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Abstract. Accurate measurement of energy expenditure (EE) is imperative for identifying and 

targeting health-associated implications. Whilst numerous accelerometer-based regression 

equations to predict EE have been developed, there remains little consensus regarding optimal 

accelerometer placement.  Therefore, the purpose of the present study was to validate and compare 

artificial neural networks (ANNs) developed from accelerometers worn on various anatomical 

positions, and combinations thereof, to predict EE. 

Twenty-seven children (15 boys; 10.8±1.1 years) participated in an incremental treadmill test and 

30-minute exergaming session wearing a portable gas analyser and nine ActiGraph GT3X+ 

accelerometers (chest and left and right wrists, hips, knees, and ankles). Age and sex-specific 

resting EE equations (Schofield) were used to estimate METs from the oxygen uptake measures. 

Using all the data from both exergames, incremental treadmill test and the transition period in 

between, ANNs were created and tested separately for each accelerometer and for combinations of 

two or more using a leave-one-out approach to predict EE compared to measured EE. Six features 

(mean and variance of the three accelerometer axes) were extracted within each 15-second 

window as inputs in the ANN.  Correlations and root mean square error (RMSE) were calculated 

to evaluate prediction accuracy of each ANN, and repeated measures ANOVA was used to 

statistically compare accuracy of the ANNs. 

All single-accelerometer ANNs and combinations of two-, three-, and four-accelerometers 

performed equally (r=0.77-0.82), demonstrating higher correlations than the 9-accelerometer 

ANN (r=0.69) or the Freedson linear regression equation (r=0.75). RMSE did not differ between 

single-accelerometer ANNs or combination of two, three, or four accelerometers (1.21-1.31 
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METs), demonstrating lower RMSEs than the 9-accelerometer ANN (1.46 METs) or Freedson 

equation (1.74 METs). 

These findings provide preliminary evidence that ANNs developed from single accelerometers 

mounted on various anatomical positions demonstrate equivalency in the accuracy to predict EE in 

a semi-structured setting, supporting the use of ANNs in improving EE prediction accuracy 

compared with linear regression. 

 

Keywords: Artificial Neural Network, physical activity measurement, youth, METS, 

accelerometer, placement    
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1. Introduction 

Higher levels of physical activity (PA) and lower levels of sedentary behaviour are associated with 

improved physiological and psychosocial health in children (Jansen et al., 2011). However, the majority 

of children in Europe are not sufficiently active (Riddoch et al., 2007), with only 5.1% estimated to meet 

current government guidelines of at least 60 minutes daily of moderate-to-vigorous physical activity 

(MVPA), defined as any activity eliciting an energy expenditure of at least 4.0 metabolic equivalents 

(METs; Department of Health, 2011). Fundamental to these low PA levels and, pivotally, their resolution, 

is the accurate measurement of PA and thus prediction of energy expenditure.  

 

Early models of energy prediction generally utilised accelerometer counts as an independent variable to 

derive linear regression equations (Freedson, Pober, & Janz, 2005), though estimates have shown poorer 

accuracy during free-living than under laboratory-based conditions (Hendelman, Miller, Bagget, Debold, 

& Freedson, 2000; Swartz et al., 2000). Furthermore, the applicability of such approaches in children has 

been questioned given their highly sporadic nature of movement (Bailey et al., 1995; Baquet, Stratton, 

Van Praagh, & Berthoin, 2007). Significant improvements in energy expenditure prediction have been 

elicited through the utilisation of novel computational analysis techniques, such as machine learning 

(Freedson, Lyden, Kozey-Keadle, & Staudenmayer, 2011; Trost, Wong, Pfeiffer, & Zheng, 2012b). 

Central to the application of these techniques and, thus, the accurate prediction of energy expenditure, is 

the identification of the optimal accelerometer placement. Specifically, the right hip has conventionally 

been used as it is close to the centre of mass and has been shown to yield higher accuracy for energy 

expenditure prediction than other placements when employing traditional regression techniques (Puyau, 

Adolph, Vohra, & Butte, 2002; Swartz et al., 2000), although other studies have shown contradictory 

findings (Chandler, Brazendale, Beets, & Mealing, 2016; Crouter, Flynn, & Bassett, 2015). However, 

recent research utilising more sophisticated machine learning techniques have demonstrated a high 

accuracy of energy expenditure prediction from accelerometers located at several body locations (Ellis et 

al., 2014; Montoye, Mudd, Biswas, & Pfeiffer, 2015). Such findings therefore promote the re-evaluation 

of optimal accelerometer placement sites, especially given participant compliance issues with hip-

mounted accelerometers (Colley, Connor Gorber, & Tremblay, 2010; Trost, McIver, & Pate, 2005) and 

the greater acceptability and user-friendliness of accelerometer placements such as the wrist (Ekblom, 

Nyberg, Bak, Ekelund, & Marcus, 2012).  

In addition to the controversy regarding the optimal position, it has been postulated that 

amalgamating the data from multiple monitoring devices could improve estimated energy expenditure; 

accelerometers positioned at different body locations are likely to provide nontrivial, complementary 

information (He et al., 2014). Although it remains to be elucidated how this information can be combined 
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to enhance energy expenditure prediction, the use of multiple accelerometers for activity detection 

remains equivocal. Specifically, whilst He et al (2014) reported a modest improvement in the prediction 

accuracy of specific lifestyle activities when integrating information from three locations (hip and wrists), 

Cleland et al (2013) found no significant improvement in activity detection when two or more 

accelerometers were used. Additionally, in successive studies, Montoye et al (2014) found improved 

energy expenditure prediction accuracy with a three-piece accelerometer system compared to a hip-

mounted accelerometer in a laboratory setting but minimal improvement in a semi-structured setting 

(Montoye, Dong, Biswas, & Pfeiffer, 2016). Interpretation of these findings with regard to the potential 

utility of multiple accelerometers may, however, at least in part, be limited by the structured activities 

incorporated and a failure to consider all possible combinations of accelerometer placements. Indeed, it 

may be hypothesized that multiple accelerometers would provide greater benefits in terms of energy 

expenditure prediction within a free-living setting (Cleland et al., 2013); any such enhancements would, 

however, need to be balanced against the increased participant burden and risk of non-compliance. 

Therefore, the purpose of the present study was to investigate children’s predicted energy expenditure 

through the implementation of machine learning methods of analysing accelerometer data in a semi-

structured setting. Specifically, the present study sought to validate and compare artificial neural networks 

(ANNs) developed from data from accelerometers worn on nine anatomical positions, and combinations 

thereof, and to compare and contrast accuracies to Freedson energy expenditure prediction equations 

(Freedson et al., 2005).  

 

2. Methods 

2.1. Participants 

In total, 27 children (15 boys, 10.8 ± 1.0 years) were recruited via a local primary school to participate in 

this study. All participants were familiar with playing active video games and were asked to attend the 

laboratory in a rested state, at least two hours postprandial and to have avoided strenuous exercise and 

caffeine in the preceding 24 hours. The local research ethics committee granted ethical approval for this 

study; written informed parental consent and participant assent were obtained prior to data collection.  

 

2.2. Procedure 

Participants attended the laboratory on one occasion during which anthropometric measures and peak V!

O2 were assessed, in addition to playing exergames, which were selected to represent an optimal trade-off 

between the sporadic nature of children’s movement and a controlled laboratory setting. Specifically, 
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stature and sitting stature (Holtain, Crymych, Dyfed, UK) were measured to the nearest 0.01 m and body 

mass (Seca, Hamburg, Germany) to the nearest 0.1 kg. Age was calculated from the date of assessment, 

and maturity was estimated using the methods described by Mirwald et al (2002) and expressed as the 

estimated time in years from the age at peak height velocity (APHV). Participants subsequently 

completed two exergames (River Rush and Reflex Ridge; Kinect Adventures!, Xbox 360), in a randomly 

assigned order, for 15 minutes each. The difficulty levels for the exergames were set by the researchers 

and standardized throughout testing for consistency. Finally, following a 15-minute rest, participants 

completed a continuous, incremental treadmill test to volitional exhaustion. Due to the variation in 

biological age of the participants, the speeds utilized during the test were individually calibrated utilising 

Froude numbers (Fr), as described by Hopkins et al (2010). The protocol required participants to 

complete 2-minute stages, beginning with a walking speed equivalent to Fr 0.25 and subsequently 

increasing to the equivalent of Fr 0.5 (Walk/run transition) after which successive increments were 

determined by the difference in the speed for stages 1 and 2 (~2 km·hr-1) until volitional exhaustion. 

 

2.3. Equipment 

Throughout both exergames, the incremental treadmill test, and in the rest time between activities, gas 

exchange variables were measured on a breath-by-breath basis (MetaMax 3B, Cortex, Biophysik, 

Leipzig, Germany). Prior to testing each participant, the gas analysers were calibrated using gases of 

known concentration and the turbine volume transducer was calibrated using a 3-litre syringe (Hans 

Rudolph, Kansas City, MO). The delays in the capillary gas transit and analyser rise time were accounted 

for relative to the volume signal, thereby time-aligning the concentration and volume signals. 

Furthermore, during both exergames and the incremental treadmill test, participants were fitted 

with nine tri-axial accelerometers (Actigraph wGT3X+, Florida, USA), set at a measurement frequency of 

100 Hz. Specifically, participants were asked to wear an accelerometer on the lateral plane of each ankle, 

knee, hip, wrist and centre of the chest which were fitted using self-adhering bandages at each location to 

minimize movement artefacts. 

 

2.4. Data processing 

All data collected during the two exergames, the incremental treadmill test, and the transition times 

between these activities were included in analysis. Breath-by-breath oxygen consumption (VO2) data 

were reintegrated to 15-s windows for analysis and converted to METs in each 15-s window. In order to 

calculate METs, an estimate of daily resting energy expenditure was calculated for each participant using 

the Schofield prediction equations (Schofield, 1985), which are sex- and age-specific. Once daily resting 

energy expenditure was estimated, it was converted to resting relative VO2, and MET values for each 15-s 
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window were calculated by dividing the measured relative VO2 by the Schofield-estimated resting VO2. 

The raw ActiGraph data were reintegrated to counts, similar to the work of Trost et al (2012b) and 

Staudenmayer et al (2009), in 1-s epochs (windows) in each of the three axes for feature generation and 

development of the machine learning models. Additionally, raw ActiGraph data from the right hip 

ActiGraph were reintegrated into 15-s windows for the vertical accelerometer axis only for use in the 

Freedson MET prediction equation. Occasionally, when transitioning between activities, participants 

would request to remove the metabolic analyzer for a water break or in the walk from one activity to the 

next. In these cases, the VO2 registered by the metabolic analyzer would be 0 or a value close to 0. Given 

that McMurray et al. (2015) recently reported standard deviations for sedentary behaviours of 0.2-0.3 

METs, using the commonly applied principle of removing any data more than two standard deviations, 

any windows with EE <0.5 corrected METs were removed from analysis due to high likelihood that the 

analyzer had been removed for part or all of a given window. Using this threshold, approximately 1.4% of 

collected data windows were removed.   

ANNs, a specific type of machine learning model, were chosen for use in this study because they 

have previously shown high accuracy for prediction of energy expenditure in children (Trost et al., 

2012b) and adults (Staudenmayer et al., 2009) using accelerometer count data. Further description of the 

theoretical basis and structure of ANNs can be found in the work of Trost et al (2012b) and Staudenmayer 

et al (2009) as well as Montoye et al (2015). The 1-s accelerometer data from each axis were used to 

extract features in 15-s windows, and these extracted features were used as inputs into the ANNs. 

Originally, two different sets of features were calculated. The first set included the 10th, 25th, 50th, 75th, 

and 90th percentiles and the covariance of the accelerometer data in each 15-s window; this feature set is 

very similar to those previously used and validated in Trost et al (2012b)  and Staudenmayer et al (2009). 

The second feature set was simpler, consisting of mean and variance of the accelerometer counts in each 

15-s window, which has been previously used by members of our research group (Dong, Biswas, 

Montoye, & Pfeiffer, 2013; Montoye et al., 2014; Montoye et al., 2015). Preliminary analyses revealed no 

difference in predictive accuracy by ANNs developed from each feature set; therefore, the simpler feature 

set, mean and variance, was used in further analyses.  

ANNs were created using a leave-one-out approach. For this approach, data from all but one 

participant were used to develop (train) the ANNs. For the training phase, both the input features and 

corrected MET values were used to tune the weights of ANN parameters. Once developed, the ANNs 

were tested for predictive accuracy on the participant left out of the ANN training. This approach was 

iterative, repeated 27 times so that each participant’s data were used as the test data once. ANNs were 

created and tested separately for each of the 9 accelerometers in order to determine optimal accelerometer 
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placement for prediction of energy expenditure. Additionally, combinations of two or more 

accelerometers were used in ANN creation and testing to determine if using additional accelerometers 

would improve energy expenditure prediction accuracy. For simplicity in reporting, accuracy of all 9 

single accelerometers is reported, but only the highest accuracy achieved with any combination of 2, 3, 4, 

and all 9 accelerometers is reported. Combinations of 5-8 accelerometers are not reported as it became 

apparent that addition of more accelerometers did not yield additional predictive accuracy over using only 

one or two accelerometer placements.  Each ANN was saved as a RDA file and can be downloaded for use 

from the following link https://sites.google.com/site/alexmontoye/machine-learning-model-code and 

clicking the “ANN 9 accelerometers in children.zip” link. 

In order to compare energy expenditure prediction accuracy of the ANNs developed in this study 

to commonly used accelerometer data analysis methods, the Freedson child MET prediction equation 

developed for children was used to predict energy expenditure using data from the right hip accelerometer 

(Freedson et al., 2005). As noted previously, the vertical axis data from the right hip accelerometer were 

reintegrated into 15-s windows, and the number of counts was multiplied by 4 before being input into the 

prediction equation (since the Freedson equation was developed for data collected in 60-s windows). The 

Freedson equation is as follows: 

(1) METs = 2.757 + (0.0015· counts·min-1) – (0.08957·age [yrs]) – (0.000038· counts·min-1·age) 

 

2.5. Data analysis 

Correlations with measured energy expenditure, root mean square error (RMSE), and bias statistics were 

calculated for each iteration of the leave-one-out approach using Microsoft Excel (Microsoft Corp, 

Redmond, WA) in order to determine performance of the ANNs and of the Freedson MET prediction 

equation. Due to negative skew of the correlations, a Fisher Z transformation was conducted to normalize 

the distribution prior to conducting statistical analyses. In order to compare accuracy of the ANNs and 

Freedson MET prediction equation, repeated measured analysis of variance tests were conducted 

separately for transformed correlations, RMSE, and bias. A least significant difference post-hoc test, 

equivalent to no correction, was used for pairwise comparisons when the overall test was statistically 

significant. A p-value of p<0.05 was used to determine statistical significance. Residual plots were also 

created to better assess bias at different intensities of PA.  Statistical comparisons were conducted using 

SPSS (v. 22.0, IBM Corp., Armonk, NY). 
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3. Results 

Anthropometric characteristics of the sample can be seen in Table 1. Correlations for predicted 

vs. measured (criterion) energy expenditure can be seen in figure 1. Correlations with measured energy 

expenditure for single-accelerometer placements fell in a narrow range (r=0.77-0.81), although some 

minor differences were noted. The ANNs for the right and left hips, right ankle, and chest placements 

(r=0.81) had slightly but significantly higher correlations than the left and right wrist accelerometers 

(r=0.77-0.78). The best 2- (right wrist-right knee), 3- (chest - right hip - right ankle) and 4-accelerometer 

combinations (chest - right knee - right wrist - right hip) achieved correlations of r=0.80, r=0.81, and 

r=0.82, respectively, none of which were significantly different from each other or from the right ankle or 

chest accelerometer placements.  The ANN created from all 9 accelerometers had a significantly lower 

correlation with predicted energy expenditure (r =0.69) than any single accelerometer or combination of 

2, 3, or 4 accelerometers. With a correlation of r=0.75, the Freedson MET prediction equation had a 

significantly higher correlation with measured energy expenditure than the 9-accelerometer ANN but a 

significantly lower correlation than all ANNs for all single accelerometers and the best 2- , 3-, and 4-

accelerometer combinations.	 

 

Table 1. Participant anthropometric and peak exercise responses. 

 Total (n=27) Boys (n=15) Girls (n=12) 

Age (years) 10.8 ± 1.1 10.8 ± 1.1 10.8 ± 1.3 

Stature (m) 1.45 ± 0.07 1.46 ± 0.08 1.45 ± 0.07 

Body mass (kg) 38.7 ± 8.6 39.8 ± 8.4 37.2 ± 9.1 

Maturity offset (years) -1.9 ± 1.0 -2.4 ± 0.8 -1.1 ± 1.0 

Means ± SD. 
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 Figure 1. Correlations with criterion-measured METs. 

Data are shown as mean (standard error [SE]). 2 Monitors = right wrist-right knee; 3 Monitors = chest-

right hip-right ankle; 4 Monitors = chest-right knee-right wrist-right hip; ALL = all 9 accelerometers; 

Freedson = Freedson MET prediction equation. 

* Indicates significant difference from RW and LW. 

# Indicates significant difference from all other accelerometers and accelerometer combinations. 

 

In the RMSE analysis (figure 2), there were no significant differences among any of the single-

accelerometer ANNs or the best 2-, 3-, and 4-accelerometer combinations (min-max 1.21-1.31 METs). 

With an RMSE of 1.46 METs, the 9-accelerometer ANN had significantly higher RMSE than any of the 

other single- or multiple-accelerometer ANNs tested. With an RMSE of 1.74 METs, the Freedson MET 

equation had higher RMSE than any of the single- or multiple-accelerometer ANNs tested. 
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Figure 2. RMSE for predicted vs. criterion-measured METs. 

*Indicates significant difference from all single accelerometers and combinations of 2, 3, and 4 

accelerometers. 

^Indicates significant difference between the 9 accelerometer ANN and Freedson equation 

Data are shown as mean (standard error [SE]). 2 Monitors = right wrist-right knee; 3 Monitors = chest-

right hip-right ankle; 4 Monitors = chest-right knee-right wrist-right hip; ALL = all 9 accelerometers; 

Freedson = Freedson MET prediction equation. 

 

 Overall bias is displayed in figure 3. None of the ANNs or the Freedson MET prediction equation 

had significant bias for prediction of energy expenditure, although the Freedson equation trended toward 

underprediction. Figure 4 provides a more detailed view of bias, showing a residual plot for the chest 

accelerometer ANN and the Freedson MET prediction equation. The other 12 ANNs have similar residual 

plots to the chest, so only the chest is shown for simplicity. Despite no overall bias, all 13 ANNs tended 

to overestimate energy expenditure when the measured energy expenditure was low and underestimate 

energy expenditure when the measured energy expenditure was high. The Freedson MET prediction 



Using machine learning to predict energy expenditure 

equation had higher energy expenditure prediction accuracy when measured energy expenditure was low 

and underestimated energy expenditure when measured energy expenditure was high.  

 

 
Figure 3. Overall bias for predicted vs. criterion-measured METs. 

are shown as mean (standard error [SE]). 2 Monitors = right wrist-right knee; 3 Monitors = chest-right 

hip-right ankle; 4 Monitors = chest-right knee-right wrist-right hip; ALL = all 9 accelerometers; Freedson 

= Freedson MET prediction equation. 
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Figure 4.  Residual plots of predicted vs. criterion-measured METs. 

(a) Chest; (b) Freedson MET prediction equation. 

 

4. Discussion 

The purpose of the present study was to evaluate the relative accuracy of nine different accelerometer 

placements, and combinations thereof, on the estimation of energy expenditure derived from ANNs. The 

main findings were that neither anatomical location nor the combination of two or more accelerometers 

significantly influenced prediction accuracy. Furthermore, the Freedson MET equation was associated 

with significantly poorer prediction accuracy than all ANNs during semi-structured activities in children. 

These findings therefore demonstrate that accelerometer placement will minimally effect the accuracy of 

energy expenditure prediction and highlight the potential utility of ANNs to advance our understanding 

and interpretation of accelerometer traces derived from children. 

 In the present study, accelerometers placed on all nine anatomical positions demonstrated a 

statistically similar ability to predict energy expenditure during exergaming, an incremental treadmill test, 

and the transitions between these activities in children. These findings have important implications in the 

design of future studies wishing to estimate energy expenditure during field based studies where 

accelerometer placement may be dictated by practicalities and adherence. However, it is important to 

consider that subtle differences may be of practical importance; when measured over a longer period, 

such subtle differences could culminate in substantially different total energy expenditure estimations, 

thus altering the interpretation of the findings. In agreement with conventional protocols, placement sites 

closest to the centre of mass tended to have slightly higher correlations with measured energy expenditure 

than placements on distal body locations. However, it has been suggested that such placement positions 

fail to detect upper body movements and thus engender significant measurement errors and PA intensity 

misclassifications (Chen & Bassett, 2005). Indeed, in a recent study by Ellis and colleagues (2014), they 
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found that whilst activity identification was relatively similar between a hip and wrist worn 

accelerometer, the former was associated with greater accuracy of EE prediction during locomotion. 

Consequently, alternative placement sites that may elicit improved accuracy have received increasing 

interest, with the wrist perhaps the most researched alternative. Despite this, the findings remain 

equivocal regarding the relative accuracy of energy expenditure prediction derived from the wrist and hip, 

with some reporting a greater or similar accuracy of the non-dominant wrist compared to the hip 

(Hildebrand, VT, Hansen, & Ekelund, 2014; Melanson & Freedson, 1995) while others, in agreement 

with the current findings, demonstrated by slightly lower correlations, found a poorer accuracy associated 

with the wrist (Puyau et al., 2002; Swartz et al., 2000). Nonetheless, wrist-worn accelerometers provide 

significant advantages with respect to compliance (Trost, Zheng, & Wong, 2012a), a consideration that 

needs to be balanced against potentially marginal losses in energy expenditure prediction accuracy. 

Specifically, whilst non-compliance and inadequate wear time have been longstanding problems with 

regard to hip-worn accelerometers (Belton, O'Brien, Wickel, & Issartel, 2013), recent studies have shown 

70-80% compliance and median wear time of 21-22 hours per day using wrist-worn accelerometers 

(Rowlands et al., 2014). Of note, each of the nine single-accelerometer ANNs had significantly higher 

accuracy for predicting energy expenditure than a previously-developed, regression-based energy 

expenditure prediction equation (Freedson et al., 2005). This finding provides further evidence of the 

utility of moving toward use of machine learning or pattern recognition modelling techniques for 

improvement of energy expenditure estimation. 

It has been postulated that amalgamating the data from multiple monitoring devices could 

improve estimated energy expenditure; accelerometers positioned at different body locations are likely to 

provide nontrivial, complementary information (He et al., 2014). However, contrary to expectation, the 

utilisation of multiple accelerometers provided only minimal improvements in prediction accuracy, 

signified by slightly higher correlations but no difference in RMSE.  While several studies have 

investigated the use of multiple accelerometers for activity recognition in adults, reporting similar 

findings to those reported here (Cleland et al., 2013; He et al., 2014), there is limited research specifically 

considering energy expenditure prediction, despite its importance as an outcome variable in PA research 

(Welk, 2002). Montoye et al (2014) recently reported that a three piece accelerometer system 

significantly improved energy expenditure prediction accuracy during laboratory-based activities but 

these improvements were minimal in a semi-structured setting (Montoye et al., 2016). These 

discrepancies were largely attributed to the inclusion of transitionary periods as well as non-steady-state 

data in the analysis, a methodology employed to increase the applicability of the ANNs developed to free-

living settings. Specifically, PA, especially at higher intensities, is rarely performed in a sufficiently 
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sustained bout to achieve a steady state, thus predictive models must be able to handle non-steady-state 

data. Given the highly sporadic nature of children’s PA (Bailey et al., 1995), with bouts typically lasting 

no longer than 6-s, the incorporation of non-steady-state data as done in the present study is especially 

pertinent to the development of appropriate energy expenditure prediction models for children. Therefore, 

whilst the accuracy associated with the present ANNs may be lower than could be derived during 

controlled laboratory exercises, the applicability of the present models is likely to be considerably higher. 

Furthermore, it is postulated that information contained within the raw signal may have been lost 

following the conversion to count-based data, resulting in a lack of improvement in energy expenditure 

prediction. Nonetheless, the reintegration to count-based data enabled comparisons to previous studies 

(Staudenmayer et al., 2009; Trost et al., 2012b). It is also anticipated that the implications associated with 

wearing multiple monitors for compliance outweigh such minimal improvements in prediction accuracy. 

However, further investigation into the use of multiple monitors is warranted given the ever-increasing 

vast array of technology available and the potential to embed sensors within every wearable items (i.e., 

clothing) with no added burden to participants.  

This is the first study to consider a diverse range of dominant and non-dominant accelerometer 

placements, and the optimal combinations thereof, for the prediction of energy expenditure, 

demonstrating the highest accuracy with single accelerometers and when accelerometers on the upper and 

lower body were combined. This combination is largely in accord with the literature suggesting that both 

upper and lower body movements need to be accounted for (Chen & Bassett, 2005). Indeed, hip worn 

accelerometers have largely been validated during ambulatory movements, whilst many activities of daily 

living incorporate a substantial upper body contribution, limiting the applicability of those prediction 

algorithms developed solely using hip-worn accelerometers. The failure of greater numbers of 

accelerometers to improve the energy expenditure prediction accuracy may be attributable to over-fitting 

of the data and the relatively limited information used for data extraction in the development of ANNs. In 

reality, the decision to use single or multiple accelerometers will principally depend on the relative 

importance of measurement accuracy compared with participant and researcher burden. For population 

level studies, inherent inter-participant variability is likely to negate the small gains in accuracy achieved 

by using multiple accelerometers whereas for smaller studies or those researching a specific outcome (i.e. 

weight-loss interventions or posture), multiple accelerometers may account for greater variance in energy 

expenditure than a single accelerometer and minimize bias in energy expenditure prediction of specific 

types of activities. With regard to the latter, it is important to highlight that the present ANNs generally 

demonstrated a bias towards the mean, overestimating energy expenditure at low intensities and 

underestimating at higher intensities. Whilst commonly reported, this form of bias would need to be 
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considered if the ANNs developed were to be used in a true free-living setting and when interpreting time 

spent at the various exercise intensities. However, ActiGraph accelerometers, and the present data 

processing techniques, were not designed to measure sedentary behaviour. Nonetheless, given the ever 

increasing interest in understanding the relationship between sedentary behaviour and health, and indeed 

the contribution sedentary behaviours make to a child’s day, the accurate estimation of sedentary pursuits 

is imperative. As such, future machine learning model development should include a broad range of 

energy expenditure representative of children’s play and daily living.   

It is postulated that raw accelerometry data may enhance the accuracy of the models, however, 

despite the presented study utilising count-based data, a machine learning approach significantly 

enhanced the energy expenditure prediction accuracy in comparison to the Freedson MET prediction 

equation. Specifically, the RMSE for any of the single-accelerometer ANNs and the best 2-, 3- and 4-

accelerometer combinations in the present study ranged from 1.21-1.31 METs, in comparison to 1.74 

METs for the Freedson MET equation. One possible explanation for this greater accuracy is the wider 

range of different movement patterns as well as the traditional locomotor treadmill activities in the 

present training set. However, it is pertinent to note that the current ANNs were developed and cross-

validated on the same activities and would thus be expected to perform better than other models which 

were developed for different activities. Further validation of the developed ANNs in a more 

heterogeneous sample population and during a wider range of activities is warranted. 

 Importantly, none of the present ANNs demonstrated a significant bias in the prediction of 

energy expenditure, whereas, consistent with previous research (Crouter, Klowers, & Bassett, 2006; 

Rothney, Neumann, Beziat, & Chen, 2007; Staudenmayer et al., 2009), the Freedson et al  regression 

method trended toward an overall under-estimation. This under-estimation is likely to be attributable to 

the equations being based on only three treadmill activities in a small sample. Given that the linear energy 

expenditure relationship tends to break down at higher running speeds (Cavagna, Thys, & Zamboni, 

1976) and does not translate to non-locomotive activities, it is not surprising that the linear regression 

equation under-estimates free-living or vigorous treadmill activities (Crouter et al., 2006; Rothney et al., 

2007; Staudenmayer et al., 2009). However, in alignment with the lower intensity activities (brisk 

walking to slow jogging), the Freedson MET prediction equation had higher energy expenditure 

prediction accuracy when measured energy expenditure was low, although the lack of specific sedentary 

behaviours in the present training set limits further interpretation. A similar relationship between 

prediction accuracy and exercise intensity was reported by Staudenmayer and colleagues (2009), resulting 

in a RMSE of 1.22 METs, a value not dissimilar to that reported here. However, it is pertinent to note that 

this study was conducted in adults, raising questions regarding the applicability of such ANNs to children 
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given developmental differences in stride length and frequency and differences in economy of movement 

and resting metabolic rate (Trost, 2007; Trost, Loprinzi, Moore, & Pfeiffer, 2011). More recently, Trost et 

al. (2012b) investigated the prediction of energy expenditure using an ANN in children completing 

activities ranging from sedentary to moderate-to-vigorous intensity household activities and games. This 

study reported a RMSE of 0.9-1.1 METs depending on the measurement window used; higher RMSEs 

were associated with the shorter measurement windows. The greater degree of accuracy in the study by 

Trost et al. (2012b) compared to the present study is likely to be attributable to their use of steady-state 

data and more controlled laboratory-based activities. The exergames in the present study were utilised to 

provide a more representative example of the highly sporadic nature of children’s physical activity 

(Bailey et al., 1995). 

The present study significantly advances our understanding of the use of ANNs in predicting 

children’s energy expenditure during semi-structured activities. Nonetheless, it is pertinent to note certain 

methodological considerations which limit our interpretation. Specifically, the reliance on select activity 

modalities may limit generalisability of the present study to habitual physical activity, as may the 

omission of a thigh accelerometer to account for sedentary behaviours. Moreover, our sample size was 

relatively small and homogenous, limiting the applicability of our ANNs to other populations with 

disparate demographic characteristics. Furthermore, whilst indirect calorimetry is widely accepted as a 

criterion measure of energy expenditure, it is important to be cognizant that such measures inherently lag 

behind the actual energy expenditure elicited by an activity. Thus, the energy expenditure measured by 

indirect calorimetry may not represent a true reflection of the energy cost of non-steady-state activities.  

In conclusion, the present findings suggest that neither the anatomical location of single 

accelerometers nor the combination of multiple anatomical locations significantly influences the accuracy 

of EE prediction using ANNs in children during semi-structured activities. Furthermore, data supports the 

use of ANN in improving prediction accuracy compared with simple regression. Such findings can 

advance our understanding of children’s accelerometer traces, though raw accelerometer data from 

multiple accelerometers may be more important when assessing specific behaviours and postures. The 

study highlights the difficulties of prediction models, where activities in semi-structured protocols may 

not be truly representative as a training set for validation purposes.  Future studies should seek to 

incorporate a greater variety activities and postures to ensure accurate prediction of energy expenditure in 

a true free-living setting.   
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