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Abstract The HDG is a new class of discontinuous Galerkin (DG)
methods that shares favorable properties with classical mixed meth-
ods such as the well known Raviart-Thomas methods. In particular,
HDG provides optimal convergence of both the primal and the dual
variables of the mixed formulation. This property enables the con-
struction of superconvergent solutions, contrary to other popular
DG methods. In addition, its reduced computational cost, com-
pared to other DG methods, has made HDG an attractive alterna-
tive for solving problems governed by partial differential equations.

A tutorial on HDG for the numerical solution of second-order
elliptic problems is presented. Particular emphasis is placed on
providing all the necessary details for the implementation of HDG
methods.

1 Introduction

Efficient and robust solution of equations of mathematical physics has been
and still is a major concern for numerical analysts. In the last decades,
discontinuous Galerkin (DG) techniques, originally introduced in Reed and
Hill (1973), have become popular beyond their original applications in fluid
dynamics or electromagnetic problems. DG methods provide a natural sta-
bilization to the solution due to the inter-element fluxes. In recent years, hy-
brid DG methods have become more popular. According to Ciarlet (2002),
a hybrid method is “any finite element method based on a formulation where
one unknown is a function, or some of its derivatives, on the set €2, and the
other unknown is the trace of some of the derivatives of the same function,
or the trace of the function itself, along the boundaries of the set”. In fact,
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as noted by Arnold and Brezzi (1985), hybridization of DG methods derives
from the mixed methods of Raviart and Thomas (1977), where the conti-
nuity constrain is eliminated from the finite element space and imposed by
means of Lagrange multipliers on the inter-element boundaries. The idea
was exploited by Cockburn and Gopalakrishnan (2004, 2005a,b) and Cock-
burn et al. (2009b) to formally develop the HDG method for second-order
elliptic problems.

The HDG method is able to provide the optimal approximation prop-
erties that are characteristic of mixed methods, including the possibility
to build a superconvergent solution, whilst retaining the advantages of DG
methods. In addition, HDG methods are known to reduce the globally
coupled degrees of freedom, when compared to other DG methods analyzed
in Arnold et al. (2002). Recently, the comparisons between the HDG method
and the traditional continuous Galerkin (CG) method, performed by Cock-
burn et al. (2009a) and Kirby et al. (2011), indicate that HDG methods are
competitive, both in terms of the non-zero entries of the resulting matrix
and the actual computing time. Huerta et al. (2013) evaluate the floating
point operation counts for CG, DG and HDG schemes in 2D and 3D and
for direct and iterative solvers. They conclude that HDG has comparable
costs (in terms of floating point operations) to CG and that other advan-
tages of HDG, such as block structured information and element-by-element
operations, must be exploited to improve its performance compared to CG
because parallelism and memory access are crucial for the final runtime. In
fact, Yakovlev et al. (2015) compare CG and HDG from a practical per-
spective using the same object-oriented spectral element framework. They
show that HDG can outperform the traditional CG approach when direct
solvers for the linear system are used. Different conclusions are obtained
when iterative solvers are employed, suggesting the need for tailormade pre-
conditioners in an HDG framework. It is also worth emphasizing that the
superconvergent properties of HDG enable the definition of efficient and in-
expensive p-adaptive procedures not feasible in a standard CG approach,
see for instance Giorgiani et al. (2013, 2014).

Since its introduction, the HDG has been objective of intensive research
and has been applied to a large number of problems in different areas,
including fluid mechanics (Nguyen et al., 2010, 2011a; Peraire et al., 2010),
wave propagation (Nguyen et al., 2011c¢,b; Giorgiani et al., 2013) and solid
mechanics (Soon et al., 2009; Kabaria et al., 2015), to name but a few.

This work presents a tutorial on the HDG method for the numerical
solution of second-order elliptic problems. Section 2 presents the model
second-order elliptic problem and its mixed formulation. The necessary no-
tation is introduced in Section 3. The HDG method is presented in detail
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in Section 4, including the strong, weak and discrete forms and the corre-
sponding equations. A new formulation, consisting on a variation of the
standard HDG method is presented and its advantages are discussed. Spe-
cial emphasis is placed on the computational aspects, providing an easy
guide for the implementation of the HDG method. Additionally, numerical
examples are used to illustrate the performance and the optimal approx-
imation properties of the two HDG formulations. Section 5 presents the
postprocessing technique that enables the computation of a superconver-
gent solution. Numerical examples are also included to show the benefits
of the postprocessing technique and to illustrate its optimal approximation
properties. Finally, Appendix A provides detailed expression of all the el-
emental matrices and vectors appearing in the discrete form of the HDG
method.

2 Problem statement

Let 2 € R*¢ be an open bounded domain with boundary 02 and ngq the
number of spatial dimensions. The strong form for the second-order elliptic
problem can be written as

-V -Vu=f inQQ,
u=up onlp, (1)
n-Vu=t on 'y,

where 90 =Tp Uy, TpNTx =0, f € L2(9) is a source term and n is
the outward unit normal vector to 2. Note that standard Dirichlet and
Neumann boundary conditions are considered. Of course, other mixed (i.e.
Robin) boundary conditions can also be imposed but here, for clarity, they
will not be detailed.

Moreover, assume that {2 is partitioned in ne; disjoint subdomains 2;

ﬁ: ﬁi; Qiﬂszwari#j,

1

T

2

with boundaries 0f2;, which define an internal interface I

Ne1

I= [U aszl} \ 99 2)
i=1

An equivalent strong form of the second-order elliptic problem can be
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written in the broken computational domain as

-V -Vu=f iny,and fori=1,...,nq,
u=up onlp,
n-Vu=t on I'y, (3)
[un[]=0 onT,
[n-Vu]=0 onT,

where the two last equations correspond to the imposition of the continuity
of the primal variable u and the normal fluxes respectively along the internal
interface I'.

Note that the jump [-] operator has been introduced following the defi-
nition by Montlaur et al. (2008). That is, along each portion of the interface
I' it sums the values from the left and right of say, Q; and §2;, namely

HQ]] =0O; + ©;.

It is important to observe that this definition always requires the normal
vector n in the argument and always produces functions in the same space
as the argument.

Finally, the strong form is written in mixed form as a system of first
order equations over the broken computational domain, namely

V.g=f inQ; and fori=1,...,ne,

q+Vu=0 inQ;, and fori=1,... 0.,
u=up onlp,
n-q=—-t only,
[un] =0 onT,
[n-ql=0 onT.

3 Functional and interpolation setting

In what follows, as usual, (-,-)p denotes the L5 scalar product in a generic
subdomain D, that is

(u,v)Dz/udeand (u,'v)D:/u-'de
D D

for scalars and vectors respectively.
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Analogously, < -,- >g denotes the Lo scalar product in any domain
S C T'U0Q, that is

< u,v >s=/uvdF and < u,v >g:/u-'udf‘
s s

for scalars and vectors respectively.
In the subsequent formulation the following scalar and vector spaces are
used:

W(D) = {w € [H'(D)]**, D C O},
V(D) = {veH" (D),D CQ},
M(S) = {u € L2(8),S CT U}

Moreover, the following discrete finite element spaces are introduced

W"(Q) = {w € [L2(Q)]™; wl, € [PP()]™ v} C W(Q),
VR(Q) = {v € Lo(Q);v]q, € PP(Q) Y} cV(Q),
MMS) = {p e Lo(S); plr, € PP(T) VI, € SCT UV} M(S),

where PP ();) and PP(T';) are the spaces of polynomial functions of degree at
most p > 1 in Q; and T'; respectively. Note that M" can be defined over all
the mesh skeleton interior and exterior faces (or edges in two dimensions).

These spaces give rise to an element-by-element nodal interpolation of
the corresponding variables, namely

Ten

a~q" =) Njq ewh, (5a)
J=1

uzuh:ZNj u; e Vh, (5b)
j=1

azah:ZZ@- ﬁj EMh(FUFN) or Mh(F)a (50)
j=1

where g, uj, and 4; are nodal values, IV; are polynomial shape functions
of order p in each element, ng, is the number of nodes per element, Nj are
polynomial shape functions of order p in each element face/edge, and ng, is
the corresponding number of nodes per face/edge.

Given the element-by-element formulation, the vectors u; and q; are de-
fined for each element ¢ = 1,...,ne. They include the corresponding nodal
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values described previously and are of dimension ne, and nggne, respectively.
The vector 1 is defined globally over the mesh skeleton (faces/edges). Its
dimension depends on the formulation and corresponds to the number of
nodes on ' UT'y or on I'. More precisely,

Nef

dim(d) = anm
k=1

where n.; is the number of element faces/edges in the mesh skeleton and nf_
is the number of nodes in the k-th face. The number of element faces/edges
in the mesh skeleton always includes those on the interior, i.e. those be-
longing to I'. But, depending on the formulation used, nes also includes the
faces/edges on the Neumann boundary, I'y.

The HDG formulation solves problem (4) in two phases, see the semi-
nal contribution by Cockburn et al. (2009b) and the subsequent papers by
Cockburn et al. (2008) and Nguyen et al. (2009a,b, 2010, 2011a).

First, an element-by-element problem is defined with (g, u) as unknowns,
and then a global problem is setup to determine the traces of u, denoted
by 4, on the element boundaries. The local problem determines g, := g|q,
and u; := ulg, for i = 1,...,n, with a new variable @ along the interface
I' acting as a Dirichlet boundary condition.

There are however several options for the detailed implementation. They
are presented and discussed in the following sections.

4 The Hybridizable Discontinuous Galerkin

4.1 The strong forms

This is the classical formulation, it can be found in the series of papers
by Nguyen et al. (2009a,b, 2010, 2011a) and rewrites (4) as two equivalent
problems. First, the local —element-by-element— problem with Dirichlet
boundary conditions is defined, namely

Vg, =f i,

g, +Vu; =0 inQ,,
u; =up on JdQ; NIp,
w; =4 on 99 \T'p,

(6)

for i =1,...,n.. Note that this approach assumes @ € Lo(I' UT'y) given.
In each element €; this problem produces an element-by-element solution
q; and u; as a function of the unknown 4 € Lo(I' UT'y). Note that these
problems can be solved independently element by element.
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Second, a global problem is defined to determine . It corresponds to the
imposition of the Neumann boundary condition and the so-called transmis-
sion conditions, see Cockburn et al. (2009b). These transmission conditions
were already introduced in (4) to ensure inter-element continuity when the
broken computational domain formulation was presented,

[un] =0 onT,
[n-q) =0 onT,
n-q=—-t only.

Note that the first equation in the previous global problem imposes conti-

nuity of u along I'. But v = 4 on I' as imposed by the local problems (6).

Hence, continuity of the primal variable, [in] = 0, is imposed automatically

because @ is unique for adjacent elements. In summary, the transmission
conditions are simply

n-qg=0 onl

{ [n-q] : )

n-q=—t only.

4.2 The weak forms

The weak formulation for each element equivalent to (6) is as follows:
fori=1,...,ne, given up on I'p and & on TUT v, find (g;,u;) € W(;) x
V(£2;) that satisfies

—(V’U, qz)QL+ <uv,mny 'ai >00,= (Ua f)QL
—(w,q;)0, + (V- -w,u;)o, =< n; - w,up >ps0,nr, + < N W, 0 >90\rp,

for all (w,v) € W(;) x V(€;), where the numerical traces of the fluxes g;,
must be defined. Note that this problem imposes the Dirichlet boundary
conditions weakly.

The numerical traces of the fluxes are formally n; - g; = n; - q; but,
in practice, for stability, they are defined element-by-element (i.e. for i =
1,...,0q) as

(8)

ne g e AT + 7i(u; —up) on 9Q; NTp,

C T\ ng g+ (g — @) elsewhere,
with 7; being a stabilization parameter defined element-by-element, whose
selection has an important effect on the stability, accuracy and convergence
properties of the resulting HDG method. The influence of the stabilization
parameter has been studied extensively by Cockburn and co-workers, see for
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instance Cockburn et al. (2009b, 2008) and Nguyen et al. (2009a,b, 2010,
2011a). Choosing the correct stabilization parameter provides sufficient
stabilization to the solution. Note that such a definition for the numerical
trace is consistent, i.e. n;-q; = n;-q; when u; = @ (and u; = up). With the
definition of the numerical fluxes given by (8), the weak problem becomes:
fori=1,...,ne, find (g;,u;) € W(Q;) x V(€;) that satisfies

<, T u; >a0, — (Vu,q)a,+ < v,m; - q; >o0,
= (v, flo,+ <v,Tiup >a0,nrp + < U, Til >90,\Ip
—(w, g;)o, + (V- w,u;)q,
=< N W, Uup >p0,ACp + < M - W, U >50,\Tp s

(9a)
(9b)

for all (w,v) € W(Q;) x V(€;). The weak form (9) for the local problem is
equivalent to the strong form described by (6).
Once the weak form for the local problem is presented, the global problem

(7) is of interest. The weak form equivalent to (7) is simply: find 4@ €
M(ITUTy) for all p € M(I'UT' y) such that

Ne1 Nel

> <mmi- G >oan00 + Y < i G+t >o0,n0, =0,
=1 i=1

where it is important to recall the definition of internal interface I' given
by (2).

Then, replacing (8) in the previous equation results in the global weak
problem: find 4 € M(I'UTy) for all 4 € M(I' UT' y) such that

Nel
Z{< By Ti i >90\Tp + < MM - q; >0\, — < [ Ti U >BQ¢\FD}
=1
Ne1
= — Z <yt >90,nry - (10)
i=1

Note that both u; and g; are known functions of @ once the local prob-
lems (9) are solved.

Remark 4.1 (Symmetric Dirichlet local problem). There are two alterna-
tives to symmetrize the local problem. The first one consists of integrating
by parts the second term of the Lh.s. in (9a) leaving on the boundary of the
element the values of the flux g, in the interior. This strategy produces the
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following local problem:

<, Tiui >0, + (v, V- q;)q, (11a)
= (v, flo,+ <v,Tiup >o0,arp, + <V, Ti U >00,\Tp
(V-w,u)q,—(w, q;)a;

X (11b)
=<MN; W, up >o;nrp + < N - W, U >90\I'p -

The second alternative consists of integrating by parts the second term
on the Lh.s. of (9b) and change the sign of (9a), namely

<V, T; U >8Qi —(Vv7ql)91+ <uv,mn;- q; >3Qi
= (v, flo,+ <v,Tiup >a0,nrp + < VU, Ti U >90,\Tp
_(wv VUZ)Q1+ <Mn; - w,u >pq, _(wv qZ)Q’L

=< Mn; - w,up >o9Q,nrp + < Ny - w,ﬁ >aQi\FD .

The first alternative is retained because it requires less computational
effort (during the loop on faces/edges) than the second one.

4.3 The discrete forms and the corresponding equations

Section 3 introduced the necessary discrete spaces in order to prescribe
the discrete weak forms for the local (11) and global (10) problems. The
local problems are: for i = 1,...ne, find (g7 u?) € W" x V" for all

(w,v) € W" x V" such that

<v,mul >aq, + (v,V - qM)q, (12a)
a
= (v, fla,+ < v, up >aq,nr, + <V, T an >00:\'p >

(V-w,u)o,—(w,q)e, (12b)
=<Mn; w,up >p;,rp + <N - w, " >00:\I'p >

whereas the global problem is: find 4" € M"(TUT y) for all u € M"*(TUT y)
such that

Nel
h h o h
Z{< s Ti Uy >0 \Tp T < T - @y >oQ\Tp — < I, T3 U >8§2i\FD}
=1
Ne1
= — Z <yt >90,nry - (13)

=1

At this point, it is important to notice that (12) is well defined, see
Theorem 4.2. Thus, with the interpolation chosen by (5), equations (12)
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give rise to the following system of equations for each element §; (i.e., for

L= ].,...,Ilel)
Auu Auq u; fu Auﬁ ~
{qu AWL {qi} {fQ}i [Aqﬁlu (142)

Recalling the dimensions of the different vectors presented in Section 3, this
system requires inverting a dense matrix of dimension (ngg + 1)*n2,.
Similarly, the interpolation defined by (5) applied to (13) produce the

following system of equations

TNe1

Z{ [AT, AL {‘;} + [Agalit f = D [fali (14b)

i=1 ! i=1

A detailed description of the matrices and vectors appearing in (14) is
given in Appendix A.

After replacing the solution of the local problem (14a) in (14b), the
global problem becomes

Ka=f, (15)
with
Ne1 —1
= A A A A
K= A Al Al [ T “q} [ ““} + [Agali 16a
i:l[ q L qu A, . A . [Adali (16a)
and
Ne1 —1
2 A A A f
_ R T T uu uq u
f= iél[fu]l [Auu Aqu]i [qu Aqq:|l- {fQ}i : (16b)

Note the symmetry of the (local and) global problem.

Theorem 4.2 (Well posedness of the local problem (Cockburn et al.,
2009b)). The local solver defined by (12) on §); for each elementi =1,..., ne
is well defined if ; > 0 on 9 and VV"(Q;) € W)

Proof. For homogeneous conditions, i.e. & =0, f =0 and up = 0, and for
(w,v) := (g%, ul), equations (12) read

h h h h
<, Tiug >oq0, +(ui, V- qi)a, =0,

i

(Vq?7u?)91 _(qzhaqzh)Qi =0.

10
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Hence, subtracting both equations
< U?, Ti u? >8Qi +(q?7 q?)Ql - 07

which implies, for 7; > 0 on 0€2;, that q? =0in €; and uf = 0 on 99);.
Then, since g = 0 in ; equation (12b) becomes

(ul,V-w)g, =0 YwecW"
or, equivalently,
(Vul, w)g, =0 VYw e Wh,

which implies Vu?? = 0 in ; and proves the result. O

Remark 4.3 (Computational aspect). For implementation purposes, some
auxiliary vectors are defined. As noticed by Theorem 4.2, problem (12) is
well posed thus, equations (14a) can be solved and written as

u; z! YA

PR =9 4+ | Y O 17

ot ={ah 2] o ()
where

Zf Auu Auq ! fu Zﬁ Auu Auq ! Auﬁ
ffTIAT A and Jzi) = AT A
Zy ) ugq aa); \fa); Zy], ugq ga]; [Aqal;
Then, (17) is replaced in (14b), which induces the same system of equations
(15) but the matrix and vector defined by (16) are computed as follows:

R Ne1 Z{L R Ne1 f
K= Aal, Agﬁ]i{ u] A and £ = Af]—[AT, AqTﬁL{Z“} .

[ 7 f
Zq . =1 Zq

4.4 Numerical Example

In order to illustrate the results of HDG, the model problem (1) is solved
in Q:=]0,1[x]0,1[withT'y = {(z,y) € Q2 |y =0} and I'p = 9Q\I'y. The
source and boundary conditions are taken such that the analytical solution
is given by

u(z,y) = 4y* — 4A\*yexp(—Ay) cos(67x) + Aexp(—2\y),

where A is a parameter that enables to control the strength of the solution
gradient near the Neumann boundary. The effect of this parameter is il-
lustrated in Figure 1, where the analytical solution is represented for two
values of A, namely 4 and 10.

11
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6 15
4 10
5 5
o 0
2 s
4 -10

Figure 1. Model problem analytical solution: A=4 (left) and A=10 (right).

The first example involves the solution of the model problem with a value
of A=4. An extremely coarse mesh, with only eight elements, is considered,
as shown in the left plot of Figure 2. The right plot of Figure 2 depicts
the degrees of freedom used in an HDG computation with approximation
order p=6. The black dots on the triangles denote the nodes used to build
the polynomial approximation of the primal and dual solutions, «" and ¢"
respectively. The red lines are the set of edges 'UI'y where the trace of the
solution is approximated and the dots over these lines are the nodes used
to build the polynomial approximation of . Note that there are no 4" un-
knowns along the Dirichlet boundary I'p =9Q\I'y. The nodal distributions
in elements and edges correspond to approximated optimal points presented
in (Chen and Babuska, 1995) that are known to have better approximation
properties than traditional equally-spaced nodal distributions.

The numerical solution computed with a polynomial approximation of
degree p=6 is depicted in Figure 3, showing both the approximation of the
solution in the element interiors and the approximation of the trace of the
solution on I'UT'y. It can be clearly observed that the numerical solution,
u”, is obviously discontinuous. More important, the numerical solution u"
and the numerical trace, 4", do not coincide on TUT  because the condition
u =14 in problem (6) is imposed in a weak sense.

Next, the model problem is considered with a value of A=10. Figure 4
shows the numerical solution computed on a finer mesh, with 32 elements,
and with a degree of approximation p=4 and p=>5. It is worth noting how
the jump of the solution on the element interfaces decreases as the degree of
the approximation increases, suggesting the higher accuracy of the solution
computed with p=>5.

12
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Figure 2. Coarse mesh of the domain 2 (left) and illustration of the degrees
of freedom employed in an HDG computation with p=6 (right).

Figure 3. Model problem solution for p=6 on the mesh of Figure 2 showing
both v in the element interiors and 4" on the edges ' UT y.

13
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Figure 4. Model problem solution for p=4 (top) and p=>5 (bottom) showing
the improvement induced by an increase on the degree of approximation.

14
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1r ]
0r .
z
q 2 :
& 3r |
n —&=p=1 |
4 =2
—9—11:3
5 +]):4 §
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log (h)

Figure 5. Error of u" in the £2(Q) norm as a function of the characteristic
element size h for different values of the approximation degree p.

Finally, an h-convergence study is performed in order to check the opti-
mal approximation properties of the implemented HDG formulation. Fig-
ure 5 shows the evolution of the error of u" in the £5(£2) norm as a function
of the characteristic element size h for a degree of approximation p ranging
from 1 to 5. For all the degrees of approximation considered, the optimal
rate of convergence (i.e., p+1) is obtained. The results also illustrate the
benefits of using high-order approximations. For instance, similar accuracy
is obtained with a quartic approximation in a the mesh with 32 elements
and with a linear approximation in a mesh with 2 048 elements. This im-
plies that, in order to obtain a similar accuracy, linear elements require the
solution of a system of equations ten times larger than the one induced by
a quartic approximation.

4.5 Neumann local problems

A minor modification of the previous formulation can induce a smaller
global problem. It consists of prescribing the Neumann boundary condi-
tions already in the corresponding local problem. This modifies the original
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strong forms (6) and (7) as

V-q,=f inQ,
4 +Vu,=0 inQ,
u; =up ondQ;NIp, (18)
n;-q;=—t ondQ; Ny,
w; =14  on 0Q; \ 09,
for i =1,...ne, and
[n-ql=0o0nT. (19)

It also implies a new definition for the numerical traces of the fluxes, thus
(8) becomes, for i =1,...ne,

n;-q; +7i(u; —up) ondQ;NTp,
n;-q; =n;-q; +7i(u; —a) ondQYNT, (20)
-t on 8(21 ﬁFN

Consequently, the weak form for the local problem, originally defined by (9)
is now: for i =1,...ne, find (g;,u;) € W(;) x V(©;) that satisfies

<, iU >pry —(VU,¢)0,+ <v,Mi - q; >0,y
= (v, flo,+ < v,t >a0,rry + < U, T Up >80, Tp
+ < v, T U >p0,\00;
—(w,q,)0, + (V- -w,u;)q,— < n-w,u; >s0,nry
=< n-w,up >p0,nrp + < M- W, U >50,\00 -
for all (w,v) € W(Q;) x V(£;). To obtain the second equation above, it
is important to recall that & € L5(T") is not defined along 'y and, con-

sequently, u; is left along 0Q; NI'y. Following Remark 4.1, a symmetric
version can also be obtained, namely

<, Tiu; >p0ry + (0, V@), — < v,ni - q; >0,y
= (v, fla,+ < v,t >o0,ATN + < U, Ti UD >00,Tp (21a)
+ < v, T U >00,\09)
(V-w,u;)q,— < n-w,u; >g0,nry —(W,4q;)a;

A (21b)
=<7n-w,up >oq,nrp + <N W, U >90,\00Q -

For the global problem, originally (10), continuity of fluxes is now only
imposed along the internal faces, see (19). Hence, the global weak problem
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is: find @ € Lo(T) for all u € Lo(T') such that

Z < i, [nl -q; + 7(u; — ﬂ)] >s0.\00= 0, (22)
i=1
where the definition of the numerical flux, see (20), has already been used.
The discrete versions of these weak problem (21) and (22) are automat-
ically determined as: for i = 1,...ne, find (g}, u?) € W" x V" for all
(w,v) € W" x V" such that

< v, Tul >a0.ry + (0, V- ada,— <v,mi-q >o0,nrx
= (v, fla,+ <v,t >p0,nry + <V, TiUp >00,nTp (23a)
+ <0, 70" >p0,\00,
(V-w,ul)g,— <n-w,ul >s0.qry —(w,q!)a,

' N (23b)
=<mn-w,up >p;nr'p + <N -W,U" >90,\00;

and find a" € M"*(T) for all 4 € M"(T') such that

Ne1

Z{< [, T UL > 00000+ <K T - @ >a0000 — <H T >a0,000) =0, (24)
i=1

where, again, (g7, u”) are directly functions of @ as determined by (23).
Finally, the following system of equations is obtained for the local prob-

lem, for each element i = 1,... 0.,
Ar . Ar u; f* Ar.
T “l Ph = A . 25a
[Aﬁ; Aqu {QZ} {fq}i {Agﬁl (252)
whereas the global system of equations is simply
> { A Al {2+ asdia o (251)

i=1

A detailed description of the matrices and vectors appearing in (25) is
given in Appendix A.
The final global system, which retains all the symmetries, becomes

K*a = f*, (26a)

with

>

K" = qi A*T A A*

i=1 uq qq

qi

* * -1 *
A Ak A [AE] s e
[ [
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and
n, —1
. el A* A* £*
* _ A*]: A*T uy uq u .
f iél [ il qi ] i [Aﬁ; Aqq] ) { f, }Z (26c)

Note that, in this case, the dimension of @ corresponds only to the
degrees of freedom along the interior skeleton I', which is slightly smaller
than in the previous case where unknowns had also to be determined along
the Neumann boundary.

Theorem 4.4 (Well posedness of the local Neumann problem). The local
solver defined by (23) on Q; for each element i = 1,..., ney is well defined
if 7 > 0 on 9Q; and VV"(Q;) € W"()

Proof. For homogeneous conditions, i.e. 4" =0, f =0 and up = 0, and for
(w,v) := (g%, ul), equations (23) read

h h h h h h

(V : q??u?)ﬂi_ <n- q?’u? >80NT N _(q?7 q?)ﬂi = 0. (28)
Hence, subtracting both equations
h h h _h
< Wy Ty Uy >8f2,3\1"N +(Qz y d; )Qz = 07

which implies, for 7; > 0 on 99;, that g = 0 in ; and u? = 0 on 99; \ T'x.
Then, since g = 0 in Q; equation (23b) becomes

(V-w,ul)g,— <n-w,ul >p0,rry=0 YweW"
or, equivalently,
—(Vul w)g,+ <n-w,ul >p0 \ry=0 Yw € wh.
But u? =0 on 9Q; \ T'y. Thus,
(Vul', w)g, =0 Yw e W",
which implies Vu! = 0 in ; and proves the result. O

4.6 Numerical Example

In order to illustrate the results of HDG by using the formulation with
Neumann local problems, the model problem of Section 4.4 is considered
with a value of A=10. Figure 6 shows the numerical solution computed
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Figure 6. Model problem solution for p=>5 using the formulation with Neu-
mann local problems.

with a degree of approximation p=>5. A visual comparison of the bottom
plot in Figure 4 and Figure 6 suggests that the formulation with Neumann
local problems provides a better accuracy of the solution near Neumann
boundaries.

Next, an p-convergence study is performed in order to check the op-
timality of the approximation using the formulation with Neumann local
problems and to compare the accuracy of the two HDG formulations con-
sidered in this work. Figure 7 shows the evolution of the error of u” in the
L5(2) norm as a function of the square root of the number of degrees of
freedom of the global system of equations, i.e. ngor = dim(i1). Two meshes
with 8 and 32 elements are considered and the degree of approximation is
increased in each mesh from p = 1. The exponential rate of convergence
is observed in all cases and the results reveal the advantage of using the
formulation with Neumann local problems.

It is important to stress that the differences between the formulation
with Dirichlet and Neumann local problems are noticed even if a global
measure of the error is employed. Obviously, the extra accuracy provided
by the formulation with Neumann problems is expected to be more relevant
if the output of interest is defined near the Neumann boundary or on the
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Figure 7. p-refinement: error of u" for p = 1,2,3, ... in the £2(2) norm as
a function of \/dim(f1). The results are displayed for the HDG formulations
with Dirichlet and Neumann local problems and for two different meshes.

Neumann boundary.

5 Postprocessed solution

The following well known a priori error estimate holds if a polynomial ap-
proximation of degree p > 0 is considered for the primal variable, u,

||6UH£2(Q) < Chp+1 |’U/|7.Lp+1(9)7

where e, denotes the error of the primal variable, h is the characteristic
mesh size and ||+ || and |- | denote the norm and the semi-norm, respectively,
induced by the scalar product defined in Section 3, see for instance (Szabé
and Babuska, 1991; Brenner and Scott, 1994).

Optimal convergence of the dual variable q is strongly dependent on
the definition of the numerical flux. For a variety of DG methods, only
convergence with order p was proved, see the unified analysis by Arnold
et al. (2002). The first DG method with optimal convergence for the dual
variable was introduced by Cockburn et al. (2009b). For a given element,
assuming that the stabilisation parameter 7 is equal to zero except on an
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arbitrary chosen element face, it was proved that the following a priori error
estimate holds if a polynomial approximation of degree p > 0 is considered
for the dual variable, q,

leqllzo) < CRPTHa| e )

where eq denotes the error of the dual variable, see Cockburn et al. (2008,
2009b,c) for more details.

Using the similarities of the HDG method and the Raviart-Thomas and
Brezzi-Douglas-Marini mixed methods, see (Raviart and Thomas, 1977,
Brezzi et al., 1985), it is possible to devise a superconvergent solution, .,
such that the following a priori error estimate holds

Heu* HLQ(Q) < Chp+2|u|7-[p+2(ﬂ).

for p > 1, see for instance (Cockburn et al., 2008, 2009b,c).
The postprocessed solution is computed by performing a postprocess-
ing similar to the projection traditionally employed in the mixed method
by Raviart and Thomas (1977), see also Arnold and Brezzi (1985). More
precisely, the superconvergent postprocessed solution is obtained by solving
the following problem in each element
{ -V .-Vu, = -V-.qp in Q, (29)
n-Vu, = mn-q on 0%,

with the additional solvability constraint

/ Uy :/ Uh,
fori=1,...,ne.

If the approximation to the postprocessed solution, namely u”, is sought
in a space V() that contains V" ({2), asymptotic convergence of order p+2
can be proved, as shown by Cockburn et al. (2008). A typical choice for the
richer space where u” belongs is

V() = {v € L2(Q);0]q, € PPTHQ) VO, ).

Figure 8 shows the postprocessed solution corresponding to an HDG
computation with p=>5 for the formulation with Neumann local problems.
The gain in accuracy induced by the postprocessing is clearly observed by
comparing the postprocessed solution in Figure 8 with the solution shown
in Figure 6. In this example, the postprocessed solution u has an error in

21



Preprint of

Ruben Sevilla and Antonio Huerta. "Tutorial on Hybridizable Discontinuous Galerkin (HDG)
for Second-Order Elliptic Problems."

Advanced Finite Element Technologies. Springer International Publishing, 2016. 105-129.

05 0.6 0.7

0 02 03 04

Figure 8. Model problem postprocessed solution for p=>5 using the formu-
lation with Neumann local problems.

the £2(92) norm, one order of magnitude lower than the error of the solution
ul.

It is important to remark that the significant extra accuracy provided
by the postprocessing technique only requires the solution of the element-
by-element problem (29), having a marginal cost compared to the cost of
computing the solution u”.

Next, an h-convergence study of the error of the postprocessed solution
is performed. Figure 9 compares the evolution of the error of the solution
u" and the postprocessed solution u” in the L£5(2) norm as a function
of the characteristic element size h and for a degree of approximation p
ranging from 1 to 5. All the simulations correspond to the formulation with
Neumann local problems.

The results show that the optimal (i.e., p+1 for the solution and p+2
for the post-processed solution) rate of convergence is obtained in all cases.
The substantial gain in accuracy introduced by the postprocessing technique
is clearly illustrated. As an example, the postprocessing of the solution
computed in the finer mesh with p = 5 reduces the error by two orders of
magnitude.

As expected, the same rate of convergence is obtained for the postpro-
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Figure 9. Error of the solution and the postprocessed solution in the £o(2)
norm as a function of the characteristic element size h for different values
of the approximation degree p.

cessed solution u that results from a computation with degree of approx-
imation p and the solution u” computed with a degree of approximation
p + 1. However, it is worth emphasizing that the postprocessed solution
derived from a computation with degree of approximation p is always more
accurate than the solution computed with a degree of approximation p+ 1.
For instance, the postprocessed solution computed in the finer mesh with
p = 4 is two times more accurate than the solution computed in the finer
mesh with p = 5.

The extra accuracy of the postprocessed solution has been recently ex-
ploited by Giorgiani et al. (2013, 2014) to define a simple and inexpensive
error estimator than can be used to develop highly efficient p-adaptive pro-
cedures.
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A Implementation details

This appendix is devoted to the detailed presentation of the matrices and
vectors appearing in the discrete version of both the local and global prob-
lems induced by the HDG method.

The interpolation functions and their derivatives, used in (5), are de-
fined in a reference element, with local coordinates €. The isoparametric
transformation is used to relate local and Cartesian coordinates, namely

Ten

x(£) = ZwiNxsx

where x; denote the elemental nodal coordinates.
The following compact form of the interpolation functions is introduced

N PO . 1T

N=[M N ... No]". N= [Nl N, o ann} :
o~ . N N T

N, = [Nln Non ... Nnenn] , Np= [Nln Nom ... annn] )
T
VN=[gton)" vn)” L v

and = [NlInsd N2Insd s NnenInsd]Tv
where n = (nq,...,ny,) denotes the outward unit normal vector to an

edge/face, J is the Jacobian of the isoparametric transformation and I,
is the identity matrix of dimension ngq.

The different matrices appearing in (14), computed for each element
i =1,...,n01, can be expressed as

[Avuli = Z Ti Z N(éé) NT(&;)U’;
o9, g=1
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g=1
)i =) N(&) f(x(€))wi+ > 7Y N(&h) up(w(€))wf,
g=1 oQ;NT'p g=1

Agali= Y > Na(g) NT(€hul,

0Q;\I'p g=1

f
nip

[Adali = — Z Ti Zﬁn("ﬁ;) NT(&;)“’;
ou\l'p  g=1

and
£

Bl=— S S NG ta(e)ut.

90Ny g=1

e
ip
weights defined on the reference element and é; and wé are the nﬁp integra-
tion points and weights defined on the reference edge/face. The implemen-
tation considered here adopts the numerical quadratures recently proposed
by Witherden and Vincent (2015).

Similarly, the different matrices appearing in (25), computed for each
element ¢ = 1,...,n.1, can be expressed as

In the above expressions, Eg and wg are the nfj integration points and

[AL)i= D m Y NN (&),

0Q;\I'n g=1
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