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Running head: Emerging analytical techniques for physical activity measurement
Review Article
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Key Points

* The diversification of techniques for assessing physical activity has grown. Therefore, the aim of this review
was to draw together the current evidence base of novel (i.e. post-2010) analytical techniques used for physical
activity measurement to assess their accuracy and limitations.

* Although physical activity measurement is the primary aim of many studies, the available techniques are
diverse and characterized by different stages of refinement, levels of accuracy and limitations.

* This review highlights that although diverse and sensitive data may be assessed through the use of novel
techniques, there is a need for further refinement and establishment of an acceptable level of accuracy for
measuring physical activity with each technique.

Abstract
BACKGROUND

Physical inactivity is one of the most prevalent risk factors for non-communicable discases in the world. A
fundamental barrier to enhancing physical activity levels and decreasing sedentary behaviour is limited by our
understanding of associated measurement and analytical techniques. The number of analytical techniques for
physical activity measurement has grown significantly, and although emerging techniques may advance
analyses, little consensus is presently available and further synthesis is therefore required.

OBJECTIVE

The objective of this review was to identify the accuracy of emerging analytical techniques used for physical
activity measurement in humans.

METHODS

A scarch of electronic databases was conducted using Web of Science, PubMed and Google Scholar. This
review included studies written in the English language, published between January 2010 and December 2014
that assessed physical activity using emerging analytical techniques and reported technique accuracy.

RESULTS

A total of 2,064 papers were initially retrieved from three databases. After duplicates were removed and
remaining articles screened, 50 full-text articles were reviewed, resulting in the inclusion of 11 articles that met
the eligibility criteria.

CONCLUSION

Despite the diverse nature, and the range in accuracy associated with some of the techniques analytics used, the
rapid development of analytics has demonstrated that more sensitive information about physical activity may be
attained. However, further refinement of these techniques is needed.
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1 Introduction

Physical inactivity is one of the most prevalent risk factors for non-communicable diseases worldwide [1],
resulting in a significant body of research investigating population physical activity levels [2, 3]. However,
despite recognition of the importance of physical activity, our understanding surrounding the appropriate
measurement and analytical techniques are currently limited, and further, the diversity of outputs from physical
activity analyses has grown.

In general, accelerometers work using the same principles, and whilst the number of planes in which
acceleration is detected can range from uni- to triaxial, they are considered to be the de Jacto standard device for
objective physical activity monitoring [4. 5]. The most widely used accelerometers in research (e.g. ActiGraph,
Movisens) usc a piezoelectric lever to detect acceleration ranging from ~0.25 to 2.5¢. In traditional physical
activity analyscs. participants typically, although not exclusively, wear the accelerometer on the right hip (near
to the centre of mass). Any full body movement results in displacement of the accelerometer causing the
piezoelectric lever to bend. As a result 2 signal is generated in proportion to the amount of acceleration, which
subsequently generates intensity of movement output and the signal is sampled at a user specified value
otherwise known as an *epoch’ [5-7]. Accelerometers are also used to provide velocity and displacement data
[8]. as well as inclination data that could be used to classify body orientation, and are widely used to assess
physical activity [5].

Signal processing of accelerometer data has moved beyond the descriptive approach of simply quantifying
overall activity using time spent in thresholds or counts per minute. There have been two reviews in the area that
are unanimous that there are more substantive insights that will take the accelerometer data past the descriptive
stage that characterises the data, allowing both quantity and quality to be reported [8, 9]. Chen et al, [8] found in
their review that sensor type and data processing may directly impact the results of the outcome measurement.
Further, that multisite assessment and combining accelerometers with other sensors and new analytics may offer
additional advantages. Yang ct al. [9] found that the application and sensor placement is expanding beyond hip
mounting. The review noted applications to fall prevention, posture identification and gait characteristics are
growing. Both,

Chen et al. [8] and Yang et al. [9] highlighted issues with traditional analyses, such as device reliability,
insensitive cnergy expenditure algorithms, epoch length affecting overall physical activity and inability to detect
intermittent activities. Future technological improvements will necessitate examining raw acccleration signals
and developing advanced models for accurate encrgy expenditure prediction and activity classification [8-10].

Recently, emerging approaches to physical activity measurement have focused on prevention of falls, postural
movement, energy expenditure and analysing raw accelerometry traces [11, 12). One example is pattern
recognition, which is an analytical technique used to classify activity behaviours {such as jumping, walking or
running) and can make use of data from several sensors placed on the body. This process involves gathering
data from participants carrying out a protocol of structured activities and then processing the signal for common
features. Once processed, it is possible to program a computer to detect these features in the data collected from
participants carrying out defined activities, otherwise known as machine learning. The algorithms used to do this
depend largely on the features used for classification of activitics and subsequent variants of these. In addition to
machine learning and pattern recognition, mathematical modelling has resulted in improved energy expenditure
estimations, by incorporating accelerometry. heart rate monitors, indirect calorimetry (IC) and anthropometric
data. Further the utilisation of more sophisticated techniques, such as artificial neural networks, can feed data
information through the network, and then compute to better predict energy expenditure or movement [13].

Clearly, the diversification of analytical techniques to characterise physical activity is accelerating, and with the
increase in analytics, multiple, diverse platforms on which to assess and report physical activity have come to
the fore, and therefore an updated synthesis of the current evidence base is warranted, Further, consideration of
accuracy and associated limitations is also needed to indicate the current suitability of different techniques.
Therefore, the aim of the current review was to identify the accuracy of emerging analytical techniques reported
in physical activity measurement,
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2 Methods
2.1 Lirerature search

For the purpose of this review, a computerised search was conducted using the following databases; Web of
Science, PubMed and Google Scholar, A combination of the following key words was used to locate studies for
review, between the dates of January 2010 and December 2014: ‘physical activity’, ‘pattern recognition’,
“wearable motion sensor’, ‘artificial neyral network’, “energy expenditure’, *sensor’. “multi sensor’, ‘monitor’,
‘motion sensor”, ‘accelerometer’, ‘accelerometry”, “regression’, *hidden Markoy medel’ and *machine learning’.
Terms were combined such that cvery search included one term related to: ‘physical activity” and one term
related to type: *mcasurement’ or *classification”. Figure | shows the results of the literature search and article
selection process.

2.2 Study characteristics

Multiple searches were then made in cach of the selected databases and additional searches for relevant
references and citations linked to the studies obtained during this primary search were conducted. The selection
process sought to identify studies that assessed physical activity using emerging analytical techniques, of
varying study design, conducted human-based investigations, assessed the accuracy of analytical technique and
were published in the English language from January 2010 to December 2014. This cut-off date was used
because physical activity measurement and analytical techniques pre-2010 have already been well reviewed [8,
10]. All titles and abstracts and all full-text assessments were conducted by two authors, and decisions to accept
or reject a paper were agreed between the first and second authors, and in instances where the first and second
author could not agree. a third, independent, reviewer helped achieve consensus.,

2.3 Study selection

Coding of papers only allowed for studies that adopted emerging analytical techniques for physical activity
measurement, including; pattern recognition, artificial neural networks, hidden Markov models, machine
learning and regression, and assessed technique accuracy. Studies of varying designs were acceptable for the
purposes of this review; however, technical reports, review articles, non-human based studies. or studies which
did not measure activity or report technique accuracy were not considered further, Following the selection of
appropriate articles, study design, aims, population, analytical technique, overail accuracy and limitations were
reviewed in table 1,



W 00 ~ & W\ b W

L I T e T T T Y T S T T S o
QW 0N Y N B W N R O

21
22

Articles meeting initial search criteria
(n=2,064)

r

314 articles removed

Duplicates

Titles and article abstracts screened
(n=1.750}

y

Full-text of articles assessed (n=50)

1,699 articles removed

Outside scopc of study
Did not meet inclusion criteria
Did not assess physical activity

v

39 articles removed

Non-human based (n=13)
Technical report/systematic review
(n=11)

Did not report accuracy (n=15)

Total articles included
(n=11)

Figure I. Flowchart of the search and selection précess.
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3 Results

The electronic search identified 2,064 potentially relevant articles. Following screening and detailed assessment,
11 studies were deemed suitable for review. Of the 11 studies included, one study utilised linear discriminant
analysis, four utilised feature extraction and machine learning, two utilised a support vector machine classifier,
one utilised dynamic time warping, one utilised hierarchical clustering, one utilised an extreme learning
machine, and one utilised a hidden Markoy model. Table I summarises; study aims, participant characteristics,
study outcomes, overall accuracy and study limitations.
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4 Discussion

The aim of the current review was to identify the accuracy of emerging analytical techniques reported in
physical activity measurement. In accord with the aim of this review, 11 studics that evaluated support vector
machines, dynamic time warping, hierarchical clustering, extreme lcarning machines or hidden Markov
modelling were reviewed

4.1 Accelerometry based studies

Within this review, a number of studies applied emerging analytical techniques with accelerometry in order to
assess physical activity, with a range of accuracies and limitations (sce Table I). Measuring human physical
activity using wearable monitors [11, 12] demonstrates promising results. Physical activitics, including walking,
running, cycling and rope jumping, have been accurately (up to 100% accuracy in certain circumstances)
classified using sensors with multiple inputs (for example accelerometers or gyroscopes) [12, 17]. Aziz et al.
[14] successfully measured physical activity and scdentary behaviour using accelerometers in older adults or
those with impaired ambulation using linear discriminant analysis. which is a type of machine learning, with
overall accuracy of up to 89% in classifying fall type. Further, computed values were highly correlated to
walking speed prediction (R=0.98). However, problems arose when uging the same approach in highly
transitory activities and when detecting falls that were a result of syncope. Leutheuser et al. [12] also utilised
machine learning, in combination with feature extraction, and was able to correctly identily basic daily life
physical activities with 89.6% accuracy. The use of machine learning with accelerometry appears to allow
identification of specific movements with high accuracy. However, at present activity classification using this
method appears to only be able to identify basic movements, Conversely, when focussing more broadly on
inferring activity type, and not specifically falls or basic movement. Duncan et al, [24] achieved 97% accuracy
during walking and running in the laboratory and 84% accuracy in the field (performing scripted activities
including walking up and down stairs, walking around and picking up a 20 pound object), using feature
recognition. This particular method appears 1o be successful due to the incorporation of EE in order to infer
activity type, rather than the accelerometer signal alone. However. once in ficld testing was performed, the
accuracy falls by 13 percentage points, indicating reliability issues outside of a controlled setting. Trost et al.
[21] advocated the use of a different form of machine learning, ANN, and reported high accuracy (88.4%) in
activity classification. This type of machine learning has been applied to multiple settings with high levels of
accuracy and reliability and relies on a computational model inspired by natural neurons to process and link
inputted data [25]. Trost et al. [21] was the only study to have utilised a substantial sample size, giving strength
and reliability to their findings. Although accelerometers can be combined with novel analyses for the same or
similar outcomes. there are a number of mathematical processes and models that can be applied under the
umbrelta of machine learning, i.e. ANN, feature detection, linear discriminant analysis, all of which demonstrate
comparable level of accuracy. In addition to machine learning approaches. pattern recognition in combination
with accelerometry has demonstrated very good reliability. Mannini et al. [20] reported that very high accuracy
(92.0 - 98.5%) could be achicved when classifying postural (sitting, lying and standing) and basic motor
movements (stair climbing, walking, running and cycling) when applying a HMM 1o characterise an
accelerometer signal. This indicates that when pursuing activity classification, machine learning and pattern
recognition represent two very promising techniques. At present, these techniques are limited to classifying only
simple or basic movements and as such, further work is required to extend these models to be applicable in a
more gencralised setting. Further, a confounding limitation of emerging analytics in conjunction with
accelerometry is that the number of participants used in studies has been small (Fulk et al. [17], Leutheuser et al.
[12]). It is evident that studies have addressed varying problems, ranging from pedestrian flocking, to falls, or
more predominantly, inferring activity and the relative accuracies of these techniques has been shown to be very
high.

4.2 Other sensor based studies

There have been a number of approaches used to classify characteristics in physicai activity data, for example
pattern recognition, machine learning, principal component analysis (PCA) [20]. When analysing a raw
accelerometry trace, it is very difficult to deduce what action has been petformed without any other input or
prior knowledge about the actions. In such cases, a pattern recognition technique, such as a HMM, may be
applied, where observations arc available (the raw accelerometry trace) but the states giving rise to those
observations are ‘hidden’ (prior knowledge of any activities or movement). Therefore, HMM is an approach
used to classify features in a dataset. Other statistical modelling approaches can be used where the probability

8
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data derived from a ‘training set” of data are used to classify some features into various motion and physical
activities. An important consideration when classifying data is that large datasets will result in multiple features
and characteristics, which results in time consuming data analysis and collection. Artificial neural networks, in
addition to decision trees, have also been used to good effect [26, 27]. Further, pre-processing and reclassifying
data can help reduce the dimensionality of large data sets [20], and using novel analytics can help to compute
the meaningful basis in a data set by filtering out noise which results in improved accuracy [20]. However. a
consistent feature associated with many pattern recognition analytics is that many data need to be gathered in
order for patterns to be recognised. This can be time-consuming and expensive and requires significant
computer memory and power [20]. Further. whilst accelerometry has become the de Jacto device for objectively
assessing physical activity, the use of other sensors (i.e. cameras, force sensitive resistors, electrooceulography)
to achieve the same outcome has grown. It is evident that the aim of many emerging analytical techniques has
been to aid in better detecting the quality and type of activity that a person is undertaking. Zhang et al, [23]
incorporated motion cameras in order to recognise patterns of movement and concluded that basic motor
movements could be recognised with 85% accuracy. The accuracy reported by Zhang ct al. [23], using a pattern
recognition approach, was lower than Mannini et al, [20]. This could be an artefact of the device. as acquired
images are often blurry and ineffective in capturing feature points. However, this approach attained similar
levels of accuracy to Trost et al. [21]. Goncalves et al. [18] utilised an Xbox Kinect camera in conjunction with
a pattern recognition approach, dynamic time warping, where the similarity between patterns which may vary
with time of different durations is measured [18]. The authors reported success in application of the technique,
however, the gesture sensing algorithm was only applied to two participants and one action, hand flapping. So,
although the accuracy reported was absolute, there is still much development needed in order to apply this to
more movements. Bulling et al. [15] reported an accuracy of 76% when identifying activities such as text
copying, rcading a printed paper, taking hand-written notes, watching a video, and browsing the web, The
authors contended that recording the movements of human eyes, electrooculography, can successfully be used to
identify certain activities and may be feasible in wider applications, such as accurately identifying non-
traditional activities (e.g, rock climbing), which would be missed by common sensing modalities. However,
further investigations would be required to cotroborate the cffectiveness of this technique.

The application of cameras, in different forms, to characterise activity has demonstrated variable success when
complemented with novel analyses. A further example of instruments used when attempting to characterise
human movement with novel analytics is force sensitive resistors, Fulk et al. [17], for example, mounted the
device in the footwear of participants to measure plantar pressure and record the acceleration signal, thercby
inferring postural activity in stroke victims. The raw signal from the device was analysed using a support vector
machine, which is a supervised machine learning technique that can use training examples to learn the
dependencics in the data (in Fulk et al, [17]. the computer learns how the signals from the sensors can predict
postural activities) and apply the learned model to recognition of previously unseen data [17]. Across cight
participants, accuracy in identifying postural activity of 99-100% was found, indicating that, using a modest
sample size, the combination of acceleration and pressure traces, postures may confidently be assessed. Similar
to Fulk et al. [17), Xiao et al. [22] utilised a force sensitive resistor, however applied it to the upper extremities
to analyse force myographic signals of the forearm, The authors were able to accurately identify upper extremity
movements during a controlled drinking task (92% accuracy). Xiao et al. [22] also utilised a form of machine
learning to learn and classify the data, an extreme learning machine classifier. As with previously mentioned
studies, a training approach was taken, where the ELM classifier was ‘taught” or ‘trained’ to model the force
myography trace.

Although substantial gains have been made utilising emerging analytics to develop deeper insights into human
physical activity data, the underlying algorithms require further development. It is evident that when simple
postural changes or activities are quantified, there are a number of techniques and instruments that can be used
to accurately determine them, which is not the case when complex or specific activity recognition is required.
The main problem with the studies reviewed is that they are predominantly laboratory based, or have much
lower accuracy in-field, use small sample sizes and are exploratory. Many of these studies also failed to account,
or indeed. report, anthropometric and physiological metrics such as age, sex and fitness which could
conceivably affect patterns of movement.

4.3 Clusrer analvsis
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Whilst refining emerging techniques should remain a strong focus, so that adequate levels of accuracy and
confidence may be established and improved upon, the techniques by which physical activity can be measured
will continue to proliferate, Cluster analysis involves the yse of algorithms to separate a population into clusters
Or groups based on various parameters, such as activity behaviours, and has been identified by Kjaergaard [19]
to have high accuracy. Kjaergaard [19] focussed on group activity, rather than individual activity, using flock
detection and found by incorporating accelerometry, Wi-Fi and cluster analysis that pedestrian flocks could be
correctly identified and tracked with 87% accuracy. One problem encountered in this study was flock proximity,
i.e. the ability of the cluster analysis to successfully differentiate between flocks was encumbered when different
groups become entwined or were too close. This indicates that the mathematical modelling process needs further
refinement. The cluster analysis approach relies upon an iterative process of interactive, multi-objective
optimization and may be used in various ways depending on which parameters arc applied, For example, cluster
analysis can be used to determine friendship groups in the playground or could be used to determine trends and
correlations between factors such as physical activity, age and socioeconomic status. Cluster analysis is versatile
and has previously been used to study animal behaviours and movements theory [28] and in biology to identify
and track cells [29]. Given the nature of human behaviour, cluster analysis could be of great use in advancing
the analysis of physical activity indices.

5 Conclusion

expanding to incorporate a multitude of different techniques, and within cach approach exisis a series of
limitations that need addressing. This review identified that between 2010 and 2014, a range of emerging
analytical techniques have reported high accuracy across physical activity measurement, with particular syccess
in postural activity classification. However, many of the studies were exploratory or require further development
1o establish reliable, accurate measures across larger samples,

The field of physical activity measurement is rapidly developing, however, emerging analytical techniques have
only achieved variable success in relatively small samples, and the degree of measurement accuracy across a
range of activities has been inconsistent [47]. It is of importance to establish the degree of accuracy achieved by
using thesc techniques in order for researchers to make an informed choice on analytical approach. Further,
future studies should include maore detailed participant characteristics, as many individual factors affecting gait
and physical activity characterisation vary by age, sex and motor competence, Despite the different techniques
undertaken, these problems were consistently found. Consequenily, as methods develop, we recommend that
analytical techniques be refined to account for participant differences, and an acceptable level of accuracy for
measuring physical activity be established for cach technique, and that *qualities’ of diFferent activities, such as
characteristics of gait, activity duration and idiosyncratic differences be further investigated. Finally, given the
success in classifying postural activity, this should be incorporated into studies investigating physical activity to
gain greater understanding of activity and movements.
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