
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

International Journal for Numerical Methods in Engineering

                                                         

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa29376

_____________________________________________________________

 
Paper:

Zhou, P., Cen, S., Huang, J., Li, C. & Zhang, Q. (in press).  An unsymmetric 8-node hexahedral element with high

distortion tolerance. International Journal for Numerical Methods in Engineering

http://dx.doi.org/10.1002/nme.5318

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

http://cronfa.swan.ac.uk/Record/cronfa29376
http://dx.doi.org/10.1002/nme.5318
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

An unsymmetric 8-node hexahedral element with high 
distortion tolerance 

 

Pei-Lei Zhou1,  Song Cen1, 4, *, †, Jun-Bin Huang1, Chen-Feng Li 2 , Qun Zhang 3 

1 Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, 

China 

2Zienkiewicz Centre for Computational Engineering & Energy Safety Research Institute, College of Engineering, 

Swansea University, Swansea SA2 8PP, UK 

3 INTESIM (Dalian) CO., LTD., Dalian 116023, China 

4 Key Laboratory of Applied Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, 

China 

 

SUMMARY 

Among all 3D 8-node hexahedral solid elements in current finite element library, the ‘best’ one can produce good 

results for bending problems using coarse regular meshes. However, once the mesh is distorted, the accuracy will 

drop dramatically. And how to solve this problem is still a challenge that remains outstanding. This paper develops 

an 8-node, 24-DOF (three conventional DOFs per node) hexahedral element based on the virtual work principle, 

in which two different sets of displacement fields are employed simultaneously to formulate an unsymmetric 

element stiffness matrix. The first set simply utilizes the formulations of the traditional 8-node tri-linear 

isoparametric element, while the second set mainly employs the analytical trial functions in terms of 3D oblique 

coordinates (R, S, T). The resulting element, denoted by US-ATFH8, contains no adjustable factor, and can be 

used for both isotropic and anisotropic cases. Numerical examples show it can strictly pass both the first-order 

(constant stress/strain) patch test and the second-order patch test for pure bending, remove the volume locking, 

and provide the invariance for coordinate rotation. Especially, it is insensitive to various severe mesh distortions. 
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1. INTRODUCTION 

Because of relatively higher accuracy and lower computation cost, 8-node hexahedral isoparametric element is 

often preferred in analysis of 3D problems [1]. However, for traditional tri-linear isoparametric element, when 

dealing with solids and structures with complicated loadings or geometries, full integration model may suffer from 

various locking problems and will be very sensitive to mesh distortions, while reduced integration model may 

appear hourglass phenomena or lead to incorrect results. Among all 3D 8-node hexahedral solid elements in 

current finite element library, some incompatible elements [1-5] are usually considered as the models with the best 

precision because they can produce good results for bending problems using very coarse regular meshes. However, 

once the mesh is distorted, the accuracy will drop dramatically again. This is a living example of the sensitivity 

problem to mesh distortion, which is the core inherent difficulty existing in finite element methods. And how to 

solve this problem is still a challenge that remains outstanding. Actually, the same difficulty is also hard to be 

overcome even for 2D problems. MacNeal has proved that any 4-node, 8-DOF quadrilateral membrane 

isoparametric element of trapezoidal shape must either lock in pure bending tests or fail to pass constant 

stress/strain patch tests [6], and the similar limitation can be generalized to 3D 8-node hexahedral finite elements 

[7]. It almost closes out further effort to design new element models with high distortion resistance. 

For past 60 years, numerous efforts have been made to improve performance and capacity of finite elements, 

such as the incompatible displacement methods proposed by Wilson et al. [2] and the modified version by Taylor 

et al. [3], the reduced or selective reduced integration patterns [8-10] and the corresponding hourglass control 

techniques [11-14], the enhanced assumed strain (EAS) methods [4, 5, 15, 16], the hybrid element methods [17, 

18], the analytical interpolation method [19], the finite element-meshfree combination method [20], and so on. 



However, it seems that no element mentioned above is truly beyond the limitation shown by MacNeal [6, 7]. 

Lee and Bathe [21] pointed out that the nonlinear transformation relationship between parametric and physical 

coordinates may be one of the reasons that cause the sensitivity problem to mesh distortions. In order to avoid the 

troubles caused by this nonlinear relationship, Long et al. successively established three forms of 2D quadrilateral 

area coordinate methods (QACM-I, QACM-II and QACM-III) [22-26] and a 3D hexahedral volume coordinate 

method (HVCM) [27], in which the transformations between these new local coordinates and the Cartesian 

(physical) coordinates are always linear, respectively. Subsequently, a series of new quadrilateral plane membrane 

elements [25, 26, 28-33] and 3D hexahedral elements [27] were developed. Although many elements greatly 

improve the distortion resistance for bending tests, all of them fail to strictly pass the constant stress/strain (C0) 

patch tests. So, their convergence raised some queries and discussions [34, 35]. Cen et al. [29] and Chen et al. [36] 

tried to make them pass the C0 patch test, but the distortion resistance will be destroyed again for bending tests.  

For developing distortion-immune elements, some researchers began to look for new formulations from other 

theoretical space. Rajendran et al. [37-42] adopted the virtual work principle to establish a kind of unsymmetric 

finite element method, in which the test and the trial functions for displacement fields are different and the 

resulting element stiffness matrix is unsymmetric. For test functions, the conventional shape functions of 

isoparametric elements are selected to exactly satisfy the minimum inter- as well as intra-element displacement 

continuity requirements; and for trial functions, the polynomials in terms of Cartesian (physical) coordinates are 

chosen to satisfy the completeness requirements in physical space. Since there is no Jacobian determinant in the 

final formula for evaluating the element stiffness matrix, the resulting elements can still perform well even when 

they are severely distorted. However, their method is only effective for constructing high-order elements, such as 

8-node plane quadrilateral element US-QUAD8 [37] and 20-node 3D hexahedral element US-HEXA20 [38]. 

Furthermore, because the number of element DOFs usually does not equal to the number of items for a complete 



polynomial in terms of Cartesian coordinates, interpolation failure may take place when the element is distorted to 

certain shapes, and rotational frame dependence may also appear [43]. So, they are not convenient and effective 

for practical applications. Cen et al. [44] developed a new 8-node unsymmetric plane element US-ATFQ8 by 

introducing analytical trial functions and generalized conforming conditions. This element can overcome all above 

defects and even produce exact solutions in linear bending problems (third-order patch test).  

Recently, some significant progresses have also been made for developing low-order elements. Cen et al. [45] 

successfully formulated an unsymmetric 4-node, 8-DOF plane element. The key technique is that the second 

displacement field set (trial functions) employs a composite coordinate interpolation scheme with analytical trial 

function method, in which the items 1, x, y and two sets of analytical solutions for pure bending state in terms of 

the second form of quadrilateral area coordinates (QACM-II) are applied together. The resulting element 

US-ATFQ4, which can be used for both isotropic and anisotropic cases, exhibits amazing performance in rigorous 

tests. It can satisfy both the classical first-order (constant stress/strain) patch test and the second-order patch test 

for pure bending, and is insensitive to various severe mesh distortions. Due to the isotropy of the natural local 

coordinate QACM-II, US-ATFQ4 can provide the invariance for the coordinate rotation. The appearance of this 

element seems that the limitation defined by MacNeal’s theorem can be broken through. Almost at the same time, 

Xie et al. [46] also utilized similar procedure developed a 4-node plane element TQ4 and an 8-node hexahedral 

element TH8. The major different is that they used a kind of local oblique coordinate method defined by Yuan et 

al. [47, 48] together with Cartesian and isoparametric coordinates in their interpolation formulae. However, these 

two elements can be used only for isotropic problems. Furthermore, an adjustable factor  varying from 0.01 to 

0.0001 ( = 0.01 was adopted by [46]) is introduced into the interpolation matrix of element TH8 for enhancing 

the element accuracy. In fact, because this factor has no definite physical significance, incorrect results may 

appear if the factor is not appropriate (see Section 4.2 and Tables 4 and 6). 



The purpose of this paper is to present an 8-node hexahedral element with high distortion resistance as well as 

no obvious numerical defects. First, nine sets of analytical general solutions for linear stresses, linear strains and 

quadratic displacements in terms of 3D local oblique coordinates (R, S, T) [47, 48], which are not found in other 

literatures, are derived. These analytical solutions are also the Trefftz solutions [49]. Then, a new 8-node 

hexahedral element is developed based on the virtual work principle, in which two different sets of displacement 

fields are employed simultaneously to formulate an unsymmetric element stiffness matrix. The first set simply 

utilizes the formulations of the 8-node tri-linear isoparametric element, while the second set mainly employs the 

analytical trial functions in terms of 3D local oblique coordinates. Because the relationship between the local 

oblique and Cartesian coordinates is always linear, and there is no Jacobian determinant needed for computing the 

element stiffness matrix, the new element is expected to be insensitive to mesh distortion. The resulting element, 

denoted by US-ATFH8, contains no adjustable factor, and can be used for both isotropic and anisotropic cases. 

Numerical examples show it can exactly pass both the first-order (constant stress/strain) patch test and the 

second-order patch test for pure bending, remove the volume locking, and provide the invariance for coordinate 

rotation. Especially, it is insensitive to various severe mesh distortions. 

 

 

2. ANALYTICAL GENERAL SOLUTIONS IN TERMS OF 3D OBLIQUE 

COORDINATES 

As described in previous section, in order to construct finite element models insensitive to mesh distortion, a 

local coordinate system which is linearly related to the global Cartesian coordinate system should be considered. 

For 3D problems, the most feasible one is the oblique (skew) coordinate system defined by Yuan et al. [47, 48]. 

 



2.1. Definition of 3D oblique coordinate system [47, 48] 

For an 8-node hexahedral element shown in Figure 1, the Cartesian coordinates (x, y, z) can be expressed in 

terms of the isoparametric coordinates (, , ) as 
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in which (i, i, i) and (xi, yi, zi) (i=1~8) are the isoparametric and Cartesian coordinates of the eight corner nodes, 

respectively. 

Yuan et al. [47, 48] defined a kind of 3D oblique coordinates (R, S, T) as follows 
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where 0J  denotes the Jacobian matrix at the origin of the isoparametric coordinates (ξ, η, ζ)=(0, 0, 0), 
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It can be easily found that the relationship of the oblique coordinates (R, S, T ) and the Cartesian coordinates (x, 

y, z) is always linear. As shown in Figure 1, (R, S, T ) and the isoparametric coordinates (ξ, η, ζ ) share the same 

directions, respectively, and their origins also coincide with each other. 

The transformation of first-order derivatives is 
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And the transformation of second-order derivatives is 
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2.2. The analytical general solutions in terms of 3D oblique coordinate system 

In order to improve element performance, the analytical solutions of stresses, strains, or displacements 

satisfying governing equations in elasticity are often taken as the trial functions in some finite element methods, 

such as the Trefftz finite element method [49] and the hybrid stress-function element method proposed by Cen et 

al. [50-55]. It is also noteworthy that the usage of the analytical solutions in terms of the local coordinates [32, 45] 

may eliminate directional dependence problem. In this section, nine sets of analytical general solutions for linear 

stresses, linear strains and quadratic displacements in terms of 3D local oblique coordinates will be derived. 



For three-dimensional problems without body forces, the homogeneous equilibrium equations in the oblique 

coordinate system are given by 
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The first 27 sets of analytical solutions for above stresses in terms of 3D oblique coordinate system are listed in 

Table 1, in which the first 3 sets, 4th to 12th sets and 13th to 27th sets are related to the rigid body, the linear and 

the quadratic displacement modes, respectively. Since the constant stress solutions will not be used later, their 

explicit forms are not given in the table. 

According to equation (4), the stress components in Cartesian coordinates (x, y, z) can be expressed by the 

stress components in oblique coordinates (R, S, T ): 
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i.e. 
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Then, the strains in Cartesian coordinate system can be obtained by following stress-strain relations (generalized 

Hooke law): 
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where C is the elasticity matrix of compliances; E and   are Young’s modulus and Poisson’s ratio, respectively. 

Thus, these strains can also be expressed by the stress components in local oblique coordinates by substituting 

Equation (12) into (13). 

Finally, by using Equation (8) and integrating following geometrical equations 
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the displacements u, v and w in Cartesian coordinate system can be solved.  

Following above procedure, the analytical general solutions of stresses, strains and displacements in the global 

coordinate system, but in terms of the local oblique coordinates R, S and T, can be obtained.  

Only nine sets (i=13~21) of the analytical general solutions for local linear stresses in Table 1 related to pure 

bending and twisting states will be considered in the new finite element formulations, which are given in appendix 

A.  

 



3. CONSTRUCTION OF A NEW UNSYMMETRIC 8-NODE HEXAHEDRAL 

ELEMENT US-ATFH8  

For a three-dimensional 8-node, 24-DOF (3 DOFs per node) finite element model shown in Figure 2, the 

virtual work principle [37, 38] can be written as 

0dddˆ TTTT    cc
V ΓV e ee

ΓVV fuTubuσε  ,                  (15) 

in which 
eV  denotes the element volume; 

e  represents the element boundary face; σ̂  is the real stress 

vector of the element; b , T  and cf  are the real body, surface and concentrated forces of the element, 

respectively; cu  is the vector of virtual displacements at the points of the concentrated forces; u  is the 

virtual displacement fields and ε  is the corresponding virtual strain fields.  

First, the virtual displacement fields 
T][= wvu u  should satisfy exactly the minimum inter- as 

well as intra-element displacement continuity requirements. So, they can be assumed as  

e
qNu  = ,                                       (16) 

where 

T

888111 ][= wvuwvue  q ,                         (17) 
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in which ui, vi and wi (i =1~8) are the nodal virtual displacements along x-, y- and z- directions, respectively; 

iN  (i =1~8) are just the shape functions of the traditional 8-node tri-linear isoparametric element that satisfy all 

continuity requirements, and have been given by Equation (2).  

Thus, the corresponding virtual strain fields ε  are 

e

zxyzxyzyx qBε   T][ ,                   (19) 

where B  is the strain matrix of the traditional 8-node tri-linear isoparametric element, 
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and J  is the Jacobian determinant, 
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Second, assume that the real stresses σ̂  in Equation (15) are derived from the following assumed 

displacement fields expressed in terms of the local oblique coordinates R, S and T; 
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where i (i=1~24) are twenty-four undetermined coefficients; Ui, Vi and Wi (i=13~21) are the analytical general 

solutions for quadratic displacements given by Equations (A20) to (A22); the first twelve columns of interpolation 

matrix P are also displacement analytical general solutions satisfying all governing equations, as shown in Table 1. 

The last three columns containing the cubic term RST are not the analytical solutions, but they can keep linear 

independence between each two columns, and make the resulting stress components invariant for global 

coordinate rotation. 

Substitution of the Cartesian coordinates of eight corner nodes into Equation (24) yields 
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in which ui, vi and wi (i =1~8) are the nodal displacements along x-, y- and z- directions, respectively. Then, i 

(i=1~24) can be solved by 

e
qdα

1ˆ  .                                          (28) 

And the assumed displacement fields û  given by Equation (24) can be rewritten as 

e

w

v

u

qdPPαu 1ˆ

ˆ

ˆ

ˆ

ˆ 
















 .                               (29) 

Then, the corresponding strains can be obtained by substituting equation (29) into (14) 

  ee

zxyzxyzyx qBqdPε ˆˆ~
ˆˆˆˆˆˆˆ 1T

  ,                   (30) 

where 
1ˆ~ˆ  dPB  is the strain matrix, and 
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in which ( xi , yi , zi , xyi , yzi , zxi ) (i =13~21) are the nine sets of analytical solutions for linear strains 

given by Equations (A3) ,(A5), (A7), (A9), (A11), (A13), (A15), (A17) and (A19), respectively.  

According to the constitutive relation Equation (13), the corresponding stresses can be solved 
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where D  is the elasticity matrix,  

1CD .                                      (34) 

Substitution of Equations (16), (19) and (30) into (15) yields 
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Due to the arbitrariness of 
e

q  in Equation (35), the following finite element equation can be obtained 

0FqK  eee
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where 
e

F  is the nodal equivalent load vector of the element; 
e

K  is the element stiffness matrix, and it is an 

unsymmetric matrix. Substitution of Equations (20) and (33) into (36), the final element stiffness matrix can be 
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Because there is no Jacobian determinant existing in above expression, the resulting model will avoid troubles 

caused by ill-conditioned shape and be insensitive to mesh distortions. All above formulations can be expressed in 

terms of isoparametric coordinates ,  and ζ by using equations (4) and (23), and a 222 Gauss integration 

scheme is found to be enough for evaluating 
e

K  given by Equation (39), although the 333 scheme is 

theoretically needed. 

The equivalent nodal load vector 
e

F  can be determined by the same procedure for the traditional 8-node 

tri-linear isoparametric element. And the stresses at any point can be directly calculated by substituting the 

isoparametric, or Cartesian coordinates of this point within an element into Equation (33).  

The new element is denoted by US-ATFH8.  

 

 

4. NUMERICAL EXAMPLES 

In this section, some classical benchmark problems are employed to assess the performance of the new element 

US-ATFH8, and results obtained by other 8-node hexahedral elements listed in Table 2 are also given for 

comparisons.  

 

4.1 Constant stress/strain patch test (Figure 3) 

A unit cube, as shown in Figure 3, is divided by seven irregular hexahedral elements. Nodes 1 to 8 are the 

inner nodes, and their locations are also given in Figure 3. The displacement fields corresponding to the constant 



strain are: 

2/)2(10,2/)2(10,2/)2(10 333 zyxwzyxvzyxu  
.       (40) 

And the corresponding stress solutions are: 

400,2000  zxyzxyzyx  .               (41) 

The displacements of the boundary nodes are treated as the displacement boundary conditions. Exact results of 

the displacements and stresses at the inner nodes can be obtained by the new element US-ATFH8. Furthermore, 

the exact stresses at any point (by substituting the Cartesian coordinates into Equation (33)) can also be obtained. 

It can be concluded that the element US-ATFH8 can strictly pass the constant stress/strain patch test.  

Elements Wilson_H8 [2] and HVCC8 series [27] in Table 2 cannot pass this patch test. 

 

4.2 Cheung and Chen beam tests [17] (Figure 4) 

This example was proposed by Cheung and Chen [17] for testing the performance of 8-node hexahedral 

elements. The geometric, material, and displacement boundary conditions are given in Figure 4. Twelve meshes 

divisions are designed to analyze this cantilever beam subjected to a pure bending moment M and a transverse 

shear force P at the free end, in which the x coordinates of nodes 1, 2, 3 and 4 in Meshes (2) to (10) are listed in 

Table 3. The normalized deflections at point A and the results of stresses at point B are given in Tables 4 and 5, 

respectively, and the results of deflections at points a1, a2, a3 and a4 in selected mesh divisions under loading P are 

also given in Table 6.  

From Tables 4 and 5, it can be seen that exact displacements and stresses under pure bending state can be 

obtained by element TH8 ( =0.01 and 0.0001) [46] and the new element US-ATFH8, no matter how meshes are 

distorted, and no matter whether the four corner nodes of the interface are coplanar or not. Furthermore, it is worth 

mentioning that the new element US-ATFH8 can produce exact pure bending solutions in all directions when 

various distorted meshes are used. For the linear bending case, the new element US-ATFH8 can also present 



relatively good and stable solutions in all mesh cases. But the results obtained by element TH8 deeply depend on 

the adjustable factor  and are not stable. Especially, when =0.0001, even wrong solutions will appear in some 

cases (see displacement result for load P using Mesh (12) in Table 4). This problem is more clear in Table 6, 

many incorrect results for deflections at four different end points of the beam obtained by element TH8 appear 

when =0.0001, and the results obtained by TH8 (=0.01) are not stable in some occasions.  

 

4.3 Rotational frame dependence test on a cantilever beam with fully fixed end (Figure 5) 

Since the trial functions for displacements û  given in Equation (24) may be not completed in the global 

Cartesian coordinates, rotational frame dependence test should be performed for the new element US-ATFH8. 

The geometric and displacement boundary conditions of a cantilever beam divided by two distorted elements 

are given in Figure 5. The Young’s modulus E=100.0, and the Poisson ratio μ=0.3. Let the Cartesian coordinate 

system xyz rotate counterclockwise from α1=0o to 90o in steps of 10o around z-axis, and then rotate 

counterclockwise α2=40o around y-axis, the displacements at point A are solved at each step. The magnitude of 

displacement 
222 wvu   at point A is monitored to study the rotational frame-dependent behavior. The 

results obtained by the new element US-ATFH8 are given in Table 7. The magnitude of displacements based on an 

‘overkill’ solution is used as a reference solution, which is obtained by using 50000 20-node hexahedral 

isoparametric elements of Abaqus [1]. It can be seen that the present model US-ATFH8 provides the invariance 

for the coordinate rotation. 

 

4.4 Bending problems for skew beam, curving beam and twisted beam 

4.4.1 Cook’s skew beam problem (Figure 6) 

This example shown in Figure 6 was proposed by Cook [56] to test the convergence of elements. A skew 



cantilever is subjected to a shear uniformly distributed load at the free edge. The geometric, material and 

displacement boundary conditions are given in Figure 6. The results of vertical deflection at point C, the 

maximum principal stress at point A and the minimum principal stress at point B are all listed in Table 8. Those 

results obtained by the models that can pass the constant strain/stress patch test are also given for comparison. It 

can be seen that the present element US-ATFH8 exhibits good convergence. 

 

4.4.2 Thin curved beam (Figure 7) 

A thin curved beam with fully fixed end is shown in Figure 7. The inner radius Ri, thickness h and width t of 

the beam are 4.12, 0.2 and 0.1, respectively. The Young’s modulus E=1.0×107, and the Poisson ratio μ=0.3. Two 

load cases are considered: in-plane shear P1 and out-of-plane shear P2. The results of the deflection at point A are 

listed in Tables 9 and 10, respectively. Again, the new element US-ATFH8 performs well for this test. 

 

4.4.3 Twisted beam problem (Figure 8) 

This example was proposed by MacNeal and Harder [57] to test the effect of warping. As shown in Figure 8, a 

cantilever beam is twisted 90o from root to tip. This twisted beam is fixed at the root, and subjected to unit 

in-plane and out-of-plane forces at the tip. The length, width and thickness are 12, 1.1 and 0.32, respectively. The 

Young’s modulus E=2.9×107, and the Poisson ratio μ=0.22. Different meshes used for this example are also given 

in Figure 8, in which meshes (a), (b), (c) and (d) are distorted meshes newly designed by cutting the beam with 

different planes. And most of these cutting planes are parallel to new plane xy after x-axis rotates 45o or －45o 

around y-axis. The normalized solutions at tip point A are listed in Table 11 and 12. It can be seen that the new 

element US-ATFH8 can produce better results, even when the severely distorted meshes are used. 

 



4.5 Nearly incompressible problems (Figure 9) 

A thick-walled cylinder is subjected to a uniformly distributed internal pressure p=1. This example, proposed 

by MacNeal [57], is used to test volume locking problem when the Poisson’s ratio is very close to 0.5. As shown 

in Figure 9, due to symmetry, only a quarter of the cylinder with unit thickness is considered. The nodal 

displacements along thickness direction are all constrained. The exact solution of the radial displacement ur is 

same as that for the plane strain state, and given by [57]  

 rμ/rR
RRE

pRμ
ur )21(

)(

)1( 2

22

1

2

2

2

1 



 ,                           (42) 

where R1 is the inner radius, R2 is the outer radius. In this example, let R1=3, R2=9. When the Poisson’s ratio is  = 

0.49, 0.499, 0.4999, the corresponding radial displacement ur at r=R1 are 5.0399×10-3, 5.0602×10-3, 5.0623×10-3, 

respectively.  

The normalized results of the radial displacement ur at r=R1 are given in Table 13. It can be seen that the 

standard 8-node tri-linear isoparametric element suffers from volumetric locking problem, while other improved 

models can give good results. Although the solutions obtained by element US-ATFH8 are not the best answers, it 

is clearly shown that the new element is free of the volumetric locking. 

 

 

5. CONCLUSIONS 

After successful development of plane 4-node, 8-DOF quadrilateral element US-ATFQ4 [45] which can break 

through the limitation defined by MacNeal [6, 7], a new 3D 8-node hexahedral element US-ATFH8 is constructed 

by employing the unsymmetric element method, the analytical trial function method and the oblique coordinate 

method. This new 3D low-order element, which can be treated as an extension from the plane element US-ATFQ4, 

possesses following advantages superior to most existing 8-node hexahedral element models: 



(i) Its formulations contain no adjustable factor, and can be used for both isotropic and anisotropic cases; 

(ii) It can strictly pass both the first-order (constant stress/strain) patch test and the second-order patch test for 

pure bending (free of trapezoidal locking), which cannot be achieved by most other existing finite element 

models; 

(iii) It is free of volume locking, and provides the invariance for coordinate rotation; 

(iv) It is insensitive to various mesh distortions, and can produce stable and better solutions for higher-order 

problems (the orders of the displacement fields are higher than first- and second-order). 

The appearance of above new low-order elements with high accuracy and distortion resistance may open a 

way for establishing new finite element system which can relax the requirements for hexahedron mesh generation. 

This point may have great significance for further development of the finite element method. Although the 

element stiffness matrix is unsymmetric, it is not a serious issue in most of the problems in structural analyses: 

many solvers can handle this situation easily [1, 58].  

Of course, before this new model can be really applied in practical engineering, many further technique 

problems must be solved. Whether the present method can be extended to the applications of shell and nonlinear 

problems is still a valuable and challenging research topic that should be paid attention to. Some related 

developments will be reported in near future. 

 

 

APPENDIX A: NINE SETS OF ANALYTICAL GENERAL SOLUTIONS FOR 

GLOBAL LINEAR STRESSES, STRAINS AND QUADRATIC 

DISPLACEMENTS IN TERMS OF R, S AND T 

Let 
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Then, from Equations (11) to (14), the resulting solutions for global linear stresses, strains and quadratic 

displacements can be written as follows. 

1. Nine sets of analytical general solutions for global linear stresses and strains in terms of R, S and T  

(1) The 13th set of solutions for global stresses and strains 

Stresses: 

RcaRcbRbaRcRbRa zxyzxyzyx 221322132213

2

213

2
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2

213 ,,,,,   ;  (A2) 

Strains: 

for isotropic case 
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for anisotropic case 
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(2) The 14th set of solutions for global stresses and strains 

Stresses: 

RcaRcbRbaRcRbRa zxyzxyzyx 331433143314
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314
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314 ,,,,,   ;  (A4) 



Strains: 

for isotropic case 
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for anisotropic case 
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(3) The 15th set of solutions for global stresses and strains 

Stresses: 

RhRhRhRccRbbRaa zxyzxyzyx 215115315321532153215 ,,,2,2,2   ;  (A6) 

Strains: 

for isotropic case 
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for anisotropic case 
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(4) The 16th set of solutions for global stresses and strains 

Stresses: 

ScaScbSbaScSbSa zxyzxyzyx 111611161116
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116 ,,,,,   ;  (A8) 

Strains: 

for isotropic case 
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for anisotropic case 
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(5) The 17th set of solutions for global stresses and strains 

Stresses: 

ScaScbSbaScSbSa zxyzxyzyx 331733173317
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317 ,,,,,   ;  (A10) 



Strains: 

for isotropic case 






























SASca
E

SAScb
E

SASba
E

SASbac
E

SAScab
E

SAScba
E

zxzxyzyz

xyxyzz

yyxx

173317173317

17331717

2

3

2

3

2

317

17

2

3

2

3

2

31717

2

3

2

3

2

317

)1(2
,

)1(2

)1(2
,)(

1

)(
1

,)(
1












,  (A11a) 

for anisotropic case 
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(6) The 18th set of solutions for global stresses and strains 

Stresses: 

ShShShSccSbbSaa zxyzxyzyx 518418618311831183118 ,,,2,2,2   ;  (A12) 

Strains: 

for isotropic case 
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for anisotropic case 
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(7) The 19th set of solutions for global stresses and strains 

Stresses: 

TcaTcbTbaTcTbTa zxyzxyzyx 111911191119
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119 ,,,,,   ;  (A14) 

Strains: 

for isotropic case 
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for anisotropic case 
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(8) The 20th set of solutions for global stresses and strains 

Stresses: 

TcaTcbTbaTcTbTa zxyzxyzyx 222022202220
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Strains: 

for isotropic case 
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for anisotropic case 
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(9) The 21st set of solutions for global stresses and strains 

Stresses: 

ThThThTccTbbTaa zxyzxyzyx 821721921212121212121 ,,,2,2,2   ;  (A18) 

Strains: 

for isotropic case 
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for anisotropic case 
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2. Nine sets of analytical general solutions for quadratic displacements in terms of R, S and T  

(1) The 13th~15th sets of solutions for displacements (i=13~15) 

})222()]

()(2)2([)]

()(2)2([)

()

()]())(({[
2

1

21332323215

461313131133308

79121212112220

2

33

3333

2

3

2

3

2

31

2

222222

2

2

2

2

2

21

2

11

2

1

2

1111111001

0

STAhAhAhAccAbbAaaaRTAh

AhAhaAccAbbAaaaAcAbAaJRSAh

AhAhaAccAbbAaaaAcAbAaJTAca

AcbAbaAcAbAaaSAcaAcbAbaAcAb

AaaRAcbAcAbaAcAbAaaaJAJa
J

U

zxiyzixyiziyixizxi

yzixyiziyixizxixyixizxi

yzixyiziyixizxixyixizxi

yzixyiziyixizxiyzixyiziyi

xiyziziyizxixyixixii











, 

(A20a) 

})222()]

()(2)2([)]

()(2)2([)

()

()]())(({[
2

1

21332323215

461313131133308

79121212112220

2

33

3333

2

3

2

3

2

31

2

222222

2

2

2

2

2

21

2

11

2

1

2

1111111001

0

STAhAhAhAccAbbAaabRTAh

AhAhbAccAbbAaabAcAbAaJRSAh

AhAhbAccAbbAaabAcAbAaJTAca

AcbAbaAcAbAabSAcaAcbAbaAcAb

AabRAcaAcAabAcAbAabbJAJb
J

V

zxiyzixyiziyixizxi

yzixyiziyixiyziyixyizxi

yzixyiziyixiyziyixyizxi

yzixyiziyixizxiyzixyiziyi

xizxizixiyziyixyiyii











,  

(A20b) 

})222()]

()(2)2([)]

()(2)2([)

()

()]())(({[
2

1

21332323215

461313131133308

79121212112220

2

33

3333

2

3

2

3

2

31

2

222222

2

2

2

2

2

21

2

11

2

1

2

1111111001

0

STAhAhAhAccAbbAaacRTAh

AhAhcAccAbbAaacAcAbAaJRSAh

AhAhcAccAbbAaacAcAbAaJTAca

AcbAbaAcAbAacSAcaAcbAbaAcAb

AacRAbaAbAacAcAbAaccJAJc
J

W

zxiyzixyiziyixizxi

yzixyiziyixiziyzizxizxi

yzixyiziyixiziyzizxizxi

yzixyiziyixizxiyzixyiziyi

xixyiyixiziyzizxizii











. 

 (A20c) 

 (2) The 16th~18th sets of solutions for displacements (i=16~18) 
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(3) The 19th~21st sets of solutions for displacements (i=19~21) 
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Table 1. The first 27 sets of analytical general solutions for stresses in terms of 3D oblique coordinate system 

i 1 2 3 4 5 6 7 8 9 10 11 12 

Corresponding 

displacements  

Rigid body   

displacement modes 
      Linear displacement modes 

ui 1 0 0 R 0 0 S 0 0 T 0 0 

vi 0 1 0 0 R 0 0 S 0 0 T 0 

wi 0 0 1 0 0 R 0 0 S 0 0 T 

σRi 0 0 0      
 

   

σSi 0 0 0     

σTi 0 0 0 
Constant Stress solutions 

  

τRSi 0 0 0  

τSTi 0 0 0        

τRTi 0 0 0          

 

i 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Corresponding 

displacements 
Quadratic displacement modes 

σRi 0 0 0 S 0 0 T 0 0 0 －R 0 0 0 －R 

σSi R 0 0 0 0 0 0 T 0 －S 0 0 －S 0 0 

σTi 0 R 0 0 S 0 0 0 0 0 0 －T 0 －T 0 

τRSi 0 0 0 0 0 0 0 0 T R S 0 0 0 0 

τSTi 0 0 R 0 0 0 0 0 0 0 0 S T 0 0 

τRTi 0 0 0 0 0 S 0 0 0 0 0 0 0 R T 

 

 



 

 

Table 2. List of element models for comparison. 

No. Symbol Explanation of elements References 

1 C3D8 8-node tri-linear hexahedral element with full integration in ABAQUS [1] 

2 C3D8R 
8-node tri-linear hexahedral element with reduced integration and 

hourglass control in ABAQUS 
[1] 

3 C3D8I 8-node incompatible hexahedral element in ABAQUS [1] 

4 C3D8H 8-node hybrid hexahedral element in ABAQUS [1] 

5 Wilson_H8 8-node incompatible hexahedral element by Wilson’s method [2] 

6 HEXA(8) 8-node hexahedral element by MacNeal et al. [56] 

7 ASQBI 8-node hexahedral element by Belytschko and Bindeman [15] 

8 NEWHEX 8-node brick element based on EAS method [16] 

9 
HVCC8/ 

-ES/ EM 

8-node incompatible hexahedral elements using hexahedral volume 

coordinate method and cannot strictly pass the constant strain patch test. 
[27] 

10 TH8 Unsymmetric 8-node hexahedral element with adjustable factor β (=0.01) [46] 

 

 



 

Table 3. The x coordinates of nodes 1, 2, 3 and 4 in Meshes (2) to (10) (Figure 4). 

x-coordinates Meshes 

(2) (3) (4) (5) (6) (7) (8) (9) (10) 

x1 5 5 5 5 2 2 6 8 8 

x2 5 5 4 6 8 5 5 5 8 

x3 5 6 5 6 8 5 5 6 8 

x4 5 6 6 5 2 8 8 2 2 

 

 



 

 

Table 4. The normalized deflections at point A for Cheung and Chen tests (Figure 4). 

Model 

Mesh 
C3D8 C3D8R C3D8I Wilson_H8 HVCC8 

TH8 

β=0.01 

TH8 

β=0.0001 
US-ATFH8 

Load M: normalized deflections at point A, exact solution: 100 

(1) 0.0956 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

(2) 0.3382 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

(3) 0.2684 0.8756 0.8931 0.9397 1.0027 1.0000 1.0000 1.0000 

(4) 0.2529 0.7652 0.7911 0.8962 1.0020 1.0000 1.0000 1.0000 

(5) 0.2441 0.7738 0.7717 0.8836 1.0000 1.0000 1.0000 1.0000 

(6) 0.0919 0.4516 0.4085 0.7875 1.0000 1.0000 1.0000 1.0000 

(7) 0.1435 7.0712 0.2638 — — 1.0000 1.0000 1.0000 

(8) 0.1570 11.4629 0.5900 — — 1.0000 1.0000 1.0000 

(9) 0.1322 6.8514 0.1923 — — 1.0000 1.0000 1.0000 

(10) 0.0956 4.4017 0.2111 — — 1.0000 1.0000 1.0000 

(11) 0.8013 0.9956 0.9578 0.9826 1.0000 1.0000 1.0000 1.0000 

(12) 0.6905 46.0988 0.7228 — — 1.0000 1.0000 1.0000 

Load P: normalized displacements at point A, exact solution: 102.6 

(1) 0.0942 0.7554 0.7554 0.7554 0.7554 0.7554 0.7554 0.7554 

(2) 0.3329 0.9367 0.9353 0.9340 0.9340 0.9380 0.9381 0.9340 

(3) 0.2648 0.8440 0.8445 0.8773 0.9254 0.9370 0.9358 0.9262 

(4) 0.2692 0.7650 0.7696 0.8479 0.9295 0.9378 0.9367 0.9270 

(5) 0.2485 0.7694 0.7658 0.8491 0.9383 0.9380 0.9381 0.9343 

(6) 0.1330 0.5368 0.4800 0.8723 1.2292 1.0038 1.0039 1.0135 

(7) 0.1829 22.2781 0.3260 — — 0.8595 0.8586 0.8615 

(8) 0.1787 23.9254 0.6263 — — 0.9529 0.9491 0.9929 

(9) 0.1713 21.3401 0.2803 — — 0.8052 0.8002 0.9026 

(10) 0.1275 18.0603 0.2549 — — 0.7409 0.7368 0.7062 

(11) 0.8690  0.9922 0.9536 0.9770 0.9999 0.9889 0.9889 0.9875 

(12) 0.7733 49.7021 0.7717 — — 0.9618 2.6592 0.9926 

 



 

 

Table 5. The results of stress at point B for Cheung and Chen tests (Figure 4).  

Model 

Mesh 
C3D8 C3D8R C3D8I Wilson_H8 HVCC8 

TH8 

β=0.01 

TH8 

β=0.0001 
US-ATFH8 Exact 

Load M 

(1) 131.1 2.511012 3000 3000 3000 3000 3000 3000 3000 

(2) 463.8 9.991013 3000 3000 3000 3000 3000 3000 3000 

(3) 377.7 2.331013 2632 2775 3007 3000 3000 3000 3000 

(4) 380.3 24.16 2249 3161 3003 3000 3000 3000 3000 

(5) 238.8 18.30 2404 2251 3000 3000 3000 3000 3000 

(6) 30.63 277.5 1950 241.3 3000 3000 3000 3000 3000 

(7) 187.5 7.79 1013 719.9 — — 3000 3000 3000 3000 

(8) 270.8 130.8 1500 — — 3000 3000 3000 3000 

(9) 154.6 40.72 636.2 — — 3000 3000 3000 3000 

(10) 82.50 204.1 925.5 — — 3000 3000 3000 3000 

(11) 1316 321.9 2999 2340 3000 3000 3000 3000 3000 

(12) 1266 261.6 2810 — — 3000 3000 3000 3000 

Load P 

(1) 98.36 2.761012 2250 2250 2250 2250 2250 2250 2250 

(2) 427.4 5.661013 2841 3375 3375 3375 3375 3375 3375 

(3) 320.6 0.000 2419 3037.2 3211.4 3257.5 3252.2 3229.6 3262.5 

(4) 360.9 18.14 2212 3667 3348 3408.8 3403.4 3373.5 3375 

(5) 219.6 6.908 2243 2518 3238 3225 3225 3226.6 3150 

(6) 57.09 208.1 1823 209.8 3641 3150 3150 3198.9 2700 

(7) 332.1 755.3 925.9 — — 2883.6 2877.9 3038.6 3375 

(8) 229.5 124.2 1647 — — 3239.5 3226.7 3369.9 3375 

(9) 292.2 22.04 820.7 — — 2695.9 2677.9 3083.2 3262.5 

(10) 109.1 197.0 667.2 — — 2248.8 2234.6 2170.9 2700 

(11) 1781 371.0 3947 3234 4179 4125.4 4125.4 4125.5 4050 

(12) 1746 321.4 3738 — — 4123.4 4123.7 4125.3 4050 

 



 

 

Table 6. The results of deflections at points a1, a2, a3 and a4 under load P (Figure 4). 

Mesh Node TH8 β=0.01 TH8 β=0.0001 US-ATFH8 

(7) 

a1 

a2 

a3 

a4 

88.20 

88.18 

65.01 

112.29 

 88.09 

 88.09 

2292.81 

 2469.91 

88.39 

88.40 

88.87 

88.97 

(8) 

a1 

a2 

a3 

a4 

97.57 

97.77 

95.92 

99.64 

 97.19 

 97.38 

11.72 

 206.51 

100.44 

101.87 

100.42 

102.01 

(9) 

a1 

a2 

a3 

a4 

81.87 

82.62 

99.02 

66.23 

 81.33 

 82.10 

 1694.96 

1530.77 

91.71 

92.61 

92.49 

92.59 

(10) 

a1 

a2 

a3 

a4 

75.20 

76.01 

82.38 

69.15 

 74.73 

 75.60 

 831.37 

680.72 

69.19 

72.45 

69.54 

72.38 

(12) 

a1 

a2 

a3 

a4 

105.17 

98.68 

102.04 

101.72 

 476.83 

272.84 

 102.14 

 101.76 

102.35 

101.84 

102.31 

101.77 

Reference solution: 102.6 



 

Table 7. Results of the displacement at point A calculated for the rotational frame invariance test (Figure 5). 

α1 α2 Au  Av  Aw  2

A

2

A

2

A ++ wvu  Normalized 

0° 0° －0.235778E-01 －0.454176E-01   0.336472E-03 0.051174 0.96260 

0° 

40° 

－0.182779E-01 －0.454176E-01 －0.148978E-01 0.051174 0.96260 

10° －0.258869E-01 －0.415536E-01 －0.148978E-01 0.051174 0.96260 

20° －0.327094E-01 －0.364271E-01 －0.148978E-01 0.051174 0.96260 

30° －0.385379E-01 －0.301938E-01 －0.148978E-01 0.051174 0.96260 

40° －0.431956E-01 －0.230430E-01 －0.148978E-01 0.051174 0.96260 

45° －0.450395E-01 －0.191906E-01 －0.148978E-01 0.051174 0.96260 

50° －0.465407E-01 －0.151921E-01 －0.148978E-01 0.051174 0.96260 

60° －0.484717E-01 －0.687962E-02 －0.148978E-01 0.051174 0.96260 

70° －0.489300E-01   0.164193E-02 －0.148978E-01 0.051174 0.96260 

80° －0.479015E-01   0.101136E-01 －0.148978E-01 0.051174 0.96260 

90° －0.454176E-01   0.182779E-01 －0.148978E-01 0.051174 0.96260 

90° 90° －0.454176E-01   0.336472E-03 －0.235778E-01 0.051174 0.96260 

Overkill solution — — — 0.053162 1.00000 

 

 



 

Table 8. Results of Cook’s skew beam problem (Figure 6). 

Element Mesh 

2×2×1 2×2×2 4×4×4 8×8×4 8×8×8 16×16×16 

Deflection at point C: vC (reference solution: 23.86a) 

C3D8 13.95 14.05 19.81 22.48 22.50 23.36 

C3D8R 20.56 20.50 22.51 23.32 23.32 23.58 

C3D8I 20.39 20.32 22.50 23.32 23.32 23.58 

TH8 β=0.01 22.73 22.59 23.27 23.67 23.67 23.81 

US-ATFH8 22.67 22.56 23.27 23.67 23.67 23.81 

Maximum principle stress at point A: σAmax (reference solution: 0.2352a) 

C3D8 0.1389 0.1423 0.1889 0.2164 0.2159 0.2267 

C3D8R 0.1299 0.1300 0.1861 0.2138 0.2134 0.2248 

C3D8I 0.1741 0.1746 0.2172 0.2320 0.2317 0.2340 

TH8 β=0.01 0.1952 0.1949 0.2218 0.2326 0.2324 0.2345 

US-ATFH8 0.1973 0.1952 0.2214 0.2325 0.2322 0.2345 

Minimum principle stress at point B: σBmin (reference solution: －0.2023a) 

C3D8 －0.0970 －0.0974 －0.1337 －0.1747 －0.1727 －0.1912 

C3D8R －0.0664 －0.0664 －0.1282 －0.1666 －0.1663 －0.1848 

C3D8I －0.1689 －0.1664 －0.1804 －0.1976 －0.1963 －0.2013 

TH8 β=0.01 －0.1548 －0.1534 －0.1869 －0.1979 －0.1977 －0.2013 

US-ATFH8-A －0.1554 －0.1574 －0.1874 －0.1976 －0.1975 －0.2013 

a Results by traditional 20-node hexahedral isoparametric element using 46×46×46 mesh in Abaqus [1]. 

 



 

Table 9. Normalized deflections at point A for a thin curved beam subjected to an in-plane shear P1    

(Figure 7). 

Number  

of elements 
C3D8 C3D8R C3D8I ASQBI NEWHEX 

Wilson 

_H8 
HVCC8 

TH8 

β=0.01 
US-ATFH8 

2 0.006 0.049 0.049 0.669 0.669 0.107 1.043 0.947 0.909 

4 0.033 0.581 0.580 0.895 0.895 0.717 1.015 0.991 0.974 

6 0.077 0.883 0.881 0.978 0.978 0.935 1.012 1.002 0.992 

8 0.136 0.966 0.964 0.997 0.997 0.984 1.011 1.007 0.999 

10 0.208 0.992 0.990 1.003 1.003 0.999 1.011 1.009 1.003 

12 0.289 1.002 1.000 — — 1.004 1.011 1.010 1.005 

14 0.378 1.006 1.005 — — 1.007 1.011 1.011 1.007 

16 0.471 1.009 1.007 — — 1.009 1.011 1.012 1.008 

20 0.664 1.011 1.010 — — 1.010 1.012 1.012 1.009 

Analytical 1.000a 

a Standard solution: 0.08734. 

 

 



 

Table 10. Normalized deflections at point A for a thin curved beam subjected to an out-of-plane shear P2  

(Figure 7). 

Number  

of elements 
C3D8 C3D8R C3D8I Wilson_H8 HVCC8 

TH8 

β=0.01 
US-ATFH8 

2 0.132 0.192 0.160 0.190 0.799 0.896 0.968 

4 0.202 0.604 0.570 0.666 0.890 0.952 0.934 

6 0.230 0.847 0.821 0.865 0.920 0.964 0.945 

8 0.250 0.920 0.901 0.918 0.934 0.969 0.952 

10 0.269 0.944 0.929 0.936 0.942 0.972 0.956 

12 0.289 0.953 0.942 0.945 0.947 0.973 0.960 

14 0.311 0.958 0.948 0.949 0.950 0.974 0.962 

16 0.334 0.960 0.952 0.952 0.952 0.975 0.964 

20 0.386 0.962 0.956 0.956 0.955 0.976 0.966 

Analytical 1.000a 

a Standard solution: 0.5022. 

 

 



 

Table 11. Normalized deflections at point A for a twisted beam subjected to an in-plane force (Figure 8). 

Mesh C3D8 C3D8I TH8 β=0.01 US-ATFH8 

4×2 0.0313 0.9750 1.0646 1.0567 

8×2 0.1145 0.9911 1.0155 1.0106 

8×4 0.1144 0.9977 1.0090 1.0057 

16×2 0.3728 0.9967 1.0035 1.0014 

16×4 0.3767 0.9992 1.0023 1.0009 

16×8 0.3799 1.0000 1.0023 1.0010 

(a) 0.0584 0.6137 1.0407 1.0235 

(b) 0.0528 0.6238 1.0388 1.0289 

(c) 0.0446 0.1024 1.1403 1.0203 

(d) 0.0374 0.0842 1.3741 0.7756 

Exact 1.0000a 

a The standard value is 0.005424. 



 

Table 12. Normalized deflections at point A for a twisted beam subjected to an out-of-plane force (Figure 8). 

Mesh C3D8 C3D8I TH8 β=0.01 US-ATFH8 

4×2 0.0834 0.9246 1.0222 1.0252 

8×2 0.2297 0.9780 1.0029 1.0033 

8×4 0.2242 0.9820 0.9974 0.9985 

16×2 0.4998 0.9926 0.9991 0.9991 

16×4 0.4909 0.9942 0.9980 0.9983 

16×8 0.4912 0.9947 0.9980 0.9982 

(a) 0.1538 0.8886 0.9472 0.9885 

(b) 0.1377 0.8925 0.9359 0.9995 

(c) 0.1377 0.3056 1.0361 1.0094 

(d) 0.1156 0.2679 1.1296 1.0613 

Exact 1.0000a 

a The standard value is 0.001754. 

 



 

Table 13. Normalized radial displacements at inner radius for a thick-walled cylinder (Figure 9). 

Poisson’s ratio H8a C3D8H C3D8I HEXA(8) ASQBI TH8 β=0.01 US-ATFH8 

0.49 0.849 0.993 0.986 0.986 0.988 0.978 0.978 

0.499 0.361 0.993 0.986 0.986 0.987 0.978 0.978 

0.4999 0.053 0.993 0.986 0.986 0.987 0.978 0.978 

a H8: The standard 8-node tri-linear isoparametric element  
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Figure 1. The definition of 3D oblique coordinate system. 
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Figure 2. An 8-node hexahedral element. 
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Figure 3. Constant stress/strain patch test.  

Outer dimensions: unit cube; E=1.0×106; μ=0.25. 

Node Cartesian coordinate 

x y z 

1 0.249 0.342 0.192 

2 0.826 0.288 0.288 

3 0.850 0.649 0.263 

4 0.273 0.750 0.230 

5 0.320 0.186 0.643 

6 0.677 0.305 0.683 

7 0.788 0.693 0.644 

8 0.165 0.745 0.702 
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Figure 5. Rotation dependence test: cantilever beam problem and mesh. E=100.0; =0.3. 
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Figure 4. Cheung and Chen beam tests. E=1500; μ=0.25 

 

A 

B 

2 2 2 2 

1 

1 1 6 1 1 

3 1 

2 

1 4 

(12) 

A 

B 

(1) 

A 

B 

1 

2 

3 

4 

(3) 

A 

B 

1 

2 

3 

4 

(5) 

A 

B 

1 

2 

3 

4 

(7) 

A 

B 

1 

2 

3 

4 

(9) 

A 

B 

2 2 1 1 4 

1 1 2 3 3 

(11) 

u=v=w=0 

u=w =0 

u= 0 

y 

x 

z 

10 

2 

2 

150 

150 

150 

150 

150 

150 

P 

a1 

a2 

a3 

a4 

1000 

1000 

1000 

1000 

M 



 

 

 

 

A 

B 

C 

x 

z 

y 

y 

x 

16 

48 

44 
44 

16 

q = 1 

E = 1.0 

 = 1/3 

Figure 6. Cook’s skew beam problem and a typical 222 mesh. 
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Figure 7. Bending of a thin curved beam. 
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Figure 8.  Twisted beam problem and meshes. E=2.9×107, μ=0.22 
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Figure 9.  A quarter of thick-walled cylinder and mesh division. 


