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Abstract 

This study examined the moderating effect of cortisol (C) on the relationship between 

testosterone (T) and hand-grip strength (HGS) in healthy young men.  Sixty-five males were 

monitored for salivary T, C and HGS before and 15 minutes after a short bout (5 × 6-second 

trials) of sprint cycling exercise.  Sprint exercise promoted (p<0.05) positive changes in T 

(6.1±24.9%) and HGS (3.4±7.5%), but a negative C response (-14.4±33.1%).  The T and C 

measures did not independently predict HGS, but a significant T × C interaction was found in 

relation to these outcomes.  Further testing revealed that pre-test T and HGS were negatively 

associated (p<0.05), but only in men with high C levels.  The exercise changes in T and HGS 

were also negatively related in men with low C levels (p<0.05), but no relationship was seen 

in men with high C levels.  In summary, complex relationships between T and HGS emerged 

when considering C as a moderating variable.  The pre-test combination of high C and low T 

levels favoured absolute HGS, whereas low pre-test C levels and a smaller T change were 

linked to larger HGS changes.  These associations suggest that, in the current format, T is not 

necessarily anabolic to muscle strength in healthy young men.  These complexities could 

explain some of the inconsistent T relationships with physical performance in lesser-trained 

male populations.      
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Introduction 

Often considered the primary androgen, testosterone (T) is known to exert both anabolic (i.e., 

muscle and bone growth) and androgenic (i.e., development of sex characteristics) effects 

(Wood & Stanton, 2012), although physiological elevations in T do not appear to be necessary 

for muscle growth to occur (West et al., 2010).  Other physiological and psychological 

functions (e.g., behaviour, mood, neural activity, motor system outputs, cognition, cellular 

signalling) might also be supported by T and its active metabolites (Crewther et al., 2011a; 

Wood & Stanton, 2012).  Subsequently, T could potentially contribute to physical 

performance and long-term adaptation via multiple mechanisms spanning a wide timeframe. 

 

The reported associations between T and physical performance tend to be stronger and more 

consistent among elite-trained than sub-elite and untrained men (Crewther et al., 2011a); 

perhaps reflecting trainable features such as sport-specific experience (Ahtiainen et al., 2003) 

and baseline strength (Crewther et al., 2012).  For example, a strong correlation (r=0.92) was 

found between T and squatting strength in very strong men (squatting >2 times their body 

mass [BM]), but in less strong men this relationship was weak (r=0.35) (Crewther et al., 

2012).  Alternatively, these results might be less about physical ability and more about coping 

and performing under stress.  Crucially, untrained individuals can exhibit a larger 

neuroendocrine stress (e.g., cortisol [C]) response than trained individuals when exercising at 

the same workloads (Hackney, 2006).   

 

One less explored perspective in sport and exercise is the moderating role of C, whereby C 

can influence T activity or T release via the motivational circuitry, psychological processing 

and feedback inhibition (Mehta & Prasad, 2016).  In a behavioural domain, it has been 

demonstrated that T is positively related to dominance or aggression outcomes in men with 
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low C levels, whereas no (or negative) relationships were found in high C men (Mehta & 

Josephs, 2010; Mehta & Prasad, 2016).  These findings are applicable to the exercise testing 

of healthy men, not only because muscle performance and dominance are linked (Gallup et al., 

2007), but any exercise protocol deemed to be stressful would likely induce large changes and 

subject differences in C availability.  To our knowledge, no research has investigated this 

interplay between T and C in a healthy cohort of men performing high-intensity exercise.          

 

This study examined the moderating effect of C on the T relationship with hand-grip strength 

(HGS) in healthy young men.  To create a hormonal stress response, the men were assessed 

around a short bout of sprint cycling exercise (Goto et al., 2007; Obmiński et al., 1998).  The 

following hypotheses were developed based on the literature presented; first, sprint exercise 

would acutely elevate T and C levels; second, the T and HGS measures taken (i.e., pre-test, 

changes) around the exercise stimulus would be unrelated; third, significant T and HGS 

associations will be identified once low C and high C men are considered separately.  

 

Methods 

Participants 

Sixty-five healthy young men were recruited from a University campus (means ± SD: age 

22.6±4.9 years, height 180.1±5.84 cm, body mass [BM] 78.8±12.0 kg).  The men were injury-

free, with no medical or health conditions that would influence the study outcomes.  Low to 

moderate levels of physical activity were reported (i.e., 2-5 days a week, low to moderate 

intensity) involving jogging, cycling, weight training and some team-sport activities.  The men 

were also questioned about medication and drugs taken in the last 6 months, but none were 

reported.  Informed consent was obtained before the study commenced and ethical approval 

was granted from the Swansea University Human Ethics Committee.   
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Experimental procedures 

The experimental study was completed after a familiarisation session.  Briefly, salivary T, C 

and HGS were assessed before and 15 minutes after a short bout of sprint exercise.  Testing 

was conducted between 10am and 3pm, as we anticipated no diurnal variation in the measured 

variables over this period (Hayes et al., 2012; Patel et al., 2004).  A control session with no 

warm-up or sprint exercise was completed by a sub-group of 15 men.  This session was 

performed at a similar time of day (± 1 hr), as per the sprint exercise, and both sessions were 

randomised (>3 days separation) to reduce any order effect.  Each participant was instructed to 

maintain the same food intake on each day of testing, and to refrain from eating or drinking 

hot fluids 2 hours beforehand (Crewther et al., 2014).  No exercise was performed in the 24 

hours preceding each session to eliminate the confounding effects of muscle fatigue.   

 

Sprint cycling exercise 

Testing began with a 15-minute rest period in a seated position.  Following a 2-minute warm-

up, the 5-minute sprint exercise protocol was performed on a Monark cycle ergometer (824E, 

Sweden) with a load equalling 7.5% of BM.  In total, 5 × 6-second sprint trials were 

completed at the predetermined load with 54 seconds of slow pedalling (without load) 

between each sprint trial.  The participants remained seated throughout testing and strong 

verbal encouragement was given by the lead investigator.  These protocols were based on 

prior research to ensure a hormonal stress response (Crewther et al., 2011b; Goto et al., 2007; 

Obmiński et al., 1998).  A 2-minute cool down was performed after the last sprint without 

load.  Sprint testing on a cycle ergometer can produce similar salivary T responses in healthy 

men, independant of training experience (Crewther et al., 2014).   
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Salivary hormone testing 

Salivary hormones are thought to reflect blood-free hormones (Crewther et al., 2012), thereby 

representing less than 10% of the total hormone fraction in blood.  Saliva samples (~1ml) 

were taken by passive drool 5 minutes before and 15 minutes after exercise to coincide with 

expected hormonal changes in this fluid (Edwards & Casto, 2013).  All samples were stored in 

a -30°C freezer.  The samples were analysed in duplicate using an immunoassay kit 

(Salimetrics LLC, USA).  The detection limit for the T and C assays were 6.1 pg·mL-1 and 

0.12 ng·mL-1, respectively.  The inter-assay coefficient of variation (CV) was <11% for T and 

<8% for C.  The samples for each participant were analysed within the same assay run.  

 

Hand-grip strength testing  

The HGS assessment allowed testing of systemic hormonal changes induced by lower-body 

exercise, as well as being easy to implement and standardise across subjects.  Strength was 

measured to an accuracy of 0.1 kg with a digital dynamometer (Camry, China) using similar 

procedures to published work (Gallup et al., 2007; Patel et al., 2004).  Each person was seated 

throughout testing and, to eliminate any learning effect, only the dominant hand was assessed.  

Holding the dynamometer in a vertical position, the elbow was flexed to a 90-degree angle 

(keeping the upper arm in line with the torso) and maximal force was applied for 3-4 seconds 

before relaxing.  Three trials were performed, each separated by a 40-second rest period, and 

the best effort was analysed.  Pilot data (n=12) indicated excellent test-retest reliability 

(CV=2.0%) for this assessment.  

 

Statistical analyses 

Hormones were log-transformed before analysis to normalise data distribution and reduce 

non-uniformity bias, with the back-transformed data presented in their original units.  Change 
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scores were calculated for T, C and HGS (post – pre) across the sprint session and compared 

to a zero baseline using paired T-tests, with the control group results (i.e., no exercise, sprint 

exercise) tested in a similar manner.  To aid interpretation, the raw values are shown and the 

change scores expressed as percent values.  Effect sizes (ES) were computed using Cohen’s d.  

Relationships between the T, C and HGS measures and demographic data (i.e., age [log-

transformed], height, BM) were assessed using Pearson correlations.  Hierarchical multiple 

linear regression was used to test the moderating effects of C, operationally defined as a 

significant T × C interaction (Mehta & Josephs, 2010).  The independent variables were 

standardised by converting the raw scores to z-scores, with the interaction term calculated 

from the product of these variables.  Simple slopes were used to interpret the significant 

interactions at high (i.e., 1 SD above the mean) and low (i.e., 1 SD below the mean) values.  

The level of significance was set at p ≤0.05.  All data are presented as means ± SD.    

 

Results 

Sprint exercise effects (n=65)  

The T change score from pre-test (187±68 pg·mL-1) to post-test (199±74 pg·mL-1) represented 

a relative increase of 6.1±24.9 % (t(64)=-2.14, p=0.036, ES=0.16).  Conversely, the C 

response from pre-test (2.63±1.71 ng·mL-1) to post-test (2.25±1.37 ng·mL-1) corresponded to 

a relative decline of -14.4±33.1% (t(64)=4.34, p<0.001, ES=-0.27).  A small relative increase 

of 3.4±7.5% emerged when the change in HGS (t(64)=-3.57, p=0.001, ES=0.13) was assessed 

from pre-test (45.6±9.9 kg) to post-test (46.9±9.6 kg).   

 

Control and sprint exercise effects (n=15)  

The following pre- and post-test results were noted for T (145±45 and 151±38 pg·mL-1), C 

(1.43±0.63 and 1.49±0.63 ng·mL-1) and HGS (56.2±7.7 and 56.8±7.7 kg) in the control 
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session.  Subsequent testing revealed no changes in T (5.9±30.0%, t(14)=-0.84, p=0.412, 

ES=0.19), C (3.2±23.1%, t(14)=-0.59, p=0.566, ES=0.07) or HGS (-0.9±3.0%, t(14)=1.21, 

p=0.247, ES=0.07).  The exercise data were as follows for T (158±49 and 188±54 pg·mL-1), C 

(2.18±1.19 and 1.98±1.17 ng·mL-1) and HGS (55.7±7.6 and 57.2±7.3 kg).  The analysed 

changes in T (19.1±28.8%, t(14)=-2.68, p=0.018, ES=0.55), C (-8.9±44.6%, t(14)=0.97, 

p=0.346, ES=0.19) and HGS (2.9±5.7%, t(14)=-1.95, p=0.072, ES=0.20) mirrored the 

population trends, but only the T and HGS data were, or verged on, significance.  The 

between-session differences in T (t(14)=1.40, p=0.184) and C (t(14)=-1.22, p=0.242) were not 

significant, whilst the HGS results approached significance (t(14)=2.06, p=0.058).  Pre-test 

comparisons revealed that C levels were 52% higher before the sprints than the control session 

(p=0.011), whereas the pre-test T and HGS were no different (p>0.408). 

 

Correlations between age, BM, hormones and HGS 

Participant age was positively correlated with BM, the T changes and pre-HGS, whilst pre-T 

was negatively related to age (p≤0.05, Table 1).  Body mass was also positively related to 

height and pre-HGS (p<0.01).  Hormonal comparisons revealed positive correlations between 

T and C before testing and their respective change scores (p<0.001).  The pre- and post-test 

hormone values were strongly correlated (r(63)>0.81, p<0.001); thus, the post-test outcomes 

were not included to eliminate redundancy.  Significant correlations determined which 

variables would be included in the regression models as covariates (Mehta & Josephs, 2010).   

 

Insert Table 1.   

 

Predicting pre-HGS 
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Pre-HGS was entered as the dependant variable and the following as predictors: BM and age 

in Step 1; pre-T and pre-C in Step 2; the pre-T × pre-C interaction in Step 3.  In model 1 

(Table 2), BM and age jointly explained 15.6% of the variance in pre-HGS (p=0.005), but 

adding pre-T and pre-C in model 2 did not improve this relationship (18.8%, p=0.311).  In 

model 3, adding the pre-T × pre-C interaction increased the explained variance (24.8%, 

p=0.033).  We tested this interaction (Figure 1A) and found a significant negative association 

between pre-T and pre-HGS at high pre-C levels (slope=-4.165, t=-2.529, p=0.014), but a 

non-significant relationship at low pre-C levels (slope=0.997, t=0.531, p=0.598).   

 

Insert Table 2 and Figure 1A-1B.  

 

Predicting the HGS changes 

The change in HGS was entered as the dependant variable with the following predictors: pre-

T, pre-C, T change and C change in Step 1; the interactions between each pair of hormonal 

variables in Step 2.  No demographic variables were correlated with the dependant variable; 

thus, regression was performed as a 2-step process.  All possible combinations were tested, 

but only the model that included pre-C and T change as predictors produced a significant 

interaction (Table 3).  Pre-C and T change did not jointly predict the HGS changes in model 1 

(0.8%, p=0.780), but their interaction predicted 10.7% of the variance in model 2 (p=0.012).  

Probing this interaction (Figure 1B) revealed a significant negative association between the T 

and HGS changes at low pre-C levels (slope=-1.032, t=-2.189, p=0.032), but a non-significant 

relationship at high pre-C levels (slope=0.731, t=1.405, p=0.165).   

 

Insert Table 3.  
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Discussion 

This study is the first to document a moderating role for C with respect to the T association 

with HGS in healthy men.  Sprint cycling exercise provided an effective stimulus for 

promoting rapid hormonal and HGS responses.  Within this framework, the T and C measures 

did not predict pre-test HGS or the resultant HGS changes.  A significant hormonal interaction 

was however identified, such that T predicted both strength outcomes when taking into 

account individual differences in pre-test C levels.     

 

Consistent with prior studies (Crewther et al., 2011b; Goto et al., 2007; Obmiński et al., 

1998), the sprint cycling protocol produced a small positive change in T (6.1%) in a short 

timeframe (<20 minutes).  The negative C response (-14.4%) was somewhat unexpected, 

given the stressful nature of sprinting exercise involving the lower limbs.  This finding might 

be due to T inhibition of the hypothalamic-pituitary axis during initial recovery (Viau, 2002), 

individual variation in C reactivity (Crewther et al., 2011a) and/or a delayed increase in C 

levels relative to the initial T response (Goto et al., 2007).  It is noteworthy that subject C 

levels before the sprint exercise session were more than 50% higher than the control session, 

suggesting that a hormonal stress or anticipatory response occurred before exercise.  This 

baseline difference may explain why we were unable to induce a subsequent rise in C with a 

relatively stressful stimulus.  These hormonal responses were accompanied by a small (3.4%) 

increase in HGS, thereby supporting the possibility that acute T and/or C variation might also 

modify physical performance (Crewther et al., 2011b; Obmiński et al., 1998).    

 

As hypothesised, the T measures were unrelated to the HGS outcomes, adding to the variable 

results among weaker or lesser-trained populations (Ahtiainen et al., 2003; Crewther et al., 

2011a; Crewther et al., 2012).  More complex hormonal interactions might be governing the 
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expression of muscle strength, as we found.  Specifically, pre-test T and HGS were negatively 

associated in men with high (not low) pre-test C levels.  This implies that the pre-test 

combination of high C and low T levels favoured absolute HGS, which is partly supported by 

studies showing a link between high C and/or low T levels to greater maximal strength 

(Crewther et al., 2011c; Crewther et al., 2009; Passelergue et al., 1995).  The T and HGS 

changes were negatively related in men with low (not high) pre-test C levels, indicating that 

low pre-test C levels and a smaller T change is linked to larger HGS changes.  Speculatively, 

being less stressed (i.e., low C) might ensure that other potentiating mechanisms (e.g., myosin 

phosphorylation, motor unit recruitment) are activated by exercise (Tillin & Bishop, 2009), 

with a small or negative T response possibly indicating better tissue uptake (Crewther et al., 

2011a) and/or metabolite conversion (Wood & Stanton, 2012) to augment this response.  

 

The finding that C is moderating the T effect compliments behavioural studies (Edwards & 

Casto, 2013; Mehta & Josephs, 2010; Mehta & Prasad, 2016), although the reported T 

relationships are mostly positive at low C levels and negative at high C levels (Mehta & 

Prasad, 2016).  This reversal could be attributed to population differences in circulating 

hormones, along with the exercise stimulus and assessment employed herein.  Work in this 

and other domains has identified several possible mechanisms to explain the moderating role 

of C.  For instance, C can regulate T coupling with brain activity (Denson et al., 2013), 

dominance behaviours (Mehta & Josephs, 2010) and the expression of androgen receptors 

(Burnstein et al., 1995).  The adrenal and gonadal systems also interact at various levels to 

regulate T and C release (Viau, 2002), as evidenced by the correlations in this and other work 

(Edwards & Casto, 2013).  Further research is needed to elucidate those mechanisms activated 

in a sport and exercise context, the hormonal responses accompanying these situations, and 

their combined role in supporting muscle and physical performance. 
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We acknowledge that sprint-type exercise can increase muscle temperature, physiological 

activity (e.g., catecholamines, lactate) and possibly induce muscle potentiation, as other 

mechanisms to explain the HGS results.  These effects were partly addressed by the study 

design (e.g., choice of exercises, rest period).  Since some men showed HGS gains and others 

no change under the same exercising conditions (Figure 1), the likely contribution from a 

temperature-related, or other peripheral, mechanism is reduced.  Our sampling protocols (i.e., 

single post-exercise sample) also make it difficult to capture temporal hormone dynamics and 

the predictive models developed still have a large degree of unexplained variance.  

Nevertheless, we identified novel hormonal interactions that could be regulating muscle 

performance in a healthy male cohort, with broader applications for individualising workouts 

and identifying predispositions for absolute strength or exercise-induced strength changes. 

    

To summarise, complex relationships between T and HGS emerged in healthy young men that 

were only identifiable when low C and high C individuals before exercise were considered 

separately.  The direction of these relationships also suggested that T might be less important 

to muscle strength in healthy young men.  This information could help to reconcile the 

inconsistent relationships seen in men with little or no training experience.  
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Table 1.  Correlations between the demographic, hormonal and performance variables. 
 

 Height 
 

BM 
 

Pre-C 
 

C 
change 

Pre-T 
 

T 
change 

Pre-HGS 
 

HGS 
change 

Age -0.22  0.24* -0.23   0.23  -0.37#    0.24*     0.24*  0.01 
Height      0.39#  0.02   0.04 -0.02  0.02   0.18  0.08 
BM     -0.15  -0.01 -0.01 -0.03    0.36#  0.05 
Pre-C        -0.23   0.41#  0.09     -0.14 -0.04 
C change         -0.15    0.51#   0.15 -0.11 
Pre-T           -0.19  -0.23 -0.03 
T change               0.16 -0.08 
Pre-HGS               -0.23 

Note: BM = body mass, C = cortisol, T = testosterone, HGS = hand-grip strength.   Significant 
correlation *p≤0.05. #p<0.01. 
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Table 2.  Multiple regression with pre-test cortisol and pre-test testosterone as predictors of 
pre-test hand-grip strength.   
 
 Variable  β  t p 
Model 1 F(2,62)=5.715, p=0.005, R2=0.156 
 BM  0.319  2.653 0.010 
 Age  0.170  1.412 0.163 
Model 2 F(2,60)=1.192, p=0.311, R2=0.188 
 BM  0.336  2.769 0.007 
 Age  0.094  0.725 0.470 
 Pre-T -0.198 -1.463 0.149 
 Pre-C  0.011  0.088 0.930 
Model 2 F(1,59)=4.748, p=0.033, R2=0.248 
 BM  0.290  2.423 0.019 
 Age  0.188  1.412 0.162 
 Pre-T -0.160 -1.208 0.232 
 Pre-C  0.016  0.128 0.899 
 Pre-T × Pre-C -0.261 -2.179 0.033 

Note: BM = body mass, C = cortisol, T = testosterone.    
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Table 3.  Multiple regression analyses with prê-test cortisol and the testosterone changes as 
predictors of the hand-grip strength changes. 
 
 Variable  β  t  p 
Model 1 F(2,62)=0.249, p=0.780, R2=0.008 
 T change -0.082 -0.645 0.521 
 Pre-C -0.029 -0.227 0.821 
Model 2 F(1,61)=6.726, p=0.012, R2=0.107 
 T change -0.051 -0.416 0.679 
 Pre-C -0.139 -1.078 0.285 
 T change × Pre-C  0.333  2.594 0.012 

Note: C = cortisol, T = testosterone.    
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Figure 1.  Interaction between pre-test cortisol (C) levels and the testosterone (T) measures in 
relation to the hand-grip strength (HGS) measures.  Low hormone values = mean - 1SD, High 
hormone values = mean + 1SD. *Significant slope p ≤0.05. 
 
 
 


