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The construction of a quantum computer remains a fundamental scientific
and technological challenge, in particular due to the influence of unavoidable
noise. Quantum states and operations can be protected from errors using pro-
tocols for fault-tolerant quantum computing. Here we implement a quantum
error correcting code, encoding one qubit in entangled states distributed over
7 trapped-ion qubits and demonstrate the capability of the code to detect one
bit flip, phase flip or a combined error of both, regardless on which of the
qubits they occur. Furthermore, we apply gate operations on the encoded
qubit to explore its computational capabilities. Our 7-qubit code represents
a fully functional instance of a topologically encoded qubit, or color code, and
may provide a route towards fault tolerant quantum computing.

A fully-fledged quantum computer can be used to efficiently solve notoriously difficult
problems, such as factoring large numbers or simulating the dynamics of many-body quantum
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systems (1). Technological progress has enabled the implementation of small-scale prototype
quantum computing devices on diverse physical platforms (2). Similarly, sophisticated fault tol-
erant quantum computing (FTQC) techniques have been developed, which aim at the systematic
correction of errors that dynamically occur during storage and manipulation of quantum infor-
mation (3–5). For quantum error correction, Calderbank-Shor-Steane (CSS) codes (4, 5) offer
the advantage that they allow one to independently detect and correct bit and phase flip errors,
as well as combinations thereof. Furthermore, quantum information processing is substantially
facilitated in quantum codes, in which logical operations on encoded qubits are realized by the
bitwise application of the corresponding operations to the underlying physical qubits, i.e. in a
transversal way. This property prevents uncontrolled propagation of errors through the quan-
tum hardware, which in turn is essential to enter the FTQC regime (1). Ultimately, reliable
quantum memories and arbitrarily long quantum computations are predicted to become feasi-
ble for appropriately designed quantum codes, once all elementary operations are realized in a
fault-tolerant way and with sufficiently low error rates (6, 7).

To date topological quantum computing (TQC) stands up as the most promising and realistic
approach towards FTQC: here, encoding of quantum information in global properties of a many-
particle system provides protection against noise sources that act locally on individual or small
sets of qubits (8). Most prominently, TQC offers highly competitive error thresholds as high
as 1% per operation (9–12), which is within reach of current experimental capabilities (13–15)
and typically about two orders of magnitude larger than in schemes using concatenated quantum
codes (7).

Within TQC, topological color codes (16, 17) offer the distinctive feature that the entire
group of Clifford gate operations can be implemented transversally (1). This versatile set of
operations directly enables protocols for quantum distillation of entanglement, quantum tele-
portation and dense coding with topological protection (16). Moreover, a universal gate set, en-
abling the implementation of arbitrary quantum algorithms, can be achieved by complementing
the Clifford operations with a single non-Clifford gate (1). For color codes in two-dimensional
(2D) architectures (16), such an additional gate can be realized by a technique known as magic-
state injection (18). Remarkably, this method is not needed in 3D color codes that allow one to
implement a universal gate set using exclusively transversal operations (17).

Previous experiments have demonstrated the correction of a single type of error by the 3-
qubit repetition code (19–21), correction of bit and phase flip errors by the non-CSS-type 5-
qubit code in NMR systems (22, 23), as well as elements of topological error correction in the
framework of measurement-based quantum computation (24). In this work we demonstrate a
quantum error correcting 7-qubit CSS code (5) which is equivalent to the smallest instance of a
2D topological color code (16).

Two-dimensional color codes are topological quantum error-correcting codes that are con-
structed on underlying 2D lattices (16) for which three links meet at each vertex and three
different colors are sufficient to assign color to all polygons (plaquettes) of the lattice such that
no adjacent plaquettes sharing a link are of the same color. The smallest, fully functional 2D
color code involves seven qubits (Fig. 1A) and consists of a triangular, planar code structure
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formed by three adjoined plaquettes with one physical qubit placed at each vertex. Color codes
are stabilizer quantum codes (1), which are defined by a set of commuting, so-called stabilizer
operators {Si}, each having eigenvalues +1 or -1. More precisely, the code space hosting log-
ical or encoded quantum states |ψ〉L is fixed as the simultaneous eigenspace of eigenvalue +1
of all stabilizers, Si|ψ〉L = +|ψ〉L (1, 27). In color codes, there are two stabilizer operators
associated with each plaquette, which for the seven-qubit color code (Fig. 1A) results in the set
of four-qubit X and Z-type operators

S(1)
x = X1X2X3X4, S(1)

z = Z1Z2Z3Z4,

S(2)
x = X2X3X5X6, S(2)

z = Z2Z3Z5Z6, (1)

S(3)
x = X3X4X6X7, S(3)

z = Z3Z4Z6Z7.

Here, Xi, Yi and Zi denote the standard Pauli matrices acting on the i-th physical qubit with
the computational basis states |0〉 and |1〉 (1). The stabilizers in Eq. (1) impose six independent
constraints on the seven physical qubits and thus define a two-dimensional code space, which
allows one to encode one logical qubit. The logical basis states |0〉L and |1〉L spanning the
code space are entangled 7-qubit states and given as the eigenstates of the logical operator
ZL = Z1Z2Z3Z4Z5Z6Z7, where ZL|0〉L = |0〉L and ZL|1〉L = −|1〉L (16, 26).

For the physical realization of a topologically encoded qubit, we store seven 40Ca+ ions in
a linear Paul trap. Each ion hosts a physical qubit, which is encoded in (meta)stable electronic
states (25). Within our setup (Fig. 1B) we realize a high-fidelity universal set of quantum opera-
tions consisting of single-ion phase shifts, collective rotations, and a collective entangling gate.
This set of operations is complemented by a single-ion spectroscopic decoupling technique that
enables the collective entangling operation to act only on subsets of qubits (26).

We realize the initial preparation of the logical state |0〉L (encoding) deterministically by
applying the quantum circuit shown in Fig. 1C to the seven-ion system. As a first step, the sys-
tem is prepared in the product state |1010101〉, which satisfies the required three 〈S(i)

z 〉 = +1
and 〈ZL〉 = +1 conditions. In three subsequent steps, plaquette-wise entangling operations are
applied to also satisfy the three 〈S(i)

x 〉 = +1 constraints. For each step, three of the seven phys-
ical qubits are spectroscopically decoupled prior to the application of the collective entangling
gate, to subsequently create GHZ-like entanglement only between the four qubits belonging to
one plaquette of the triangular code. Here, the creation of entanglement of 4 out of 7 qubits is
achieved with a fidelity of 88.8(5)%.

The entire sequence for encoding involves three collective entangling gates and 108 local
single-qubit rotations (26). The quantum state fidelity of the system in state |0〉L is exactly
determined from measurements of 128 Pauli operators, and yields 32.7(8)%. This value sur-
passes the threshold value of 25% (by more than 9 standard deviations), above which genuine
six-qubit entanglement is witnessed, thereby clearly indicating the mutual entanglement of all
three plaquettes of the code (26).

The quality of the created logical state |0〉L (Fig. 2A) is governed by two factors: the overlap
of the created state with the code space; and the accordance of the experimental state within the
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code space with the target encoded state, which is related to the expectation values of the logical
operator ZL. Residual populations outside the code-space are indicated by deviations of the six
stabilizer expectation values, in our case on average 0.48(2), from the ideal value of +1. A more
detailed analysis shows that within the code-space, the fidelity between experimental and target
state is as high as 95(2)%, whereas the expectation value of 〈ZL〉 = 0.38(3) and the overall
fidelity between the experimentally realized and the ideal state |0〉L are currently limited by the
overlap with the code-space of 34(1)% (26).

It is a hallmark feature of topologically ordered states that these cannot be characterized
by local order parameters, but only reveal their topological quantum order in global system
properties (8,26). We experimentally confirm this intriguing characteristics for the topologically
encoded 7-qubit system in state |1〉L by measuring all subsets of reduced two-qubit density
matrices, which yield an average Uhlmann-fidelity of 98.3(2)% with the two-qubit completely-
mixed state, clearly showing the absence of any single- and two-qubit correlations. On the
contrary, we observe the presence of global quantum order, as signaled for the system size at
hand by non-vanishing three-qubit correlations 〈Z1Z4Z7〉 = −0.46(6) (26).

We next study the error correction properties of the encoded qubit. Single-qubit errors lead
the system out of the logical code space and manifest themselves as stabilizer eigenstates of
eigenvalue -1 (stabilizer violations) associated to one or several plaquettes. We use the available
gate set to coherently induce all single-qubit errors on the encoded state |0〉L and record the
induced error syndromes provided by the characteristic pattern of six stabilizer expectation
values (26) – see Fig. 2 for a selection. The experimental data clearly reveals the CSS character
of the quantum code: Starting in |0〉L (Fig. 2A), we observe that single-qubit X (Z) errors
manifest themselves as violations of Z-type (X-type) stabilizers only (Figs. 2B and C); the
effect of single-qubit Y errors is equivalent to a combined X and Z error and is indeed signaled
by the simultaneous violation of the corresponding X and Z-type stabilizers (Fig. 2D). For
our experimental statistical uncertainties, the measured characteristic error syndromes can be
perfectly assigned to the underlying induced single-qubit error (26). Figures 2E and F show
data where the code has been exposed to two single-qubit errors, whose correction exceeds the
capabilities of the 7-qubit code (5, 16).

In topological color codes, quantum information is processed by logical gate operations act-
ing directly within the code space (16,17). The entire group of logical Clifford gates, generated
by the elementary gate operations Z, X , the Hadamard H and the phase gate K,

H =
1√
2

(
1 1
1 −1

)
, K =

(
1 0
0 i

)
, (2)

as well as the C-NOT gate for registers containing several logical qubits, can be realized
transversally. We implement the logical Clifford gates ZL = Z1Z2Z3Z4Z5Z6Z7,
XL = X1X2X3X4X5X6X7, HL = H1H2H3H4H5H6H7 and KL = K1K2K3K4K5K6K7 by
local operations which we realize by a combination of single-ion and collective rotations (26)
(Fig. 1B). After initialization of the logical qubit in the state |0〉L, we prepare all six eigen-
states of the logical operators XL, YL and ZL, which requires quantum circuits (see Figs. 3A
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and B) consisting of up to three elementary logical Clifford gate operations. The encoded qubit
evolves as expected under the logical gate operations, as indicated by the characteristic changes
in the pattern of XL, YL and ZL expectation values, and corroborated by quantum state fideli-
ties within the code space of {95(2), 85(3), 87(2)}% of the experimental logical states {|0〉L,
|1〉L and |+x〉L = (|0〉L + |1〉L)/

√
2} with the expected ideal states (26). Furthermore, the data

shows that the average values of the six stabilizers for each logical state is uncorrelated from the
number of logical gates applied to prepare them (up to three) (26). This indicates that currently
imperfections in the initial encoding process dominate over the influence of additional errors
induced by subsequently applied short sequences of few Clifford gate operations. This is an
indication of the high performance of the transversal (i.e. bitwise) logical Clifford gate opera-
tions, as compared to the encoding which involves numerous multi-qubit as well as single-ion
entangling operations. This behavior is confirmed by measured overlap with the code space of
{34(1), 33(2), 39(2)}% for the states {|0〉L, |1〉L and |+x〉L} (26).

We further explore the computational capabilities of the encoded qubit by executing a longer
encoded quantum computation, which consists of up to 10 logicalXL gate operations applied to
the system initially prepared in |+y〉L (see Fig. 4A). Our data (see Fig. 4B) reveals the expected
flips of the logical qubit between the YL eigenstates, as witnessed by alternating (vanishing)
expectation values of the logical YL (XL, ZL) operator, accompanied by a moderate decay of
the average stabilizer expectation values of only 3.8(5)% per logical gate operation (26). By
investigating the decoherence properties of the logical superposition state |+x〉L, we find out
that the logical coherence time is about one order of magnitude larger than the duration of 10
XL gates (26).

Near future objectives, aiming at an extension of the demonstrated quantum information
processing capabilities, include the implementation of a non-Clifford gate, using one additional
(unprotected) ancillary qubit, towards universal encoded quantum computation (1, 18). Fur-
thermore, repetitive application of complete error correction cycles is achievable by incorpo-
rating previously demonstrated measurement and feedback techniques (28) for quantum non-
demolition (QND) readout of stabilizers via ancillary qubits, towards the goal of keeping an en-
coded qubit alive. The demonstrated concepts can be adapted to 2D ion-trap arrays (29) as well
as other scalable architectures, ranging from optical, atomic and molecular to solid-state sys-
tems (2). The continuing technological development of these platforms promises fault-tolerant
operating of larger numbers of error-resistant, topologically protected qubits, and thereby marks
a technologically challenging, though clear path towards the realization of FTQC.

5



References and Notes
1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cam-

bridge University Press, 2000).

2. Ladd, T. D. et al. Quantum computers. Nature 464, 45 (2010).

3. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A
52, 2493–2496 (1995).

4. Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A
54, 1098 (1996).

5. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996).

6. Shor, P. W. Fault-tolerant quantum computation. IEEE Symposium on Foundations of
Computer Science (1996).

7. Preskill, J. “Fault-Tolerant Quantum Computation” in“Introduction to Quantum Compu-
tation and Information” (World Scientific, 1997).

8. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003).

9. Dennis, E., Kitaev, A., Landahl, A. & J., P. Topological quantum memory. J. Math. Phys.
43, 4452 (2002).

10. Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold
in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

11. Katzgraber, H. G., Bombin, H. & Martin-Delgado, M. A. Error threshold for color codes
and random 3-body Ising models. Phys. Rev. Lett. 103, 090501 (2009).

12. Wang, D. S., Fowler, A. G., Hill, C. D. & Hollenberg, L. C. L. Graphical algorithms and
threshold error rates for the 2d colour code. Quant. Inf. Comp. 10, 780 (2010).

13. Benhelm, J., Kirchmair, G., Roos, C. F. & Blatt, R. Towards fault-tolerant quantum com-
puting with trapped ions. Nature Phys. 4, 463 (2008).

14. Harty, T. P. et al. High-fidelity preparation, gates, memory and readout of a trapped-ion
quantum bit. arXiv:1403.1524 (2014).

15. Barends, R. et al. Logic gates at the surface code threshold: Superconducting qubits poised
for fault-tolerant quantum computing. arXiv:1402.4848 (2014).

16. Bombin, H. & Martin-Delgado, M. A. Topological quantum distillation. Phys. Rev. Lett.
97, 180501 (2006).

6



17. Bombin, H. & Martin-Delgado, M. Topological computation without braiding. Phys. Rev.
Lett. 98, 160502 (2007).

18. Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy
ancillas. Phys. Rev. A 71, 022316 (2005).

19. Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602 (2004).

20. Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–
1061 (2011).

21. Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting
qubits. Nature 482, 382–385 (2012).

22. Knill, E., Laflamme, R., Martinez, R. & Negrevergne, C. Benchmarking quantum comput-
ers: The five-qubit error correction code. Phys. Rev. Lett. 86, 5811 (2001).

23. Zhang, J., Laflamme, R. & Suter, D. Experimental implementation of encoded logical qubit
operations in a perfect quantum error correcting code. Phys. Rev. Lett. 109, 100503 (2012).

24. Yao, X. C. et al. Experimental demonstration of topological error correction. Nature 482,
489494 (2012).

25. Schindler, P. et al. A quantum information processor with trapped ions. N.J.Phys. 15,
123012 (2013).

26. Materials and methods are available as supporting material on Science Online.

27. Gottesman, D. Class of quantum error-correcting codes saturating the quantum Hamming
bound. Phys. Rev. A 54, 1862–1868 (1996).

28. Barreiro, J. et al. An open-system quantum simulator with trapped ions. Nature 470, 486
(2011).

29. Kumph, M. et al. Operation of a planar-electrode ion trap array with adjustable rf elec-
trodes. arXiv:1402.0791 (2014).

Acknowledgments
We gratefully acknowledge support by the Spanish MICINN grant FIS2009-10061, FIS2012-
33152, the CAM research consortium QUITEMAD S2009-ESP-1594, the European Com-
mission PICC: FP7 2007-2013, Grant No. 249958, the integrated project SIQS (grant No.
600645), the UCM-BS grant GICC-910758, and by the Austrian Science Fund (FWF), through

7



the SFB FoQus (FWF Project No. F4002-N16), as well as the Institut für Quanteninforma-
tion GmbH. This research was partially supported by the U.S. Army Research Office through
grant W911NF-14-1-0103. This research was partially funded by the Office of the Director
of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA),
through the Army Research Office grant W911NF-10-1-0284. All statements of fact, opinion
or conclusions contained herein are those of the authors and should not be construed as repre-
senting the official views or policies of IARPA, the ODNI, or the U.S. Government.

8



A B

3

1

2
4

5
6

7

C

1

5

7

2
4

6

3
5

3

1
2

4

6 7

3

1
2

4
5

6
7

En
co

d
in

g

1

2

3

4

5

6

7

en
ta

ng
lin

g 
ga

te
 

 o
n 

12
34

en
ta

ng
lin

g 
ga

te
 

 o
n 

23
56

en
ta

ng
lin

g 
ga

te
 

 o
n 

34
67

1 2 3 4 5 6 7

Decoupling 
Re-coupling single ion phase-shift

collective operations 
and entangling gates

6Z5Z3Z2Z=z
(2)

S

6X5X3X2X=x
(2)

S

7Z6Z4Z3Z=z
(3)

S

7X6X4X3X=x
(3)

S

4Z3Z2Z1Z=z
(1)

S

4X3X2X1X=x
(1)

S

〉0|
〉1|

〉0|
〉1|

〉0|
〉1|

〉1|

L〉0|

Fig. 1. The topologically-encoded qubit, its physical implementation and initialization.
(A) One logical qubit is embedded in seven physical qubits forming a 2D tringular planar code
structure of three plaquettes. The code space is defined via six stabilizer operators S(i)

x and
S
(i)
z , each acting on a plaquette which involves four physical qubits. (B) For the physical real-

ization, qubits are encoded in electronic states of a linear string of ions. These ion qubits can
be manipulated via laser-interactions that realize a universal gate set consisting of single-ion
phase shifts, collective operations and a collective entangling gate, which is complemented by
a single-ion spectroscopic de- and recoupling technique (25). (C) Encoding of the logical qubit
is achieved by coherently mapping the input state |1010101〉 onto the logical state |0〉L, using
a quantum circuit that combines plaquette-wise entangling operations with de- and recoupling
pulses (yellow and white squares, respectively) (26). Dashed (solid) lines denote decoupled or
inactive (recoupled or active) qubits.
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x and S(i)
z stabilizers are positive-valued, and (ii) by a positive

(vanishing) expectation value of the logical operator ZL (XL). (B) A bit flip error (red wiggled
arrow) on qubit 2 (marked in black) affects the blue and red plaquettes (visualized by grey-
shaded circles) and manifests itself by negative S(1)
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z expectation values and a ZL sign

flip. (C) A Z5 phase flip error only affects the blue plaquette and results in a sign flip of S(2)
x .

(D) A Y3 error – equivalent to a combined X3 and Z3 error – affects all three plaquettes and
induces a sign change in all six stabilizers and ZL. Double-error events, such as a Z5 phase flip
(Fig. 2C), followed by a Z2 (E) or a Z3 error (F) result in an incorrect assignment of physical
errors, as the detected stabilizer patterns are indistinguishable from single-error syndromes –
here, the ones induced by a Z1 (Fig. 2E) or a Z4 (Fig. 2F) error (26). In the correction process,
this eventually results in a logical error – here a ZL phase flip error. Stabilizer violations can
under subsequent errors hop (white non-wiggled arrow) to an adjacent plaquette, as in Fig. 2E,
where the violation disappears (open grey circle) from the blue and reappears on the red pla-
quette. Alternatively (Fig. 2F), they can disappear (from the blue plaquette), split up (white
branched arrow) and reappear on two neighboring plaquettes (red and green). This rich dynam-
ical behavior of stabilizer violations is a characteristic signature of the topological order in color
codes (16, 26).
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Fig. 3. Single qubit Clifford gate operations applied on a logical encoded qubit. Starting
from the logical |0〉L state, sequences of logical Clifford gate operations {XL, HL} in (A) and
{HL, KL, XL} in (B) are applied consecutively in a transversal way (i.e. bit-wise) to realize all
six cardinal states {|0〉L, |1〉L, |−x〉L, |+x〉L, |+y〉L, |−y〉L} of the logical space of the topologi-
cally encoded qubit. The dynamics under the applied gate operations is illustrated by rotations
of the Bloch-vector (red arrow) on the logical Bloch-sphere as well as by the circuit diagram in
the background. Each of the created logical states is characterized by the measured pattern of
S
(i)
x and S(i)

z stabilizers and the logical Bloch vector, with the three components given by the
expectation values of the logical operators XL, YZ and ZL. The orientation of the logical Bloch
vector changes as expected under the logical gate operations.
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Fig. 4. Repetitive application of logical quantum gate operations: (A) Preparation of the
|−y〉L state by applying a HL, KL and XL gate operation on the qubit initially prepared in
the |0〉L state. (B) Subsequently, flips between the logical |+y〉L and |−y〉L states are induced
by consecutively applying logical XL gate operations up to 10 times. The sign flip of the
YL expectation value (red diamonds) after each step signals clearly the induced flips of the
logical Bloch vector, whereas the expectation values of ZL (blue squares) andXL (black circles)
are close to zero as expected (the average of {〈ZL〉, 〈XL〉} yields {0.01(1),−0.01(1)} (26)).
Average S(i)

z (S(i)
x ) stabilizer expectation values after each XL gate are shown as grey (green)

bars.
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der Österreichischen Akademie der Wissenschaften
Technikerstrasse 21a, A–6020 Innsbruck, Austria

†These authors contributed equally to this work.
∗To whom correspondence should be addressed:

E-mail: daniel.nigg@uibk.ac.at, mueller@ucm.es
‡ Present address: Department of Physics, University of California, CA, USA

2



This supporting online material provides theoretical background information and experi-
mental details of the material discussed in the main text. In addition, it contains experimental
data which due to space limitations has not been discussed in the main text of the paper: this
includes a complete measured syndrome table containing all 21 single-qubit error syndromes
(see Fig. S7), and quantum state tomography data confirming the absence (presence) of local
(global) quantum order in the experimental 7-qubit state (see Sec. 4 and Fig. S5).

In Sec. 1 we provide details on our trapped-ion quantum computing setup and the experi-
mental tools used in this work. Details on the initialization procedure (encoding) are provided
in Sec. 2. In Sec. 3 we discuss the methods used to quantitatively characterize the experimen-
tally generated states, which include tools to determine the quantum state fidelities and overlap
with the code space, to witness multi-partite entanglement properties, and to study aspects of
topological quantum order in the experimentally generated state. Section 5 provides details
on the experimental study of the error detection capabilities of the 7-qubit code. Finally, in
Sec. 6 details on the implementation and characterization of sequences of logical Clifford gate
operations on the encoded qubit are discussed.

1 Experimental system and techniques
This section provides a more detailed description of the experimental setup, especially the co-
herent gate operations as well as the spectroscopic decoupling technique.

All experiments described in this work are performed using a linear string of 7 40Ca+ ions
confined in a Paul trap (1). The (physical) qubit is encoded and manipulated on the transition
between the two electronic states S1/2(mj = −1/2) = |1〉 → D5/2(mj = −5/2) = |0〉, the
latter having a radiative lifetime of about 1s. One generic experimental cycle consists of the
following sequence: (i) Initialization of all qubits in the electronic S1/2(mj = −1/2) = |1〉
ground state by optical pumping. (ii) Cooling the ion string to the motional ground state of
the center of mass mode. (iii) Coherent operations on the S1/2(mj = −1/2) → D5/2(mj =
−1/2) transition by a narrow linewidth laser at 729 nm. (iv) Detection of the final state by
fluorescence measurements, involving an electron shelving technique using a laser beam at
397 nm illuminating the whole ion string. For more details on the individual techniques, see the
following subsections and Ref. (1).

1.1 Coherent gate operations
In our experimental setup, two different laser beams at 729 nm are used to perform coherent
operations on the qubit transition. A spatially wide beam illuminating the whole ion string
realizes collective operations of the form

U(θ, φ) = exp

(
−iθ

2

∑
i

[sin(φ)Yi + cos(φ)Xi]

)
(1)
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and a Mølmer-Sørensen-type entangling operation (2, 3)

MS(θ, φ) = exp

−iθ
4

[∑
i

sin(φ)Yi + cos(φ)Xi

]2 . (2)

Since the angle of incidence with of the global beam with respect to the ion string is approxi-
mately 22.5◦, the beam is shaped elliptically to illuminate all ions equally. The beam ellipticity
is about 1:5 with a beam waist of 100µm in horizontal direction, which leads to an inhomo-
geneity of the coupling strength along the 7 ion string, measured by the Rabi-frequency, of
about 1%. In addition, a beam perpendicular to the ion string, which is focused to a beam waist
of about 1.5µm is used to perform single qubit rotations U (i)

Z (θ) = exp(−i θ
2
Zi) on the i-th ion.

This operation, corresponding to a rotation around the Z-axis in the Bloch-sphere picture, is
carried out by detuning the laser beam about 20 MHz from the qubit transition, which effec-
tively induces an AC-Stark shift (1). The combination of the described gate operations realizes
a universal set of gate operations (4, 5). Alternatively, the addressing beam is also capable of
inducing resonant operations of the form U (i)(θ, φ) = exp(−i θ

2
{sin(φ)Yi + cos(φ)Xi}).

1.2 Spectroscopic decoupling and recoupling of ions
For the experimental initialization of the encoded qubit in the logical state |0〉L, the main re-
source is an entangling operation acting on a subset of four out of seven qubits. In Figure S1A
the circuit diagram of the sequence used for the encoding is shown. In the first step an entan-
gling operation MS(π/2, 0) is to be applied to ions 1, 2, 3, 4 without affecting the ions 5, 6
and 7. However, as the laser beam of the entangling MS gate operation illuminates the entire
ion string, an entangling operation on a subset of ions can be achieved in two different ways:
One can resort to refocusing techniques, as originally pioneered in NMR systems (6). Here,
partially entangling global entangling MS gate operations are interspersed with single-qubit
AC Stark shifts, which eventually lead to an effective decoupling of (subsets of) ions from the
entangling dynamics of the remaining ions (see e.g. (5) for more information). However, in the
present case, such decoupling of 3 ions, using refocusing pulses, from the entangling dynam-
ics of the remaining 4 qubits belonging to one plaquette of the quantum code, would require a
large overhead in terms of (partially entangling) MS gate operations and addressed, single-ion
refocusing pulses. Thus, in the present experiment we pursue an alternative approach, where
we decouple ions spectroscopically from the dynamics induced by the global MS gate opera-
tion. To this end, we coherently transfer and store the quantum state of qubits (say 5, 6 and 7)
encoded in the states S1/2(mj = −1/2) and D5/2(mj = −1/2), which do not participate in the
entangling dynamics of qubits 1, 2, 3, and 4, in a subset of the remaining (metastable) Zeeman
levels.

The latter has the advantage that the entangling operation, acting only on the subset of 4
qubits, can be realized with a fidelity of 88.5(5)%, as determined by a 4-qubit state tomography
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of the created 4-qubit GHZ state, (|0101〉 + |1010〉)/
√

2. Besides imperfections in the entan-
gling operation, this value thus also includes the effect of small imperfections in the preparation
of the initial product state |1010〉. The fidelity of the entangling operation on 4 out of 7 ions
is substantially higher than the fidelity with which a 7-qubit GHZ state can be created by a
global entangling operation (acting on all 7 ions). From population and parity measurements
we estimate the fidelity for this 7-ion entangling operation to be about 84%. In Figure S1B,
the decoupling (DEC) steps, highlighted as colored boxes (DEC) are illustrated by a reduced
level scheme of the relevant Zeeman states. The decoupling sequence can be adapted, so that
– depending on the internal state of the physical qubit – only a minimal number of decoupling
pulses have to be applied. For example, the decoupling of qubits 5 and 6 (blue and red box)
before the first entangling operation is realized as follows: The population of qubit 5 (initially
entirely in state S1/2(mj = −1/2)) is transformed to the D5/2(mj = −5/2) state via a com-
posite pulse sequence of 3 coherent single-qubit operations: a resonant π/2-pulse U (5)(π/2, θ)

with arbitrary, but fixed phase θ on qubit 5, followed by a Z rotation U (5)
Z (π) and finally another

resonant U (5)(π/2, θ−π) rotation with phase θ−π. Effectively, this sequence realizes a π-flop
(i.e. complete population transfer) between the computational basis state S1/2(mj = −1/2) and
the storage state D5/2(mj = −5/2). This population transfer could in principle also be per-
formed by a single resonant U (5)(π, θ) pulse. The reason for splitting this up into 3 addressed
pulses is to minimize errors on neighboring ions while realizing the decoupling operation on
the target ion: The application of the addressed laser beam inevitably leads to small residual
light intensities on the neighboring ions, which should ideally be unaffected. This error ε can
be characterized by measuring the Rabi-frequencies of the neighboring ions and the target ion:
ε = Ωneighbor/Ωtarget. For a seven-ion string with a minimal inter-ion distance of ≈ 3.5 µm at
a trap frequency of about 1 MHz, the addressing error ε is about 5% on the ions located at the
center of the chain. Contrary to the resonant pulse, the addressing error of the off-resonant
AC-Stark pulses scale with ε2, since the Rabi-frequency Ω2/4∆ scales quadratically with the
Rabi frequency Ω, and for a given detuning ∆. Therefore the effectively induced error on the
neighboring ions in the 3-pulse sequence also scales in leading order as ε2, since errors induced
by the two resonant π/2-pulses cancel out due to the phase shift of π.

Similarly, spectroscopic decoupling of ions with population in the D5/2(mj = −5/2) state
is achieved by transfering the electronic population first to the S1/2(mj = 1/2) ground state
and subsequently to the D5/2(mj = −3/2) state, as shown in the red box of Figure S1B. This
sequence requires in total 3 single-qubit operations: U (6)(π/2, θ), U (6)

Z (π) and U (6)(π/2, θ−π)
on the D5/2(mj = −5/2) → S1/2 transition, and a similar 3-pulse sequence on the S1/2(mj =
1/2) → D5/2(mj = −3/2) transition, respectively. Therefore, decoupling and also recoupling
(REC) of one qubit with populations in (and coherences between) both computational basis
states requires in total 9 single-qubit operations with a pulse length of about 10µs per pulse
(see green box in of Figure S1B).
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2 Details on encoding of the logical qubit
The code space hosting logical states |ψ〉L is fixed as the simultaneous eigenspace of eigenvalue
+1 of the six S(i)

x and S(i)
z stabilizer operators. The first step of the initialization of the 7-qubit

system in the logical |0〉L state consists of converting the state of the 7 qubits, initialized by
optical pumping in the state |1111111〉, into the state |1010101〉. This state fulfills the Z-type
stabilizer constraints, as it is a +1 eigenstate of three S(i)

z -stabilizers as well as of the logical
operator ZL. In the remaining three steps, the subsets of four qubits belonging to each of the
three plaquettes of the code, are sequentially entangled to also fulfill the stabilizer constraints
imposed by the three operators S(i)

x . This is achieved by spectroscopically decoupling the ions
hosting inactive qubits (e.g. qubits 5, 6, and 7) not participating in the plaquette-wise entangling
operation, as explained in Sec. 1.2 and shown in Fig. S1. The MS gate operation, applied to the
remaining active qubits (say, qubits 1, 2, 3, and 4) creates the four-qubit GHZ-type entangle-
ment. Under this operation, for instance in the first step the state |1010101〉 is mapped onto the
superposition |1010101〉± i|0101101〉 (see e.g. (5)). The±π/2 phase shift can be compensated
for at any later instance during the remaining encoding sequence. To this end, at the end of
the encoding sequence we apply an ac Stark shift compensation pulse U (1)

Z (±π/2) on qubit 1
located at the corner of the first (red) plaquette, which does not participate in entangling opera-
tions of the other two plaquettes. Thus, the four-qubit entangling operation in combination with
the phase compensation pulse creates the |1010101〉 + |0101101〉 superposition state after the
first step of the encoding sequence. The successful preparation of this intermediate state can
be seen from the measurement of electronic populations in the 27 = 128 computational basis
states and the stabilizer operators, as shown in Fig. S2A. Here, the data shows the two dominant
expected populations, as well as the GHZ-type coherence as signaled by the non-vanishing ex-
pectation value of S(1)

x . In the second and third step, similarly, entanglement between the qubits
of the second (blue) and third (green) plaquette is created, which is reflected (see Fig. S2 B and
C) by the appearance of electronic populations in the four and eight expected computational ba-
sis states, respectively, as well as by the step-wise build-up of non-vanishing coherences 〈S(2)

x 〉
and 〈S(3)

x 〉. After the third step and the application of the three phase compensation pulses
the encoding of the system in the logical state |0〉L = |1010101〉 + |0101101〉 + |1100011〉 +
|0011011〉 + |1001110〉 + |0110110〉 + |1111000〉 + |0000000〉 is signaled by positive (ideally
+1) values of all six stabilizer and the logical ZL operator.

The described three-step sequence realizing plaquette-wise entangling operations to pre-
pare the system in the state |0〉L works in principle by starting in any of the eight compo-
nents of state |0〉L. The advantage of choosing the initial input state |1010101〉 (instead of
e.g. |0000000〉) is that for this initial state the 7-qubit state is during part of the encoding se-
quence in a decoherence-free subspace (DFS), in which the system is insensitive to global phase
noise, as caused by magnetic field and laser fluctuations of the collective local rotations, which
to leading order affect all ions in the same way. This type of noise constitutes one of the dom-
inant noise sources in our setup (1). Whereas the ideal quantum state after the second state (as
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given explicitly in Fig. S2B) still resides entirely in a DFS, the final state still benefits from par-
tial protection with respect to the described global noise. This partial phase noise protection, in
combination with the addressing-error-corrected decoupling and recoupling pulses as described
in Sec. 1.2 are essential to achieve the proper initialization of the system in the code space,
despite the complexity and overall length of the complete encoding sequence (see Table S1) for
a detailed list and exact numbers of applied pulses).

3 Quantitative characterization of the encoded logical states

3.1 Quantum state fidelities and overlap with the code space
The experimentally generated states are fully characterized by 7-qubit density matrices ρ, which
could be reconstructed from 7-qubit quantum state tomographies (7). However, as the ideal
(target) states belong to the class of stabilizer quantum states (8), the relevant figures of merit
of the experimental states such as (i) the overall quantum state fidelities with the ideal states,
(ii) the overlap with the code space, as well as (iii) the quantum state fidelities within the code
space can be exactly determined more efficiently from a reduced set of measurements.

For n qubits, associated to a Hilbert space of dimension d = 2n, a general state ρ of
the system can be expanded in the operator basis formed by all possible Pauli operators Wk,
k = 1, . . . , d2 = 4n, i.e. the n-fold tensor product of the Pauli matrices 1, X, Y, Z for each
qubit, with tr(WiWj/d) = δij . For a general quantum state, ρ = 1

d

∑
k tr(Wkρ)Wk, all 4n

expansion coefficients can contribute to the sum. For stabilizer states ρ = |ψ〉〈ψ|, for which
Wk|ψ〉 = ±|ψ〉 if Wk belongs to the the stabilizer group of state |ψ〉, only the 2n coefficients
corresponding to the set of stabilizer elements Wk are non-zero: tr(Wkρ) = ±1.

The quantum state fidelity of the experimental state ρ with the ideal target stabilizer state as
ρt is given by

F(ρ, ρt) = tr(ρt ρ) =
1

d

∑
k

tr(Wkρt)tr(Wkρ). (3)

Since there are 2n non-zero coefficients tr(Wkρt) contributing to this sum, it is sufficient to
measure the expectation values of the corresponding 2n Pauli operators Wk, 〈Wk〉ρ = tr(Wkρ),
to exactly determine the quantum state fidelity according to Eq. (3). For the present case of
encoded quantum states given by 7-qubit stabilizer states, this requires the measurement of
only 128 expectation values 〈Wk〉ρ, without the need to reconstruct the full density matrix ρ.

Note that the six ideal encoded states can be written as a product of two projectors

ρt = P±OL
PCS. (4)

Here, PCS denotes the projector onto the code space, defined as the simultaneously +1 eigenspace
of the six stabilizers (generators) S(i)

x and S(i)
z , i = 1, 2, 3,

PCS =
3∏
i=1

1

2
(1 + S(i)

x )
3∏
j=1

1

2
(1 + S(j)

z ), (5)
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and P±OL
= 1

2
(1 ± OL) is the projector onto the desired logical state within the code space,

concretely:

ρ|1〉L = |1〉〈1|L =
1

2
(1− ZL)PCS, (6)

ρ|0〉L = |0〉〈0|L =
1

2
(1 + ZL)PCS, (7)

ρ|±x〉L = |±x〉〈±x|L =
1

2
(1±XL)PCS, (8)

ρ|±y〉L = |±y〉〈±y|L =
1

2
(1± YL)PCS. (9)

Note that the logical operator YL = +iXLZL = −∏7
i=1 Yi for the 7-qubit color code.

The quantum state fidelity of the experimentally generated state ρ with the ideal target
state, say ρ|1〉L , is given by F(ρ, ρ|1〉L) = 1

128

∑128
k=1〈Wk〉, which is the equal-weighted sum of

expectation values of the 128 Pauli operators appearing in the product of projectors in Eq. (6),
W1 = 1, W2 = −ZL, . . ., W128 = −ZLS(1)

x S
(2)
x S

(3)
x S

(1)
z S

(2)
z S

(3)
z = −X1Z2X3Z4X5Z6X7.

Similarly, there are a set of 128 operators to be measured for the characterization of the other
logical states, according to the combinations appearing in Eqs. (7) - (9).

The overlap with or population in the code space is given by
pCS = tr(PCSρ) = 1

64

∑64
k=1〈Wk〉, where the sum extends over the expectation values of the

64 Pauli operators contained in the expansion of the projector onto the code space PCS (see
Eq. (5)).

The projected (and normalized) density matrix of the experimental state ρ within the code
space is given by ρCS := PCSρPCS/pCS . Thus, for a given experimental state ρ, the quantum
state fidelity within the code space with the ideal target state ρt = P±OL

PCS is given by

F(ρCS, ρt) = tr(P±OL
PCS PCSρPCS)/pCS

= tr(P±OL
PCSρ)/pCS

= F(ρ, ρt)/pCS (10)

From the latter expression one sees that the overlap fidelity F(ρ, ρt) = pCSF(ρCS, ρt) is indeed
given by the combination of the overlap with the code space and the fidelity with the target state
within the code space.

Measurement of the required set of 128 operators {Wk} for a given encoded logical target
state |ψL〉, requires the application of a sequence of local unitaries after the preparation sequence
for |ψL〉. As in standard quantum state tomography (7), this is needed to transform a given Pauli
operator Wk into the standard measurement basis (Z) in which the fluorescence measurements
are physically realized. Pulse sequences for these basis transformations are determined by
writing the local unitaries as a product of the available set of operations (as described in Sec. 1),
and subsequently determining the required rotation parameters analytically. As an example,
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Fig. S3 displays the pulse sequence used for the measurement of the Pauli operator S(1)
z S

(2)
x =

−Z1Y2Y3Z4X5X6.
The error bars of the measured quantum state fidelities were determined by a Monte-Carlo

method, resampling the measured fluorescence data based on the uncertainty given by the lim-
ited number of measurement cycles. Therefore, the measurement data was randomly resampled
using a multinomial distribution with a statistical uncertainty of

√
p(1− p)/N for each mea-

sured probability p and number of repetitions N . The fidelity F(ρ, ρt), F(ρCS, ρt) and the
populations in the code space pCS are calculated for from the mean value and standard devia-
tion of all Monte-Carlo results.

3.2 Entanglement properties of the encoded logical qubit
We study the entanglement properties of the encoded 7-qubit states using the method of en-
tanglement witnesses. Following Ref. (9), we construct witness operators W , which are able
to detect entanglement between different bi-partitions of the 7-qubit system, provided that the
experimentally generated states have a sufficiently high quantum state fidelity with the ideal
target states. From the explicit form of the ideal logical state |1〉L = |0101010〉+ |1010010〉+
|0011100〉 + |1100100〉 + |0110001〉 + |1001001〉 + |0000111〉 + |1111111〉 it can be verified
that with respect to any bi-partition of the 7 qubits into a part A that consists of two qubits (say,
e.g. qubits 1 and 2) and a part B consisting of the complementary five qubits (say qubits 3-7),
the square of the largest Schmidt coefficient of the state is 1/4. Thus, we consider the witness
operatorW = 1

4
1 − |1〉〈1|L. It signals entanglement of the two parts A and B if the expecta-

tion value 〈W〉 in the experimental state ρ is negative. Since 〈W〉ρ = 1/4 − F(ρ, ρ|1〉L), this
is the case for quantum state fidelities larger than 25%, in which case the experimental state
is not separable with respect to any bipartition of 2 and 5 qubits. This implies the presence
of entanglement of at least six qubits, which in turn indicates the mutual entanglement of all
three plaquettes, as there is no combination of six qubits which only involves two plaquettes.
Similarly, a quantum state fidelity threshold of 25% holds for the other five logical states (see
Eqs. (7) - (9)). These states are locally (i.e. up to single-qubit rotations) equivalent to ρ|1〉L –
which can be seen, e.g., directly from the transversal character of the Clifford gate operations
by which they can be transformed into one another.

For the experimentally generated encoded states {|0〉L, |1〉L and |+x〉L} the measured quan-
tum state fidelities with the ideal target states of {32.7(8), 28(1), 33(1)}% surpass the threshold
value of 25% by more than {9, 3, 8} standard deviations.

4 Absence of local order and presence of global order in the
color code state

General remarks and background: One of the intriguing features of topological quantum
phases of matter is that they evade a conventional characterization by local order parameters,
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such as the local magnetization or (anti-)ferromagnetic correlations of neighboring spins in
magnetic materials (10). In contrast, the detection of quantum order and the distinction of
different quantum phases in topological quantum systems can be achieved by means of global
observables which are able to retrieve correlations which extend over the entire many-particle
system. In topological quantum codes, such as Kitaev’s toric code (11) and related models (12),
as well as in topological color codes
(13–15), global quantum order can be detected and manipulated by acting collectively on groups
of physical qubits, which are located along strings that extend over the whole spin system
(10, 11).

Figure S4 shows examples of 2D triangular color codes of increasing lattice size. The stabi-
lizer operators act locally, i.e. on physical qubits that are involved in the corresponding plaque-
ttes, as opposed to global logical operators of the quantum code, such as the logical ZL operator
which acts bitwise on all qubits of the 2D layer. Note that the code space is defined as the
simultaneous +1 eigenspace of all plaquette stabilizers, thus Si|ψL〉 = +|ψL〉 for any encoded
quantum state |ψL〉. This property allows one to transform the logical operator ZL into logi-
cally equivalent operators Z̃L by multiplication with (combinations of) stabilizers: For instance,
for the smallest color code (see Fig. S4A), involving seven physical qubits (see Fig. S4A),
ZL = Z1Z2Z3Z4Z5Z6Z7 and ZL|ψL〉 = ZLS

(2)
z |ψL〉 = ZLZ2Z3Z5Z6|ψL〉 = Z1Z4Z7|ψL〉.

This shows that the string operator Z̃L = Z1Z4Z7 (acting on the qubits connected by the black
dashed line or string shown in Fig. S4B) in the code space is fully equivalent to ZL. Whereas the
logical operator Z̃L only acts on three instead of all seven physical qubits, it is still a global op-
erator as it extends over the entire side length of the triangular code (see Fig. S4B). In larger 2D
color codes, such as the examples shown in Figs. S4 C and D, the corresponding logical global
operators involve more physical qubits, here 5-qubit and 11-qubit string operators, respectively.

Topological color codes display Abelian topological order: for the purpose of quantum error
correction stabilizer violations (-1 eigenstates) associated to plaquettes signal the occurrance of
one or several errors. However, from a condensed matter perspective the code space of the
topological code can be interpreted as the ground state manifold of a many-body Hamiltonian,
whose lowest-energy states are characterized by the fact that all stabilizer +1 constraints are
simultaneously fulfilled (13,15). Here, stabilizer violations correspond to quasi-particle excita-
tions, localized on plaquettes. These quasi-particle excitations show unusual particle exchange
statistics: when quasi-particles are winded around each other (braiding) the system returns its
initial quantum state, which however differs from the initial state by a phase factor which nei-
ther corresponds to the one of bosons nor fermions – thus termed Abelian anyons (11, 16, 17).
The topological order within the code space or ground state manifold is intimately related to the
statistics and the dynamical behavior of stabilizer violations or quasi-particle excitations (10).
In color codes, stabilizer violations can be connected by error chains with two end points ter-
minating on plaquettes with eigenvalue -1 (see Fig. S4D and figure caption for details). Alter-
natively, error chains can undergo branching and form error string nets (see Fig. S4D for an
example). This rich dynamical behavior of quasi-particle excitations (stabilizer violations) is a
consequence of the Z2×Z2 Abelian topological order in color codes (13,15). This is in contrast
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to Kitaev’s toric code (11), where stabilizer violations always appear in pairs and are connected
exclusively by linear error chains, reflecting the different type (Z2) of Abelian topological order
in this model.

Experimental study of the topological order of the 7-qubit color code: For the imple-
mented 7-qubit code, local operators thus refer to one or two-qubit operators, whereas global
operators such as Z̃L at least involve 3 physical qubits. For the experimental study of the quan-
tum order of the encoded qubit, we first prepare the 7-qubit system in the logical state |1〉L
and |+x〉L, and subsequently perform a series of quantum state tomography measurements on
subsets of two and three qubits:

• We perform 2-qubit tomographies on all 21 subsets of two out of seven ions, and re-
construct the reduced two-qubit density matrices. We find that these yield an average
Uhlmann-fidelity (18) with the two-qubit completely-mixed state of 98.3(2)% (the largest
and smallest obtained fidelity values are 99.0(4)% and 97.7(8)%, respectively). Fig-
ure S5A shows as a representative example the elements of the reconstructed reduced
density matrix of qubits 2 and 5.

• From a 3-qubit state tomography on qubits 1, 4 and 7, we determine the expectation
value of the global string operator Z̃L = Z1Z4Z7, which yields non-vanishing 3-qubit
correlations 〈Z1Z4Z7〉 = −0.46(6), clearly signalling the presence of global quantum
order. Figure S5B shows the reconstructed reduced 3-qubit density matrix.

• Furthermore, we also prepared the logical superposition state |+x〉L = (|0〉L + |1〉L)/
√

2.
Here the global order becomes manifest in non-vanishing three-qubit correlations of
the X-type string operator X̃L = X1X4X7, which is equivalent to the logical XL =

X1X2X3X4X5X6X7 operator (X̃L = XLS
(2)
x ). We find 〈X1X4X7〉 = 0.40(5). See

Fig. S5C for the reconstructed reduced 3-qubit density matrix.

These measurements confirm the topological character of the encoding of the logical qubit,
as they clearly demonstrate the absence of local order in the experimental state, as well as the
presence of global quantum order, which for the present size becomes manifest in non-vanishing
3-qubit correlations.

5 Quantum error detection and complete experimental syn-
drome table

General remarks and background:
In the “traditional” approach towards FTQC (19–24), elementary quantum codes, such as e.g. the
5-qubit (non-CSS-type) code (25, 26), the 7-qubit code, first suggested by Steane (27) and im-
plemented in this experiment, or the 9-qubit code proposed by Shor (28), are concatenated (29).
Here, protection of encoded logical quantum information is achieved by encoding information

11



redundantly in several physical qubits, each of which is again encoded in a new layer of physical
qubits, and so forth. This requires a considerable overhead in qubits, which grows exponentially
in the number of encoding layers used in the encoding hierarchy. Furthermore error detection
and correction quantum circuitry generally involves operations between far-distant qubits of the
code.

In topological quantum error correcting codes, protection of errors is achieved in a qualita-
tively different way: logical qubits are encoded in large lattice systems of physical qubits. Here,
due to the topological nature of the codes, quantum error correction operations, such as mea-
surements of the stabilizer or check operators defining the code space respect the spatial struc-
ture of the underlying lattice, i.e. they act on groups of physically neighboring qubits belonging
for instance to the plaquettes of the lattice. Due to this locality property topological codes are
ideally suited to be embedded in physical 2D architectures (30), where individual qubits and
groups of few adjacent qubits can be addressed and manipulated locally (11, 13, 14, 26, 31, 32).
Robustness of logical qubits is achieved by encoding logical qubits in larger and larger lattice
structures, see Fig. S4 for examples. Roughly speaking, such large code structures can tolerate
more and more errors occurring locally on physical qubits, before the logical quantum informa-
tion, encoded in global (topological) properties of the many-qubit system, cannot be recovered
after the occurence of too many errors on the register. Provided that single-qubit errors occur
with a low enough error rate, and the error syndrome formed by the stabilizer information can be
measured with sufficient accuracy, quantum information stored in large topological codes can be
protected from errors and processed fault-tolerantly (33). The robustness and error thresholds
have been studied analytically and numerically for various topological quantum codes, includ-
ing color codes (34–41), and Kitaev’s toric code and related models (12, 33, 42–48). Here,
threshold vaues are code-dependent and also strongly depend on the noise model considered,
typically yielding error-per-operation thresholds on the order of 10−2 to 10−1 for phenomeno-
logical noise models and somewhat lower threshold values on the order of 10−3 to 10−2 for
circuit noise models, where errors are taken into account at the level of imperfections in the
quantum circuitry which is required for the readout of the error syndrome. The deduction of
logical error classes requires classical processing of the measured syndrome information, a task
for which decoding algorithms have been developed (33, 36, 49–52).

Experimental error detection for the 7-qubit code: The implemented 7-qubit code, shown
in Fig. 1A of the main text and in Fig. S4A, is a CSS code, and has a logical distance d = 3,
which implies that it can correct (d − 1)/2 = 1 physical error, regardless on which physical
qubit of the code the error occurs (27). This logical distance of the topological quantum code
is directly related to the geometric size of the code, namely it corresponds to the side length
of the triangular code structure (see Fig. S4B). Larger 2D lattices, such as the two examples
displayed in Figs. S4 C and D, can host a logical qubit of bigger logical distance, which allow
one to correct a larger number n of single-qubit errors (d = 5 and n = 2 in (C), and d = 11 and
n = 5 in (D)).

To study the error detection capability of the experimental 7-qubit code, we induce all 21
single-qubit errors on the logical qubit initially prepared in the state |0〉L, and record the induced
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error syndromes. The errors are induced coherently by the corresponding Pauli operator Xi, Yi
or Zi. The Zi errors can be induced directly by a single AC Stark shift operation using the
addressed beam (see Sec. 1.1), whereas the Xi and Yi are realized by a combination of the
collective local operations and single-ion Zi operations.

Figure 7 shows the complete syndrome table. Within our experimental uncertainties the
measured error syndromes can unambiguously associated with the error syndromes induced by
single-qubit errors. To quantify the classification quality of the individual measured syndromes,
we perform a Monte-Carlo based simulation of the measured fluorescence data. The idea is to
sample the data set using a multinomial distribution and calculate for each sampled data the
stabilizer pattern. For each of the simulated stabilizer patterns, the success of correctly assign-
ing the observed error syndrome to the induced single-qubit error is quantified by calculating
the classical trace distance between the sampled stabilizer distributions S(sample)

i and the 21
measured reference stabilizers S(ref)

i of Fig.S7. The trace distance D between the two classical
distributions of the six stabilizer expectation values is given by

D =

√√√√ 6∑
i=1

[
S
(ref)
i − S(sample)

i

]2
,

and yields D = 0 if the distributions are equal. The pattern of stabilizers, as generated by the
Monte-Carlo method, is then associated to the reference syndrome for which the trace distance
is minimal. Figure S6 shows the success rate of assigning the right error syndrome (e.g. for a Y -
error on qubit 3) as a function of the number of measurement cycles ncycles. The success rate is
defined by the fraction of cases, in which the error syndrome has been correctly assigned to the
corresponding single-qubit reference error syndrome, divided by the total number of attempts.
It can be seen clearly that the success rate converges rapidly to 100% after about ncycles = 20
measurement cycles. In the experimental measurements of the set of S(i)

x and S(i)
z stabilizers

used for the error syndrome, we used 1000 cycles.
Correction of two or more single-qubit errors is beyond the error correction capacity of the

7-qubit code, and requires the encoding of a logical qubit in more physical qubits (such as, e.g.,
the distance d = 5 2D color code shown in Fig. S4C). We experimentally study the failure of the
7-qubit code for two cases: Figures 2E and F of the main text show the recorded error syndromes
after inducing two single-qubit phase flip errors Z on qubits 5 and 2 (Fig. 2E), and qubits 5 and
3 (Fig. 2F), respectively. The comparison with the single-qubit syndrome table in Fig. 7 shows
that the recorded error syndromes are indistinguishable from the error syndromes induced by a
Z1 error (first column, first error syndrome) and a Z4 error (first column, fourth error syndrome),
respectively. Consequently, the erroneous deduction that a Z1 (Z4) error has happened, instead
of the physical Z5 and Z2 errors (Z5 and Z3 errors) effectively result in the application of the
operators Z1Z2Z5 (Z3Z4Z5) to the encoded qubit. These operators are equivalent to the logical
operator ZL = Z1Z2Z3Z4Z5Z6Z7 (since Z1Z2Z5 = ZLS

(3)
z and Z3Z4Z5 = ZLS

(1)
z S

(3)
z ) and

thus result in a logical phase flip error ZL on the encoded state.
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Perspectives for experimental error correction using the 7-qubit code:
In stabilizer quantum error correcting codes - within the framework of topological quantum

codes as well as within the approach based on concatenated codes - protection of quantum states
against errors is realized by (i) encoding the information in collective, entangled quantum states
distributed over many physical qubits, and (ii) subsequent active ”supervision” of the system by
repetitive ”in-situ” measurements of the stabilizer generators in order detect and keep track of
dynamically occurring errors, possibly followed by quantum or classical feedback operations
to undo the effect of the detected errors (24, 33). In this section we estimate the experimental
requirements that need to be met in general and in our specific setup, in order to use in the future
the 7-qubit code for active error correction.

Under ideal conditions, i.e. for perfect initial state encoding, perfect QND measurements of
the plaquette stabilizers, and if the only errors originate from uncorrelated single-qubit errors
occurring at a rate p per error correction round, an encoded logical quantum state |ψL〉 can be
recovered if either no error or at most one error occurs on one of the 7 physical qubits of the
code. The recovery probability pidealrec in this case is

pidealrec ≥ (1− p)7 + 7p(1− p)6 ≥ 1− 21p2 (11)

where the leading term quadratic in p corresponds to the 21 possible, non-correctable double-
error events. Thus, for not too large single qubit error rates p (p . 1/21), protection by virtue
of the 7-qubit code becomes effective, as under these conditions pidealrec is larger than 1 − p, the
latter being the recovery rate for an unprotected logical state stored in a single physical qubit
under the same noise conditions.

We now consider a more realistic scenario that includes the two dominant and generic
sources of imperfections, which reduce the recovery probability for an encoded quantum state
|ψL〉: (i) First, a logical quantum state |ψL〉 can only be encoded with a finite fidelity Fenc < 1,
given rise to a state ρ which we model for the purpose of our estimate by a mixture of the ideal
state logical state and the fully mixed density matrix,

ρ = FSP |ψL〉〈ψL|+
1−FSP
dim

1, (12)

with dim = 27 for the 7-qubit code and 1 the 7-qubit identity operator. (ii) Furthermore, we
take into account that in one round of error correction of bit-flip (phase flip) errors the three
Z- (X-)type plaquette stabilizers need to be measured in a non-destructive way in order to de-
duce the error syndrome. These QND measurements of stabilizer operators can be achieved by
a quantum circuit (see Fig. S8A) which coherently maps the information, whether the qubits
involved in the stabilizers S(i)

z (S(i)
x ) are in a +1 or -1 eigenstate of S(i)

z (S(i)
x ) onto the computa-

tional states |0〉 and |1〉 of ancillary qubits, followed by measurements of these ancillary qubits.
In practice, the QND stabilizer measurements are faulty as well and can only be realized with a
fidelity FQND. Thus, under these conditions the recovery probability is reduced to

pnon−idealrec ≥ FSPF3
QNDp

ideal
rec . (13)
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It is straightforward to show that for small (large) enough imperfections (fidelities FSP ,FQND)
there is a finite interval of single-qubit error rates p, where pnon−idealrec > 1−p and the protection
of quantum states by the 7-qubit code as compared to non-encoded qubits becomes operative,
namely provided that

FSPF3
QND & 1− 1

4

1

21
' 1− 0.012 = 98.8%. (14)

Figure S8B displays the discussed lower bounds for the recovery probabilities for an unencoded
qubit, as well as for the 7-qubit code under ideal and non-ideal conditions.

Current level of experimental imperfections and future improvements: (i) In the en-
coding scheme used in the present experiment (see Sec. 2 and Table S1), the preparation of
the initial logical state |0〉L requires three 4-out-of-7-ion MS gates, in combination with on
the order of one hundred single-ion laser pulses for spectroscopic decoupling and recoupling
of ions. Using the current values for the MS gate fidelity of fMS = 0.89 (see main text)
and a fidelity of f1ion ≈ 0.993 for the single-ion pulses (1) thus yields a rough estimate of
FSP ≈ (FMS)3(F1ion)100 ≈ 35% for the encoding fidelity, which is in good quantitative
agreement with the measured quantum state fidelities of the prepared encoded states. (ii) A
QND-measurement of a four-qubit stabilizer operator has been demonstrated in a previous ex-
periment (53). Such a multi-qubit measurement can be realized in our setup by a quantum
circuit involving two MS gates between the four stabilizer qubits and an ancillary qubit, in ad-
dition to a few local rotations. The fidelity of the QND readout of a qubit stabilizer can thus be
estimated as FQND ≈ (FMS)2 ≈ 79%, which is in agreement with the values found in (53).

Using these fidelity estimates and their scalings, one finds that a reduction of the infidelities
of both the MS gate and the single-ion pulses by a factor of about 100 - 120 under otherwise
unchanged experimental conditions would suffice to enter the regime of Eq. (14), where ac-
tive error correction using the 7-qubit code starts to become advantageous over information
storage in unprotected single qubits. Technical improvements towards this challenging goal
include: improved laser stability to reduce laser intensity fluctuations and beam pointing for
the addressed laser beam, a reduction of the effect of micromotion, increased laser frequency
and magnetic field stability to increase decoherence times, in combination with faster entan-
gling and local operations. These advancements might be combined with optimized quantum
circuits acting on the 7 system and 3 ancillary qubits, in order to implement fast syndrome
readout and fully-coherent quantum feedback, without the need of performing (relatively slow)
measurements on the ancillary qubits. This would realize active error correction in an open-
loop scenario, similar to the concepts shown for the 3-qubit bit flip code (see e.g. (54)) and the
open-loop dynamics realized in the context of open-system quantum simulation (53).

Complementary to the listed efforts, the technological development and operation of 2D ion
trap arrays, which would allow one to store and control larger number of physical qubits and
thereby to implement quantum codes of larger logical distance and higher robustness, constitute
the main avenue towards the goal of keeping an encoded qubit alive.
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6 Encoded Clifford quantum gate operations on the logical
qubit

In topological color codes, quantum information is processed directly within the code space
(13, 14) – leaving the code space and the presence of stabilizer violations always indicate the
occurrence of an error. This is different from schemes of topological quantum computing,
which rely on the controlled generation and manipulation of quasi-particle excitations for the
implementation of logical gate operations (55). 2D color codes enable a transversal (i.e bit-wise)
implementation of the entire group of logical Clifford gate operations. Here, we implement
the generating gate operations ZL, XL, HL and KL of the single-qubit Clifford group on the
topologically encoded qubit.

6.1 Implementation of logical single-qubit Clifford gate operations
The logical operators defining the logical qubit, ZL = Z1Z2Z3Z4Z5Z6Z7 and
XL = X1X2X3X4X5X6X7, share an odd number (seven) of qubits, and thus fulfill the correct
anti-commutation relation {XL, ZL} = 0. Furthermore, as required, they commute with the
six stabilizers (or generators) S(i)

x and S(i)
z , i=1, 2, 3, of the code, as the logical operators share

4 physical qubits with each stabilizer operators. Thus, logical quantum states |ψ〉L remain
within the code space under these logical operations. The logical YL operation is given by the
sequential application of both an XL and a ZL operation, YL = +iXLZL = −Y1Y2Y3Y4Y5Y6Y7.
The logical ZL-gate can be implemented in our setup (see Sec. 1.1) by single-ion Z rotations,
ZL =

∏7
i=1 U

(i)
Z (π). The logical XL is realized by a collective local rotation around the X-axis,

XL = U(π, 0).
We realize the logical Hadamard gate HL = H1H2H3H4H5H6H7 by a collective local Y

rotation, followed by single-ion Z-rotations: HL =
∏7

i=1 U
(i)
Z (π)U(−π/2, π/2). Note that, in

principle, for some input states and at the end of sequences of encoded Clifford gates, directly
before the fluorescence measurement in the computational (Z) basis, the application of the laser
pulses to physically realize the Z rotations on all ions could be omitted, as they would (ideally)
not change the logical state and measurement outcomes. However, during the time it takes to
apply the pulses to the ions, the encoded logical qubit will be exposed to decoherence, and fur-
thermore the addressed pulses are associated with small addressing errors due to cross-talk with
neighboring ions (see Sec. 1.2). Thus, in order to properly take into account these effects and
to study in an un-biased way without additional assumptions the effect of imperfections in the
Clifford operations as elementary building blocks, we always apply the full sequence of listed
laser pulses for all cases where a logicalHL gate operation is executed. We furthermore empha-
size that – in contrast to other quantum codes, such as the 5-qubit code (7), where the logical
Hadamard operation requires a 5-qubit entangling unitary (56) – here, owing to the transversal
character of the logical Hadamard gate operation in the 7-qubit code, the implementation is
achieved using exclusively non-entangling local operations.
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Finally, we implement the logical phase or KL gate in a transversal way. As compared
to other topological codes, it is a distinguishing feature of 2D color codes (embedded in 4-
8-8 lattices, see discussion in Sec. 4 and Fig. S4 for details), that the latter codes enable a
transversal implementation of the KL gate operation (13), not requiring the technique of magic-
state injection via an ancillary qubit (57) nor multi-qubit entangling operations such as, e.g. in
the non-transversal 5-qubit code (7). Note that the logicalKL gate operation is required to fulfill
KLXLK

†
L = YL = iXLZL. Note that for KL = K1K2K3K4K5K6K7, however, one obtains

KLXLK
†
L = −iXLZL; thus KL defined in this way acts as K†L within the code space. This

detail can be readily cured by the redefinition KL :=
∏7

i=1K
†
i . We implement the KL gate

operation by bit-wise Z-rotations, KL =
∏7

i=1 U
(i)
Z (−π/2).

6.2 Preparation of the six eigenstates of the logical operators XL, YL and
ZL

According to the quantum circuits shown in Fig. 3A and B of the main text, we use up to three
Clifford gate operations to prepare the six logical states lying along the axes of the logical Bloch
sphere, starting with the logical qubit initially in state |0〉L. The experimentally generated states,
required logical gate operations, average stabilizer expectation values (〈Si〉 = 1

6

∑3
i=1(〈S

(i)
x 〉+

〈S(i)
z 〉)), and length L of the logical Bloch vector (L =

√
〈XL〉2 + 〈YL〉2 + 〈ZL〉2) for each

state are:

• |0〉L: 〈Si〉 = 0.42(1), L = 0.38(6) – initial encoded state, preparation requires no Clifford
gate operation.

• |1〉L: 〈Si〉 = 0.54(1), L = 0.57(6) – requiring one XL gate operation.

• |−x〉L: 〈Si〉 = 0.49(2), L = 0.58(2) – requiring one XL and one HL gate operation.

• |+x〉L: 〈Si〉 = 0.52(1), L = 0.48(2) – requiring one HL gate operation.

• |+y〉L: 〈Si〉 = 0.39(1), L = 0.42(2) – requiring one HL and one KL gate operation.

• |−y〉L: 〈Si〉 = 0.42(1), L = 0.38(2) – requiring one HL, one KL, and one XL gate opera-
tion.

6.3 Longer sequences of encoded gate operations and decay of coherences
of the logical qubit

After preparing the encoded qubit in the logical state |−y〉L by three Clifford gate operations
(see previous paragraph and sequence shown in Fig. 3B of the main text), we applied up to 10
additional logical XL gate operations to induce flips of the logical qubit between the +1 and
-1 eigenstates of YL. A weighted exponential fit of the form A exp (−ngate/B), with ngate the

17



number of logical gates, into the 〈YL〉 expectation values yields a decay rate of the average
expectation value of 3.8(5)% per gate. This decay is consistent with what we expect from the
accuracy with which collective resonant π-rotations U(π, 0) can be implemented on a string of
7 ions in our setup. A fidelity as high as about 99.6% of a single collective resonant π-rotation
per ion would already lead to a fidelity loss of ≈ 3.8% per gate operation. Here, two error
sources dominate the measured fidelity loss per gate: (i) The relative intensity inhomogeneity
of the global laser beam across the ion string (≈ 1%), lowering the Rabi-frequencies at the ions
located at the edge of the string; and (ii) thermal occupation of higher motional modes, which
leads to decoherence of the global Rabi oscillations (1). The application of the pulses for 10 XL

gate operations is realized in a duration of 200µs. This is a factor of 18 shorter than the 1/e time
of 3.6(6) ms on which logical coherences, as indicated by the expectation value 〈XL〉, of the
qubit initially prepared in |+x〉L, decay (Fig.S9)). The corresponding decay constant has been
obtained by a weighted exponential fit into the 〈XL〉 stabilizer expectation values. Thus, for the
executed circuit of encoded quantum gates, imperfections in the logical Clifford gate operations
dominate over the effect of the bare decoherence of the logical qubit. A more extensive study
of the decoherence properties of the logical qubit, as well as an exhaustive characterization
of the set of encoded Clifford gate operations, e.g. by means of randomized benchmarking
techniques for encoded logical gate operations or by other techniques for quantum process
characterization, lies beyond the scope of the present work and will be the focus of future
research.
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Figure S1: Initialization of the logical qubit: (A) Circuit diagram of the encoding step -
preparation of the 7-qubit system in the logical state |0〉L. The encoding consists of three steps,
where consecutively all three colored (red, green, blue) plaquettes are prepared by applying
an entangling MS gate on the subset of qubits involved in the plaquette under consideration
(e.g. qubits 1, 2, 3 and 4 for the plaquette), starting in the initial product state |1010101〉.
(B) We achieve that qubits, which do not participate in a particular plaquette, are not affected
by the entangling operation by means of spectroscopic decoupling pulses (DEC). Here, their
quantum state is stored in additional electronic levels, by coherently transferring the electronic
population of the S1/2(mj = −1/2) andD5/2(mj = −1/2) qubit states to the Zeeman“storage”
states {D5/2(mj = −5/2), D5/2(mj = −3/2)} by a sequence of up to 9 addressed single qubit
rotations. The working principle of the decoupling and recoupling (REC) pulses is illustrated
in (B) and described in detail in the main text.
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Figure S2: Initialization of the logical qubit (continued). The step-wise encoding of the sys-
tem in the logical state |0〉L is observed by measurements of the 27 = 128 electronic populations
in the computational basis states, as well as by the measured pattern of expectation values of
the six stabilizers {S(1)

z , S
(2)
z , S

(3)
z , S

(1)
x , S

(2)
x , S

(3)
x } together with the logical stabilizer ZL. The

initial product state |1010101〉 is ideally a +1 eigenstate of all three S(i)
z stabilizers and of ZL.

(A) In the first step, GHZ-type entanglement is created between the four qubits belonging to the
first (red) plaquette, which is signaled by the appearance of a non-vanishing, positive-valued
S
(1)
x expectation value. In the subsequent entangling steps acting on the second (blue) (B) and

third (green) (C) plaquette, the system populates dominantly the expected four and eight com-
putational basis states, and the created coherences show up in the non-zero expectation values
of S(2)

x and S(3)
x .
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Figure S3: Experimental pulse sequence for the measurement of the Pauli operator S(1)
z S

(2)
x =

−Z1Y2Y3Z4X5X6, which is one of 128 operators that are measured for the quantitative charac-
terization of encoded logical states.

A
d = 5

d = 11

4-error chain

d = 3

Z̃L = Z1Z4Z7

S(2)
z = Z2Z3Z5Z6

ZL =

Z1Z2Z3Z4Z5Z6Z74
3

2

65 7

1

4
3

2

65 7

1

5-error 
string-net

C

B

D
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Figure S4: 2D color codes constructed on increasingly larger lattices, each hosting one
logical qubit. The displayed examples belong to the class of 2D color codes defined on trian-
gular 4-8-8 lattices - these lattices are three-colorable and each vertex (except those which are
in involved in plaquettes at the boundary) is surrounded by three plaquettes of different color,
with 4, 8, and 8 physical qubits per plaquette, respectively. 2D color codes on 4-8-8 lattices
are of particular interest, as they allow one to implement the K-gate in a transversal way, and
as a consequence, the whole Clifford group of logical gate operations (13). (A) The smallest
lattice involving 7 physical qubits (indicated by white circles) corresponds to the 7-qubit color
code implemented in this work, consisting of three plaquettes of different color, each associated
with a four-qubit S(i)

x and S(i)
z stabilizer. The logical operator ZL = Z1Z2Z3Z4Z5Z6Z7 acts on

all 7 physical qubits of the code layer. Note that in the present visual representation the pla-
quettes are distorted as compared to the more symmetric structure in Fig. 1A of the main text,
however, the quantum code is obviously unchanged. The 7-qubit code structure constitutes the
minimal triangular 2D code structure, from which codes on larger lattices with boundaries (31)
can be constructed (see Fig. S4 C and D). (B) Same code structure as in Fig S4A. The action
of global logical operator ZL in the code space is equivalent to the action of the string operator
Z̃L = Z1Z4Z7 acting on the three qubits (shown as white dots, connected by a black dashed
line) along the right boundary of the triangular lattice. The string operator ZL is obtained from
multiplication of ZL by an element from the stabilizer group, here the S(2)

z stabilizer attached
to the blue plaquette. The 7-qubit color code has a logical distance d = 3, which implies that
the code can correct (d − 1)/2 = 1 error on any of the physical qubits (7). Figure (C) shows
a distance d = 5 color code that can correct up to 2 arbitrary errors that can occur on any of
the 17 physical qubits of the code. For simplicity only the 5 physical qubits (white dots), which
participate in the shown logical operator Z̃L (connected by the dashed line), are shown. Here,
the logical Z̃ string operator involving 5 physical qubits can be obtained by multiplication of the
ZL operator, which acts on all physical qubits, with the Z-type stabilizers of all blue plaquettes.
(D) The figure shows a distance d = 11 color code, able to correct 5 errors. The dashed line
connects 11 qubits participating in one possible representation of the logical Z̃L string opera-
tor. In the left part of the lattice, a scenario is shown where, a sequence of single-qubit errors
of the same type, e.g. bit-flip errors (indicated by red wiggled arrows), affects four physical
qubits (marked by black filled circles). This physical error chain results in an error chain (white
dashed line), where the (equally-colored) plaquettes at the two end points of the chain are in
-1 eigenstates of the corresponding (S(i)

z ) stabilizer operators - these stabilizer violations are
indicated as black-shaded ellipses on the red plaquettes. In color codes, sequences of physical
errors (such as the combination of 5 physical errors shown in the right part of the lattice) can
not only be connected by chains, but also result in error string-nets (dashed white line) that
undergo branching (10, 13–15). In the displayed example, the string-net has three endpoints
terminating at the three plaquettes of different colors, which will display stabilizer violations
(-1 eigenvalues) of the associated plaquette operators in the syndrome measurement.
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Figure S5: Absence of local and presence of global quantum order in the topologically
encoded qubit. Real and imaginary elements of reconstructed 2- and 3-qubit density ma-
trices. Matrix elements of the ideal states are indicated as transparent bars. The respective
encoded logical state is schematically indicated for each sub-figure, together with the subsets
of qubits (marked as yellow filled circles) on which quantum state tomographies have been
performed. Electronic populations D (S) correspond populations in the computational |0〉 (|1〉)
state. (A) Measured 2-qubit density matrix of qubits 2 and 5, clearly indicating the large overlap
(98.3(2)%) with the ideal completely mixed 2-qubit density matrix (incoherent equal-weighted
mixture of the four computational basis states). (B) The displayed reduced 3-qubit density ma-
trix (of qubits 1, 4 and 7) has a quantum state fidelity of 85(2)% with the ideal state, which is
an incoherent equal-weighted mixture of the four 3-qubit basis states |111〉, |001〉, |010〉 and
|100〉. The measured reduced 3-qubit density matrix (of qubits 1, 4 and 7) for the logical qubit
initially prepared in |+x〉L, yields a quantum state fidelity of 83(2)% with the ideal state.
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Figure S6: Simulation of the success rate to identify the right error syndrome for a given
number of measurement cycles ncycles. The success rate converges rapidly towards 100% for
ncycles > 20 measurement cycles, implying that in these cases the error syndromes can be
clearly distinguished and perfectly associated to the induced physical single-qubit error. The
number of Monte-Carlo samples used to determine each data point is 5000.
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Figure S7: Table of the recorded error syndromes for the logical qubit initially prepared in the
encoded state |0〉L, and subsequently exposed to all 21 single-qubit errors. Note that the error
syndromes induced by a single qubit phase flip Z on qubit 1 or qubit 4 are indistinguishable
from the error syndromes caused by two Z errors on qubits 2 and 5 (see Fig. 2E in the main
text) or on qubits 3 and 5 (see Fig. 2F in the main text).
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Figure S8: Quantum error correction using the 7-qubit code. (A) (i) Encoding of a quantum
state in 7 physical qubits is followed by (ii) QND measurements of the set of α = X or α = Z-
type stabilizer operators (generators) via 3 ancillary qubits. The collection of measurement
outcomes (the error syndrome) is used to deduce the most probable pattern of physical errors.
Note that the set of stabilizers can also be measured sequentially using a single ancillary qubit,
which is reset after the measurement of each stabilizer. (B) Logical recovery probability for a
quantum state stored in an unprotected, single qubit (black solid line) and using the 7-qubit code
under ideal (blue dashed-dotted line) and non-ideal (red dashed line) conditions, as a function of
the single-qubit error rate p. The 7-qubit code offers under ideal conditions increased protection
– as compared to a non-encoded qubit – provided that the single-qubit error rate p is not too
large (p . 1/21). Under more realistic conditions, where errors in the encoding (i) and the
QND measurement of stabilizers (ii) are taken into account (see text for details), the 7-qubit
code starts to offer improved protection – as compared to single physical qubits – in a finite
region of p-values, once the overall fidelity for the encoding and syndrome measurement is
larger than about 98.8%. For completeness, the inset shows the recovery probabilities over the
full range 0 ≤ p ≤ 1 of single-qubit error rates.
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Figure S9: Characterization of the coherence of the logical qubit, initially prepared in the XL

eigenstate |+x〉L. A measurement of the decay of the XL expectation value (black circles) as a
function of time yields a 1/e-time of 3.6(6)ms, while the ZL expectation value (blue diamonds)
remains zero as expected (on average 0.001(8).
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qubit 1 2 3 4 5 6 7

pulses 19 21 0 21 25 15 7

ion 7 2 4 6 1 3 5

Table S2. Encoding of physical qubits along the string of seven ions. The table shows the
number of addressed laser pulses each physical qubit is exposed to in the course of the encoding
sequence, as shown in Fig. S1A. In order to minimize the effect of residual errors due to cross-
talk with neighboring ions during spectroscopic decoupling and recoupling pulses, we distribute
the physical qubits along the chain in such a way that the physical qubits exposed to many (few)
addressed laser pulses are hosted by ions at the edge (center) of the chain.
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