selected as they were diffi-
cult, realistic examples. In each case, the percentage of elements not containing
their Voronoi vertices was less than or equal to 2%. The results build confi-
dence that it would be feasible to generate meshes for co—volume schemes,
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Fig. 28 Comparing the radar cross section for the electromagnetic wave scattering simu-
lation, calculated on a mesh generated by the technique presented by Xie et al. [19] and
the new techniques proposed in this work with both uniform and graded target spacing
functions.

mainly due to the modified advancing front technique along with an effective
adaptive mesh optimisation scheme. It is now necessary, and worthwhile, to
develop three dimensional co—volume solvers in other areas, so that meshes
generated by these procedures included here may be fully tested.
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