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Combining regenerative medicine
strategies to provide durable reconstructive
options: auricular cartilage tissue
engineering
Zita M. Jessop1,2†, Muhammad Javed1,2†, Iris A. Otto3,4, Emman J. Combellack1,2, Siân Morgan1,2,
Corstiaan C. Breugem4, Charles W. Archer1, Ilyas M. Khan5, William C. Lineaweaver6, Moshe Kon4, Jos Malda3,7

and Iain S. Whitaker1,2*

Abstract

Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered
tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells,
assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us
to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular
reconstruction, including donor site morbidity, technical considerations and long-term complications. Current
tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to
undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic
regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to
biochemical composition and functionality, as well as microstructural organization and overall shape. Creating
functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the
need for donor sites.

Introduction
The combined efforts of cell biologists, material scien-
tists, tissue engineers and reconstructive surgeons and
associated converging technologies [1] in the 21st cen-
tury have put us in an enviable position compared with
our predecessors. Due to recent advances in regenerative
medicine and additive manufacturing we are entering
into an age where we have the potential to replace ‘like
with like’, by improving the quality of engineered tissue
with respect to biochemical composition and functionality,
as well as microstructural organization and overall shape.
The importance of regenerative medicine as an emer-

ging discipline is gaining worldwide recognition with a

predicted world market value ranging from $2 to 500
billion per annum in 5–10 years [2]; and the assumed fi-
nite reservoir of future value has encouraged many
countries to invest in this area of research. This value
could be exceeded if the barriers to translation and
commercialization were overcome. Current research in
tissue engineering is geared towards elucidating the ap-
propriate compositional elements (biomaterials, biomol-
ecules and cell sources) as well as methods of assembly.
To drive translation of innovative regenerative medicine
treatment options to preclinical studies and clinical tri-
als, clinicians need to embed themselves as an essential
part of the multidisciplinary team.
One area within the field of plastic and reconstructive

surgery that has the potential to benefit from recent
advances in regenerative medicine and biomanufacture
is auricular reconstructive surgery [3–7]. Abnormal
appearance of the ears has a profound effect on self-
confidence, quality of life and psychosocial development
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[8–11], and even minor disfigurement can cause psycho-
logical distress. Although the need for total ear recon-
struction is relatively rare (e.g. microtia 1–17:10,000
births [12]), partial ear reconstruction owing to acquired
defects (trauma, burns or cancer occurs in >1:500 of the
population) is more commonly required. Total autolo-
gous reconstruction, due to its physical and aesthetic
prominence, features in the lay press disproportionately
often; and from time to time trumpets standard methods
of reconstruction that have been used for decades [13, 14].
At the same time, media coverage of scientific advances
often leads patients to believe that three-dimensional
printing of auricles lies around the next corner [15–18].
The first tissue-engineered, ear-shaped appendages

made from bovine chondrocytes and biocompatible scaf-
folds by the Vacanti group were prone to deformation
when xenografted onto immune-compromised mice,
highlighting the lack of long-term stability [6]. We will
use the lessons learnt from auricular cartilage tissue en-
gineering to illustrate how combining additive manufac-
turing and regenerative medicine for tissue-engineering
purposes can be used to create functional and durable
tissue with potential to shift the paradigm in recon-
structive surgery.

Contemporary autologous auricular
reconstruction
The current gold standard of autologous auricular re-
construction is considered one of the most challenging
operations in reconstructive surgery largely due to the
complex three-dimensional anatomy [19]. The bench-
mark work by Tanzer, who was the first to describe the
use of autologous costal cartilage to create a three-
dimensional auricular framework [20–22], has had a sig-
nificant impact on current strategies. Subsequent work

by Brent [23–28], Park [29, 30], Nagata [31–36] and Fir-
min [37] played a pivotal role in refinement of surgical
techniques for ear reconstruction (Table 1). Two-stage
total auricular reconstruction is now the standard treat-
ment across the European Union and the United States
[12]. The benefits of autologous auricular reconstruction
compared with allogenic options such as silastic [38–40]
or porous polyethylene (Medpor®; Stryker, Kalmanzoo,
MI, USA) [41–43] are high biocompatibility [44], long-
term stability, immunocompatibility [5] and the ability
to grow with the patient [5, 7, 45].
To date, costal cartilage has proven to be the only

source of cartilage with an adequate quantity, integrity
and acceptable morbidity [46]. The auricular framework
usually requires three to four costal cartilage segments,
which can be harvested ipsilaterally or contralaterally
[21, 47], providing an immunocompatible solution for
restoration of the auricle. There have been various ad-
vances in the surgical approach to autologous auricular
reconstruction; these include the transition towards
single-stage procedures [29, 48, 49], and the use of
three-dimensional imaging [50, 51] and templates [52]
to better match the native ear. The fundamental princi-
ples, however, have remained the same since Harold D.
Gillies [53] was one of the first to use autologous rib car-
tilage for auricular reconstruction. The techniques pro-
vide consistently excellent results from experienced
surgeons but are not without their limitations, creating a
clinical need for a tissue-engineered solution.

Limitations of current auricular reconstructive
techniques
Donor site morbidity
Although there is rich experience worldwide in cartilage
harvest for auricular reconstruction, there is a relative

Table 1 Summary of total autologous auricular reconstructive techniques

Surgeon Technique Pros Cons

Tanzer [20–22] Four stages:
1. Rotation of the lobule into a transverse position
2. Fabrication and placement of a costal
cartilage framework
3. Elevation of the ear from the side of the head
4. Construction of a tragus and conchal cavity

– First stepwise total auricular
reconstruction

– Good results

– Multiple operations
– Transposing lobule first
poses risk of vascular compromise
of skin flap [64]

Brent [23–28] Four stages:
1. Rib cartilage framework fabrication and placement
2. Lobule transposition
3. Elevation of framework and creation of a
retroauricular sulcus
4. Conchal excavation and tragus construction

– Good contour
– Postoperative drain limits
complications of bolster
dressings [64]

– Multiple operations
– Lack definition of conchal bowl [64]
– Composite skin/cartilage tragal
grafts can contract [37]

Nagata [31–36] Two stages:
1. Fabrication of costal cartilage framework
including the tragus, conchal excavation and
rotation of the lobule
2. Elevation of framework, placement of cartilage
graft in auriculocephalic sulcus, covered with
temporoparietal fascial flap and skin graft

– Less operations
– High-definition framework
to create a good tragus [64]

– More cartilage needed
– Detailed framework so long learning curve
– Minimum age 10 years
– Partial necrosis of posterior flap [37]
– Wire sutures increase extrusion [37]
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paucity of large series investigating donor site morbidity.
Uppal et al. [54] reported on 42 patients and found that
the most common problems were chest wall pain and
clicking, whilst the most serious was a pneumothorax.
Other authors have highlighted chest wall contour de-
formity as a complication, which can be a particular
problem when using Nagata’s technique [31–36] that re-
quires the use of a greater amount of cartilage compared
with the Brent technique [23–28]. This problem can be
minimized by delaying rib cartilage harvest until patients
are older (>10 years of age) and leaving the perichon-
drium intact to allow regeneration of costal cartilage
over time [55–59]. Despite these efforts, thoracic com-
puted tomography with three-dimensional reconstruc-
tion confirms localized skeletal donor site deformities as
late as 6 months after surgery [60]. Hypertrophic scar-
ring is another complication that is particularly common
in this group of patients [55, 61–63], although careful
placement of surgical incisions can make them less obvi-
ous [64]. These surgical adaptations, although useful in
reducing donor site morbidity, do not eliminate the
problems altogether (Table 2).

Long-term limitations of the reconstructed auricle
The autologous costal cartilage used in traditional aur-
icular reconstruction can calcify [23, 65] and become
resorbed [64, 66, 67] over time. This means that the re-
constructed ear may become stiff or thickened [23, 65],
with loss of projection or definition [37, 64, 66, 67]
resulting in a variable final aesthetic result. The fibro-

cartilaginous donor tissue is also intrinsically different
in terms of flexibility and strength from the native elas-
tic cartilage it aims to reconstruct [23, 64]. The close
association of skin and cartilage in the ear can also ren-
der the dermal blood supply vulnerable during dissec-
tion and this may cause a relative ischaemia leading to
constriction, which can further distort the intended
shape [37]. Furthermore, skin flap necrosis or postoper-
ative infections can lead to the rare but serious problem
of extrusion [28, 36, 37, 64] (Table 3).

Technical considerations
The timing of total autologous auricular reconstruction
is determined by the balance between availability of suf-
ficient donor-site costal cartilage, usually adequate by
age 6, and avoiding psychosocial problems associated
with peer perception when starting school between ages
5 and 6 [19, 21, 68, 69]. The surgical techniques them-
selves are complex and involve shaping the harvested
cartilage to match the contralateral ear either by eye,
using image-acquisition technology [50, 51, 70] or via
templates [52, 63]. Consistently excellent results require
a prolonged period of training to build up the expertise
and experience from only a few world experts who have
refined their techniques over many years [23–37, 62–64].
This development of expertise will become increasingly
difficult with expanding trainee numbers in reconstructive
surgery and the potential reduced training time, which will
limit the availability of world-class results to the general
population.

Table 2 Donor site morbidity associated with total autologous auricular reconstruction

Donor site morbidity Incidence Reference Total number of patients per study

Early Pneumothorax 3 (1 %) [56, 57] 270

19 (22 %) 88

Atelectasis 4 (22 %) [55, 57] 18

7 (8 %) 88

Pleural effusion – [58] –

Delayed Persistent pain 6 (14 %) [54] 42

Thoracic scoliosis 4 (25 %) [55] 16

Seroma 9 (8 %) [59] 108, rhinoplasty group

Clicking 3 (7 %) [54] 42

Abnormal scarring 0 (0 %) [54, 57, 61–63] 42

3 (2.7 %) 110

12 (14 %) 88

14 (5.3 %) 264

21 (6.5 %) 322

Contour deformity 3 (7 %) [54, 55, 57] 42

16 (50 %) 32

22 (25 %) 88
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Auricular reconstruction combining regenerative
medicine and additive manufacturing
Over the past decade there has been an incremental ex-
pansion of the applications of tissue-engineering tech-
nology to reconstructive surgery. Historically, tissue
engineering has involved cell culture techniques, cell
seeding of scaffolds to mimic extracellular matrix and
growth of tissue in a bioreactor. These approaches have
attempted to generate durable auricular cartilage replace-
ments matching the functional and aesthetic properties of
normal ears [6, 7, 45, 71–74]. Although progress has been
made and techniques have been refined, it is not yet pos-
sible to mimic the functional characteristics of native ears
(flexibility, strength and elasticity) whilst maintaining the
correct shape of the ear after insertion under the skin for
prolonged periods of time [6, 75].
The heterogeneity in approaches indicates that we do

not yet have a long-lasting tissue-engineered solution. A
number of limitations have been identified with current
tissue-engineered auricular cartilage, as outlined in Fig. 1.
Constructs implanted into immune-competent animal
models have been observed to undergo inflammation, fi-
brosis [75] and foreign body reaction [76]. This is par-
ticularly problematic with polymeric scaffolds, such as
poly(lactic acid) or poly(glycolic acid) scaffolds, whose
degradation products promote antigenicity [77]. In many
cases, the unrelated cell sources produce immature neo-
cartilage that is prone to degradation [6, 78], is prone to
calcification [5, 79] and is easily breakable [80–82].
Lessons from tracheal tissue engineering indicate that

constructs from non-related stem cell sources combined
with synthetic scaffolds have their limitations [83–85].
This suggests that simply combining the building blocks
for tissue engineering is not sufficient for true regener-
ation. Observations in developmental biology have
shown that function follows form [86], and in order to
create true ‘like for like’ tissue for reconstructive surgery
it is important to accurately reproduce native tissue an-
isotropy [87]. In the case of auricular cartilage, the ideal
scenario consists of the right compositional elements:
such as tissue-specific (auricular cartilage) stem cells,
non-immunogenic scaffolds, the correct method of as-
sembly to replicate the native microenvironment and
biological induction of maturation using growth factors
(Table 4).
Successful translation of tissue engineering for any

type of reconstruction will require significant infrastruc-
ture and scale-up technology. The most commercially vi-
able and widespread use is likely to come from ‘off the
shelf ’ tissue-engineered products. Clinical grade process-
ing, scale-out and commercialization all incur substantial
time and cost. It is important for clinicians to have a
working knowledge of these barriers to translation. These
barriers, however, are not unique to tissue engineering;

Table 3 Long-term limitations of autologous auricular
reconstruction

Long-term limitations Reasons

Stiffness 1. Different biomechanical
properties of fibrocartilage
donor [23]
2. Heterotopic calcification
[23, 65]

Extrusion 1. Skin flap necrosis [37]
2. Wire sutures to assemble
cartilage framework [36, 37]
3. Wound infection or
pressure dressings [28, 64]

Projection loss 1. Effacement of
postauricular sulcus due
to contraction of skin
grafts [37, 67]

Distortion 1. Constriction of skin and
soft tissue overlying the
construct due to scarring
or ischaemia [37]
2. Cartilage degradation
and resorption leading to
loss of definition [64, 66, 67]
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many countries have large translational income streams
following successful engagement with large biotech com-
panies with streamlined regulatory processes [88].

Tissue-specific stem cell utilization
For complex three-dimensional composite tissues such
as the ear, it is still unknown how to sufficiently engage

and enhance the body’s own repair processes to regener-
ate lost tissue. The complexity, in this case, must be
engineered. To regenerate auricular structures faithfully
using extrinsic mechanisms, we need to use biocompat-
ible scaffolds that are populated by auricular chondro-
cytes which in conductive environments will produce
elastic cartilage. In the current paradigm, the cellular

Table 4 Potential future benefits and challenges of combining regenerative medicine with additive manufacturing

Feature Benefits Challenges

Bioprinting Control over macrostructure and
microstructure of tissue produced

Replicate anatomical formReduce surgical
technique learning curve

Biomechanical properties of bioinksEffect
of printing on cellsPrinting resolution

Patient-specific macrostructure from
image acquisition (CT/MRI)

Reduce variability in surgical outcomes Macrostructure may alter during
bioreactor maturation

Manufacture ex vivo Avoid donor site morbidityReduce operating time Potential for contaminationRegulatory
constraints

Regenerative
medicine

Tissue-specific stem cells to improve
quality and functionality of
engineered tissue

True ‘like for like’ replacementRestoring native
anisotropy allows improved matching of
mechanical properties

Genetic stability and differentiation
capacity of cells after prolonged
expansion in culture

Tissue maturation utilizing growth
factors

Reduce degradation and constriction Optimal growth factor combinations and
temporal effects

CT computed tomography, MRI magnetic resonance imaging

Fig. 1 Limitations of current tissue-engineered auricular cartilage constructs
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component is derived from stem cells that are induced
to continually renew and that when directed have the
potential to differentiate into chondrocytes and make
cartilage. Several groups have used bone marrow-derived
stem cells [89–92], adipose-derived stem cells [93–95]
and blood-acquired mesenchymal progenitors [96] to
various degrees of efficacy. Observations in developmen-
tal biology indicate that, for true ‘like for like’ replace-
ment, tissue-specific stem cell sources are needed.
Chondroprogenitors were first identified in articular car-
tilage [97, 98], and more recently it has been shown that
they can also be found in the perichondral layer of aur-
icular cartilage [99–101]. Chondroprogenitors from this
layer have the power to proliferate for many generations,
producing hundreds of millions of progeny from a single
founder cell whilst retaining the capacity to differentiate
into auricular chondrocytes and make elastic cartilage
[100–102]. A further advantage of using auricular-
specific stem cells is that they are able to reconstitute
both the perichondrium and chondrium, and thus other
functions, such as the ability to produce and react to
tissue-specific developmental cues in order to regulate
normal growth over the lifetime of an implant. Studies
show that using highly related cell sources such as ar-
ticular, costal and naso-septal chondrocytes, unlike those
derived from the auricle itself [103], does not result in
production of elastin-containing cartilage which has im-
portant physiological and biomechanical consequences
[79, 104, 105]. For example, costal cartilage, which is the
mainstay of autologous auricular reconstruction [19],
eventually forms calcified cartilage following its normal
developmental pathway [106–108] and, although more
common in old age, calcifications can be encountered in
young adults as well [106].

Maturation process
Whilst tissue-specific stem cells ensure the production
of auricular cartilage, the neo-cartilaginous structure
formed is immature in phenotype. Immature cartilage is
highly active metabolically as it grows and develops, and
this tissue in a mature organism may be liable to resorp-
tion. In the landmark study of auricular tissue engineer-
ing by the Vacanti group, tissue-engineered, ear-shaped
appendages made from bovine chondrocytes and bio-
compatible scaffolds were xenografted into immune-
compromised mice [6]. The implanted constructs were
initially supported by externally fixed stents, and once
the stents were removed the shape of the constructs
eventually deformed and shrank. This observation high-
lights often-overlooked features of tissue-engineered
implants, the lack of long-term biochemical and bio-
mechanical stability. These experiments also suggest that
susceptibility to resorption may be an intrinsic property
of neo-cartilage, as well as resulting from the activity of

extrinsic factors, for example inflammatory mediators,
following implantation. An internal permanent support,
such as a coiled wire, although shown to reduce shrink-
age of the tissue-engineered auricle in animal models
[109], fails to overcome the recognized complications,
particularly extrusion, of implanted synthetic materials
[38–40, 42, 43, 110].
The collagen and elastin framework of the native ear

can last for an entire lifetime, partly due to extensive
chemical cross-linking that over time stabilizes these
structural fibres. The process of cross-linking occurs
during postnatal maturation providing biochemical het-
erogeneity [111, 112]. Using the example of articular car-
tilage, it is a functional adaptation response [78] and in
humans may take up to 15 years to become complete
[111]. Changes in collagen cross-linking correlate with
biomechanical strength of cartilage [113], a recognized
yet underused outcome measure of durable tissue-
engineered cartilage [5, 114]. The extended time re-
quired for maturation and the fact that certain elements
of this process require temporally encoded developmen-
tal cues may be the root cause for the failure of intrinsic
mechanisms of cartilage repair following injury. The lack
of maturation is without doubt a major cause of the fail-
ure of implanted tissue-engineered cartilage to provide
durable replacement tissue for focal lesions in articular
cartilage. However, recent work by Khan et al. [115, 116]
shows that it may be possible to create implants contain-
ing mature cartilage, whose structure and function
mimics that of surrounding cartilage, with potential to
be resilient to resorption. Their work on native cartilage
explants has shown that postnatal maturation can be
precociously induced by growth factors fibroblast growth
factor (FGF)-2 and transforming growth factor beta-1
(TGF-β1) in immature articular cartilage. Growth factor-
treated immature tissue is stiff and smooth and is mor-
phologically as well as biochemically indistinguishable
from native adult mature cartilage. There is also evi-
dence that FGF supplementation improves the quality of
tissue-engineered elastic neo-cartilage from expanded
human auricular chondrocytes [117]. Consequently, a
major question that requires our attention is: to what ex-
tent does auricular cartilage undergo tissue maturation?
Our preliminary work has shown that there are clear
morphological differences between mature and imma-
ture bovine ears (Fig. 2). By understanding the dynamics
of maturational processes in auricular cartilage that
underpin these morphological differences, we have the
potential to highly accelerate the fabrication of implant-
able replacement tissues that are both functional and
durable.
Nevertheless, the cost-effective production of a scal-

able solution for craniofacial cartilage replacement tis-
sues, at least in the near term (5–10 years), will require
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the implantation of allograft material. We are fortunate
in this regard that cartilage is immunoprivileged, being
avascular, alymphatic and aneural and surrounded by a
dense extracellular matrix that is impervious to leuko-
cytes [118, 119]. However, before allogenic constructs
become a viable option, human trials are essential to
confirm the preliminary in vitro and animal work. Chon-
drocytes in cartilage rely solely on diffusion to obtain
their nutrients and disperse their waste products, and
for these reasons it is likely that fabricated implants
which are stabilized through growth factor-induced mat-
uration prior to implantation will last the lifetime of the
patient.

Three-dimensional bioprinting
Three-dimensional printing creates objects from a digital
model in a layer-by-layer fashion. As such, it offers full
control over internal and external architecture of the ob-
ject, in contrast to subtractive manufacturing approaches.
Three-dimensional printing is dramatically altering the
way we perceive manufacturing and is an important driv-
ing force of the paradigm shift towards digital manufactur-
ing that is now often regarded as the third industrial
revolution [120]. In reconstructive surgery, this technol-
ogy already enables fabrication of patient-specific models
for preoperative planning (e.g. autologous free flap recon-
struction [121]), patient or surgeon education [122] or

Fig. 2 Histology of bovine auricular cartilage (haematoxylin and eosin staining). a Immature bovine auricular cartilage demonstrating
homogeneous cell organization and high cell density. b Mature bovine auricular cartilage showing depth-dependent cell density
and organization
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intraoperative use (e.g. mandibular [123] or breast [124]
reconstruction). Moreover, customized implants to restore
anatomical features have also been produced, including
partial or complete mandibular replacements [125, 126]
and cranial constructs [127, 128].
Degradable implants with overhang geometries and in-

ternal cavities can be created by the inclusion of temporal
support structures from polymers [129–131] (Fig. 3).
These scaffolds can then be inoculated with cells. On the
other hand, three-dimensional printing can also yield
patient-specific moulds in which cell-containing hydrogels
can subsequently be cast to obtain implants with complex
shapes; for example, for potential restoration of auricular
deformities [73, 132]. Nevertheless, these approaches only
yield relatively homogeneous constructs and lack the
control over specific placement in three dimensions of
different biomaterials, cells or other bioactive compo-
nents, such as growth factors to stimulate specific cellu-
lar differentiation.

Three-dimensional bioprinting entails the creation of
biological structures for tissue engineering, pharmacoki-
netic or basic cell biology studies (including disease
models) by a computer-aided transfer process for pattern-
ing and assembling living and non-living materials with a
prescribed three-dimensional organization [133–135].
Hydrogels are widely used as bioinks (i.e. printable bio-
logical materials), since they can recapitulate a number of
features of the native extracellular matrix and allow cell
encapsulation in a highly hydrated three-dimensional en-
vironment [136–139]. Biofabrication, using robotic dis-
pensing for example, imposes opposing requirements on
the hydrogel materials [51, 133, 140, 141]. Biofabrication
of complex structures, such as the auricle, requires a stiff
hydrogel for high resolution and mechanical stability on
implantation whilst being soft enough to allow cellular mi-
gration, proliferation and differentiation. Co-depositing
thermoplastic polymer fibres and cell-laden hydrogels can
be used to reinforce and hence tailor the mechanical

Fig. 3 Three-dimensional-printed complex anatomical structures based on polycaprolactone (PCL) with polyvinyl alcohol (PVA) support. a–c
Vascular tree. d–f Right ear. g–i DNA helix. a, d, g Computer-aided designs showing permanent (red) and sacrificial (grey) components. b, e, h
Printed structures showing PCL (bright white) and PVA (off-white). d, f, i PCL scaffold after sacrificing PVA support. Reproduced with permission
from Visser et al. [131] and Institute of Physics Publishing
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properties of the constructs [138, 142], offering the oppor-
tunity to support the long-term maintenance of the im-
plant shape. A more biological approach using in vitro
maturation, as already described, could increase construct
stiffness via specific tissue matrix deposition [115, 116], al-
though high cell concentrations and a reasonable pre-
culturing period would be required. The future advantage
offered by three-dimensional bioprinting is biofabrication
of more complex structures such as auricular cartilage
with an overlying skin and soft tissue envelope due to mul-
tiple ‘bioinks’ containing differing cell and hydrogel types.

Conclusion
Auricular reconstruction is an ideal example of how re-
finement in surgical techniques over many years can give
excellent results in expert hands. However, as with any
autologous technique, auricular reconstruction is limited
by donor site morbidity. Recent advances in bioengineer-
ing and collaborations between stem cell biologists, engi-
neers and clinicians have developed a landscape which
provides the opportunity to engineer auricular cartilage
constructs that resemble the human ear in shape, size
and flexibility.
There are fundamental scientific questions that need

to be addressed in order to overcome the current limita-
tions of tissue-engineered constructs for long-term sustain-
ability, including optimizing utilization of tissue-specific
stem cells and manipulation of maturation. We have used
the auricle as an exemplar to illustrate how combining
regenerative medicine with three-dimensional bioprinting
has the potential to create custom-made tissue-engineered
solutions which obviates the need for a donor site, repre-
senting a paradigm shift in reconstructive surgery. It is,
however, important to recognize that there are a number
of barriers to successful translation which need to be over-
come before tissue-engineered products become a com-
mercially viable and widespread alternative to autologous
reconstruction.
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