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Abstract Various innovative photobioreactor designs have
been proposed to increase production of algae-derived bio-
mass. Computer models are often employed to test these de-
signs prior to construction. In the drive to optimise conversion
of light energy to biomass, efforts to model the profile of
irradiance levels within a microalgal culture can lead to highly
complex descriptions which are computationally demanding.
However, there is a risk that this effort is wasted if such optic
models are coupled to overly simplified descriptions of algal
physiology. Here we demonstrate that a suitable description of
microalgal physiology is of primary significance for model-
ling algal production in photobioreactors. For the first time,
we combine a new and computationally inexpensive model of
irradiance to a mechanistic description of algal growth and test
its applicability to modelling biofuel production in an ad-
vanced photobioreactor system. We confirm the adequacy of
our approach by comparing the predictions of the model
against published experimental data collected over a 2 ½-year
period and demonstrate the effectiveness of the mechanistic
model in predicting long-term production rates of bulk bio-
mass and biofuel feedstock components at a commercially
relevant scale. Our results suggest that much of the detail
captured in more complicated irradiance models is indeed
wasted as the critical limiting procedure is the physiological
description of the conversion of light energy to biomass.

Keywords Microalgae . Biomass . Biofuels . Modelling .

Photobioreactor

Introduction

In the drive to increase production of algae-derived biomass
for industrial application, various innovative photobioreactor
designs have been proposed. Such novelty is often manifested
in the deployment of intricate geometries to optimise light
availability throughout the culture suspension by balancing
the volume to surface area ratio while at the same time ad-
dressing issues related to fluid dynamics and aeration
(Grobbelaar 2009; Posten 2009; Wang et al. 2012). Other
works emphasise factors such as the direct light incidence
angle, the refractive index of the medium, photon scattering
in dense cultures and levels of diffuse irradiance (Molina
Grima et al. 1999; Pilon et al. 2011; Slegers et al. 2011, 2013).

Models describing light availability for photosynthesis in
algal suspensions have common features: some means to de-
scribe the level of light incident to the culture surface and a
measure of the extent to which that light is attenuated by the
medium (including the growing algal suspension) through
which it passes. Surface irradiance may, as appropriate, be
input as a fixed parameter or calculated functionally. The latter
can range from a simple step function description of artificial
light being switched on and off to equations linked to the
annual and diel solar cycles (Walsby 1997) and applied ac-
cording to the choice of location and setup of the system being
studied. Light attenuation is most commonly modelled ac-
cording to a Beer-Lambert description, and for most purposes,
it provides an adequate approximation (Lee 1999) despite the
fact it can either over- or under-estimate the available light
depending on whether scattering or absorption effects are
more dominant. It is difficult to separately quantify the effects
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of scattering vs absorption experimentally (Acién Fernández
et al. 1997), with the impact on the organisms depending on
the action spectrum of the photosystems as the cells acclimate
to changes in light quantity and quality and to changes in their
nutrient status. From a purely pragmatic perspective, there are
the challenges of measuring the light profile inside dense algal
suspensions within narrow optic paths in units that are mean-
ingful for the organisms (i.e. photosynthetically active photon
flux density, taking into account the spectrum of light absor-
bance by algal pigments). It is far more straightforward to
measure the net light attenuation and to consider it as a func-
tion of depth (i.e. distance from the illuminated surface), cell
concentration and pigment content, as has been done for
oceanographic applications (Fasham et al. 2006).

Determining full solutions to the radiative transfer equation
offers a more robust approach than relying on Beer-Lambert
approximations (Pilon et al. 2011), but is a far more compu-
tationally intense task (Cornet et al. 2003). As a compromise,
it is possible to make simplifications (possibly combined with
empirical measurements (Krujatz et al. 2015)) and still, if so
desired, be able to calculate the full irradiance profile within
the bioreactor (Cornet and Dussap 2009).

Whatever the level of sophistication, there is a danger that
the value of such attention to detail for modelling optics can
be diminished (de facto wasted) if the model describing
algal growth and physiology, to which the irradiance model
is coupled, is too simple. Such simplifications may be justi-
fied for descriptions of steady-state or light-limited condi-
tions that are only able to capture certain aspects of growth
dynamics (Takache et al. 2010, 2012). However, there are
clear dangers in deploying simple biological descriptions
under non-steady-state situations. For instance, merely relat-
ing productivity projections to a fixed estimated photosyn-
thesis efficiency factor can lead to predictions that are a
whole order of magnitude greater than are actually achiev-
able using even the most advanced and finely optimised
growth systems currently in operation (Weyer et al. 2010;
Wigmosta et al. 2011). Problems become apparent in simple
Monod-type descriptions of light-photosynthesis interactions
(Béchet et al. 2013), where the maximum photosynthesis
rate and half-saturation intensity are cell concentration de-
pendent (Jeon et al. 2005) which, in turn, is itself a (some-
times highly) dynamic variable dependent on the rate of
photosynthesis. Coupling dynamic variables with a steady-
state model is akin to putting a round peg in a square hole.
Unless the means to fully capture the physiological dynam-
ics correctly are in place, especially with respect to the
changing balance between light and nutrient limitation
(Flynn 2003a), the coupled abiotic-biotic model as a whole
can become dysfunctional (Flynn 2003b). This matter is of
particular importance because modulating co-light/nutrient
limitation is a crucial factor affecting microalgal production
for different feedstocks (Kenny and Flynn 2015).

Photoacclimation is an important (although, in the context
of industrial production, often neglected) physiological pro-
cess that affects not only the description of irradiance in the
algal suspension but also the conversion of light energy into
biomass. In this process, the phototrophic microalgae increase
their photopigment content to raise energy capture from a
diminishing light field. This becomes a self-propagating pro-
cess as the collective cell population increase in pigment con-
tent in the individual cells decreases light penetration further.
In contrast, with nutrient exhaustion, and/or with an increase
in irradiance received by the cells, pigment is lost to mitigate
against the procurement of excess photoreductant; under such
conditions, photoacclimation decreases the absorbance of
light by the algal suspension. Photoacclimation is most simply
described by the algal chlorophyll to C-biomass ratio (Chl:C),
ranging to a maximum mass ratio of ca. 0.06. The process
displays a diel cycle in Chl:C during a light-dark cycle. For
further information and for modelling approaches, see Flynn
et al. (2001) and Flynn (2003a).

The time scale over which all these dynamic abiotic and
biotic changes occur also has a bearing on whether a given
combination of irradiance and physiological model is appro-
priate or not. Under natural light, the vagaries of cloud cover,
the sun’s position relative to surrounding obstructions and the
like can produce sudden changes to the surface irradiance,
while an individual cell within a turbulent environment will
also be exposed to rapidly varying levels of light due to its
position relative to the illuminated surface (Molina Grima et
al. 1999; Posten 2009). These changes can occur in the order
of milliseconds to seconds, and capturing the associated fluid
dynamics computationally may require a time step of the order
of microseconds to maintain numerical stability (Lobatón
et al. 2011; Seo et al. 2012). By contrast, the computational
time step required to capture physiological events in
microalgae in the physiological model may be the equivalent
of several simulation minutes (for simpler descriptions) and
even hours (Flynn 2003b). There is thus a potential mismatch
in time scale between physics and biology sub-models of up to
8 orders of magnitude. Hence, the rate of flow within the
system (Molina et al. 2001; Li et al. 2015) can be such that
several panels’ worth of culture volume may have passed
through a given point between two time steps for biology
models and any one of these transient volume elements is
equivalent to another. Thus, in the context of the biological
model (and for the experience of the average algal cell), it
seems appropriate to consider a well-mixed culture as, indeed,
being homogeneous, which allows us to integrate over the
panel depth to calculate the average photosynthetic activity
in the water column in the same way as one would for a
natural mixed water column of many metres depth (Fasham
et al. 2006). By extension, such homogeneity (which in bio-
reactors would apply to the equivalent of mixed layer depths
of only a fraction of 1 m, if not only a few cm) should make it
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possible to average the surface irradiance over the whole illu-
minated area.

In this work, we eschewmuch of the complexity that might
be associated with irradiance models to consider production in
an outdoor pilot-scale flat panel reactor using a computation-
ally inexpensive description of the average photon flux den-
sity (PFD) hitting a panel surface and attenuated within the
medium according to a Beer-Lambert description.We confirm
the adequacy of this approach by comparing the predictions of
a series of biological model descriptions of varying sophisti-
cation against experimental data. Furthermore, we also dem-
onstrate the effectiveness of an acclimative, mechanistic mod-
el of algal growth to predict large-scale, long-term production
rates of bulk biomass and biofuel feedstock components in
such a system.

Methods

Modelling irradiance and photosynthesis

Bioreactors may be lit artificially or naturally. In the former,
the surface irradiance E0 driving photosynthesis is under tight
control. In an outdoor reactor, E0 depends upon geographical
location, time of year and atmospheric conditions. In what
follows, we describe E0 for a naturally lit reactor.

Latitude informs a solar cycle function which simulates
diurnal and seasonal variations in available natural light:

E0 ¼ SC sinφsinδ−cosφcosδcosθð ÞΛ ð1Þ
where SC is the solar constant, φ is the latitude, δ is the solar
declination angle and θ is the angular description of the diel
solar cycle. This expression is multiplied by an average inso-
lation clearness index Λ (typically, between 0.45 and 0.8) for
each latitude and month obtained from NASA’s Surface
Meteorology and Solar Energy database (eosweb 2016).
This clearness index defines the fraction of sunlight penetrat-
ing the atmosphere on an average day (accounting for cloud
cover, dust, etc.).

One factor that is often neglected in irradiance descriptions
for outdoor reactors is that the irradiance calculated in Eq. 1 is
the vertical component of the incoming sunlight vector and
hence is a vector quantity itself, but one which is normal to the
Earth’s surface. The resulting light energy vector field per unit
area can be measured in terms of the PFD. Thus, for a typical
array of bioreactor panels, we may consider the irradiance as
coming from directly overhead (see Fig. 1) and, as a first
approximation, that the amount of light at any height at the
sides of the vertical panel then depends upon the proportion of
sky that is directly visible at that point and unobstructed by the
neighbouring panels (i.e. we assume the culture is dense
enough to neglect any attenuated light penetrating the

neighbouring panels). For an industrial-scale reactor where
the panel length is much greater than the panel separation,
we can neglect end effects and use cylindrical symmetry to
define the angle subtended by the unobstructed sky (from one
horizon to the opposite) as being π radians, while the angle
subtended by an obstructed view between any two panel is the
angle β (see Fig. 1). Using elementary geometry, β is a func-
tion of the height z from a point level with the top of the panel
and the panel separation s according to β = 2 tan− 1(s/2z).
Thus, at any z between the top of a panel of height h (z = 0)
and the bottom (z = h), the irradiance hitting the surface as a
function of height is given by

E zð Þ ¼ E0β zð Þ
π

¼ 2E0

π
tan−1

s

2z

� �
ð2Þ

To calculate the average surface irradiance E0 over the
whole panel side, we integrate Eq. 2 from z = 0 to z = h and
divide by the height of the panel:
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0
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In the limit, where the number of panels is large (Np→∞),
we can neglect end effects associated with two unobstructed
panel sides. A further assumption is that the irradiance levels
on both sides of the panel are equal, and therefore, the maxi-
mum depth τ, to which the light is attenuated according to the
Beer-Lambert law, equals half the depth orthogonal to the

Fig. 1 A typical irradiance profile between two vertical panels (flanking
rectangles) of height h, separated by distance s. The incident irradiance at
any height z on the surface of each panel is a function of the current solar
irradiance E0 and the angle formed between the diagonals, β(z) (see
Eq. 2). The average irradiance is calculated across the whole reactor
panel surface (see Eq. 3). Additional irradiance (such as through any
neighbouring panels) penetrating the dense algal suspension inside the
panels is neglected
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illuminated sides of the vertical panel (i.e. half the panel
width).

The adequacy of the functional description of average irra-
diance in Eq. 3 was tested against nearly 3 years’ worth of
experimental data recorded at the Solix BioSystems research
and development facility in Fort Collins, CO, USA (Quinn
et al. 2012). The reactor system comprises multiple vertical
panels of width, height and length measuring 0.05 × 0.28 ×
17.3 m and spaced 0.15m apart (shown by Quinn et al. (2012)
in their supplementary material). The legacy light data were
averaged to obtain a mean value for each month while the
simulation data were averaged to obtain a mean daily value.
As the NASA data are averaged over a 22-year period (as
opposed to the 2 ½-year period for the duration of the exper-
iments) and collated over a wider geographical area (1° × 1°),
in lieu of more specific on-site data, it was decided in this
instance to tune the monthly clearness index Λ in Eq. 4 so that
the modelled PFD fitted the monthly averaged data as closely
as possible. This then allowed the local atmospheric clearness
during production to be estimated where direct measurement
was not made. As the real values would form a subset of the
NASA data, the tuned values forΛwere tested for consistency
with the NASA data sets. The tuned clearness indices in the
simulations ranged between 0.55 and 0.8 and were indeed
consistent with the corresponding measurements obtained
from the NASA data sets (eosweb 2016) for a site at 40° N,
105° W (Fort Collins, USA).

Modelling cellular physiology

Total photosynthetic activity, PS, in the water column is cal-
culated by integrating the Smith equation (Smith 1936) which
incorporates a Beer-Lambert description (Fasham et al. 2006)
over the mixing depth (assuming a homogeneous cell suspen-
sion) to obtain

PS ¼ Pqm

kτ
ln

E0αChlC
Pqm

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð4Þ
where α is the photosynthetic efficiency at E = 0, ChlC is the
mass ratio of chlorophyll to carbon within the microalgae,
Pqm is the absolute maximum rate of photosynthesis and
k is the attenuation factor of the culture. Parameter k is a
function of the culture medium itself (of minimal impact
here but more so if nutrients were to be sourced from
digestate that typically contain coloured compounds),
and also of the C-specific biomass concentration with its
allied pigmentation (ChlC). Pqm, ChlC and k are dynamic
variables that depend upon the developing biomass and
also the nutrient status of the cells, and which must be
updated at each time step to capture photoacclimation
effects (Flynn et al. 2001). The average photosynthetic

activity is thus Eq. 4 divided by the panel depth. (For
details of how this is off-set by respiration effects, see
Appendix A, in the Supporting material).

The fully featured mechanistic model of cellular growth
used here is an acclimative construct with varying elemental
stoichiometry (Flynn 2001) originally developed for applica-
tions to studies of algal ecophysiology and which has been
used to investigate issues surrounding the industrial produc-
tion of bulk biomass and related biofuel feedstocks from
microalgae (Flynn et al. 2013; Kenny and Flynn 2015).
Appendix B gives details of species and previous scenarios
for which this model type has been deployed. As seen in the
schematic shown as boxes within Fig. 2, there are a number of
state variables defined in the model. Nutrients for algal con-
sumption include dissolved inorganic C (DIC), nitrate (DINn)
and/or ammonium (DINa), and phosphate (DIP). The increase
in microalgal C-biomass (TC) is a function of the nutrient
status of the cells (as cellular N:C and P:C), the status of the
photosystems (ChlC) and light. A proportion of biomass is
present as C-rich storage products (carbohydrate + lipid;
CexC), calculated according to Flynn et al. (2013).
Harvested biomass (hC), including such high-C harvested ma-
terial, is of potential interest for biofuels (hexC).

Constant parameters that are of key concern for controlling
productivity, indicated by diamonds in Fig. 2, are as follows:
Dil, the dilution rate and harvesting frequency; Nut, nutrient
concentration; OD, depth of the culture system (orthogonal to
the illuminated surface); Lat, geographic latitude of the facil-
ity; Time, day and hour; and μmax, maximum growth rate of
the algae. Lat and Time define the surface irradiance (see
Eqs. 1–3), while light available for the microalgae is a func-
tion of that surface irradiance over the day-night cycle, absor-
bance by the algal suspension with reference to OD, TC and
ChlC (the latter a function of N:C and of light availability via
photoacclimation). The value of hexC depends on TC and
CexC, which in turn relates to Dil and Nut, such that growth
rate is optimised while N:C is low (noting that N:C is linearly
related to N-limited growth potential, when light is non-limit-
ing). Further details regarding functional descriptions of mass
balance and cell quota dynamics within this model structure
are given by Flynn (2001).

Variations upon this general structure were compared to
gauge the level of descriptive sophistication required to ade-
quately capture growth dynamics within a photobioreactor
system and accurately predict production rates of bulk bio-
mass and biofuel feedstock components simultaneously.
Comparisons were made between the fully acclimative model
with its varying C:N:P:Chl stoichiometry, models with vary-
ing C:N (but fixed C:P:Chl) and varying C:N:Chl (but fixed
C:P) descriptors. An algal model was also deployed featuring
fixed stoichiometry, with a C:N:P ratio fixed according to the
Redfield ratio (Redfield 1934, 1958). These alternatives are
described in Table A.2 in Appendix A. To apply and validate
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these alternative algal models at a scale relevant to commercial
production, we compared each one’s predictions of production
against biomass and fatty acid production data from the same
study by Quinn et al. (2012) with experimental data from two
strains of Nannochloropsis (N. oculata and N. salina) aver-
aged over each month in the samemanner as for the irradiance
description. Nutrients in all simulations were supplied, as per
Quinn et al. (2012), at 5 × f/2 (Guillard and Ryther 1962;
Guillard 1975) concentrations (i.e. 61.6 mg N L−1 and
5.5 mg P L−1). Effects of harvest timing were investigated
by considering three different strategies: daily harvesting or
every 4th or 7th day (akin to a batch mode).

Despite the comprehensive documentation of the produc-
tion and irradiance data sets, three of the parameters crucial for
model operation (Dil, ChlCm and μmax; see Fig. 2) were not
measured experimentally. To fill this knowledge gap, values
of these three inputs were estimated by using the parameter
tuning software Powersim Solver v.2 (Isdalstø, Norway). In
this approach, the values of input parameters are systematical-
ly varied using stochastic methods until a Bbest-fit^ to the data
is achieved. Here, these three parameters, as inputs to the
model describing full variable C:N:P:Chl stoichiometry, were
tuned so that the predicted average volumetric production of
bulk biomass over a growth period of 1 year matched that
achieved experimentally as closely as possible.

Temperature is an important factor affecting algal growth.
In the model of Flynn (2001), temperature is most readily
included as a Q10 multiplier on the maximum growth rate
(μm). The value of that multiplier is by convention expected
to be around 2 (i.e. an increase in temperature by 10 °C would
double μm). Tuning of the model against the data of Quinn et
al. (2012) gave an estimated value for μm = 1.04 day−1 over
winter and μm = 1.5 day−1 over summer which would reflect
changes in the operating temperature for the system. The

magnitude of these values is consistent with those measured
for other strains of Nannochloropsis (Griffiths et al. 2011).
The difference between the winter and summer estimates of
μm equate to a Q10 of 2.5 assuming a 5 °C difference in
temperature between winter and summer operation, which
agrees with the data from this particular growth system
(Quinn et al. 2011). There are insufficient data from which
to develop a more complete growth-temperature model in this
instance, but these values for μm are consistent both with what
we do know about the production system and also about
growth responses to changes in temperature.

Tuned values for the dilution rate varied depending upon
the harvesting frequency chosen (every 1, 4 or 7 days) and μm
(Dil must be moderated to prevent slow growing cells from
being flushed out of the system). The maximum value of
Chl:C (ChlCm) was estimated to be 0.033 g Chl g−1 C, which
again is a reasonable value (Flynn 2003a). Along with these
estimates, the comparisons made between the model predic-
tions for production against the legacy data also required in-
formed assumptions that carbon biomass accounts for 50 % of
the bulk cellular mass and a fatty acid (as FAME) density of
880 kg m−3 (Pratas et al. 2011) with a typical carbon fraction
of 75 % (Geider and LaRoche 2002). The model was run
within the Powersim Constructor v2.51 (Isdalstø, Norway)
platform with an integration step size of 11.25 min, with ex-
plicit simulation of day and night irradiance.

Results

Average irradiance

Running the modelled solar cycle over a simulation time of
1 year (Fig. 3a), the functional description of average

Fig. 2 A schematic of the systems biology model structure. Cellular
growth and composition are driven by the dynamic interplay of light-
limiting and nutrient-limiting factors. Definitions within the model
(Flynn 2001) allow for variable cellular C:N:P:Chl stoichiometry and
regulated uptake of dissolved nutrients (e.g. DIN, DIP). A proportion

(CexC) of biomass is present as C-rich storage products (e.g. fatty acids).
See BMethods^ for an explanation of state variables within themodel, and
the online Appendix for equations governing variable C:N:Chl
stoichiometry
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irradiance as photon flux density (PFD in Fig. 3a,
averaged over a 3-day period) given by Eq. 3 can be
seen to provide an excellent comparison with the exper-
imental data (Quinn et al. 2012). When the average
monthly PFD predicted by the model is directly
compared to the monthly averaged data (Fig. 3b), the
fit is very good with a calculated (zero intercept)
R2 = 0.999. Hence, the numerically undemanding
description given by Eq. 3 appears to be quite adequate
for computing the average irradiance over each panel
surface.

Predicting production

The daily volumetric production (VP) predicted by the
model is in good agreement with the experimental data
for both Nannochloropsis strains (Fig. 4) even without a

fully detailed strain-specific parameterisation. Mean dai-
ly productivity averaged over the whole year for all
three harvesting strategies is VP = 75 mg C L−1 day−1,
within 1 % of the averaged experimental value over the
entire data set recorded by Quinn et al. (2012). Peak
instantaneous VP in the simulations varies depending
upon the harvest frequency chosen, rising from 98 mg
C L−1 day−1 with daily harvesting to 146 mg C L−1

day−1 for weekly harvesting.
Concurrent calculations for the areal production of

biofuel feedstock components (AXP) produces predic-
tions which again provide a favourable comparison to
the experimental data (Fig. 5). Average areal production
is 1.96, 1.9 and 1.8 g C m−2 d−1 for harvest frequencies
of 1, 4 and 7 days, respectively. This compares to a
calculated mean experimental production of 1.91 g C
m−2 d−1 applying the assumptions made in the

Fig. 3 A comparison of the
irradiance model to photon flux
density (PFD) data recorded over
a period of 2 ½ years at the Solix
BioSystems research and
development facility in Fort
Collins, CO, USA (Quinn et al.
2012). a Plots the model outputs
with average PFD data for each
month over the operational
period. Error bars indicate the
spread of observations. The
clearness parameter was tuned to
optimise the fit; see BMethods^. b
Compares the model output
averaged over each month to the
experimental data
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Fig. 4 A comparison of modelled volumetric production (VP,
continuous grey line) to data for N. oculata (circles) and N. salina
(squares) cultivated at the Solix BioSystems R&D facility in Fort
Collins, CO, USA (Quinn et al. 2012). Three cultivation strategies are
simulated with harvesting and dilution every 1, 4 and 7 days; the model
projection clearly indicates the range of biomass varying with the

harvesting periodicity (i.e. small variation with daily harvesting to large
variation with weekly harvesting). The experimental data have been
adapted from Quinn et al. (2012) by assuming a 50 % C:dw content
and then averaged to obtain mean monthly production values for each
strain. The error bars on the data points indicate the standard deviation in
measured production rates
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Methods section to the data from Quinn et al. (2012). In
a similar way to VP (Fig. 4), modelled values for peak
instantaneous AXP increase from 2.8 g C m−2 day−1

with daily harvesting to 3.5 g C m−2 day−1 for weekly
harvesting.

Comparisons between biological descriptions

The adequacy of the three less sophisticated biological model
descriptions was tested by comparing their predictions of av-
erage daily VP and AXP over each month with the
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Fig. 5 As Fig. 4 but for areal production (AXP) of C-rich biomass (e.g.
FAME) components. The experimental data have been adapted from
Quinn et al. (2012) by assuming the fatty acid has density of 880 kg m−3

and contains a carbon fraction of 75 %. The experimental data are

averaged to obtain mean monthly production values for each strain, and
the error bars on each point indicate the standard deviation in measured
production rates. See also the legend for Fig. 4

Fig. 6 A direct comparison of three biological model descriptions (see
BMethods^) to VP and AXP data from Quinn et al. (2012). Simulation
data are averaged to obtain mean monthly values. Models assuming fixed

stoichiometry fail to give such a good fit as do those featuring some
degree of varying stoichiometry (either variable C:N or C:N:Chl)
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experimental averages over the whole data set. When the
model outputs are plotted directly against the data (Fig. 6),
two of the three models (those with some form of varying
cellular elemental stoichiometry) correspond well. The re-
maining model (where stoichiometry is fixed) consistently
over-estimates production, in total by >40%. Themodels with
varying C:N and C:N:Chl fit equally well when predicting VP,
but the slightly higherR2 value for fitting to AXP suggests that
the latter model has predicted biofuel production marginally
more accurately on this particular occasion.

Discussion

The data sets of Quinn et al. (2012) are an invaluable resource
as they record long-term production of bulk biomass and,
uniquely, biofuel feedstocks beyond the laboratory scale. As
such, they provide a good test of any proposed model descrip-
tion of long-term production of algal production at a commer-
cial scale. Even so, a full, robust strain-specific, tuning of the
model could not be performed in this instance as the stoichio-
metric data required to enable this is not available. In conse-
quence, we used default estimates based upon our previous
deployment of the model (see Appendix B), and made simpli-
fied assumptions regarding the carbon content and fatty acid
(FAME) density. Through such steps, we obtained a predicted
average daily biomass productivity within a 1%margin of error
and biofuel productivities within 6 % against the reported ex-
perimental averages (Quinn et al. 2012). The effectiveness of
the photoacclimative model with varying C:N:P:Chl stoichiom-
etry to simultaneously reproduce the irradiance data and accu-
rately predict biomass and biofuel feedstock production rates
gives confidence that the overall construct is sound. The results
validate the modelling approach, especially with regards to test-
ing the description of the production of carbon-rich biomass
components (such as fatty acids) for biofuel feedstocks (Flynn
et al. 2013) in an industrial biotechnology setting. This valida-
tion also gives support to the commentary given by Kenny and
Flynn (2015) for the potential for industrial-scale solar-powered
production of algal biomass and biofuels in open ponds using
the same physiological model.

A balance needs to be struck between complexity and ade-
quacy for both the sub-models describing the optics and the
algal productivity. Very often in the arena of applied phycology
(and indeed in oceanography), more computational effort is
expended on the abiotic description. This raises the question
(as developed in the BIntroduction^) as to whether the algal
sub-model is adequate for the task at hand. The simplest algal
productionmodels assume fixed efficiencies for photosynthesis,
while the simplest recognisable description of algal physiology
assumes fixed stoichiometry. Our results (Fig. 6) show that a
fixed stoichiometric model operates at significant variance from
reality. However, our results (Fig. 6) also suggest that an

absolute necessity for the fully featured photoacclimative model
is not proven in this instance. Provided the relationship between
nutrient uptake kinetics, cell nutrient quota and growth is ade-
quately defined (Flynn 2008a, b), a less comprehensive (but still
relatively complex) model incorporating varying C:N, as a min-
imum requirement, should suffice as a first approximation.
Indeed, the pigment level can be related to cellular C:N without
recourse to a full dynamic description of Chl:C (Flynn 2003a).

The minimum requirement for modelling production of
biofuel, or other high-C feedstock components such as fatty
acids, includes variable C:N stoichiometry (Flynn et al. 2013).
If a model with fixed stoichiometry is used, then AXP could
only be estimated with a priori knowledge of the average fatty
acid content (in this case, approximately 33 % of dry weight
matter by reference to the data (Quinn et al. 2012) and by
imposing it as a predefined constant proportion of biomass.
As this model overestimated both VP and AXP by some mar-
gin (Fig. 6), such an approach would seem unjustified. This
serves to emphasise the value of a mechanistic approach to
modelling algal physiology and production, rather than rely-
ing on empirical models. Here the bulk of the mechanistic
algal model was configured with generic parameters; although
a better fit could no doubt have been achieved had appropriate
data been available, mechanistic descriptions provide clear
advantages over crude descriptions that need to be configured
independently for each site and operational situation.

When making projections for production potential, it is im-
portant to consider the contrast between instantaneous and aver-
age productivities. For example, Fig. 4 shows the peak instanta-
neous biomass VP to be achieved with weekly harvest intervals
(146 mg C L−1 day−1 cf. 98 mg C L−1 day−1 for daily harvest)
and yet (see BResults^) that strategy ultimately produced no
more biomass over the course of 1 year than did a daily harvest-
ing regime, only greater variability in production rates. Mean
daily production (both VP and AXP) averaged over the whole
year was little over half the peak value using a weekly harvest,
whereas daily harvesting resulted in a mean production rate
around 70–80 % of the peak value. Thus, care must be taken
not to place too much emphasis on isolated (possibly unrepeat-
able) yields and attempting to base long-term production projec-
tions on short-term results. We would suggest that the deploy-
ment of a comprehensive modelling approach (such as that we
deploy here) provides a much more secure route for computer-
aided modelling and design deliberations over how best to build
and operate large-scale commercial microalgal enterprises than
do models which attempt to determine production rates using a
fixed photosynthetic efficiency (Weyer et al. 2010) or only
considering the dynamics of external factors (Béchet et al. 2013).

The two-line description contained in Eqs. 1 and 3 of the
average irradiance incident to a photobioreactor with a regular
geometry is very simple to incorporate into any model of
production utilising a flat panel PBR, and it is computationally
undemanding. While the physics of the problem is of interest
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to many, our results suggest that much of the detail captured in
more complicated irradiance models than used here is likely
superfluous in considerations of simulating microalgal pro-
ductivity in industrial-scale systems. While such complexity
may be more justified when exploring innovative lighting so-
lutions for specific applications at the laboratory scale (Cornet
and Dussap 2009; Takache et al. 2012), it can be seen from our
work to be more (or at least equally) worthwhile to ensure the
biological description is functional before going too deeply
into the physical description of the environment. That is par-
ticularly so given the intimate feedback interactions between
light availability, biomass growth and light attenuation by the
accumulating (pigmented and photoacclimating) biomass.

Given that the algal model thus needs to describe changes
in Chl content (i.e. Chl:C) in response to light and nutrient
limitations, and that the latter then requires variable N:C (and/
or P:C), then this would indicate that the most logical algal
model configuration may indeed need to report variable
C:N:Chl (or C:N:P:Chl). Such a model can also readily pro-
vide an estimate of fatty acid content (from change of the N:C
from the optimal value seen in N-replete cells). While the
present discussion concerns descriptions of the light-growth
relationship, it can be argued that if knowledge of the impact
of temperature is not cross related to a knowledge of nutrient
and photo-physiology, then the effort in constructing a
temperature-growth model is similarly wasted. To take such
descriptions beyond a site- or strain-specific empirical model,
a mechanistic model describing nutrient and photo-
physiology is required. The utility and effectiveness of the
variable stoichiometric, photoacclimative model we used here
is proven and well documented (see Appendix B) and operates
with a lower step time than do complex models of optics.

In conclusion, we suggest that any modelling of microalgal
growth in an industrial setting would be best to include a
dynamic variable stoichiometric (e.g. C:N:P:Chl) description
of algal physiology. As growth and stoichiometry affect pro-
ductivity at a more fundamental level than at just the light
field, there appears little logic in extending the description of
the light field in models that do not provide a dynamic de-
scription of the growth and stoichiometry of the algae.
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