

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

Computer Science Logic 2016

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa28974

Conference contribution :

Berger, U. (in press). Extracting nondeterministic concurrent programs. Computer Science Logic 2016,

http://dx.doi.org/10.4230/LIPIcs.CSL.2016.21

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

http://cronfa.swan.ac.uk/Record/cronfa28974
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.21
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Extracting non-deterministic concurrent programs
Ulrich Berger

Swansea University, United Kingdom

Abstract
We introduce an extension of intuitionistic fixed point logic by a modal operator facilitating the
extraction of non-deterministic concurrent programs from proofs. We apply this extension to
program extraction in computable analysis, more precisely, to computing with Tsuiki’s infinite
Gray code for real numbers.

1998 ACM Subject Classification F.1.2, F.3.1, F.3.2, F.4.1

Keywords and phrases Proof theory, realizability, program extraction, non-determinism, con-
currency, computable analysis

Digital Object Identifier 10.4230/LIPIcs.CSL.2016.21

1 Introduction

The fact that proofs in constructive systems carry computational content is known as the
Brouwer-Heyting-Kolmogorov interpretation or the Curry-Howard correspondence. It is the
origin of various methods to automatically extract certified programs from formal proofs
which are implemented in proof systems such as Nuprl [8], PX [9], Coq [12], Isabelle [5],
Agda [7], Minlog [3]. The extracted programs are usually functional; other programming
paradigms, such as non-determinism or concurrency, are hardly covered by this method-
ology. This may be considered a weakness of program extraction compared with existing
program verification techniques which do cover these programming paradigms. This pa-
per aims to narrow the gap between program extraction and verification by introducing
Concurrent Fixed Point Logic (CFP), an intuitionistic theory of inductive and coinduct-
ive definitions extended by a modal operator enabling the extraction of non-deterministic
concurrent programs.

The development of CFP was triggered by an example from computable analysis, Tsuiki’s
infinite Gray code for real numbers [14], which encodes a real number x ∈ I = [−1, 1] 1 by
the itinerary of x along the tent map

t : I→ I, t(x) = 1− 2|x|.

More precisely, x is encoded by the stream a0 : a1 : a2 : . . . where the head of the stream,
a0, equals 0, 1 or ⊥ (= undefined) depending on whether x is less, greater, or equal to 0,
and the tail of the stream, a1 : a2 : . . ., encodes t(x). Since t(0) = 1 and t(1) = t(−1) = −1,
at most one ai can be undefined, and in that case ai+1 = 1 and ak = 0 for all k > i+ 1.

Infinite Gray code stands out from other encodings of real numbers by the fact that it is
at the same time unique (every real number in I has exactly one Gray code) and computable
(it is computably equivalent to admissible encodings such as the Cauchy- or the signed
digit representation). In contrast, other computable representations of the reals are highly

1 Tsuiki considers reals in the interval [0, 1], but we find it convenient to work with an interval that is
symmetric around 0.

© Ulrich Berger;
licensed under Creative Commons License CC-BY

25th EACSL Annual Conference on Computer Science Logic.
Editors: Laurent Regnier, Jean-Marc Talbot; Article No. 21; pp. 21:1–21:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

21:2 Extracting non-deterministic concurrent programs

redundant. For example, a signed digit representation of x ∈ I is any stream d0 : d1 : d2 : . . .
of signed digits di ∈ SD = {−1, 0, 1} such that x ∈ Id0 := [d0/2 − 1/2, d0/2 + 1/2] and
d1 : d2 : . . . is a signed digit representation of 2x − d0. It is easy to see that every real
in I has continuum many signed digit representations. The infinite Gray code’s unlikely
combination of uniqueness and computability is, of course, only possible because it is not
total: dyadic rationals in]− 1, 1[have an infinite Gray code with one undefined digit.

Tsuiki defines the following function transforming infinite Gray code into signed digit rep-
resentation (a0:a1:...:an:s stands for a stream that begins with the digits a0:a1:...:an
and continues with the stream s; we also use the function swap 0 = 1; swap 1 = 0):

gtos (0:s) = -1 : gtos s
gtos (1:b:s) = 1 : gtos (swap b : s)
gtos (a:1:c:s) = 0 : gtos (a : swap c : s)

Since the pattern a:1:c:s in the third line overlaps with those in the first and second line,
this definition cannot be executed in a deterministic functional language, but should rather
be viewed as a system of rewrite rules from left to right. Tsuiki introduced (and implemented
in Prolog) two-head Turing machines that are able to execute definitions as the one above:
Initially, the machine’s first head reads the first input digit and its second head reads the
second input digit. If the computation of the first input digit terminates first, the first or
second line fires, if the computation of the second input digit terminates first, the third line
fires and the second head moves one position to the right (while the first head continues
to wait for the computation of the first input digit to terminate, which may or may not
happen eventually). This is an example of a non-deterministic concurrent computation with
potentially incompatible results of the different threads. One can show that no continuous
function can translate Gray code into signed digit representation. The closest to infinite
Gray code one seems to get with traditional program extraction is a program that works on
so-called pre Gray code, i.e., streams representing constructions of infinite Gray code [4].

In this paper, we extend the method of program extraction developed in [1] in order to
be able to extract concurrent programs such as gtos above from proofs of their specific-
ation. Our basic formal system is essentially the one considered in [1] and is called IFP
in this paper (Intuitionistic Fixed Point Logic). It comprises intuitionistic first-order logic
with inductive and coinductive definitions and a realizability interpretation (Sect. 2). An
important feature of program extraction in IFP is the fact that proofs can be carried out
in any non-computational theory (Sect. 2). The correctness of the extracted programs will
then be proven in the same theory. This makes it possible to extract programs from proofs
in an abstract axiomatic setting.

Our leading example is the structure R of the real numbers with 0, 1, addition and mul-
tiplication, which we specify in IFP by the disjunction-free axioms of Archimedean ordered
fields (replacing ∨ by ¬∧¬ if required). The set of natural numbers N can be defined in IFP
as the least subset of the reals that contains 0 and is closed under the +1 function. Hence
IFP includes Heyting Arithmetic. We define predicates C and G as the largest predicates
on I satisfying

C(x) ↔
∨
d∈SD

x ∈ Id ∧ C(2x− d)

G(x) ↔ (x 6= 0→ x < 0 ∨ x > 0) ∧G(t(x))

The signed digit representations of x will be the realizers of C(x), and the Gray code of x
will be a realizer of G(x). Hence, in order to extract a program that translates Gray code

Ulrich Berger 21:3

into signed digit representation, we may attempt to prove G ⊆ C. Since there can be no
deterministic program accomplishing the transformation, this proof cannot be carried out
in IFP alone, but some extra principle is needed. The following Disjunction Principle

(DP) (A
P
∨ B) ∧ (P

Q
∨ C)→ (A ∨B ∨ C)

suffices, where A
P
∨ B is shorthand for (P → A∨B)∧ (¬P → A∧B) and P,Q,A,B,C range

over non-computational formulas. Using (DP) (with P := x 6= 0, Q := x 6= 0, A := x ∈ I−1,
B := x ∈ I1, and C := x ∈ I0), we show G ⊆ C (Theorem 12). In order to extract a
program from the proof of G ⊆ C one needs a realizer of (DP) which, unfortunately, does
not exist in IFP. To solve this problem, we embed, in Sect. 5, IFP into Concurrent Fixed
Point Logic (CFP), where (DP) is realizable (Lemma 30). CFP extends the language of IFP
by a modal operator S and extends programs by families Famϕ of programs ϕ(i) (where
i ranges over a countable index set I) that are to be executed non-deterministically and
concurrently. This is expressed by an operational semantics (Sect. 6) that allows Famϕ to
reduce to ϕ(i) for every i ∈ I. A family Famϕ realizes a formula of the form S(A), where
A is computational, if (i) ϕ(i) yields a result for at least one i ∈ I and (ii) for any i ∈ I, if
ϕ(i) yields a result b, then b realizes A (Sect. 5). The proof rules for CFP given in Sect. 5
endow the modality S with the structure of a strong monad which can be seen as a proof-
theoretic analogue of Moggi’s monadic computational lambda-calculus [10]. With some
coding effort the countably infinite non-determinism represented by the construct Famϕ

can be simulated by binary non-deterministic choice as considered, for example, in [6]. The
denotational semantics introduced in Sect 6 could be simplified accordingly. In order not to
distract the readers attention from the main issues of this paper, we refrain from carrying
out these simplifications.

There exists a rich literature on modelling and verifying non-deterministic and concurrent
programs (e.g. [13, 11, 6] and many others). The novelty of our work lies in the fact that we
extract these programs from ordinary mathematical proofs together with a formal certificate
of their correctness.

2 Intuitionistic Fixed Point Logic

We briefly recall (and slightly improve) the system IFP of Intuitionistic Fixed Point Logic
and its realizability interpretation as defined in [1].

IFP is intuitionistic first-order predicate logic with inductive and coinductive defini-
tions given as least and greatest fixed points of strictly positive predicate transformers. The
formulas of IFP, are P (~t), X(~t), A∧B, A∨B, A→ B, ∀xA, ∃xA, (µΦ)(~t) (inductive defin-
itions) and (ν Φ)(~t) (coinductive definitions), where P ranges over predicate constants, X
ranges over predicate variables, ~t ranges over tuples of first-order terms of a given signature,
x ranges over object variables and Φ ranges over strictly positive predicate transformers.
The latter are of the form λXλ~x .A where ~x and ~t have the same lengths and A is strictly
positive in X i.e. X does not occur free in any premise of a subformula of A which is an
implication 2. Predicate constants and variables have fixed arities. We assume that there is
a 0-ary predicate constant ⊥ for falsity and an equality predicate.

A predicate is either a predicate constant P , a predicate variable X, an abstraction
λ~x.A, an inductive predicate µΦ, or a coinductive predicate ν Φ. The application, P(~t), of
a predicate P to a list of terms ~t is a primitive syntactic construct, except when P is a an

2 in [2] it is shown that this condition can be weakened to provable monotonicity

CSL 2016

21:4 Extracting non-deterministic concurrent programs

abstraction, λ~xA, in which case P(~t) stands for A[~t/~x]. We will use abbreviations such as
P ⊆ Q for ∀~x .P(~x) → Q(~x) and will sometimes write {x | A} for λxA, etc. We will also
write P(~x) µ= A[P/X] for P = µλXλ~xA and similarly for ν.

The proof rules of IFP are the usual ones of intuitionistic predicate calculus with equality
augmented by rules expressing that µΦ and ν Φ are the least and greatest fixed points of
the operator Φ (as is well-known, the fixed point property can be replaced by inclusions):

Γ ` Φ(µΦ) ⊆ µΦ Closure Γ ` Φ(P) ⊆ P
Γ ` µΦ ⊆ P Induction

Γ ` ν Φ ⊆ Φ(ν Φ) Coclosure Γ ` P ⊆ Φ(P)
Γ ` P ⊆ ν Φ Coinduction

Realizability is formalized in an extension RIFP of IFP by an extra sort of realizers and pro-
gram terms (programs for short) of this new sort. Programs are untyped λ-terms with pair-
ing, injections and recursion, more precisely, variables a, b, c, d, e, f, g, . . ., the constant nil,
and the composite terms 〈M,N〉, inl(M), inr(M), λa.M , πi(M) (i = 1, 2), caseM of {inl(a)→
L ; inr(b) → R}, (M N), rec a .M . The free variables of a program are defined as usual
(the constructs λa, rec a and inl(a) →, inr(a) → in a case term bind the variable a).
In order to keep programs readable, we will use pattern matching in a slightly liberal
way by allowing wildcards, nested patterns and possibly omitting patterns in which case
realizers matching an omitted pattern are mapped to the default value nil. For example,
case M of {inl(inr(_)) → N} stands for the nested case analysis case M of {inl(a) →
case a of {inl(a0) → nil ; inr(a1) → N} ; inr(b) → nil} where a and a1 are not free in N .
Closed programs built from nil by pairing 〈·, ·〉 and the injections inl(·), inr(·) are called
data. All axioms and rules for IFP, including closure, induction, coclosure and coinduction
and the rules for equality, are extended to RIFP. In addition, we add the equations

πi(〈M1,M2〉) = Mi (i = 1, 2)
case inl(M) of {inl(a)→ L ; inr(b)→ R} = L[M/a]
case inr(M) of {inl(a)→ L ; inr(b)→ R} = R[M/b]

(λa.M)N = M [N/a]
rec a .M = M [rec a .M/a]

We define simultaneously non-computational and faithful formulas (abbreviated nc and ff).
nc formulas without free predicate variables will be called ncc formulas.

The class of nc formulas contains all atomic formulas (i.e. P (~t) and X(~t)) and is closed
under all logical operators except disjunction (but including inductive and coinductive
definitions). In addition, if A is ff and B is nc, then A→ B is nc.
The class of ff formulas contains all ncc formulas and is closed under all logical operators
except implication, universal quantification and coinductive definitions.

Note that all disjunction-free formulas without free predicate variables (which is the class
of formulas called non-computational in [1]) are ncc.

Realizability assigns to every IFP-formula A a unary RIFP-predicate r(A). Intuitively,
the RIFP-formula r(A)(a), which we will usually write a rA, states that a “realizes” A. The
definition of a rA is relative to a fixed one-to-one mapping from IFP-predicate variables X
to RIFP-predicate variables X̃ with one extra argument place of the new sort. If the formula
A has the free predicate variables X1, . . . , Xn, then the formula a rA has the free predicate

Ulrich Berger 21:5

variables X̃1, . . . , X̃n. For Φ = λXλ~xA we set r(Φ) = λX̃λ(b, ~x) b rA.

a rX(~t) = X̃(a,~t)
a rP (~t) = P (~t)

a r (A ∧B) = a r (B ∧A) = (a rA) ∧B if B is ncc
b r (A→ B) = A→ b rB if A is ncc

Otherwise c r (A ∧B) = π1(c) rA ∧ π2(c) rB
c r (A ∨B) = ∃a (c = inl(a) ∧ a rA) ∨ ∃b (c = inr(b) ∧ b rB)
f r (A→ B) = ∀a (a rA→ (f a) rB)

a r � xA = �x (a rA) (� = ∀,∃)
a r (�Φ)(~t) = (� r(Φ))(a,~t) (� = µ, ν)

I Lemma 1. If A is an ncc formula, then a rA is equivalent to A, provably in RIFP.

Proof. See Appendix. J

I Theorem 2 (Soundness). From a proof in IFP of ∆,Γ ` A, where ∆ consists of ncc
formulas, one can extract a program term M such that RIFP proves ∆,~a r Γ ` (M~a) rA.

Proof. The proof is as in [1]. J

In the following we will apply the Soundness Theorem with ∆ being the axioms of Archimedean
ordered fields, written as ncc formulas, and Γ a set of formulas for which we have (or con-
struct) programs realizing them. We are free to add stability, ¬¬A → A, for ncc formulas
A to ∆, since, clearly, ¬¬A→ A is ncc if A is.

3 Cauchy and signed digit representation of real numbers

In this Section we introduce real numbers in IFP. We define predicates A and C which
correspond, via realizability, to the (fast) Cauchy representation and the signed digit rep-
resentations, respectively, and prove their equivalence.

We let (R, 0, 1,+, ·,≤) be the structure of real numbers, of which we will only use that it
is an Archimedean ordered field. In order for the axioms to be ncc we write the Dichotomy
axiom as ¬x < y ∧ ¬y < x → x = y. As explained at the end of the previous section, we
may assume stability of ncc and hence atomic formulas, that is, ¬¬x < y → x < y, etc. The
Archimedean principle, written as an ncc formula, is

(AP) ∀x . (∀n ∈ N |x| ≤ 2−n)→ x = 0
where the set of natural numbers, N ⊆ R, is defined inductively as

N(x) µ= x = 0 ∨ N(x− 1)

(recall that this stands for N = µλXλx . x = 0 ∨X(x − 1)). The integers and the rational
numbers, Z,Q ⊆ R are defined by

Z = {x | x ∈ N ∨ −x ∈ N}, Q = {q | ∃k ∈ N . k > 0 ∧ kq ∈ Z}

The function max : R→ R is introduced (i.e. added to the signature) and axiomatized by

max(x, y) ≤ z ↔ x ≤ z ∧ y ≤ z

CSL 2016

21:6 Extracting non-deterministic concurrent programs

and the absolute value is defined by |x| := max(x,−x).
The set of real numbers in I that can be approximated by rational numbers is defined by

A = {x ∈ I | ∀n ∈ N ∃q ∈ Q ∩ I . |x− q| ≤ 2−n}

A realizer of “x ∈ A” is a fast rational Cauchy-sequence converging to x.
Let SD = {−1, 0, 1} be the set of signed digits (hence d ∈ SD means d = −1∨d = 0∨d =

1) and set Id := [d/2− 1/2, d/2 + 1/2] ⊆ I. We define C ⊆ R coinductively by

C ν= {x ∈ R | ∃d ∈ SD . x ∈ Id ∧ 2x− d ∈ C}

Classically, C = I. A realizer of “x ∈ C” is a stream of signed digits d0, d1, . . . such that

x =
∞∑
i=0

di2−(i+1)

Therefore, C corresponds to the signed digit representation of real numbers in I.

I Lemma 3.(a) If x ∈ A and y ∈ I with y = ax+ b for some a, b ∈ Q, then y ∈ A.
(b) If x ∈ C and b ∈ Q is such that x+ b ∈ I, then x+ b ∈ C.
(c) If x ∈ C and 2x+ b ∈ I, where b ∈ Q, then 2x+ b ∈ C.
(d) If x ∈ C, then −x ∈ C.

Proof. See Appendix. J

I Theorem 4. C = A.

Proof. “C ⊆ A”: We show ∀n ∈ N ∀x ∈ C ∃q ∈ Q ∩ I . |x − q| ≤ 2−n by induction on n. If
n = 0, set q = 0. For n+1 assume x ∈ C. Let d ∈ SD such that x ∈ Id and 2x−d ∈ C. By i.h.
we have q ∈ Q∩I with |(2x−d)−q| ≤ 2−n. Hence |x−(q+d)/2| = |(2x−d)−q|/2 ≤ 2−(n+1).

For “A ⊆ C” we use coinduction. Assume x ∈ A. We have to find d ∈ SD such that
x ∈ Id and 2x− d ∈ A. Since x ∈ A we have q ∈ Q such that |x− q| ≤ 1/4. If q ≤ −1/2 we
know x ∈ I−1, and from Lemma 3 (a) it follows that 2x + 1 ∈ A. Similarly, if q ≥ 1/2 we
know x ∈ I1 and 2x− 1 ∈ A. Otherwise x ∈ I0 and 2x ∈ A. J

4 Infinite Gray code

In this section we introduce infinite Gray code via a coinductive predicate G and prove its
equivalence to the Cauchy and signed digit representation, using the (in IFP not realizable)
Disjunction Principle to prove G ⊆ C.

Let t(x) = 1− 2|x| be the tent map, which maps I onto itself, and set

D(x) := x 6= 0→ x ≤ 0 ∨ x ≥ 0.

We define G ⊆ R coinductively by

G(x) ν= |x| ≤ 1 ∧D(x) ∧G(t(x))

Classically, we clearly have G = I. A realizer of “x ∈ G” is a stream of partial Booleans
representing the itinerary of x along the tent map. Such a realizing stream can have at most
one undefined item, namely if tn(x) = 0, in which case the item with index n is undefined.
In this case, t(n+1)(x) = 1 and tm(x) = 0 for m > n+ 1, hence the items after the undefined
one are 1, 0, 0, 0, In the proof of Theorem 5 below we use the axiom of countable choice
for rational numbers (ACω) and Markov’s principle (MP), which are both realizable.

Ulrich Berger 21:7

(ACω) (∀n ∈ N∃q ∈ QA(n, q))→ ∃f : N→ Q ∀n ∈ NA(n, f(n)) where A is ncc
(MP) (∀n ∈ N . A(n) ∨ ¬A(n)) ∧ (¬¬∃n ∈ NA(n))→ ∃n ∈ NA(n) where A is ncc

It is easy to see that (ACω) is realized by the identity function, λa . a, and (MP) is realized
by unbounded search through the (unary representations of) natural numbers, which can be
coded as λf . (rec g . λa . case f a of {inl(_)→ a ; inr(_)→ g (inr(a))}) (inl(nil)).

I Theorem 5 (AP,ACω,MP). A ⊆ G

Proof. By coinduction. Assume A(x). We have to show D(x) and A(t(x)). The latter is
easy: To show A(t(x)), fix n ∈ N. Let q ∈ Q∩I such that |x−q| ≤ 2−(n+1). Then t(q) ∈ Q∩I
and |t(x)− t(q)| = 2||x| − |q|| ≤ 2|x− q| ≤ 2−n.

Now we show D(x). Assume x 6= 0. By (ACω), there exists a sequence of rational
numbers qn such that ∀n ∈ N |x− qn| ≤ 2−n. We show ¬∀n ∈ N |qn| ≤ 21−n. Assume ∀n ∈
N |qn| ≤ 21−n. Then ∀n ∈ N |x| ≤ 2|qn| ≤ 22−n. By (AP) it follows x = 0, contradicting
the assumption x 6= 0. By (MP) it follows that there exists n ∈ N such that |qn| > 21−n. If
qn > 0, then we have qn ≥ 21−n, which, together with |x− qn| ≤ 2−n, implies x ≥ 2−n > 0.
Similarly, if qn < 0, then we have qn ≤ −21−n, which, together with |x− qn| ≤ 2−n, implies
x ≤ −2−n < 0. J

In Lemma 6 below we use the Disjunction Principle discussed in the Introduction:
(DP) (A

P
∨ B) ∧ (P

Q
∨ C)→ A ∨B ∨ C

I Lemma 6 (DP). If x ∈ G, then x ∈ Id for some d ∈ SD.

Proof. Assume x ∈ G. Then D(x) and D(t(x)). In order to apply (DP), set A := x ∈ I−1,
B := x ∈ I1, C := x ∈ I0, P := x 6= 0, and Q := t(x) 6= 0. Hence, it suffices to show that
the premises of (DP) hold. P → A ∨ B is D(x). To show ¬P → A ∧ B, assume ¬(x 6= 0),
that is, x = 0. Then clearly x ∈ I−1 and x ∈ I1. To show Q → C ∨ P , assume t(x) 6= 0.
Then t(x) ≤ 0 ∨ t(x) ≥ 0, since D(t(x)). If t(x) ≤ 0, then |x| ≥ 1

2 , hence x 6= 0. If t(x) ≥ 0,
then x ∈ I0. Finally, to show ¬Q → C ∧ P , assume ¬(t(x) 6= 0), that is, t(x) = 0. Then
|x| = 1

2 , hence x ∈ I0 and x 6= 0. J

I Lemma 7. If x ∈ G, then −x ∈ G and |x| ∈ G.

Proof. Assume x ∈ G. Then D(x) ∧ G(t(x)). Since t(x) = t(−x) = t(|x|) it easily follows
D(−x) ∧G(t(−x)) and also D(−x) ∧G(t(|x|)). Hence G(−x) and G(|x|). J

I Lemma 8. If |x| ≤ 1 and G(x+1
2), then G(x). Equivalently, if 0 ≤ x ≤ 1 and G(x), then

G(2x− 1).

Proof. Assume |x| ≤ 1 and G(x+1
2). Then G(t(x+1

2)), that is, G(−x), since the assumption
|x| ≤ 1 implies t(x+1

2) = −x. Hence G(x), by Lemma 7. J

I Lemma 9. If G(x), then G(t(x)).

Proof. Obvious. J

I Lemma 10. If 0 ≤ x ≤ 1 and G(x), then G(1− x).

Proof. Assume 0 ≤ x ≤ 1 and G(x). Since 0 ≤ 1 − x ≤ 1, it suffices to show G(t(1 − x)).
The assumption x ≤ 1 implies that t(1− x) = 2x− 1. Hence G(2x− 1), by Lemma 8. J

I Lemma 11. If |x| ≤ 1 and G(x2), then G(x). Equivalently, if − 1
2 ≤ x ≤

1
2 and G(x), then

G(2x).

CSL 2016

21:8 Extracting non-deterministic concurrent programs

Proof. Assume |x| ≤ 1 and G(x2). Hence G(t(x2)). Since t(x2) = 1− |x|, we have G(1− |x|)
and therefore G(|x|), by Lemma 10 and since 0 ≤ 1 − |x| ≤ 1. Hence G(t(x)) (since
t(|x|) = t(x)), by Lemma 9. Furthermore D(x2) which implies D(x). It follows G(x). J

I Theorem 12 (DP). G ⊆ C.

Proof. By coinduction. Assume G(x). We have to find d ∈ SD such that x ∈ Id and
G(2x−d). By Lemma 6 (which was proven using DP), there exists d ∈ SD such that x ∈ Id.
By the Lemmas 9 (note that if x ∈ I−1, then 2x+1 = t(x)), 8, and 11 we have G(2x−d). J

5 Concurrent Fixed Point Logic

In this section we introduce Concurrent Fixed Point Logic, CFP, extending IFP.
CFP extends the language of IFP by a modal operator S. The proof calculus of IFP is

extended by the rules

Γ ` A
Γ ` S(A) (S+) Γ ` S(A) Γ, A ` S(B)

Γ ` S(B) (S−) Γ ` S(A)
Γ ` A (Snc) if A is ncc

which will be justified by the Soundness Theorem 16. The rules (S+) and (S−) state that
S is a strong monad (see [10] for an analogous construction for a computational lambda-
calculus). They immediately imply monotonicity, (A → B) → S(A) → S(B), and idem-
potency, S(S(A))↔ S(A), and that S interacts nicely with the logical operators, for example,
S(A ∧B)↔ S(A) ∧ S(B), S(A→ B)→ S(A)→ S(B) and S(∀xA)→ ∀xS(A).

The modality S can be viewed as a predicate transformer by setting S(P) = λ~x . S(P(~x)).
In particular, S(λ~x .A) = λ~x . S(A). Hence, if Φ = λXλ~x .A is a monotone predicate
transformer, we can form the composition Φ ◦ S = λX .Φ(S(X)) = λXλ~x .A[S(X)/X] =
λXλ~x .A[λ~y .S(X(~y))/X]. We call a predicate variable guarded in a formula A if every
free occurrence of X in A is within a disjunctive or existential subformula of A. We call a
predicate transformer Φ = λXλ~x .A guarded if X is guarded in A.

We embed IFP into CFP by defining for every IFP-formula A a CFP-formula AS (if
Φ = λXλ~x .A, we set ΦS = λXλ~x .AS):

AS = A if A is atomic, i.e. of the form P (~t) or X(~t)
(A ∧B)S = AS ∧BS

(A→ B)S = AS → BS

(A ∨B)S = S(AS ∨BS)
(∀xA)S = ∀xAS

(∃xA)S = S(∃xAS)
((ν Φ)(~t))S = (ν ΦS)(~t)
((µΦ)(~t))S = (µΦS)(~t) if Φ is guarded
((µΦ)(~t))S = (µ (ΦS ◦ S))(~t) if Φ is not guarded

The guardedness condition for Φ = λXλ~A in µΦ is satisfied in all inductive definitions
given by two or more “rules” (for example the natural numbers are defined by two rules)
since then the predicate variable X occurs only within a disjunction.

I Lemma 13. CFP proves S(AS) → AS (hence S(AS) ↔ AS) for all formulas A without
free predicate variables.

Ulrich Berger 21:9

Proof. See Appendix. J

I Theorem 14 (Concurrent embedding). If Γ `IFP A, then ΓS `CFP AS for all formulas A
without free predicate variables.

Proof. See Appendix. The proof depends crucially on Lemma 13. J

Realizability for CFP is formalized in a system RCFP that extends both CFP and RIFP.
We extend the programming language introduced in Sect. 2 by constructs for concurrent
computation, where the latter is modeled by a family of computations indexed by a set I
which is the least set containing the constant ∗ and with i, j the elements L(i), R(i) and
(i, j). We denote elements of I by index terms, denoted s, t, . . ., which are first-order terms
built from index variables α, β, . . . and the constant ∗ using the constructors L(_), R(_), and
(_,_). Closed index terms can be identified with elements of I and will be called indices
and denoted i, j, k, Concurrent program terms are defined like the program terms in
Sect. 2, but with the extra constructs of non-deterministic choice 〈α〉M (binding α in M),
index application M · s, and pattern matching on indices

case s of {∗ → K ; L(α)→ L ; R(α)→M ; (α, β)→ N}

(binding α in L and M and α, β in N). In a pattern matching we may omit some of
the clauses in which case the omitted clauses have the default value nil. For example,
case s of {(α, β) → M} stands for case s of {∗ → nil ; L(_) → nil ; R(_) → nil ; (α, β) →
M}. We use the abbreviation 〈α, β〉M for the term λγ . case γ of {(α, β)→M} and define,
for later use, the terms

return := λa 〈α〉inr(a)
bind := λcλf 〈α, β〉 case c · α of {inl(a)→ (f a) · β ; inr(_)→ nil}

The logical language of RCFP extends the language of RIFP by a sort of indices and quan-
tification over indices. The specification of programs is extended in RCFP by the equations

(〈α〉M) · s = M [s/α]
case ∗ of {. . .} = K

case L(s) of {. . .} = L[s/α]
case R(s) of {. . .} = M [s/α]
case (s, t) of {. . .} = N [s, t/α, β]

where {. . .} = {∗ → K ; L(α)→ L ; R(α)→M ; (α, β)→ N}.
Realizability for formulas of the form S(A) is defined as

c r S(A) = ∃α, a (c · α = inl(a)) ∧ ∀α, a (c · α = inl(a)→ a rA)

We do not stipulate closure of nc or ff formulas under S. Therefore, the sets of nc and ff
formulas remains unchanged and the Lemma 1 remains valid for RCFP:

I Lemma 15. If A is an ncc formula in CFP, then a rA is equivalent to A.

I Theorem 16 (Soundness for CFP). From a proof in CFP of ∆,Γ ` A, where ∆ consists
of ncc formulas, one can extract a concurrent program term M such that RCFP proves
∆,~a r Γ ` (M~a) rA.

Proof. It suffices to verify the realizability of the new proof rules (S+), (S−), (Snc), that is,
to find realizers of the formulas

CSL 2016

21:10 Extracting non-deterministic concurrent programs

(a) A→ S(A),
(b) S(A)→ (A→ S(B))→ S(B),
(c) S(A)→ A if A is ncc.
It is easy to see that return realizes (a) and bind realizes (b). We show that λc .nil realizes
(c). Assume c r S(A). We have to show nil rA, that is A, by Lemma 15. Since c r S(A),
there exist α and a such that c · α = inl(a) and a rA. Hence A, by Lemma 15. J

A program a concurrently realizes an IFP-formula A, written a crA, if a realizes AS,
that is, a rAS. Combining the Embedding Theorem (Thm. 14), the Soundness Theorem
for CFP (16) and the fact that realizability of AS is equivalent to A for non-computational
formulas (Lemma 1), one obtains:

I Theorem 17 (Concurrent Soundness). From a proof of ∆,Γ `IFP A, where ∆ is non-
computational, one can extract a concurrent program M that maps concurrent realizers of
Γ to a concurrent realizer of A, that is ∆,~a cr Γ `CFP (M · ~a) crA.

In order to understand what kind of extracted program we can expect from the proof of
(G ⊆ C)S, which will be obtained from the proof of G ⊆ C (Theorem 12) using Theorem 14
and the realizer of (DPS) (Lemma 30), let us write out this formula:

(G ⊆ C)S = ∀x .GS(x)→ CS(x)
CS(x) ν= S(

∨
d∈SD

x ∈ Id ∧ CS(2x− d))

GS(x) ν= (x 6= 0→ S(x < 0 ∨ x > 0)) ∧GS(t(x))

One sees that the predicates CS and GS are almost the same as the original C and G except
that the digits of the streams realizing CS or GS can now be computed non-deterministically
and concurrently. The extracted program will be able consume and produce such streams.

6 Semantics of concurrent programs and program extraction for CFP

In this section we define an operational big-step semantics for concurrent program terms and
show that it fits with a domain-theoretic semantics (Adequacy Theorem 21). Combined with
a denotational Soundness Theorem (Theorem 18) and a Faithfulness Theorem (Theorem 20)
we obtain that from a proof of a data-formula A (see below) from assumptions Γ one can
extract a concurrent program that computes from concurrent realizers of Γ (non-concurrent)
data realizing A.

The denotational model of realizers for CFP is the Scott-domain D defined by the re-
cursive domain equation

D = 1 +D +D +D ×D + (D → D) +DI

where 1 is the one-point domain, + denotes the separated sum, × denotes the topological
product, (D → D) denotes the continuous function space, and DI denotes the I-fold topo-
logical product of D. Only the last component DI is new, the rest is as in [1] Sect 5. The
components of the sum on the right-hand side of the equation above are embedded into D
via the constructors Nil : D, In0, In1 : D → D, Pair : D × D → D, Fun : (D → D) → D,
Fam : DI → D. Every concurrent program term M has an obvious denotation [[M]]ξ ∈ D
in any given environment ξ that maps all its free index variables to elements of I and all its
free object variables to elements of D. For example, [[λaM]]ξ = Fun(λa′ ∈ D . [[M]]ξ[a 7→ a′],
[[〈α〉M]]ξ = Fam(λi ∈ I . [[M]]ξ[α 7→ i], [[(M N)]]ξ = f([[N]]ξ) if [[M]]ξ = Fun(f), and

Ulrich Berger 21:11

[[(M · s)]]ξ = ϕ([[s]]ξ) if [[M]]ξ = Fam(ϕ), otherwise these terms have value ⊥. If M is
closed (i.e. has neither free index nor object variables), we omit the environment.

I Theorem 18 (Denotational soundness). If RCFP proves Γ ` B, then B holds in every
model of Γ that interprets the sort of realizers as D. In particular, if B is of the form
M rA, then [[M]] ∈ D realizes A in that model.

We call a CFP-formula a parametric data formula if every subformula of the form A → B

or ν Φ(t) is non-computational. A data formula is a parametric data formula without free
predicate variables. Furthermore, data terms are defined, as in [1], as the terms built from
Nil by injections and pairing. As in [1] we identify data terms with the corresponding
elements in D and call them simply data

Our main result is analogous to the Program Extraction Theorem in [1] and refers to a
big-step operational semantics.First we introduce closures which are inductively defined as
pairs (M,η) where M is a term and η is a finite mapping from object variables to closures.
A value is a closure (M,η) where M is an intro term, that is, either Nil or an injection or
a pair or a λ-abstraction or a choice term, 〈α〉M . The bigstep reduction relation c −→ v

between closures c and values v is inductively defined as in [1], but with additional five rules:

(M,η) −→ (〈α〉M0, η
′) (M0[s/α], η′) −→ v

(M s, η) −→ v

In the remaining four rules we use the abbreviation

~C := ∗ →M∗ ; L(α)→M0 ; R(α)→M1 ; (α, β)→M

(M∗, η) −→ v

(case ∗ of {~C}, η) −→ v

(M0[s/αp], η) −→ v

(case L(s) of {~C}, η) −→ v

(M1[s/αp], η) −→ v

(case R(s) of {~C}, η) −→ v

(M [s, t/α, β], η) −→ v

(case (s, t) of {~C}, η) −→ v

Note that neither the denotational semantics nor the bigstep operational semantics exhibit
any kind of non-determinism or concurrency. These features come into play only through
the printing relation, c =⇒ d, between closures c and data d, defined below. It is inductively
defined as in [1], but with five additional rules concerned with non-deterministic choice:

c −→ (〈α〉M,η) (M,η) =⇒ d

c =⇒ d

In the remaining four rules (where p = 0, 1) α must occur free in c and β must be fresh:

c[∗/α] =⇒ d

c =⇒ d

c[L(α)/α] =⇒ d

c =⇒ d

c[R(α)/α] =⇒ d

c =⇒ d

c[(α, β)/α] =⇒ d

c =⇒ d

If M is a closed term, then we write M =⇒ d instead of (M, ∅) =⇒ where ∅ is the empty
mapping. Essentially, these rules allow to reduce a closure c with a choice parameter α to
c[i/α] for any i ∈ I. The way the rules are set up, one can do the instantiation c[i/α] lazily
and incrementally, by only specifying the outer shape of i in one step.

I Theorem 19 (Program Extraction). From a proof of a data formula A in CFP from
concurrently realizable assumptions one can extract a concurrent program term M such
M =⇒ d for some data d provably realizing A.

CSL 2016

21:12 Extracting non-deterministic concurrent programs

The main building blocks for the proof of the Program Extraction Theorem are the
Soundness Theorem (Theorem 16), the Computational Adequacy Theorem and the Faith-
fulness Theorem below. The latter two refer to the relation d ∈ data(a), for a ∈ D and data
d, which is defined inductively as follows:
(i) Nil ∈ data(Nil).
(ii) If d ∈ data(a), then Inp d ∈ data(Inp a) for p = 0, 1.
(iii) If dp ∈ data(ap) for p = 0, 1, then Pair d1 d1 ∈ data(Pair a0 a1).
(iv) If d ∈ data(ϕ i) for some i ∈ I, then d ∈ data(Famϕ).

I Theorem 20 (Faithfulness). If a ∈ D concurrently realizes a data formula A, then data(a)
is nonempty and all d ∈ data(a) realize A, provably in IFP.

Proof. See Appendix. J

I Theorem 21 (Computational Adequacy). If d ∈ data([[M]]), then M =⇒ d.

The proof of Computational Adequacy is quite involved and will occupy the rest of this
section.

Proof of the Program Extraction Theorem from Soundness, Computational Ad-
equacy and Faithfulness: From a proof of a data formula A in CFP from realizable
assumptions, one obtains by Soundness a concurrent program term M realizing A. More
precisely, [[M]] realizes A. By Faithfulness, there is a data d ∈ data([[M]]) such that d prov-
ably deterministically realizes A. By Computational Adequacy, M =⇒ d. qed

Now we develop the necessary machinery to prove Computational Adequacy. For a
closure c we let c be the closed term represented by c, that is,

(M,η) = M [η(x)/x | x ∈ FV(M)].

The proof is done through the following series of lemmas whose proofs can be found in the
Appendix.

I Lemma 22 (Correctness).(a) If c −→ v, then ` c = v.
(b) If c =⇒ d, then ` d ∈ data([[c]]).

I Lemma 23 (Instantiation).
(a) If c[i/α] =⇒ d, then c =⇒ d.
(b) If c −→ (〈α〉M,η) and (M [i/α], η) =⇒ d, then c =⇒ d.

I Lemma 24 (Irreducibility of values). For values v, v′

v −→ v′ iff v = v′

Let D0 be the set of compact elements of D. Every a ∈ D0 has a natural rank, rk(a) ∈ N,
satisfying properties rk1− rk4. The first three properties are as in [1], the fourth is

rk4 If Famϕ is compact, then for every i ∈ I, ϕ i is compact with rk(ϕ i) < rk(Famϕ).
To every a ∈ D0 we assign a set of closures Cl(a) by recursion on rk(a). The definition is
as in [1], with the extra clause

Cl(Famϕ) = {c | ∃α,M, η . c −→ (〈α〉M,η) ∧ ∀i ∈ I . (M [i/α], η) ∈ Cl(ϕ i)}

A similar assignment of closures to the compact elements of a semantic domain is used
in [15].

Ulrich Berger 21:13

I Lemma 25 (Monotonicity). If a, b are compact elements in D such that a v b, then
Cl(a) ⊇ Cl(b).

I Lemma 26 (Printing of data). If c ∈ Cl(a) and d ∈ data(a), then c =⇒ d.

I Lemma 27 (Reducibility of closures). c ∈ Cl(a) iff c −→ v for some v ∈ Cl(a).

We write η ∈ Cl(ξ) if η and ξ have the same domain and η(x) ∈ Cl(ξ(x)) for every object
variable x and η(α) = ξ(α) for every index variable α in the common domain.

I Lemma 28 (Approximation). If η ∈ Cl(ξ), a ∈ D0 and a v [[M]]ξ, then (M,η) ∈ Cl(a).

I Lemma 29. If d ∈ data(a), then d ∈ data(a0) for some compact a0 v a.

Proof of the Adequacy Theorem (Theorem 21): Assume d ∈ data([[M]]) where M is
closed. By Lemma 29, d ∈ data(a) for some compact a v [[M]]. By Lemma 28, (M, ∅) ∈
Cl(a). By Lemma 26, M =⇒ d. qed

7 Realizing the Disjunction Principle

In this Section we show that the Disjunction Principle can be concurrently realized.
Recall that in Theorem 12 we proved in IFP that G ⊆ C, with the help of (DP). By

Concurrent Soundness (Theorem 16), we can extract from this proof a concurrent program
transforming infinite Gray code into signed digit representation, provided we can concur-
rently realize (DP).

I Lemma 30. The Disjunction Principle can be concurrently realized.

Proof. The embedding of the Disjunction Principle, (DP)S, is

(A
P
∨ B)S ∧ (P

Q
∨ C)S → (A ∨B ∨ C)S

where (A
P
∨ B)S = (P → S(A∨B))∧ (¬P → A∧B), (P

Q
∨ C)S = (Q→ S(P ∨C))∧ (¬Q→

P ∧ C) and (A ∨ B ∨ C)S = S(S(A ∨ B) ∨ C). Since CFP proves that S(S(A ∨ B) ∨ C) is
equivalent to S((A ∨B) ∨ C) (easy exercise), it suffices to realize the formula

(∗) (A
P
∨ B)S ∧ (P

Q
∨ C)S → S((A ∨B) ∨ C)

where P,Q,A,B,C are ncc formulas. The following program realizes (∗): fDP = λc .

〈γ〉 . case γ of {L(α)→ case π1(c) · α of {inl(inl(_))→ inl(inl(inl(nil))) ;
inl(inr(_))→ inl(inl(inr(nil)))} ;

R(β)→ case π2(c) · β of {inl(inr(_))→ inl(inr(nil))}}

In order to show that fDP realizes (∗), we assume a := π1(c) realizes (A
P
∨ B)S and b := π2(c)

realizes (P
Q
∨ C)S. We show that fDP c realizes S((A ∨B) ∨ C). The assumptions mean:

(1) If P , then a concurrently realizes A ∨B, i.e.
(1.1) a · i0 = inl(a0) for some i0, a0,
(1.2) If a · i = inl(a′), then a′ r (A ∨B), that is, a′ = inl(_) and A, or a′ = inr(_) and B.

(2) If Q, then b concurrently realizes P ∨ C, i.e.
(2.1) b · j0 = inl(b0) for some j0, b0,
(2.2) If b · j = inl(b′), then b′ r (P ∨ C), that is, b′ = inl(_) and P , or b′ = inr(_) and C.

CSL 2016

21:14 Extracting non-deterministic concurrent programs

(3) If ¬P , then A and B.
(4) If ¬Q, then P and C
In the proof that fDP(a, b) realizes S((A∨B)∨C) we argue classically, admitting case analysis
on P and Q.

The first condition holds since, if P holds, then, by (1), fDP(a, b) · L(i0) is of the form
inl(_). If P does not hold, then Q holds, by (4), and therefore b · j0 = inl(b0), by (2.1). By
(2.2), b0 = inr(_), since P does not hold. Hence fDP(a, b) · R(j0) is of the form inl(_).

To verify the second condition, assume fDP(a, b) · k = inl(c). We have to show that c
realizes (A ∨B) ∨ C. By the definition of fDP(a, b), k is of the form L(i) or R(j).

If k = L(i), then either a · i = inl(inl(_)) and c = inl(inl(nil)), or else a · i = inl(inr(_))
and c = inl(inr(nil)). If P holds, then a concurrently realizes A ∨ B, by (1). Hence, if
a·i = inl(inl(_)), then A holds, hence inl(nil) realizes A∨B and consequently c = inl(inl(nil))
realizes (A ∨ B) ∨ C. The case that a · i = inl(inr(_)) is similar. If P does not hold, then
A and B hold, by (3), hence inl(nil) and inr(nil) both realize A ∨ B. It follows in any case
that c realizes (A ∨B) ∨ C.

If k = R(j), then b · j = inl(inr(_)) and c = inr(nil). If Q holds then C holds by (2.2).
If Q does not hold, then C holds by (4). In either case c realizes ((A ∨B) ∨ C. J

In order to understand fDP we express its behaviors in terms of overlapping defining
equations that ignore the indices in (∈ I) labeling the different choices. Ignoring also the
leading inl(·) of the inputs and outputs, which only flag up a valid result, we obtain (writing
(a,b) for 〈a, b〉)

fDP (inl(_),b) = inl(inl(nil))
fDP (inr(_),b) = inl(inr(nil))
fDP (a,inr(_)) = inr(nil)

These equation must be interpreted as non-deterministic rewrite rules, similar to the program
gtos in the introduction.

8 Extracting programs for infinite Gray code

We conclude by extracting the programs from the proofs of the Lemmas 6-11 in Sect. 4, and
assembling them, via program extraction from the proof of Theorem 12, to yield the main
program transforming infinite Gray to signed digit representation. Since the proofs are so
short it is easy to read off the extracted programs from the proof “by hand”.

For signed digit streams (that is, realizers of C(x)) we display the possible digits inl(inl(nil)),
inl(inr(nil)), inr(nil) as -1,1,0, respectively. For infinite Gray codes (that is, realizers of
G(x)) we display the possible digits inl(nil), inr(nil) as 0,1, respectively. Note that with
this display the program fDP (which will be used in the next program) reads

fDP (0,b) = -1
fDP (1,b) = 1
fDP (a,1) = 0

Furthermore, we display nested pairs like 〈a, 〈b, s〉〉 as a:b:s.
Lemma 6. If x ∈ G, then x ∈ Id for some d ∈ SD.

f6 (a:b:s) = fDP (a,b)

Lemma 7. (a) If x ∈ G, then −x ∈ G. (b) If x ∈ G, then |x| ∈ G.

Ulrich Berger 21:15

f7a (a:s) = swap a : s where {swap 0 = 1; swap 1 = 0}
f7b (a:s) = 1:s

Lemma 8. If 0 ≤ x ≤ 1 and G(x), then G(2x− 1).

f8 (a:s) = f7a s

Lemma 9. If G(x), then G(t(x).

f9 (a:s) = s

Lemma 10. If 0 ≤ x ≤ 1 and G(x), then G(1− x).

f10 s = 1 : f8 s

Lemma 11. If − 1
2 ≤ x ≤

1
2 and G(x), then G(2x).

f11 (a:s) = a : f9 (f10 s)

Theorem 12. G ⊆ C.

f12 s = let { d = f6 s } in
d : case d of {-1 -> f12 (f9 s); 0 -> f12 (f11 s); 1 -> f12 (f8 s)}

Hence

f12 (0:s) = -1 : f12 s
f12 (1:a:s) = 1 : f12 (swap a : s)
f12 (a:1:c:s) = 0 : f12 (a : swap c : s)

Again, the equations above should be read as overlapping rewrite rules. Observe that the
equations for f12 correspond exactly to the equations given for the program gtos shown in
the introduction.

9 Conclusion

We introduced a logic and realizability interpretation for the extraction of non-deterministic
concurrent programs and applied it to extract Tsuiki’s program converting infinite Gray code
for real numbers into signed digit representation. Through the Soundness and Computa-
tional Adequacy Theorems, extracted programs come with formal proofs of their correctness
and termination.

Although we are still far from a fully fledged method of certified code generation for non-
deterministic and concurrent programs, we believe that our application to infinite Gray code
(which was done on paper) can be viewed as a proof of concept that makes it worthwhile to
implement this method in a suitable proof system.

Regarding further applications, computable analysis holds plenty of other inherently non-
deterministic problems (for example, root finding or inversion of matrices with real valued
entries) to which our method can be applied.

References
1 U. Berger. Realisability for induction and coinduction with applications to constructive

analysis. Jour. Universal Comput. Sci., 16(18):2535–2555, 2010.
2 U. Berger and T. Hou. A realizability interpretation of Church’s simple theory of types.

Mathematical Structures in Computer Science, 2016. To appear.

CSL 2016

21:16 Extracting non-deterministic concurrent programs

3 U. Berger, K. Miyamoto, H. Schwichtenberg, and M. Seisenberger. Minlog - a tool for
program extraction for supporting algebra and coalgebra. In CALCO-Tools, volume 6859
of LNCS, pages 393–399. Springer Verlag, Berlin, Heidelberg, New York, 2011. doi:Doi:
10.1007/978-3-642-22944-2_29.

4 U. Berger, K. Miyamoto, H. Schwichtenberg, and H. Tsuiki. Logic for Gray-code compu-
tation. In Concepts of Proof in Mathematics, Philosophy, and Computer Science, Ontos
Mathematical Logic 6. de Gruyter, 2016. To appear.

5 S. Berghofer. Program Extraction in simply-typed Higher Order Logic. In Types for Proofs
and Programs (TYPES’02), volume 2646 of LNCS, pages 21–38. Springer Verlag, Berlin,
Heidelberg, New York, 2003.

6 A. Bucciarelli, T. Ehrhard, and G. Manzonetto. A relational semantics for parallelism and
non-determinism in a functional setting. Annals of Pure and Applied Logic, 163(7):918–934,
2012.

7 C. M. Chuang. Extraction of Programs for Exact Real Number Computation Using Agda.
PhD thesis, Swansea University, 2011.

8 R.L. Constable. Implementing Mathematics with the Nuprl Proof Development System.
Prentice–Hall, New Jersey, 1986.

9 S. Hayashi and H. Nakano. PX: A Computational Logic. MIT Press, 1988.
10 Eugenio Moggi. Notions of computation and monads. Information and Computation,

93(1):55–92, 1991.
11 C.-H.L. Ong. Non-determinism in a functional setting. In Proc. of LICS’93, pages 275–286,

1993.
12 C. Paulin-Mohring. Inductive definitions in the system Coq; rules and properties. In

M. Bezem and J.F. Groote, editors, Typed Lambda Calculi and Applications, pages 328–
345. LNCS Vol. 664, 1993.

13 G.D. Plotkin. A powerdomain construction. SIAM J. Comput., 5(3):452–487, 1976.
14 H. Tsuiki. Real Number Computation through Gray Code Embedding. Theoretical Com-

puter Science, 284(2):467–485, 2002.
15 G. Winskel. The Formal Semantics of Programming Languages. Foundations of Computing

Series. The MIT Press, Cambridge, Massachusetts, 1993.

A Appendix: Proofs

Lemma 1. If A is an ncc formula, then a rA is equivalent to A, provably in RIFP.

Proof. For a predicate P let KP = λ(a, ~x)P(~x) (that is, P is extended by an extra dummy
first argument ranging over realizers). For a predicate Q with first argument ranging over
realizers let ∃Q = λ~x ∃aQ(a, ~x) and ∀Q = λ~x∀aQ(a, ~x). Note that ∃ is left adjoint to K,
that is ∃Q ⊆ P iff Q ⊆ KP, and ∀ is right adjoint to K, that is P ⊆ ∀Q iff KP ⊆ Q. Hence
K (∀Q) ⊆ Q ⊆ K (∃Q). In addition, if Q = KP, then ∀Q = ∃Q = P. For an IFP-formula
A, let

KA = {X̃ = KX | X free in A}
∃A = {∃ X̃ = X | X free in A}

We show, more generally, that RIFP proves
(a) KA ` A↔ a rA for nc formulas A.
(b) ∃A ` A↔ ∃a a rA for ff formulas A.

Ulrich Berger 21:17

The proof is by simultaneous induction on A.
For (a), the only non-obvious cases are implication as well as inductive and coinductive

definitions.
Consider A → B where A is ffc and B is nc. W.l.o.g. let us assume that A is not ncc.

Hence c r (A→ B) is ∀a(a rA→ (c · a) rB). By induction hypothesis (a) this is equivalent
to ∀a(a rA→ B) and hence, by induction hypothesis (b) and since KA ` ∃A, to A→ B.

Consider (µΦ)(~t) where Φ = λXλ~xA. We have to show (µ r(Φ))(a,~t) ↔ (µΦ)(~t).
We show more generally µ r(Φ) = K (µΦ). We show the inclusion µ r(Φ) ⊆ K (µΦ) by
induction. Hence, we have to show r(Φ)(K (µΦ)) ⊆ K (µΦ), that is, a rA → A under
the extra assumptions that X̃ = K (µΦ) and X = µΦ. But the extra assumptions imply
X̃ = KX. Hence, induction hypothesis (a) applies. The other inclusion, K (µΦ) ⊆ µ r(Φ),
is equivalent to µΦ ⊆ ∀(µ r(Φ)). We show µΦ ⊆ ∀ (µ r(Φ)) by induction. Hence, we
have to show Φ(∀ (µ r(Φ))) ⊆ ∀ (µ r(Φ)), that is, A → a rA under the extra assumptions
X = ∀ (µ r(Φ)) and X̃ = µ r(Φ). Since K (∀ (µ r(Φ))) ⊆ µ r(Φ) and a rA is monotone in
X̃ (and A is independent of X̃), it suffices to show that A → a rA follows form the extra
assumptions X = ∀ (µ r(Φ)) and X̃ = K (∀ (µ r(Φ))). But this is guaranteed by induction
hypothesis (a).

For coinduction, the proof is obtained by dualization, that is, by inverting all inclusions
and implications and replacing µ, “induction”, ∀ by ν, “coinduction”, ∃, respectively. More
precisely, consider (ν Φ)(~t) where Φ = λXλ~xA. We have to show (ν r(Φ))(a,~t)↔ (ν Φ)(~t).
We show more generally ν r(Φ) = K (ν Φ). We show the inclusion K (ν Φ) ⊆ ν r(Φ) by
coinduction. Hence, we have to show K (ν Φ) ⊆ r(Φ)(K (ν Φ)), that is, A→ a rA under the
extra assumptions that X̃ = K (ν Φ) and X = ν Φ, which holds by induction hypothesis (a).
The other inclusion, ν r(Φ) ⊆ K (ν Φ), is equivalent to ∃(ν r(Φ)) ⊆ ν Φ, where for a predicate
P, ∃P = λ~x ∃a P(a, ~x). We show ∃(ν r(Φ)) ⊆ ν Φ by coinduction. Hence, we have to show
∃ (ν r(Φ)) ⊆ Φ(∃ (ν r(Φ))), that is, a rA → A under the extra assumptions X = ∃ (ν r(Φ))
and X̃ = ν r(Φ). Since ν r(Φ) ⊆ K (∃ (µ r(Φ))) and a rA is monotone in X̃, it suffices to show
that a rA→ A follows form the extra assumptions X = ∃ (ν r(Φ)) and X̃ = K (∃ (ν r(Φ))).
But this is guaranteed by induction hypothesis (a).

For (b), the only non-obvious case is induction.
Consider (µΦ)(~t) where Φ = λXλ~xA. We have to show ∃a (µ r(Φ))(a,~t) ↔ (µΦ)(~t).

We show more generally ∃ (µ r(Φ)) = µΦ. The inclusion ∃ (µ r(Φ)) ⊆ µΦ is equivalent to
µ r(Φ) ⊆ K (µΦ). We use induction. Hence, we have to show r(Φ)(K (µΦ)) ⊆ K (µΦ), that
is, ∃a a rA → A under the extra assumptions that X̃ = K (µΦ) and X = µΦ. But the
extra assumptions imply X̃ = KX and hence ∃ X̃ = X. Hence, induction hypothesis (b)
applies. The other inclusion, µΦ ⊆ µ∃ (µ r(Φ)), can be shown by induction. Hence, we
show Φ(∃ (µ r(Φ))) ⊆ ∃ (µ r(Φ)). Since ∃ (µ r(Φ)) = ∃ (r(Φ)(µ r(Φ))), this equivalent to
X = ∃ (µ r(Φ)), X̃ = µ r(Φ) ` A → ∃a a rA. Since the assumptions in this sequent imply
X = ∃ X̃, this is implied by induction hypothesis (b). J

Lemma 3.
(a) If x ∈ A and y ∈ I with y = ax+ b for some a, b ∈ Q, then y ∈ A.
(b) If x ∈ C and b ∈ Q is such that x+ b ∈ I, then x+ b ∈ C.
(c) If x ∈ C and 2x+ b ∈ I, where b ∈ Q, then 2x+ b ∈ C.
(d) If x ∈ C, then −x ∈ C.

Proof.(a) Let x ∈ A and y ∈ I with y = ax+ b where a, b ∈ Q. Let n ∈ N. Let k ∈ N such
that |a| ≤ 2k Since x ∈ A there is q ∈ Q such that |x− q| ≤ 2−(n+k). Hence

|ax+ b− (aq + b)| = |a||x− q| ≤ 2k/2n+k = 2−n

CSL 2016

21:18 Extracting non-deterministic concurrent programs

Let q′ = −1 if aq + b < −1, = 1 if aq + b > 1, and = aq + b otherwise. Then q′ ∈ Q ∩ I
and |ax+ b− q′| ≤ 2−n.

(b) Define P := {x ∈ I | ∃b ∈ Q . x + b ∈ C}. We show P ⊆ C by coinduction. Let x ∈ P ,
that is x ∈ I and x + b ∈ C for some b ∈ Q. We have to find d ∈ SD such that x ∈ Id
and 2x − d ∈ P . Since x + b ∈ C we find d0, d1 ∈ SD such that 2(x + b) − d0 ∈ C
and 4(x + b) − 2d0 − d1 ∈ C. Hence |4(x + b) − 2d0 − d1| ≤ 1, i.e. |x − a| ≤ 1/4
where a := d0/2 + d1/4 − b. Therefore x ∈ I ∩ [a − 1/4, a + 1/4]. Choose d ∈ SD such
that I ∩ [a − 1/4, a + 1/4] ⊆ Id. Then x ∈ Id. With c := 2b + d − d0 ∈ Q we have
2x− d+ c = 2(x+ b)− d0 ∈ C, hence 2x− d ∈ P .

(c) If x ∈ C, then 2x − e ∈ C for some e ∈ SD. Hence 2x + b ∈ C, by Lemma 3, provided
2x+ b ∈ I.

(d) Let P (x) = −x ∈ C. We show P ⊆ C, by coinduction. Assume −x ∈ C. Let d ∈ SD such
that −x ∈ Id and 2(−x)− d ∈ C. Then x ∈ I−d and −(2x− (−d)) ∈ C, i.e. P (2x− (−d).

J

Lemma 13. CFP proves S(AS)→ AS (hence S(AS)↔ AS) for all formulas A without free
predicate variables.

Proof. For a formula A we set ΓA = {S(X) ⊆ X | X is not guarded in A}. Note that if A
has no free predicate variables, then ΓA = ∅.

We show more generally ΓA `CFP S(AS)→ AS, by induction on A.
The cases where AS is of the form S(. . .), that is, A ∨ B and ∃xA, are trivial since the

modality is idempotent.
For the case P (~t) the assertion holds by the rule (Snc).
For the case X(~t) the assertion holds since X is not guarded in X(~t).
Cases A ∧ B and A → B. First note that ΓA∧B = ΓA→B = ΓA ∪ ΓB . S((A ∧ B)S) is

S(AS ∧ BS), which implies S(AS) ∧ S(BS). By induction hypothesis, this is equivalent to
AS ∧BS, i.e. (A ∧B)S. For implication the argument is similar.

Cases ∀xA. S((∀xA)S) is S(∀xAS), which implies ∀x S(AS). By induction hypothesis
and the rule (S+), this is equivalent to ∀xAS, i.e. (∀xA)S.

Case (ν Φ)(~t). It suffices to show S(ν ΦS) ⊆ ν ΦS. Define P := ν (ΦS ◦S). Assuming Φ =
λXλ~x .A, we have ΓA ⊆ Γν Φ ∪ {S(X) ⊆ X}. Hence, by induction hypothesis, Γν Φ,S(X) ⊆
X `CFP S(AS)→ AS. In the following, we reason in CFP and assume Γν Φ. Since S(S(X)) ⊆
S(X), it follows S(AS[S(X)/X]) → AS[S(X)/X], i.e. S((ΦS ◦ S)(X)) ⊆ (ΦS ◦ S)(X). In
particular, for X := P we obtain S(P) ⊆ P, since (ΦS ◦ S)(P) = P. Therefore, it suffices
to show that ν ΦS = P. By (S+), ΦS ⊆ ΦS ◦ S, hence ν ΦS ⊆ P, by the monotonicity of
the greatest fixed point operator. Since S(P) ⊆ P we have P = ΦS(S(P)) ⊆ ΦS(P), by the
monotonicity of ΦS. Hence P ⊆ ν ΦS, by coinduction.

Case (µΦ)(~t) where Φ is not guarded. S(µ (ΦS ◦ S)) ⊆ µ (ΦS ◦ S) is shown in a similar
way as S(P) ⊆ P was shown in the previous case, since there we used only the fixed point
property.

Case (µΦ)(~t) where Φ is guarded. We reason in CFP assuming ΓµΦ. Let Φ be λXλ~x .A.
Since X is guarded in A, we have ΓµΦ = ΓA. Hence, by induction hypothesis, S(AS)→ AS,
i.e. S(ΦS(X)) ⊆ ΦS(X). Consequently, S(µΦS) = S(ΦS(µΦS)) ⊆ ΦS(µΦS) = µΦS. J

Theorem 14 (Concurrent embedding). If Γ `IFP A, then ΓS `CFP AS for all formulas
A without free predicate variables.

Ulrich Berger 21:19

Proof. Induction on derivations.
The assumption rule is trivial and the rules for the connectives where the embedding is

defined homomorphically, that is, conjunction, implication, universal quantification as well
as induction and coinduction, are straightforward using the induction hypothesis.

Disjunction introduction.

Γ ` A
Γ ` A ∨B

By induction hypothesis, ΓS ` AS. Hence ΓS ` AS ∨BS by disjunction introduction. Hence
ΓS ` S(AS ∨BS) by the rule (S+)

Disjunction elimination.

Γ ` A ∨B Γ, A ` C Γ, B ` C
Γ ` C

By induction hypothesis, ΓS ` S(AS ∨BS), ΓS, AS ` CS, and ΓS, BS ` CS. By the last two
sequents, the rule (S+) and disjunction elimination, we have ΓS, AS ∨ BS ` S(CS). Hence
ΓS ` S(CS), by the rule (S−). With Lemma 13 it follows ΓS ` CS.

Existence introduction.

Γ ` A[t/x]
Γ ` ∃xA

By induction hypothesis, ΓS ` (A[t/x])S. By existence introduction and since (A[t/x])S is
the same as AS[t/x] it follows ΓS ` ∃xAS. Hence ΓS ` S(∃xAS), by the rule (S+).

Existence elimination.
Γ ` ∃xA Γ, A ` C

Γ ` C

By induction hypothesis, ΓS ` S(∃xAS) and ΓS, AS ` CS. Applying the rule (S+) to the
second sequent yields ΓS, AS ` S(CS) and furthermore ΓS,∃xAS ` S(CS), using existence
elimination (since the embedding and the modality don’t introduce new free variables). With
the rule (S−) it follows ΓS ` S(CS) and hence ΓS ` CS, using Lemma 13. J

Theorem 20 [Faithfulness]. If a ∈ D concurrently realizes a data formula A, then data(a)
is nonempty and all d ∈ data(a) realize A, provably in IFP.

Proof. For an n+1-ary predicate P whose first argument is of type D we define a predicate
P ′ of the same arity by P ′(a, ~x) := ∀d ∈ data(a)P (d, ~x), and extend this to predicate
substitutions by setting θ′(X̃) := (θ(X̃))′. We show that for a parametric data formula A

r(AS)θ′ ⊆ (r(A)θ)′

In particular, for a data formula A we have r(AS) ⊆ r(A)′, i.e. if a realizes AS, then r(A)′(a)
holds, that is, d realizes A for all d ∈ data(a). The proof is by induction on A. We only look
at the case A = µΦ~t, since the other cases are easy. We show by induction µ (r(ΦS) θ′) ⊆ P ′
where P := µ (r(Φ) θ). Hence we have to show (r(ΦS) θ′)P ′ ⊆ P ′:

(r(ΦS) θ′)P ′ = (r(ΦS) X̃) (θ′[X̃ := P])′
i.h.
⊆ (r(Φ) X̃) (θ′[X̃ := P])′ = (r(Φ) θ)P)′ = P ′

J

Lemma 22 (Correctness).

CSL 2016

21:20 Extracting non-deterministic concurrent programs

(a) If c −→ v, then ` c = v.
(b) If c =⇒ d, then ` d ∈ data([[c]]).

Proof. Easy, by induction along the definitions of c −→ v and c =⇒ d. J

Lemma 23 (Instantiation).
(a) If c[i/α] =⇒ d, then c =⇒ d.
(b) If c −→ (〈α〉M,η) and (M [i/α], η) =⇒ d, then c =⇒ d.

Proof. Part (a) is proved by induction on i. Part (b) follows immediately from (a). J

Lemma 24 (Irreducibility of values). For values v, v′

v −→ v′ iff v = v′

Proof. This follows immediately from the rules of the big-step reduction relation. J

Lemma 25 (Monotonicity). If a, b are compact elements in D such that a v b, then
Cl(a) ⊇ Cl(b).

Proof. Induction on the maximum of rk(a) and rk(b). In the case a = Famϕ v Famψ with
ϕ i v ψ i for all i ∈ I, we have Cl(ϕ i) ⊇ Cl(ψ i), by induction hypothesis. Let c ∈ Cl(b).
We show c ∈ Cl(a). Let c −→ (〈α〉M,η) such that (M [i/α], η) ∈ Cl(ψ i) for all i ∈ I. Hence
(M [i/α], η) ∈ Cl(ϕ i) for all i ∈ I, which proves that c ∈ Cl(a).

The other cases are as in [1], Lemma 12. J

Lemma 26 (Printing of data). If c ∈ Cl(a) and d ∈ data(a), then c =⇒ d.

Proof. Induction on the definition of data(a). In the case a = Famϕ, the hypotheses of the
lemma imply that we have d ∈ data(ϕ i0) for some i0 ∈ I and c −→ (〈α〉M,η) such that
(M [i/α], η) ∈ Cl(ϕ i) for all i ∈ I. Therefore, by induction hypothesis, (M [i0/α], η) =⇒ d.
By Lemma 23, c =⇒ d.

The other cases are easy. J

Lemma 27 (Reducibilty of closures). c ∈ Cl(a) iff c −→ v for some v ∈ Cl(a).

Proof. Induction on rk(a). We only consider the case a = Famϕ since the other cases are
as in [1], Lemma 13.

If c ∈ Cl(a), then c −→ (〈α〉M,η) and (M [i/α], η) ∈ Cl(ϕ i) for all i ∈ I. Set v :=
(〈α〉M,η), which is a value. By rule (i), v −→ v. Hence v ∈ Cl(a), by the above.

Conversely, if v ∈ Cl(a), then v −→ (〈α〉M,η) for some α,M, η such that (M [i/α], η) ∈
Cl(ϕ i) for all i ∈ I. Since (〈α〉M,η) is a value, it follows, by Lemma 24, that v = (〈α〉M,η).
Hence, if c −→ v, then c ∈ Cl(a). J

Lemma 28 (Approximation). If η ∈ Cl(ξ), a ∈ D0 and a v [[M]]ξ, then (M,η) ∈ Cl(a).

Proof. As in [1], Lemma 15, we replace in the statement of the lemma the value [[M]]ξ by
its nth approximation [[M]]nξ and show,

(+) for all n ∈ N, if η ∈ Cl(ξ), a ∈ D0 and a v [[M]]nξ, then (M,η) ∈ Cl(a),

Ulrich Berger 21:21

by induction on n. Since ([[M]]nξ)n∈N is an increasing sequence with [[M]]ξ as its supremum,
it follows that for compact a, (+) is equivalent to the statement of the lemma.

We assume a 6= ⊥ (for a = ⊥ the statement is trivial) and look only at the cases where
M is formed by one of the new constructs. Since [[M]]0ξ = ⊥ we are in the step of the
induction. Hence we assume a v [[M]]n+1ξ.

Case M = 〈α〉N . Then [[M]]n+1ξ = Famϕ where ϕ i = [[N [i/α]]]nξ. Since a 6= ⊥ we
have a = Famϕ0 where ϕ0 i v ϕ i and ϕ0 i is compact for all i ∈ I. Since v := (M,η)
is a value, we have v −→ v, and, by induction hypothesis, (N [i/α], η) ∈ Cl(ϕ0 i). Hence
(M,η) ∈ Cl(a).

Case M = case k of {∗ → N∗ ; L(α)→ N0 ; R(α)→ N1 ; (α, β)→ N}.
Subcase k = ∗. Then [[M]]n+1ξ = [[N∗]]nξ. By induction hypothesis (N∗, η) ∈ Cl(a). By

Lemma 27, (N∗, η) −→ v for some value v ∈ Cl(a). Hence (M,η) −→ v.
Subcase k = L(i) for some i ∈ I. Then [[M]]n+1ξ = [[Np]]nξ[α 7→ i]. By induction

hypothesis (N0, η[α 7→ i]) ∈ Cl(a). By Lemma 27 (implication from left to right), (N0, η[α 7→
i]) −→ v for some value v ∈ Cl(a). Hence (M,η) −→ v, By Lemma 27 (implication from
right to left).

Subcase k = R(i) for some i ∈ I. Similar to the case above.
Subcase k = (i, j) for some i, j ∈ I. Similar to the previous case.
Case M = N i0. By assumption, a v [[M]]n+1ξ = [[N]]nξ · i0. Since a 6= ⊥, [[N]]nξ =

Famϕ, for some ϕ ∈ DI . Define ϕ0 ∈ DI by ϕ0(i0) := a and ϕ0(i) := ⊥ for i 6= i0. Then
Famϕ0 is compact and Famϕ0 v [[N]]nξ. By induction hypothesis, (N, η) ∈ Cl(Famϕ0).
Hence (N, η) −→ (〈α〉N0, η) ∈ Cl(ϕ0 i0) = Cl(a). By Lemma 27, N0[i0/α] −→ v ∈ Cl(a)
and consequently N i0 −→ v. Therefore N i0 ∈ Cl(a). J

Lemma 29. If d ∈ data(a), then d ∈ data(a0) for some compact a0 v a.

Proof. Easy induction on the definition of d ∈ data(a). We only look at rule (iv), that is,
d ∈ Famϕ because d ∈ data(ϕ i0) for some i0 ∈ I. By induction hypothesis, d ∈ data(a0)
for some compact a0 v ϕ i0. Define ϕ0 ∈ DI by ϕ0 i0 := a and ϕ0 i := ⊥ for i 6= i0. Then
Famϕ0 is compact and Famϕ0 v Famϕ, and, by rule (iv), d ∈ data(Famϕ0). J

CSL 2016

