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Highlights

• The Method of Multiscale Virtual Power is used to derive an RVE-
based multiscale model of second-order continua.

• Body forces are considered in the formulation of the problem.

• The resulting model relies crucially on kinematical hypotheses and a
Principle of Multiscale Virtual Power.

• Homogenisation formulae and the RVE equilibrium problems with kine-
matical constraints are consistently derived by means of variational
arguments.

• Homogenised force- and stress-like quantities are identified as reactions
to postulated RVE kinematical constraints, and characterized exclu-
sively in terms of RVE boundary data.
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aLNCC/MCTI Laboratório Nacional de Computação Cient́ıfica, Av. Getúlio Vargas 333,
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Abstract

A multi-scale model, based on the concept of Representative Volume Ele-
ment (RVE), is proposed linking a classical continuum at RVE level to a
macro-scale strain-gradient theory. The multi-scale model accounts for the
effect of body forces and inertia phenomena occurring at the micro-scale.
The Method of Multiscale Virtual Power recently proposed by the authors
drives the construction of the model. In this context, the coupling between
the macro- and micro-scale kinematical descriptors is defined by means of
kinematical insertion and homogenisation operators, carefully postulated to
ensure kinematical conservation in the scale transition. Micro-scale equilib-
rium equations as well as formulae for the homogenised (macro-scale) force-
and stress-like quantities are naturally derived from the Principle of Multi-
scale Virtual Power – a variational extension of the Hill-Mandel Principle that
enforces the balance of the virtual powers of both scales. As an additional
contribution, further insight into the theory is gained with the enforcement
of the RVE kinematical constraints by means of Lagrange multipliers. This
approach unveils the reactive nature of homogenised force- and stress-like
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quantities and allows their characterisation of the homogenised stress-like
quantities exclusively in terms of RVE boundary data in a straightforward
manner.

Keywords: second order theory, strain gradient theory, Principle of
Multiscale Virtual Power, RVE, Hill-Mandel Principle, homogenisation

1. Introduction

The development of second gradient theories has long been an active
field of research aimed at the improvement of the predictive capabilities of
mechanical models, beyond classical continuum mechanics. Such theories are
developed through the enrichment of the kinematical description of continua
which, in turn, yields a more complex structure of dual stress-like entities,
requiring more complex constitutive models to describe the phenomenological
behavior of more complex materials.

The literature in the field is vast and it is not the goal of the present work
to discuss every aspect of the theory itself. The interested reader can refer to
[2, 3, 16, 18, 17, 19, 22, 24], which address various theoretical and practical
aspects of such formulations.

In recent years, multi-scale theories have been evolving to deal with in-
creasingly complex materials, by linking micro-continuum mechanisms with
macro-continuum theories in a myriad of contexts and applications. Partic-
ularly in the field of second gradient theories, the works by Kouznetsova et
al. [9, 10] have provided a first link between classical micro-scale mechan-
ics and second gradient macro-scale mechanics by means of the concept of
Representative Volume Element (RVE). Similar work was later reported by
Larson et al. in [11, 12], and also by Luscher et al. in [13, 14]. The present
contribution is placed in the context of these works.

Despite such significant developments, there is still plenty of room to
assess the real capabilities of muti-scale models, as well as to better under-
stand the underlying fundamental model hypotheses and their associated
consequences. Such an understanding can be achieved with the help of an
appropriate variational framework. In fact, a suitable variational structure
should allow a rational analysis of the model by means of a purely kinemat-
ical approach. That is, the definition of the kinematics at both (macro- and
micro-) scales and the way in which they are coupled have a well-defined
effect on the micro-scale (RVE) equilibrium problem, as well as on the ho-
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mogenisation rules for the dual (force- and stress-like) quantities conjugated
to the adopted kinematical descriptors. This issue deserves further discus-
sions at present. For example, the kinematical constraints for the micro-scale
fluctuation fields proposed in [9] differ from that of [13]. Therefore, a ques-
tion naturally arises as to the possible equivalence and consistency of these
boundary conditions.

Our goal in this paper, and its major novelty, is to provide a rational
justification for and a rigorous derivation of the multi-scale formulation of
a finite strain second-gradient macro-continuum mechanical theory arising
from a classical first-order continuum theory at the micro-scale featuring
body forces and inertia phenomena. In this context, the formulation is theo-
retically examined in detail and the consequences of the adopted kinematical
assumptions are fully explored in the light of the so-called Method of Multi-
scale Virtual Power (MMVP) recently proposed by the authors in [1].

The MMVP can be seen as an extension, to multi-scale problems, of the
Method of Virtual Power developed in [6], and provides a well-defined, struc-
tured framework to set the mechanical foundations of the multi-scale model
addressed in the present paper. The MMVP requires firstly the definition of
the kinematics of the macro- and micro-scales, as well as the way in which
the two kinematics are linked. Then, through mathematical duality argu-
ments, it is possible to identify the force- and stress-like quantities dual to
the kinematical descriptors at both scales. Subsequently, the Principle of
Multiscale Virtual Power (PMVP) also proposed in [1] is used as a general-
isation of the Hill-Mandel Principle [7, 15] to provide the physical coupling
between the two scales. As a variational extension of the classical Hill-Mandel
principle, the PMVP postulates that the total virtual powers produced by
duality pairings at both scales are balanced. As described in [1] in a rather
general context, and demonstrated here in the formulation of the present
higher-order multi-scale formulation, the PMVP yields a complete charac-
terisation of the model, comprising (i) the RVE equilibrium problem with
consistent boundary conditions for the micro-scale fluctuation fields, and (ii)
the homogenisation formulae for body force- and stress-like quantities dual
to the macro-scale kinematical descriptors. In addition, as a complementary
novel aspect for the multi-scale analysis, an augmented Lagrange multiplier
formulation of the PMVP allows a straightforward characterisation of the ho-
mogenised macro-scale generalised stresses which can be expressed in terms
RVE boundary data alone – in line with the idea postulated by Hill in his
landmark work [7].

4
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Fundamentally, the theoretical framework based on the MMVP employed
in the present work yields a multi-scale model that in some aspects differs
from, and in many cases generalises, those available in previous contributions,
such as [9, 10, 13, 14]. The specific differences between the present approach
and the existing literature will be highlighted throughout the manuscript,
and we should stress that the definition of the micro-scale kinematics in the
present paper leads to different kinematical constraints for the micro-scale
fluctuation fields. Since the RVE mechanical equilibrium is subordinated to
these constraints, homogenisation of dual quantities will ultimately differ.
These issues are essential for a deeper understanding of the resulting multi-
scale model and will be discussed in detail throughout the text.

The paper is organised as follows. Section 2 presents fundamental as-
pects of the methodology and basic ingredients of the multi-scale problem.
The macro-scale second gradient mechanical model is reviewed in Section 3.
Kinematical relations coupling both scales are presented in Section 4, and
the corresponding Principle of Multiscale Virtual Power is formulated in Sec-
tion 5. In Section 6, the RVE equilibrium equations as well as the homogeni-
sation formulae for the macro-scale force- and stress-like quantities are de-
rived from the PMVP by means of straightforward variational arguments.
A discussion on the reactive nature of such homogenised quantities is also
presented. Tangent operators for the present model are derived in Section 7.
The paper closes in Section 8, where a discussion on the model hypothe-
ses and their corresponding consequences is presented together with some
concluding remarks.

2. Preliminaries

2.1. Method of Multiscale Virtual Power (MMVP)

In this work we employ the so-called Method of Multiscale Virtual Power
(MMVP) proposed in [1]. The method relies on three fundamental principles:

• Principle of Kinematical Admissibility : whereby the macro- and micro-
kinematics are properly defined and the link between them is estab-
lished by means of suitable assumptions concerning the procedures of
kinematical insertion (i.e. how macro-scale kinematical quantities con-
tribute to the micro-scale kinematics) and kinematical homogenisation
(i.e. how micro-scale kinematical quantities are averaged in some sense
to produce corresponding macro-scale counterparts).
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• Mathematical duality : which allows a straightforward identification of
force- and stress-like quantities compatible with the theory as power-
conjugates of the kinematical descriptors adopted in each scale.

• The Principle of Multiscale Virtual Power (PMVP): a variational gen-
eralisation of the Hill-Mandel Principle of Macrohomogeneity, from
which the micro-scale equilibrium problem, as well as the homogenisa-
tion formulae for macro-scale force- and stress-like quantities, can be
univocally derived by means of straightforward variational arguments.

2.2. Notation

The indices M and µ are used to denote quantities belonging to the
macro- and micro-scale, respectively. Then, the macro- and micro-scale ref-
erence domains (open sets in R3) are denoted, respectively, ΩM and Ωµ, with
corresponding boundaries ∂ΩM and ∂Ωµ. Macro- and micro-scale reference
coordinates are denoted xM and xµ. Let uM and uµ be the macro- and
micro-scale displacement vector fields, respectively. The reference gradient
operators are denoted ∇M in the macro-scale and ∇µ in the micro-scale, with
corresponding divergence operators divM and divµ.

Second-order kinematics is adopted at the macro-scale. Hence, the kine-
matical descriptors that play a role in the characterisation of the macro-scale
problem are uM , ∇MuM and ∇M∇MuM . Each point xM of the macro-scale
is associated to a Representative Volume Element (RVE) at the micro-scale.
Within the micro-scale, only a first-order (classical) kinematics is consid-
ered. Hence, the kinematical descriptors of the micro-scale are simply uµ
and ∇µuµ.

Finally, a super-imposed hat (̂·) is used in variational equations to de-
note kinematically admissible virtual actions in both scales. Tensor algebra
operations (some of them non-conventional) are used throughout the paper
and are represented using intrinsic tensor notation. These are defined in
Appendix A.

Inertia effects will be considered throughout the manuscript, and (̈·) will
be used to denote the second time derivative. It is important to remark that
the multi-scale analysis considers that the time-scale is the same for both
spatial scales. In addition, and for the sake of brevity, hereafter it will be
assumed that the variational equations are valid ∀t ∈ [0, T ], and that proper
initial conditions are defined at t = 0.

6
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3. Macro-scale high-order formulation

At the macro-scale, a high-order model of the continuum body including
inertia effects is formulated by means of the following (equilibrium) varia-
tional problem: find a displacement field uM ∈ UM such that

∫

ΩM

[
aM · ûM + AM · ∇M ûM + AM · ∇M∇M ûM

]
dΩM

+

∫

ΩM

[
SM · ∇M ûM + RM · ∇M∇M ûM − bM · ûM

]
dΩM =

∫

∂ΩNM

tM · ûM d∂ΩN
M +

∫

∂ΩNM

rM ·
∂ûM
∂n

d∂ΩN
M +

∫

ΓNM

sM · ûM dΓNM

∀ûM ∈ VM , (1)

where SM is a second order non-symmetric stress tensor, dual to the first gra-
dient of the displacement and RM is a third order stress tensor (momentum
tensor) dual to the second gradient of the displacement and bM is a non-
inertial force per unit volume. Notice that we have taken into account the
virtual power exerted by the inertia vector aM and by the inertia high order
tensors AM and AM . In the context of a mono-scale mechanics with second
order inertia, these objects take the form aM = ρM üM , AM = ρM l

2
M1∇M üM

and AM = ρM l
4
M2∇M∇M üM , where ρM is the material density and lM1 and

lM2 are length scale parameters for high order inertia effects [20, 21]. We can
understand aM as being an inertial force per unit volume, and AM and iner-
tial stress tensor. Also, the linear manifold UM , of kinematically admissible
displacement fields, is defined as

UM =

{
v ∈ H2(ΩM), v|∂ΩDM

= ūM ,
∂v

∂n

∣∣∣∣
∂ΩDM

= w̄M , v|ΓDM = ŭM

}
, (2)

and, therefore, the space of kinematically admissible virtual actions ûM is

VM =

{
v ∈ H2(ΩM), v|∂ΩDM

= 0,
∂v

∂n

∣∣∣∣
∂ΩDM

= 0, v|ΓDM = 0

}
. (3)

Here we have considered a Dirichlet boundary ∂ΩD
M and a Neumann ∂ΩN

M

in which there is, for simplicity, a unique edge ΓM , which is divided into
Neumann and Dirichlet counterparts ΓNM and ΓDM (lines in 3D, points in 2D),

7
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respectively (see Figure 1). Essential boundary conditions are given by the
displacement ūM , the rotation w̄M and the displacement ŭM at the edge ΓDM .
For simplicity, we have assumed that all kinematic variables are prescribed
on the Dirichlet boundary (ūM and w̄M over ∂ΩD

M and ŭM over ΓDM), and the
Neumann boundary is the complementary part. Clearly, ∂ΩM = ∂ΩN

M ∪∂ΩD
M

and ΓM = ΓDM ∪ ΓNM ⊂ ∂ΩM . The operator ∂
∂n

denotes the derivative in the
direction of the outward unit vector nM normal to ∂ΩM . The problem setting
is schematically illustrated in Figure 1.

Macro-scale

Classical kinematics

Micro-scale

Zoom

Prescribed

,

Prescribed

Prescribed

Prescribed

Insertion

Homogenization

(Heterogeneous RVE)

Second order kinematics

( , )

( , )

Figure 1: Problem setting for the multi-scale model.

The variational equation (1) can be solved once the non-inertial force
per unit volume bM , the force per unit surface tM , the moment per unit
surface rM and the force per unit length sM are specified, and appropriate
constitutive relations for SM and RM are given, i.e.

SM = SM(∇MuM ,∇M∇MuM), (4)

RM = RM(∇MuM ,∇M∇MuM). (5)

where, for the sake of notational simplicity, we shall focus on history-independent
materials, with SM andRM denoting constitutive functionals for SM and RM ,
respectively. We remark, however, that the developments presented here can
be extended in a straightforward manner to consider history-dependent be-
havior.

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In the context of multi-scale analysis, the variational problem (1) can be
written simply as follows: find a displacement field uM ∈ UM such that
∫

ΩM

[
PM · ∇M ûM + QM · ∇M∇M ûM − fM · ûM

]
dΩM =

∫

∂ΩNM

tM · ûM d∂ΩN
M +

∫

∂ΩNM

rM ·
∂ûM
∂n

d∂ΩN
M +

∫

ΓNM

sM · ûM dΓNM

∀ûM ∈ VM , (6)

where we have grouped the power exerted by quantities of the same nature
introducing equivalent objects, which for the classical high order theory [20,
21] results

fM = bM − ρM üM , (7)

PM = SM + ρM l
2
M1∇M üM , (8)

QM = RM + ρM l
4
M2∇M∇M üM . (9)

That is, the vector fM and the tensors PM and QM , have inertial and non-
inertial attributes.

Remark 1. In contrast to the classical phenomenological constitutive set-
ting, in the context of the present multi-scale formulation the force fM , as
well as the functionals for the stress-like quantities PM and QM , will be de-
fined by means of homogenisation formulae involving fields defined over the
micro-scale domain. Thus, the multi-scale model will naturally account for
contributions from micro-scale level inertia effects.

The Euler-Lagrange equations associated to the variational equation (6)
are obtained by means of the following procedure. First, integration by parts
in (6) is required
∫

ΩM

[
− divM PM · ûM + divM divM QM · ûM − fM · ûM

]
dΩM

+

∫

∂ΩNM

PMnM · ûM d∂ΩN
M −

∫

∂ΩM

(divM QM)nM · ûM d∂ΩN
M

+

∫

∂ΩNM

QMnM ·∇M ûM d∂ΩN
M =

∫

∂ΩNM

tM · ûM d∂ΩN
M +

∫

∂ΩNM

rM ·
∂ûM
∂n

d∂ΩN
M

+

∫

ΓNM

sM · ûM dΓNM ∀ûM ∈ VM . (10)

9
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Equation (10) can be reorganised, yielding

∫

ΩM

[
− divM PM + divM divM QM − fM

]
· ûM dΩM

+

∫

∂ΩNM

([
PM − divM QM

]
nM − tM

)
· ûM d∂ΩN

M

+

∫

∂ΩNM

QMnM ·∇M ûM d∂ΩN
M−

∫

∂ΩNM

rM ·
∂ûM
∂n

d∂ΩN
M−

∫

ΓNM

sM · ûM dΓNM = 0

∀ûM ∈ VM . (11)

Now note that, given a vector v and the surface ∂ΩN
M with normal nM , we

can decompose the gradient ∇Mv as

∇Mv = (∇∂
Mv)ΠM +

∂v

∂n
⊗ nM , (12)

where ΠM = I − nM ⊗ nM is the orthogonal projection operator onto the
tangent plane at the considered point of the surface ∂ΩN

M , and ∇∂
M stands

for the surface gradient operator (partial derivative operator with respect to
the surface coordinates). Then, the product QMnM · ∇M ûM is equivalently
written as

QMnM · ∇M ûM = QMnM ·
[
(∇∂

M ûM)ΠM +
∂ûM
∂n
⊗ nM

]
=

(QMnM)ΠM · ∇∂
M ûM + (QMnM)nM ·

∂ûM
∂n

. (13)

Integrating by parts over the surface ∂ΩN
M the third term on the left hand

side of (11), we obtain

∫

∂ΩNM

QMnM · ∇M ûM d∂ΩN
M =

∫

∂ΩNM

(QMnM)ΠM · ∇∂
M ûM d∂ΩN

M +

∫

∂ΩNM

(QMnM)nM ·
∂ûM
∂n

d∂ΩN
M =

−
∫

∂ΩNM

div∂M
[
(QMnM)ΠM

]
· ûM d∂ΩN

M +

∫

ΓNM

J(QMnM)mMK · ûM dΓNM

+

∫

∂ΩNM

(QMnM)nM ·
∂ûM
∂n

d∂ΩN
M , (14)

10
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where mM = τM ×nM , τM is the unit vector tangent to the edge ΓNM , div∂M
is the surface divergence operator and J•K denotes the jump of •.

Replacing (14) into (11) yields

∫

ΩM

[
− divM PM + divM divM QM − fM

]
· ûM dΩM

+

∫

∂ΩNM

([
PM − divM QM

]
nM − tM

)
· ûM d∂ΩN

M

−
∫

∂ΩNM

div∂M
[
(QMnM)ΠM

]
· ûM d∂ΩN

M

+

∫

ΓNM

(
J(QMnM)mMK− sM

)
· ûM dΓNM

+

∫

∂ΩNM

[
(QMnM)nM − rM

]
· ∂ûM
∂n

d∂ΩN
M = 0

∀ûM ∈ VM . (15)

Finally, by using standard variational arguments we obtain the Euler-Lagrange
equations associated to the variational equation (6)

− divM PM + divM divM QM = fM in ΩM , (16)

[
PM − divM QM

]
nM − div∂M

[
(QMnM)ΠM

]
= tM on ∂ΩN

M , (17)

(QMnM)nM = rM on ∂ΩN
M , (18)

J(QMnM)mMK = sM on ΓNM , (19)

which, together with the following essential boundary conditions,

uM = ūM on ∂ΩD
M , (20)

∂uM
∂n

= w̄M on ∂ΩD
M , (21)

uM = ŭM on ΓDM , (22)

fully characterise the boundary value problem associated to the variational
principle (6).

Note that by introducing (7), (8) and (9) in (16), (17), (18) and (19),
the equilibrium equations for high order continua with inertia effects are
recovered. The reader is referred to [21] for further details.

11
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In what follows, we denote GM = ∇MuM , GM = ∇M∇MuM and, ac-
cordingly, we define ĜM = ∇M ûM and ĜM = ∇M∇M ûM . Note that the
third-order tensor GM is such that GM = GT

M (symmetric in the last two
indices, see Appendix A for details).

4. Multi-scale kinematics

In the context of the Method of Multiscale Virtual Power proposed in
[1], the definition of the kinematics of the macro- and micro-scales, as well
as how they are linked, is the only degree of arbitrariness one has in devel-
oping a multi-scale model. Once such kinematical relations are postulated,
mathematical duality will define the associated force- and stress-like quanti-
ties compatible with each scale of the model, and the Principle of Multiscale
Virtual Power will univocally lead to the RVE equilibrium equations as well
as to the homogenisation relations linking the micro- and macro-scale force-
and stress-like quantities. The kinematics of the macro-continuum has al-
ready been established in Section 3. Here we shall proceed to postulate the
kinematics of the micro-scale as well as the operations of kinematical inser-
tion and kinematical homogenisation, that link the kinematics of the two
scales. These will completely characterise the kinematical description of the
proposed multi-scale model.

4.1. Kinematical insertion

Without loss of generality, we consider the origin of the coordinate system
of an RVE associated to a point xM of the macro-scale to be located at the
geometric center of the micro-scale domain Ωµ, that is

∫

Ωµ

xµ dΩµ = 0. (23)

Kinematical insertion [1] defines how the macro-scale kinematics at a
given point of the macro-continuum contributes to the kinematics of the
micro-scale. In the present case, the operation of insertion of the macro-
scale kinematical descriptors – the triad (uM ,GM ,GM) – into the micro-scale
kinematics is postulated as follows:

uµ = uM + GMxµ +
1

2
GM [(xµ ⊗ xµ)− J] + ũµ, (24)

12
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where J is the RVE second-order moment of volume tensor defined by

J =
1

|Ωµ|

∫

Ωµ

xµ ⊗ xµ dΩµ, (25)

and ũµ is named the micro-scale displacement fluctuation field.
Note that, by construction, J is an invertible second-order tensor. The

reason for the tensor J to take part in expression (24) will be clear later. For
the moment, we anticipate that the macro-scale kinematics inserted this way
allows (along with the kinematically admissibility concept of Section 4.3) the
conservation of kinematical quantities in the multi-scale transition process.

It is important to highlight that in expansion (24) the triad (uM ,GM ,GM)
represents the value of the macro-scale fields uM , ∇MuM and ∇M∇MuM
at a point xM of the macro-scale, associated to a given RVE, that is to
say (uM ,∇MuM ,∇M∇MuM)|xM = (uM ,GM ,GM). Thus, (uM ,GM ,GM) ∈
R3×R3×3×(R3×3×3)S, where (R3×3×3)S denotes the set of third order matrices
satisfying AT = A in the sense defined in Appendix A.

Remark 2. The decomposition of the micro-scale displacement field uµ con-
sidered in (24) differs from the ones proposed in [9, 10, 13, 14] since in the
present work the contribution of the macro-scale displacement uM is added as
it will be fundamental for the characterisation of the external power exerted
per unit volume that must be considered at the RVE level when general micro-
scale body and inertia forces are present. This was actually not required in
[9, 10] because external body forces were not considered in the micro-scale
analysis presented by these authors. In [13, 14], however, such forces were
incorporated in the analysis, but the macro-scale displacement contribution
to the micro-scale displacement was not accounted for. Another difference
between the present paper and these contributions is the form of the second-
order term. While in [9, 10, 13, 14] the second-order term features the form
1
2
GM(xµ⊗xµ), in (24) we have incorporated the term −1

2
GMJ (not present in

previous contributions) which is fundamental for a correct characterisation
of the homogenised part of the micro-scale external power per unit volume.
In fact, this contribution to the homogenisation is obtained in duality with
the constant component of the micro-scale displacement field uµ.

4.2. Kinematical homogenisation

The operations of kinematical homogenisation define how macro-scale
kinematical descriptors are related to averages (in some sense) of micro-scale
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kinematical descriptors. In the present context, we postulate that the ho-
mogenisation of the micro-scale kinematical fields is given by the following
formulae:

• Homogenisation related to the macro-scale displacement vector

uM =
1

|Ωµ|

∫

Ωµ

uµ dΩµ. (26)

• Homogenisation related to the first gradient of the macro-scale dis-
placement vector

GM =
1

|Ωµ|

∫

Ωµ

∇µuµ dΩµ. (27)

• Homogenisation related to the second gradient of the macro-scale dis-
placement vector

GM =
1

|Ωµ|

∫

Ωµ

[(∇µuµ ⊗ xµ) ◦ J−1]S dΩµ, (28)

where the (·)S and (· ◦ ·) operations are defined in Appendix A.

We remark that the postulated averaging relations (26), (27) and (28)
guarantee the conservation of kinematical quantities. In the case that the
micro-scale kinematics is exclusively described in terms of the macro-scale
quantities, i.e. ũµ = 0 in (24), it is a simple exercise to prove that (26), (27)
and (28) hold trivially. This sense of kinematical conservation implies that
if a certain macro-scale kinematical quantity is inserted into the micro-scale
domain, the same quantity must be retrieved by the homogenisation process.
As a result, we shall see that the fluctuation of the micro-scale displacement
field can in general be non-zero, but cannot be entirely arbitrary. That is, ad-
ditional constraints must be imposed upon displacement fluctuation fields in
order to preserve the macro-scale kinematics in the homogenisation process.
This motivates the introduction of the so-called kinematical admissibility re-
quirement, explained below.

Remark 3. The conservation of kinematical quantities is a novel concept
introduced in the present framework that establishes the need for homogenisa-
tion rules connecting uM , GM and GM to the micro-scale field uµ. While av-
eraging relation (27) is standard and has been employed in [9, 10, 13, 14], (26)
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and (28) are postulated here in order to establish such a connection between
macro- and micro-scale kinematical fields. Differently from the aforemen-
tioned papers, in the present approach the resulting kinematical micro-scale
level constraints are entirely dependent on the definition of these averaging
relations.

4.3. Kinematical admissibility

Following the above discussion, we class as kinematically admissible all
micro-scale displacement fields uµ ∈ Vµ, where

Vµ =

{
v ∈ H1(Ωµ),

1

|Ωµ|

∫

Ωµ

v dΩµ = uM ,
1

|Ωµ|

∫

Ωµ

∇µv dΩµ = GM ,

1

|Ωµ|

∫

Ωµ

[
(∇µv ⊗ xµ) ◦ J−1

]S
dΩµ = GM

}
, (29)

is the linear manifold of kinematically admissible micro-scale displacements.
The kinematical admissibility concept can be expressed equivalently in terms
of the fluctuation of the micro-scale displacement field ũµ as follows.

First, by introducing (24) into the right hand side of (26), and using (23),
we readily obtain

uM =
1

|Ωµ|

∫

Ωµ

[
uM + GMxµ +

1

2
GM [(xµ ⊗ xµ)− J] + ũµ

]
dΩµ =

uM +
1

|Ωµ|

∫

Ωµ

ũµ dΩµ. (30)

Then, (26) is satisfied provided that
∫

Ωµ

ũµ dΩµ = 0. (31)

Next, by replacing (24) in (27), we get

GM =
1

|Ωµ|

∫

Ωµ

[
GM+GMxµ+∇µũµ

]
dΩµ = GM+

1

|Ωµ|

∫

Ωµ

∇µũµ dΩµ. (32)

Then, (27) is satisfied provided that
∫

Ωµ

∇µũµ dΩµ = 0, (33)

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

or, equivalently, ∫

∂Ωµ

ũµ ⊗ nµ d∂Ωµ = 0, (34)

where nµ is the outward unit vector normal to ∂Ωµ. Further, by introducing
(24) into (28), and using (23) and (25), we obtain

GM =
1

|Ωµ|

∫

Ωµ

[
((GM + GMxµ +∇µũµ)⊗ xµ) ◦ J−1

]S
dΩµ =

GM +
1

|Ωµ|

∫

Ωµ

[
(∇µũµ ⊗ xµ) ◦ J−1

]S
dΩµ. (35)

Then, (28) is satisfied provided that

∫

Ωµ

[
(∇µũµ ⊗ xµ) ◦ J−1

]S
dΩµ = 0. (36)

For any vector v, and recalling that J−1 is symmetric, the following holds

(∇µv ⊗ xµ) ◦ J−1 = (∇µv ⊗ (J−1xµ)) =

(∇µ((J−1xµ)⊗ v))t − v ⊗ (J−1∇µxµ)T =

(∇µ((J−1xµ)⊗ v))t − v ⊗ J−1. (37)

Hence, from (36), and bearing in mind that (31) must hold, we obtain

∫

Ωµ

[
(∇µũµ ⊗ xµ) ◦ J−1

]S
dΩµ =

∫

Ωµ

[
(∇µ((J−1xµ)⊗ ũµ))t − ũµ ⊗ J−1

]S
dΩµ =

∫

Ωµ

[
(∇µ((J−1xµ)⊗ ũµ))t

]S
dΩµ −

[(∫

Ωµ

ũµ dΩµ

)
⊗ J−1

]S
=

∫

Ωµ

[
(∇µ((J−1xµ)⊗ ũµ))t

]S
dΩµ =

∫

∂Ωµ

[
((J−1xµ)⊗ ũµ ⊗ nµ))t

]S
d∂Ωµ =

∫

∂Ωµ

[
ũµ ⊗ nµ ⊗ (J−1xµ)

]S
d∂Ωµ = 0, (38)

where (·)t is a transpose operation defined in Appendix A.
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Then, (36) can be equivalently expressed as a boundary constraint as
follows: ∫

∂Ωµ

[
(ũµ ⊗ nµ ⊗ xµ) ◦ J−1

]S
d∂Ωµ = 0. (39)

It is importante to highlight that in the derivation of (39) we have made use
of the fact that (31) is satisfied. That is, constraint (36) can be written as a
boundary constraint only if the field ũµ has zero mean value over the entire
micro-scale domain.

Remark 4. It is important to point out that the derivation of the bound-
ary conditions comes naturally as a consequence of the conservation of ho-
mogenised kinematic quantities in the transition between scales. A different
approach to obtain boundary conditions for a high-order model is proposed in
[13, 14], where ortogonality conditions are postulated to derive independent
boundary constraints at the RVE level.

Remark 5. Comparing to previous works, the kinematical constraint given
by (31) was not considered in [9, 10]; but it was acknowledged in [13, 14]
for the displacement fluctuation field. Nonetheless, it is not clear in the
latter works whether the constraint (31) is effectively considered for the ad-
missible variations of the fluctuation field in the principle of virtual power.
In turn, constraint (36), which leads to (39), is completely new. Specifi-
cally, constraint (31) allows a correct characterisation, through duality, of
homogenised forces; and, constraint (39) provides a general form to ensure
the conservation of second-order kinematics in the transition between scales.
In [9, 10] the argument to construct a boundary condition resembling (39) is
similar to the one employed here; however, it is not the same, because for the
derivation of boundary conditions from these constraints it is necessary to
make use of (31), which, as already mentioned, is not considered in [9, 10].
Differently, the criterion to construct boundary conditions in [13, 14] is based
on orthogonality arguments, which yield different kinematical constraints.

Hence, the micro-scale displacement uµ, given by (24), is kinematically
admissible for a given triad (uM ,GM ,GM), if it satisfies (31), (34) and (39),
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that is if ũµ ∈ Ṽµ, where

Ṽµ =

{
v ∈ H1(Ωµ),

∫

Ωµ

v dΩµ = 0,

∫

∂Ωµ

v ⊗ nµ d∂Ωµ = 0,

∫

∂Ωµ

[
(v ⊗ nµ ⊗ xµ) ◦ J−1

]S
d∂Ωµ = 0

}
. (40)

Note that space Ṽµ can be equivalently defined using only volume constraints:

Ṽµ =

{
v ∈ H1(Ωµ),

∫

Ωµ

v dΩµ = 0,

∫

Ωµ

∇µv dΩµ = 0,

∫

Ωµ

[
(∇µv ⊗ xµ) ◦ J−1

]S
dΩµ = 0

}
. (41)

Clearly, the set of constraints (31), (34) and (39) that defines Ṽµ in (40) is
equivalent to the set (31), (33) and (36) that defines Ṽµ in (41). In fact,
these two sets of constraints over the fluctuation field ũµ are equivalent to
the original relations between macro-scale and micro-scale kinematical de-
scriptors given by the set of equations (26), (27) and (28) which define the
linear manifold Vµ in (29). That is, assuming that uµ is expanded as in (24),
then uµ ∈ Vµ if and only if ũµ ∈ Ṽµ.

Remark 6. The complete characterisation of the space of admissible dis-
placement fluctuation fields, Ṽµ, provides the kinematical foundation upon
which the principle of multi-scale virtual power is to be regarded. That is,
the constraints that play a role in (40) (or, equivalently, in (41)) inevitably
affect the micro-scale mechanical equilibrium problem. Therefore, since novel
kinematical constraints are derived in the present work, they will result in a
novel multi-scale model.

Remark 7. The space Ṽµ introduced above is the space of minimally con-
strained displacement fluctuations such that the kinematical relations between
both scales are satisfied. Any subspace, Ṽ∗

µ ⊂ Ṽµ can be adopted as a kinemat-
ically admissible space of displacement fluctuations and should serve, in this
sense, to derive more kinematically constrained multi-scale submodels (e.g.
models based on the assumption of null RVE kinematical boundary conditions
for the displacement fluctuation field, or on suitable generalisations to this
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high order setting of periodic boundary constraints). This choice of “working”
space of kinematically admissible displacement fluctuations is rather arbitrary
and, if a realistic model is to be derived, should be made so as to capture the
real kinematics of the physical problem in question as closely as possible.

Finally, it should be noted that, since all the kinematical constraints on ũµ
are homogeneous, it follows that the corresponding virtual actions, denoted
ˆ̃uµ, satisfy ˆ̃uµ ∈ Ṽµ.

5. Principle of Multiscale Virtual Power (PMVP)

Having completely characterised the kinematics of the multi-scale model
in question, we shall now proceed to state the Principle of Multiscale Virtual
Power – one of the pillars of the multi-scale variational framework devel-
oped in [1]. This principle effectively postulates that the total virtual power
is conserved across scales and, by means of standard variational arguments,
leads univocally to the homogenisation formulae for the relevant force- and
stress-like quantities, as well as to the micro-scale equilibrium equations ap-
propriate for the present model.

For the sake of completeness, and to gain further insight into the theory,
two equivalent forms of this principle are discussed here, namely the Primal
Variational Statement and the Lagrange Multiplier Variational Statement ,
presented respectively in Sections 5.1 and 5.2.

5.1. Primal Variational Statement

This version of the Principle of Multiscale Virtual Power is established
by considering that the kinematical constraints, discussed in Section 4, are
embedded in the definition of the kinematical functional space Ṽµ defined by
(40) or (41).

Let us firstly introduce the total virtual power at a macro-scale point xM ,
according to the macro-scale problem (1). The total virtual power is a linear
functional of the triad (ûM , ĜM , ĜM) whose form is

P tot
M,xM

(ûM , ĜM , ĜM) = |Ωµ|
(
PM · ĜM + QM · ĜM − fM · ûM

)
. (42)

Since our aim here is to describe the micro-scale mechanics by means of
the classical continuum theory with inertia effects, the total virtual power
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of the RVE is, in turn, a linear functional of only the virtual micro-scale
displacement field, ûµ, and its first gradient, ∇µûµ. Its classical form is

P tot
µ (ûµ,∇µûµ) =

∫

Ωµ

(Pµ · ∇µûµ − (fµ − ρµüµ) · ûµ) dΩµ, (43)

where Pµ is the first Piola-Kirchhoff stress tensor, fµ and ρµ are, respectively,
the micro-scale body force and mass density fields.

The Principle of Multiscale Virtual Power for the present case states that
the total virtual power at a given point xM of the macro-scale must equal the
total virtual power produced at the associated micro-scale domain Ωµ, for
all kinematically admissible virtual fields. That is, the following variational
equation must be satisfied,

|Ωµ|
(
PM ·ĜM +QM ·ĜM−fM · ûM

)
=

∫

Ωµ

(Pµ ·∇µûµ−(fµ−ρµüµ) · ûµ) dΩµ

∀(ûM , ĜM , ĜM) and ∀ûµ kinematically admissible. (44)

Or, equivalently, by introducing (24) in the above, the Principle of Multiscale
Virtual Power can be expressed as

PM · ĜM +QM · ĜM − fM · ûM =
1

|Ωµ|

∫

Ωµ

Pµ · (ĜM + ĜMxµ +∇µ
ˆ̃uµ) dΩµ

− 1

|Ωµ|

∫

Ωµ

(fµ − ρµüµ) ·
(

ûM + ĜMxµ +
1

2
ĜM [(xµ ⊗ xµ)− J] + ˆ̃uµ

)
dΩµ

∀(ûM , ĜM , ĜM) ∈ R3 × R3×3 × (R3×3×3)S, ∀ˆ̃uµ ∈ Ṽµ. (45)

Remark 8. For further comparison with previous contributions in the field,
note that PMVP (45) takes into account the effect of micro-scale body forces
(including micro-scale inertia) in the physical coupling between scales. This
effect was accounted for in [9, 10]. In turn, although body forces were incorpo-
rated in the multi-scale formulation proposed in [13, 14], recall that the model
developed here is based on a different expansion of the micro-scale fluctuation
field (kinematical insertion operation), resulting in a different expansion of
the admissible variations ˆ̃uµ that, as a consequence, characterises a different
space Ṽµ. This affects the way in which the kinematical descriptors (displace-
ment and deformation gradient) exert power against dual counterparts (force
and stress). Therefore, the mechanical equilibrium is modified, and so are all
subsequent homogenisation procedures derived from the PMVP. This will be
clearly shown in the homogenised formulae derived in what follows.
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5.2. Lagrange Multiplier Variational Statement

The main reason for using this alternative, Lagrange multiplier-based
form of the PMVP is that it naturally unveils the reactive forces and stresses
resulting from the kinematical constraints incorporated in the definition of
the space Ṽµ, that takes part in (45). As we shall see later, such reactions
add significant insight into the fundamental link that exists between the
postulated kinematical constraints of the RVE and the homogenised force-
and stress-like quantities that appear at the macro-scale.

For the present model, the Lagrange multiplier variational statement is
obtained by simply removing the kinematical constraints of the space Ṽµ
defined by (40) or (41) and then enforcing these constraints by means of
appropriate Lagrange multipliers in the PMVP. For convenience, we shall
enforce these constraints explicitly in their volume integral format. i.e., we
will work with (31), (33) and (36) (as in definition (41)). These constraints
will be associated with the Lagrange multipliers denoted c, T and M, re-
spectively. Accordingly, the Principle of Multiscale Virtual Power (45) is
rewritten equivalently as

PM · ĜM +QM · ĜM − fM · ûM =
1

|Ωµ|

∫

Ωµ

Pµ · (ĜM + ĜMxµ +∇µ
ˆ̃uµ) dΩµ

− 1

|Ωµ|

∫

Ωµ

(fµ − ρµüµ) ·
(

ûM + ĜMxµ +
1

2
ĜM [(xµ ⊗ xµ)− J] + ˆ̃uµ

)
dΩµ

+ ĉ ·
(

1

|Ωµ|

∫

Ωµ

ũµ dΩµ

)
+ c ·

(
1

|Ωµ|

∫

Ωµ

ˆ̃uµ dΩµ

)

− T̂ ·
(

1

|Ωµ|

∫

Ωµ

∇µũµ dΩµ

)
−T ·

(
1

|Ωµ|

∫

Ωµ

∇µ
ˆ̃uµ dΩµ

)

− M̂ ·
(

1

|Ωµ|

∫

Ωµ

[(∇µũµ ⊗ xµ) ◦ J−1]S dΩµ

)

−M ·
(

1

|Ωµ|

∫

Ωµ

[(∇µ
ˆ̃uµ ⊗ xµ) ◦ J−1]S dΩµ

)

∀(ûM , ĜM , ĜM) ∈ R3 × R3×3 × (R3×3×3)S, ∀ˆ̃uµ ∈ H1(Ωµ),

∀(ĉ, T̂, M̂) ∈ R3 × R3×3 × (R3×3×3)S, (46)

where the signs of the terms containing the Lagrange multiplier have been
chosen for convenience.
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It should be noted that the volume constraints (33) and (36) were used to
derive boundary conditions (34) and (39) in Section 4. However, it must be
observed that in order to obtain (39) the restriction (31) has been used. Thus,
the boundary constraint (39) is not independent from (31). In the Primal
Variational Statement this fact has no consequences because fields in Ṽµ
automatically satisfy (31). However, in the Lagrange Multiplier Variational
Statement restriction (39) can not be used, and it requires the enforcement
of the original (volume) constraint (36).

Remark 9. Clearly, variational formulation (46) is valid for the case of the
minimally constrained space of admissible fluctuation fields, that is Ṽµ. If an
RVE model with additional boundary constraints is considered, it is necessary
to replace the terms associated to constraints (33) and (36), that is, the terms
corresponding to the Lagrange multipliers T and M, and their variations T̂
and M̂, by terms with the following form

−
∫

∂Ωµ

r̂µ · ũµ d∂Ωµ −
∫

∂Ωµ

rµ · ˆ̃uµ d∂Ωµ rµ, r̂µ ∈ L, (47)

where L is an appropriate space that characterises the structure of the La-
grange multiplier rµ and its variation. In other words, this space charac-
terises the nature of the constraint. For example, in the case of zero fluc-
tuation ũµ imposed over ∂Ωµ we have L = H−1/2(∂Ωµ). For the sake of
clarity, in the forthcoming developments the minimally constrained model
(variational formulation (46)) is considered, and the connection with other
(more constrained) models will be made as appropriate.

6. RVE equilibrium problem and homogenisation formulae

Within the framework of the Method of Multiscale Virtual Power of [1],
the RVE equilibrium problem as well as the homogenisation formulae for the
force- and stress-like quantities are derived from the PMVP, by means of
straightforward variational arguments. The variational equation (45) is per-
fectly suited to this end, as it includes all the ingredients needed to complete
the characterisation of the multi-scale model. Here, however, we shall opt to
use the equivalent Lagrange multiplier formulation (46) instead. Since our
main aim in this paper is to look deeper into the second-gradient multi-scale
formulation, the adoption of (46) will be very useful in providing a clear
insight into the role played by the reactive forces caused by postulated RVE
kinematical constraints.
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6.1. Micro-scale equilibrium problem

We start by deriving the RVE equilibrium equation. To this end, we
simply set ûM = 0, ĜM = 0 and ĜM = 0 in (46), which leads to the
following RVE variational equilibrium problem: find ũµ ∈ H1(Ωµ) and the
triad (c,T,M) ∈ R3 × R3×3 × (R3×3×3)S such that

1

|Ωµ|

∫

Ωµ

[
(Pµ − (T + M(J−1xµ))) · ∇µ

ˆ̃uµ − ((fµ − ρµüµ)− c) · ˆ̃uµ
]
dΩµ

+ ĉ ·
(

1

|Ωµ|

∫

Ωµ

ũµ dΩµ

)
− T̂ ·

(
1

|Ωµ|

∫

Ωµ

∇µũµ dΩµ

)

− M̂ ·
(

1

|Ωµ|

∫

Ωµ

[(∇µũµ ⊗ xµ) ◦ J−1]S dΩµ

)
= 0

∀ˆ̃uµ ∈ H1(Ωµ), ∀(ĉ, T̂, M̂) ∈ R3 × R3×3 × (R3×3×3)S. (48)

Next, we set ĉ = 0, T̂ = 0 and M̂ = 0 in (48) to obtain
∫

Ωµ

[
(Pµ − (T + M(J−1xµ))) · ∇µ

ˆ̃uµ − ((fµ − ρµüµ)− c) · ˆ̃uµ
]
dΩµ = 0

∀ˆ̃uµ ∈ H1(Ωµ). (49)

Integrating by parts the first term in (49) gives

−
∫

Ωµ

[
divµ(Pµ − (T + M(J−1xµ))) + (fµ − ρµüµ)− c

]
· ˆ̃uµ dΩµ

+

∫

∂Ωµ

(Pµ − (T + M(J−1xµ)))nµ · ˆ̃uµ d∂Ωµ = 0 ∀ˆ̃uµ ∈ H1(Ωµ). (50)

Since T and M are constant tensors, the previous expression is equivalent to

−
∫

Ωµ

[
divµ Pµ −MJ−1 + (fµ − ρµüµ)− c

]
· ˆ̃uµ dΩµ

+

∫

∂Ωµ

(Pµ − (T + M(J−1xµ)))nµ · ˆ̃uµ d∂Ωµ = 0 ∀ˆ̃uµ ∈ H1(Ωµ), (51)

which, by means of a trivial variational argument, leads to the strong form
of the RVE equilibrium:

ρµüµ − divµ Pµ = fµ − (c + MJ−1) in Ωµ, (52)

Pµnµ = (T + M(J−1xµ))nµ on ∂Ωµ. (53)
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Remark 10. If a model with more boundary constraints is considered (see
Remark 9) then equations (52) and (53) read

ρµüµ − divµ Pµ = fµ − c in Ωµ, (54)

Pµnµ = rµ on ∂Ωµ. (55)

That is, the traction over the boundary is fully defined by the Lagrange mul-
tiplier rµ.

This, together with the following equations naturally derived from (48),

∫

Ωµ

ũµ dΩµ = 0, (56)

∫

Ωµ

∇µũµ d∂Ωµ = 0, (57)

∫

Ωµ

[(∇µ
ˆ̃uµ ⊗ xµ) ◦ J−1]S dΩµ = 0, (58)

comprise the subset of Euler-Lagrange equations that characterises the RVE
(or micro-scale) equilibrium problem. Obviously, from previous developments
we have that equations (56), (57) and (58) are equivalent to (31), (34) and
(39), respectively.

Finally, we remark that the micro-scale equilibrium problem is completely
characterised when the micro-scale force per unit volume fµ is given, to-
gether with a constitutive relation Pµ = Pµ(∇µuµ) for the micro-scale Piola-
Kirchhoff stress.

6.2. Body force homogenisation formula

The homogenisation formula for the body force can be obtained by simply
setting ĉ = 0, T̂ = 0, M̂ = 0, ĜM = 0, ĜM = 0 and ˆ̃uµ = 0 in (46). This
gives

fM =
1

|Ωµ|

∫

Ωµ

(fµ − ρµüµ) dΩµ. (59)

Moreover, we could decompose it into inertial and non-inertial contributions
to the macro-scale body force fM , which allows us to arrive at the following
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expressions (see (1))

aM =
1

|Ωµ|

∫

Ωµ

ρµüµ dΩµ, (60)

bM =
1

|Ωµ|

∫

Ωµ

fµ dΩµ. (61)

Remark 11. While the homogenisation formula (59) has been naturally de-
rived within the present framework as the dual object that exerts power against
the constant (uniform in space) component of the micro-scale displacement
field, i.e. uM , (see (24)), no homogenisation formula whatsoever was derived
in [13, 14] from the balance of virtual power between scales.

6.3. Generalised stresses homogenisation formulae

Seeting ĉ = 0, T̂ = 0, M̂ = 0, ûM = 0, ĜM = 0 and ˆ̃uµ = 0 in (46) leads
to the homogenisation formula for PM :

PM =
1

|Ωµ|

∫

Ωµ

(Pµ − (fµ − ρµüµ)⊗ xµ) dΩµ. (62)

As already anticipated, the tensor PM possesses inertial and a non-inertial
components, the former being a consequence of the inertia forces in the micro-
scale. In the context of expression (1), putting PM = AM + SM , we could
arrive here at the following identities

AM =
1

|Ωµ|

∫

Ωµ

ρµüµ ⊗ xµ dΩµ, (63)

SM =
1

|Ωµ|

∫

Ωµ

(Pµ − fµ ⊗ xµ) dΩµ. (64)

Remark 12. From expression (62) it is seen that PM depends on üµ both
explicit and implicitly. The explicit dependence is easily seen from the de-
composition PM = AM + SM introduced above, where AM accounts for such
explicit dependence. However, it is important to notice that there is still the
implicit dependence through the tensor Pµ, which, through the equilibrium
problem (49), also depends on üµ. This implies that there exists an implicit
dependence of SM on üµ.
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A fundamental homogenisation formula equivalent to (62) is proved in
Appendix B. It expresses the macro-scale stress tensor PM as a function of
RVE boundary data alone as

PM =
1

|Ωµ|

∫

∂Ωµ

tµ ⊗ xµ d∂Ωµ, (65)

where tµ = Pµnµ.
While expression (62) can be seen as a weak homogenisation formula, the

equivalent formula (65) is understood as a strong homogenisation formula, as
its derivation requires the use of the strong form of the equilibrium equations.

Remark 13. For models with more boundary constraints, for which (54)
and (55) hold, following the same procedure that led to (65) (see Appendix
B), the same formula remains valid, and in this particular case reads

PM =
1

|Ωµ|

∫

∂Ωµ

rµ ⊗ xµ d∂Ωµ, (66)

with rµ the corresponding Lagrange multiplier (see Remark 9).

Finally, by setting ĉ = 0, T̂ = 0, M̂ = 0, ûM = 0, ĜM = 0 and ˆ̃uµ = 0,
equation (46) gives

QM =
1

|Ωµ|

∫

Ωµ

(
(Pµ ⊗ xµ)S − 1

2
(fµ − ρµüµ)⊗ (xµ ⊗ xµ − J)

)
dΩµ. (67)

As with PM , we can understand the tensor QM as having inertial and a
non-inertial components, that is, we can write QM = AM + RM , where

AM =
1

|Ωµ|

∫

Ωµ

1

2
ρµüµ ⊗ (xµ ⊗ xµ − J) dΩµ, (68)

RM =
1

|Ωµ|

∫

Ωµ

(
(Pµ ⊗ xµ)S − 1

2
fµ ⊗ (xµ ⊗ xµ − J)

)
dΩµ. (69)

Remark 14. Similar to Remark 12, from expression (67) it follows that QM

depends explicitly and implicitly on üµ, the latter through the relation between
Pµ and üµ established by the equilibrium problem (49).
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In Appendix C it is proved that, like PM , QM can also be expressed as
a function of RVE boundary data alone

QM +
1

2
(QMJ−1)⊗ J =

1

|Ωµ|

∫

∂Ωµ

1

2
tµ ⊗ xµ ⊗ xµ d∂Ωµ. (70)

Analogously, expression (67) could be understood as a weak homogeni-
sation formula, while formula (70) can be seen as a strong homogenisation
formula.

Remark 15. For models with more boundary constraints (54) and (55) hold.
In such case, the Lagrange multiplier M is not present in the formulation,
and following the same procedure that led to (70) (see Appendix C), it is
easy to show that instead of (70), the following formula holds

QM =
1

|Ωµ|

∫

∂Ωµ

1

2
rµ ⊗ xµ ⊗ xµ d∂Ωµ, (71)

with rµ the corresponding Lagrange multiplier (see Remark 9). Again, a
formula depending solely on boundary data has been recovered.

Remark 16. In the absence of forces per unit volume (fµ = 0) and inertia
effects (üµ = 0), the homogenisation formulae (62) and (67) coincide with
those derived in [9, 10, 13, 14]. Nonetheless, the formulae (62) and (67),
which have been shown to be equivalent to (65) and (70), have striking dif-
ferences when compared to the results reported in [13, 14]. In contrast to the
present results, the homogenised stresses in such contributions cannot be ex-
pressed as a function of boundary data alone. The present paper extends our
previous findings for the first-order theory [4] to second-order models with
body forces, and highlights the fact that macro-scale stresses must necessarily
remain identifiable in terms of RVE boundary data alone. This is a funda-
mental property in the definition of macro-scale variables, pointed out by Hill
in [8]. A further difference with respect to [13, 14] is that the contribution of
the body forces fµ to the high-order macro-scale stress tensor QM is generated
here by the tensorial product with (xµ ⊗ xµ − J).

6.4. Reactions to RVE constraints and homogenised forces and stresses

In kinematically-based mechanical variational settings, Lagrange multi-
pliers typically used to enforce kinematical constraints are nothing but re-
actions to the constraints they are meant to enforce. In the context of the
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Principle of Multiscale Virtual Power (46), c is the reactive force required to
enforce constraint (31), T is the reactive stress to constraint (33), and M a
higher-order stress reactive to (36).

Further to the above comment, we prove in Appendix D that these
reactive force- and stress-like quantities in fact satisfy

c = fM , (72)

T = PM , (73)

M = QM . (74)

That is, the homogenised body force fM is simply the reaction to the kine-
matical constraint (31). The homogenised stress PM is the reaction to (33)
and the homogenised higher-order stress QM is a reaction to constraint (36).

Remark 17. The characterisation of Lagrange multipliers given by (72)–
(74) has been obtained under the assumption of minimal constraints for the
RVE kinematics (see variational equation (46)). For models with further
boundary constraints, expression (72) turns into the following

c = fM −
1

|Ωµ|

∫

∂Ωµ

rµ d∂Ωµ. (75)

while the characterisation of the Lagrange multiplier rµ depends on the defi-
nition of the space L (see also Remark 9).

Remark 18. Now that the meaning of the Lagrange multipliers is fully un-
derstood, the RVE equilibrium problem (49) reveals that the virtual power
exerted by the fluctuation of the stress state given by P̃µ = Pµ − (PM +
QM(J−1xµ)) equals the external virtual power exerted by the fluctuation of

the force per unit volume f̃M = (fµ − ρµüµ)− fM , for all ˆ̃uµ ∈ H1(Ω).

These findings provide a very significant insight into the nature of ho-
mogenised force- and stress-like quantities in RVE-based multi-scale theories
which, to our knowledge, has not been reported in the literature. Their iden-
tification as reactions required to enforce the postulated RVE kinematical
constraints provide a very clear link between the kinematics of the RVE and
the resulting homogenised force- and stress-like quantities “visible” at the
macro-scale level. Obviously, this implies that RVE kinematical constraints
and homogenisation formulae for force- and stress-like quantities cannot be
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postulated independently and that, if ignored, may lead to inconsistencies in
the resulting theory.

Finally, we remark that for the sake of completeness, we present in Ap-
pendix E an alternative, yet equivalent, variational formulation in which
the constraints (26), (27) and (28) are directly enforced, and from which the
same physical interpretation of Lagrange multipliers is obtained.

6.5. Generalised “uniform” boundary traction formula

Under the assumption of minimal RVE kinematical constraints (31), (33)
and (36), the tractions on the RVE boundary were found to be given by (53),
in terms of the Lagrange multipliers T and M. In light of the identities (73)
and (74), the RVE boundary traction field in this case (minimal constraints)
reads

Pµnµ = (PM + QM(J−1xµ))nµ on ∂Ωµ. (76)

This identity generalises, to the present second-gradient multi-scale model,
the concept of uniform RVE boundary tractions associated with minimal
constraints in the classical (first-gradient) RVE-based mechanical theory. In
the classical theory, this reads simply [5]

Pµnµ = PMnµ on ∂Ωµ. (77)

Remark 19. It should be noted that, if further constraints are incorporated
into the RVE kinematics (e.g. properly generalised boundary periodicity, ho-
mogeneous kinematical boundary conditions), then (76) no longer holds in
general. However, all other findings concerning the reactive nature of ho-
mogenised forces and stresses remain valid, regardless of the particular set of
constraints chosen to describe the kinematics of the RVE.

7. Tangent operators

For the sake of simplicity we shall assume in the present section that the
mechanical problem is quasi-static. We shall also assume that the micro-scale
constitutive behavior is defined through a standard constitutive functional
of the form Pµ = Pµ(∇µuµ), which, in view of (24), can be written as

Pµ = Pµ(GM + GMxµ +∇µũµ). (78)
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In addition, we have a relation ũµ = ũµ(GM ,GM) established through the
micro-scale equilibrium problem, which is repeated here in the quasi-static
case for the sake of readability

∫

Ωµ

[Pµ(GM + GMxµ +∇µũµ) · ∇µ
ˆ̃uµ − fµ · ˆ̃uµ] dΩµ = 0 ∀ˆ̃uµ ∈ Ṽµ. (79)

In such case, expressions (62) and (67) state that the homogenised objects
PM and QM are (multi-scale) functionals of the form

PM = PM(GM ,GM), (80)

QM = QM(GM ,GM). (81)

In fact, we have

PM =
1

|Ωµ|

∫

Ωµ

Pµ(GM + GMxµ +∇µũµ(GM ,GM)) dΩµ, (82)

QM =
1

|Ωµ|

∫

Ωµ

(Pµ(GM + GMxµ +∇µũµ(GM ,GM))⊗ xµ)S dΩµ. (83)

Now, we are interested in calculating the following tangent operators (tensor
order is also shown for clarity)

4th order DGPM [δGM ] =
d

dτ
PM(GM + τδGM ,GM)

∣∣∣∣
τ=0

, (84)

5th order DGPM [δGM ] =
d

dτ
PM(GM ,GM + τδGM)

∣∣∣∣
τ=0

, (85)

5th order DGQM [δGM ] =
d

dτ
QM(GM + τδGM ,GM)

∣∣∣∣
τ=0

, (86)

6th order DGQM [δGM ] =
d

dτ
QM(GM ,GM + τδGM)

∣∣∣∣
τ=0

. (87)

It can be readily verified that these tangent operators are composed of a
Taylor-like component (explicit dependence with respect to GM and GM ,
which ignores the contribution of fluctuations) and a fluctuation component
(implicit dependence through the fluctuation displacement field ũµ). For
example, for the tangent operator DGPM , the Taylor component, denoted
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by DT
GPM , is easily obtained as follows

DT
GPM [δGM ] =

1

|Ωµ|

∫

Ωµ

d

dτ
Pµ(GM + τδGM + GMxµ +∇µũµ(GM ,GM))

∣∣∣∣
τ=0

dΩµ =

1

|Ωµ|

∫

Ωµ

Cµ(GM + GMxµ +∇µũµ(GM ,GM))δGM dΩµ =

[
1

|Ωµ|

∫

Ωµ

Cµ dΩµ

]
δGM , (88)

where Cµ is the classical fourth order tangent constitutive operator of the
material in the micro-scale. Therefore, we have

DT
GPM =

1

|Ωµ|

∫

Ωµ

Cµ dΩµ. (89)

Similarly, the fluctuation contribution to the tangent operator, denoted D̃GPM ,
is obtained as follows:

D̃GPM [δGM ] =

1

|Ωµ|

∫

Ωµ

d

dτ
Pµ(GM + GMxµ +∇µũµ(GM + τδGM ,GM))

∣∣∣∣
τ=0

dΩµ =

1

|Ωµ|

∫

Ωµ

Cµ[SµδGM ] dΩµ =

[
1

|Ωµ|

∫

Ωµ

Cµ ◦ Sµ dΩµ

]
δGM , (90)

that is (see Appendix A for the definition of operations)

D̃GPM =
1

|Ωµ|

∫

Ωµ

Cµ ◦ Sµ dΩµ. (91)

In the above, the fourth order tensor Sµ represents the tangent relation be-
tween ∇µũµ and GM , i.e. ∇µδũµ = SµδGM , and is obtained by linearizing
problem (79). That is, Sµ is characterised by the following linear problem:
∫

Ωµ

Cµ∇µδũµ · ∇µ
ˆ̃uµ dΩµ = −

∫

Ωµ

CµδGM · ∇µ
ˆ̃uµ dΩµ ∀ˆ̃uµ ∈ Ṽµ. (92)

In this manner, the fluctuation component of the tangent operator results

D̃GPM =
1

|Ωµ|

∫

Ωµ

Cµ ◦ Sµ dΩµ. (93)
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Then, we have the complete characterisation of this tangent operator

DGPM = DT
GPM + D̃GPM =

1

|Ωµ|

∫

Ωµ

(Cµ + Cµ ◦ Sµ) dΩµ. (94)

In a completely analogous manner, we have that the Taylor contribution
to the operator DGPM , denoted by DT

GPM , is obtained as follows:

DT
GPM [δGM ] =

1

|Ωµ|

∫

Ωµ

d

dτ
Pµ(GM + (GM + τδGM)xµ +∇µũµ(GM ,GM))

∣∣∣∣
τ=0

dΩµ =

1

|Ωµ|

∫

Ωµ

Cµ(GM + GMxµ +∇µũµ(GM ,GM))(δGMxµ) dΩµ =

[
1

|Ωµ|

∫

Ωµ

Cµ ⊗ xµ dΩµ

]
δGM . (95)

Hence, we obtain

DT
GPM =

1

|Ωµ|

∫

Ωµ

Cµ ⊗ xµ dΩµ. (96)

The fluctuation component of this tangent operator, denoted D̃GPM , is

D̃GPM [δGM ] =

1

|Ωµ|

∫

Ωµ

d

dτ
Pµ(GM + GMxµ +∇µũµ(GM ,GM + τδGM))

∣∣∣∣
τ=0

dΩµ =

1

|Ωµ|

∫

Ωµ

Cµ[Sµ(δGMxµ)] dΩµ =

[
1

|Ωµ|

∫

Ωµ

(Cµ ◦ Sµ)⊗ xµ dΩµ

]
δGM , (97)

that is

D̃GPM =
1

|Ωµ|

∫

Ωµ

(Cµ ◦ Sµ)⊗ xµ dΩµ. (98)

Then, the complete fifth-order tangent operator reads

DGPM = DT
GPM + D̃GPM =

1

|Ωµ|

∫

Ωµ

(Cµ + Cµ ◦ Sµ)⊗ xµ dΩµ. (99)

Following the same procedure, it is straightforward to obtain the charac-
terisation of the fifth- and sixth-order tangent operators DGQM and DGQM ,
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given by

DGQM [δGM ] = DT
GQM [δGM ] + D̃GQM [δGM ]

=
1

|Ωµ|

∫

Ωµ

([(Cµ + Cµ ◦ Sµ)δGM ]⊗ xµ)S dΩµ, (100)

DGQM [δGM ] = DT
GQM [δGM ] + D̃GQM [δGM ]

=
1

|Ωµ|

∫

Ωµ

([((Cµ + Cµ ◦ Sµ)⊗ xµ)δGM ]⊗ xµ)S dΩµ. (101)

8. Summary and concluding remarks

An RVE-based multi-scale model featuring a macro-scale second-gradient
theory linked to a first-order classical continuum description at the micro-
scale level has been derived and examined in detail within the general frame-
work of the Method of Multiscale Virtual Power recently proposed by the
authors in [1].

The MMVP has been shown here to provide a robust framework, whereby
multi-scale models can be rationally derived in a kinematically-driven fashion
by means of the following clear and well-defined steps:

(i) Postulation of the kinematics of the macro- and micro-scales, i.e., defi-
nition of the kinematical descriptors of each scale of the model. In the
present case we have the triad (uM ,∇MuM ,∇M∇MuM) = (uM ,GM ,GM)
at the generic point xM of the macro-scale, and the pair (uµ,∇µuµ) of
kinematical fields over the RVE domain;

(ii) Postulation of kinematical insertion and kinematical homogenisation
such that kinematical quantities are preserved in the scale transition.
Here, kinematical insertion is defined by (24) and kinematical ho-
mogenisation by (26)–(28). This leads to the idea of kinematical ad-
missibility, which automatically defines the minimally constrained func-
tional space of of kinematically admissible fluctuation fields of the RVE;

(iii) Mathematical duality then allows straightforward identification of the
force- and stress-like quantities compatible with the kinematical as-
sumptions at both scales, namely, the triad (fM ,PM ,QM) at xM , and
(trivially) the pair (fµ−ρµüµ,Pµ) of body force and first Piola-Kirchhoff
stress fields over the RVE;
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(iv) Statement of the corresponding Principle of Multiscale Virtual Power,
(45) (or (46)), based on the duality pairings identified in steps (i) and
(iii), whereby the total virtual power of the macro- and micro-scales are
balanced. This principle leads naturally, by means of straightforward
variational arguments, to the equations of equilibrium of the RVE as
well as to the homogenisation formulae for the force- and stress-like
quantities of the model, and completes the characterisation of the multi-
scale model.

In addition, due to its variational basis, the MMVP may naturally provide
significant further insight into the foundations of the model. For example, by
re-writing the PMVP in the equivalent form (46), using Lagrange multipliers,
the impact of the kinematical hypotheses upon the resulting model was made
very clear, as the homogenised force- and stress-like quantities of the macro-
scale are identified as reactions to kinematical constraints imposed upon the
RVE. Also, the equivalent representation of such quantities exclusively in
terms of RVE boundary data has been obtained in a straightforward manner.

Moreover, the present multi-scale model was developed in the context of
transient problems, also featuring relations that describe the contribution of
micro-scale inertia effects to the high-order macro-scale continuum formula-
tion. In this regard, the MMVP allowed these inertia effects to be naturally
incorporated in a straightforward manner in the analysis.

Throughout the paper, conceptual differences and similarities to existing
theories have been highlighted, facilitating the analysis of the contributions
made by present approach.

In summary, we believe the MMVP to be a powerful tool to address the
development of new multi-scale models in a manner that avoids potential
inconsistencies. This appears to be particularly true for models exhibit-
ing distinct kinematics at the macro- and micro-scales, such as the second-
gradient model presented in this paper. The method can be also very useful
in analysing existing multi-scale models, as the links between kinematics,
equilibrium and homogenisation rules are made clear, allowing an easy de-
tection of possible inconsistencies. We also remark that the method is by
no means restricted to classical mechanical problems. Any class of problems
where a Principle of Multiscale Virtual Power makes sense can be addressed
by the MMVP. This encompasses the multi-scale description of a wide range
of phenomena, including the formulation of RVE-based models of multi-scale
fluid mechanics, micro-scale strain localisation [23], micro- and macro-scale
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fracturing [25], multi-scale solid dynamics [4], transient heat transfer, partic-
ulate media, among others. Some of these will be addressed by the authors
in forthcoming publications.
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Appendix A. Tensor algebra

Let a,b, c, . . . be vectors, A,B,C, . . . second order tensors and A,B,C, . . .
third order tensors. We introduce the following operations, most of them de-
fined in terms of the standard internal product between two vectors denoted
by a · b:

• given A = a1 ⊗ a2 and b, then Ab = (a2 · b)a1;

• given A = a1 ⊗ a2, then AT = a2 ⊗ a1;

• given A = a1 ⊗ a2 and B = b1 ⊗ b2, then A ·B = (a1 · b1)(a2 · b2);

• given A = a1 ⊗ a2 and B = b1 ⊗ b2, then AB = (a2 · b1)(a1 ⊗ b2);

• given A = a1 ⊗ a2 ⊗ a3 and b, then Ab = (a3 · b)(a1 ⊗ a2);

• given A = a1⊗a2⊗a3 and B = b1⊗b2⊗b3, then A ·B = (a1 ·b1)(a2 ·
b2)(a3 · b3);

• given A = a1⊗a2⊗a3 and B = b1⊗b2, then AB = (a2 ·b1)(a3 ·b2)a1;

• given A = a1 ⊗ a2 ⊗ a3 and B = b1 ⊗ b2, then A ◦B = (a3 · b1)(a1 ⊗
a2 ⊗ b2);

• given A = a1 ⊗ a2 ⊗ a3, then AT = a1 ⊗ a3 ⊗ a2, and AS = 1
2
(A + AT);
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• given A = a1 ⊗ a2 ⊗ a3, then At = a3 ⊗ a1 ⊗ a2;

• given A = a1 ⊗ a2 ⊗ a3 ⊗ a4 and B = b1 ⊗ b2 ⊗ b3 ⊗ b4, then A ◦ B =
(a3 · b1)(a4 · b2)(a1 ⊗ a2 ⊗ b3 ⊗ b4);

• given A = a1⊗ a2⊗ a3⊗ a4 and B = b1⊗b2, then AB = (a3 ·b1)(a4 ·
b2)(a1 ⊗ a2);

• given A = a1 ⊗ a2 ⊗ a3 ⊗ a4 ⊗ a5 and B = b1 ⊗ b2 ⊗ b3, then AB =
(a3 · b1)(a4 · b2)(a5 · b3)(a1 ⊗ a2).

Appendix B. Homogenisation of PM from boundary data

Let us find a homogenisation formula equivalent to (62) that exclusively
depends on boundary information. To do this we write

∫

Ωµ

Pµ dΩµ =

∫

Ωµ

Pµ∇µxµ dΩµ =

−
∫

Ωµ

divµ Pµ ⊗ xµ dΩµ +

∫

∂Ωµ

Pµnµ ⊗ xµ d∂Ωµ. (B.1)

Using (B.1) and the equilibrium form (52) into (62) yields

PM =

1

|Ωµ|

[ ∫

Ωµ

(− divµ Pµ⊗xµ− (fµ−ρµüµ)⊗xµ) dΩµ+

∫

∂Ωµ

Pµnµ⊗xµ d∂Ωµ

]
=

1

|Ωµ|

[
−
∫

Ωµ

(c + MJ−1)⊗ xµ dΩµ +

∫

∂Ωµ

tµ ⊗ xµ d∂Ωµ

]
=

1

|Ωµ|

∫

∂Ωµ

tµ ⊗ xµ d∂Ωµ, (B.2)

where we denoted Pµnµ = tµ the traction over the boundary ∂Ωµ, and where
we have used the assumption (23) and the fact that c, M and J are constant
entities. Thus

PM =
1

|Ωµ|

∫

∂Ωµ

tµ ⊗ xµ d∂Ωµ. (B.3)
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Appendix C. Homogenisation of QM from boundary data

Let us again find a homogenisation formula for QM depending exclusively
upon boundary data. Firstly, in Appendix F it is proved that the following
relation holds

∫

Ωµ

(Pµ ⊗ xµ)S dΩµ = −1

2

∫

Ωµ

divµ Pµ ⊗ xµ ⊗ xµ dΩµ

+
1

2

∫

∂Ωµ

Pµnµ ⊗ xµ ⊗ xµ d∂Ωµ. (C.1)

Considering (C.1) and the equilibrium (52) into (67) results

QM =

1

|Ωµ|

∫

Ωµ

[
1

2
(− divµ Pµ− (fµ− ρµüµ))⊗ (xµ⊗ xµ) +

1

2
((fµ− ρµüµ)⊗ J)

]
dΩµ

+
1

|Ωµ|

∫

∂Ωµ

1

2
Pµnµ ⊗ xµ ⊗ xµ d∂Ωµ =

− 1

|Ωµ|

∫

Ωµ

1

2
(c + MJ−1)⊗ xµ ⊗ xµ dΩµ

+
1

|Ωµ|
1

2

(∫

Ωµ

(fµ − ρµüµ) dΩµ

)
⊗ J +

1

|Ωµ|

∫

∂Ωµ

1

2
tµ ⊗ xµ ⊗ xµ d∂Ωµ =

− 1

2

(
c + MJ−1 − 1

|Ωµ|

∫

Ωµ

(fµ − ρµüµ) dΩµ

)
⊗ J

+
1

|Ωµ|

∫

∂Ωµ

1

2
tµ ⊗ xµ ⊗ xµ d∂Ωµ. (C.2)

Hence, using (59), we have

QM +
1

2
(c + MJ−1 − fM)⊗ J =

1

|Ωµ|

∫

∂Ωµ

1

2
tµ ⊗ xµ ⊗ xµ d∂Ωµ. (C.3)

In view of the results given by identities (D.3) and (D.9), obtained in Ap-
pendix D, we finally arrive at the following equation

QM +
1

2
(QMJ−1)⊗ J =

1

|Ωµ|

∫

∂Ωµ

1

2
tµ ⊗ xµ ⊗ xµ d∂Ωµ. (C.4)
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Appendix D. Physical meaning of the Lagrange multipliers

Let us explore the meaning of the Lagrange multipliers in the variational
formulation (46), that is, for the case of minimally constrained fluctuations.

Consider that ˆ̃uµ is the constant vector function in the variational equa-
tion (49). Then, we arrive at the following relation

∫

Ωµ

((fµ − ρµüµ)− c) dΩµ = 0. (D.1)

Since the Lagrange multiplier c is itself a constant, we have

c =
1

|Ωµ|

∫

Ωµ

(fµ − ρµüµ) dΩµ, (D.2)

or, in view of (59)
c = fM . (D.3)

Consider the homogenisation formula for PM derived in (B.3). Now,
introducing the expression for the traction tµ = Pµnµ obtained in (53) into
(B.3), yields

PM =
1

|Ωµ|

∫

∂Ωµ

(T + M(J−1xµ))nµ ⊗ xµ d∂Ωµ. (D.4)

For simplicity, consider Cartesian coordinates and, recalling (23) and that
T, M and J are constant tensors, let us develop the right hand side in the
expression above

[PM ]ij =
1

|Ωµ|

∫

∂Ωµ

([T]ik + [M]ikm[J−1]mn[xµ]n)[nµ]k[xµ]j d∂Ωµ =

[T]ik
1

|Ωµ|

∫

∂Ωµ

[nµ]k[xµ]j d∂Ωµ+[M]ikm[J−1]mn
1

|Ωµ|

∫

∂Ωµ

[xµ]n[nµ]k[xµ]j d∂Ωµ =

[T]ik
1

|Ωµ|

∫

Ωµ

∂[xµ]j
∂[xµ]k

dΩµ + [M]ikm[J−1]mn
1

|Ωµ|

∫

Ωµ

∂

∂[xµ]k
([xµ]n[xµ]j) dΩµ =

[T]ik
1

|Ωµ|

∫

Ωµ

[I]jk dΩµ + [M]ikm[J−1]mn
1

|Ωµ|

∫

Ωµ

([I]nk[xµ]j + [I]jk[xµ]n) dΩµ =

[T]ij + [M]ikm[J−1]mk
1

|Ωµ|

∫

Ωµ

[xµ]j dΩµ + [M]ijm[J−1]mn
1

|Ωµ|

∫

Ωµ

[xµ]n dΩµ =

[T]ij. (D.5)
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Hence, we obtain
T = PM . (D.6)

Consider now the homogenisation formula for QM obtained in (C.3). Us-
ing the result derived in (D.3) and the expression for the traction tµ = Pµnµ
given by (53) into (C.3), leads to

QM +
1

2
(MJ−1)⊗J =

1

|Ωµ|

∫

∂Ωµ

1

2
(T+M(J−1xµ))nµ⊗xµ⊗xµ d∂Ωµ. (D.7)

Analogous to the previous development, let us consider Cartesian coordi-
nates, recall (23), take into account that T, M and J are constant tensors
and that MT = M and J = JT . Then, the development of the right hand
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side in expression (D.7) gives

[QM ]ijk +
1

2
[M]imn[J−1]mn[J]jk =

1

|Ωµ|

∫

∂Ωµ

1

2
([T]il + [M]ilm[J−1]mn[xµ]n)[nµ]l[xµ]j[xµ]k d∂Ωµ =

[T]il
1

2

1

|Ωµ|

∫

∂Ωµ

[nµ]l[xµ]j[xµ]k d∂Ωµ

+ [M]ilm[J−1]mn
1

2

1

|Ωµ|

∫

∂Ωµ

[xµ]n[nµ]l[xµ]j[xµ]k d∂Ωµ =

[T]il
1

2

1

|Ωµ|

∫

Ωµ

∂

∂[xµ]l
([xµ]j[xµ]k) dΩµ

+ [M]ilm[J−1]mn
1

2

1

|Ωµ|

∫

Ωµ

∂

∂[xµ]l
([xµ]n[xµ]j[xµ]k) dΩµ =

[T]il
1

2

1

|Ωµ|

∫

Ωµ

([I]jl[xµ]k + [I]kl[xµ]j) dΩµ

+[M]ilm[J−1]mn
1

2

1

|Ωµ|

∫

Ωµ

([I]nl[xµ]j[xµ]k+[I]jl[xµ]n[xµ]k+[I]kl[xµ]n[xµ]j) dΩµ =

[T]ij
1

2

1

|Ωµ|

∫

Ωµ

[xµ]k dΩµ + [T]ik
1

2

1

|Ωµ|

∫

Ωµ

[xµ]j dΩµ

+ [M]ilm[J−1]ml
1

2

1

|Ωµ|

∫

Ωµ

[xµ]j[xµ]k dΩµ

+ [M]ijm[J−1]mn
1

2

1

|Ωµ|

∫

Ωµ

[xµ]n[xµ]k dΩµ

+ [M]ikm[J−1]mn
1

2

1

|Ωµ|

∫

Ωµ

[xµ]n[xµ]j dΩµ =

1

2
[M]ilm[J−1]ml[J]jk +

1

2
[M]ijm[J−1]mn[J]nk +

1

2
[M]ikm[J−1]mn[J]nj =

1

2
[M]ilm[J−1]lm[J]jk +

1

2
[M]ijm[I]mk +

1

2
[M]ikm[I]mj =

1

2
[M]ilm[J−1]lm[J]jk +

1

2
[M]ijk +

1

2
[M]ikj =

1

2
[M]ilm[J−1]lm[J]jk + [M]ijk. (D.8)

Now note that the second term in the left hand side is identical to the first
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term in the right hand side, therefore we arrive at the following result

M = QM . (D.9)

Appendix E. Alternative analysis of the Lagrange multipliers

Alternatively to the variational formulation (46), let us enforce kinemat-
ical constraints (26), (27) and (28) through Lagrange multipliers, which are
denoted by c∗, T∗ and M∗, respectively. The Principle of Multiscale Virtual
Power (45) is then rewritten as follows

PM ·ĜM +QM · ĜM − fM · ûM =
1

|Ωµ|

∫

Ωµ

(Pµ ·∇µûµ− (fµ−ρµüµ) · ûµ) dΩµ

− ĉ∗ ·
(

uM −
1

|Ωµ|

∫

Ωµ

uµ dΩµ

)
− c∗ ·

(
ûM −

1

|Ωµ|

∫

Ωµ

ûµ dΩµ

)

+ T̂∗ ·
(

GM −
1

|Ωµ|

∫

Ωµ

∇µuµ dΩµ

)
+ T∗ ·

(
ĜM −

1

|Ωµ|

∫

Ωµ

∇µûµ dΩµ

)

+ M̂
∗ ·
(
GM −

1

|Ωµ|

∫

Ωµ

[(∇µuµ ⊗ xµ) ◦ J−1]S dΩµ

)

+ M∗ ·
(
ĜM −

1

|Ωµ|

∫

Ωµ

[(∇µûµ ⊗ xµ) ◦ J−1]S dΩµ

)

∀(ûM , ĜM , ĜM) ∈ R3 × R3×3 × (R3×3×3)S, ∀ûµ ∈ H1(Ωµ),

∀(ĉ∗, T̂∗, M̂
∗
) ∈ R3 × R3×3 × (R3×3×3)S. (E.1)

Rearranging terms in (E.1) leads to

(PM −T∗) · ĜM + (QM −M∗) · ĜM − (fM − c∗) · ûM =

1

|Ωµ|

∫

Ωµ

[
(Pµ − (T∗ + M∗(J−1xµ))) · ∇µûµ − ((fµ − ρµüµ)− c∗) · ûµ

]
dΩµ

− ĉ∗ ·
(

uM −
1

|Ωµ|

∫

Ωµ

uµ dΩµ

)
+ T̂∗ ·

(
GM −

1

|Ωµ|

∫

Ωµ

∇µuµ dΩµ

)

+ M̂
∗ ·
(
GM −

1

|Ωµ|

∫

Ωµ

[(∇µuµ ⊗ xµ) ◦ J−1]S dΩµ

)

∀(ûM , ĜM , ĜM) ∈ R3 × R3×3 × (R3×3×3)S, ∀ûµ ∈ H1(Ωµ),

∀(ĉ∗, T̂∗, M̂
∗
) ∈ R3 × R3×3 × (R3×3×3)S. (E.2)
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Clearly, restrictions (26), (27) and (28) are now natural conditions that follow
as Euler-Lagrange equations from (E.2). Moreover, note that (24) is no longer
taken into consideration. Thus, we readily obtain the physical interpretation
of the Lagrange multipliers

c∗ = fM , (E.3)

T∗ = PM , (E.4)

M∗ = QM . (E.5)

Comparing, respectively, (E.3), (E.4) and (E.5) to (D.3), (D.6) and (D.9), we
obtain that the Lagrange multipliers from variational equation (46) are the
same as those from variational formulation (E.2), that is c∗ = c, T∗ = T and
M∗ = M. This implies that both variational formulations, (46) and (E.2)
are equivalent. In other words, the enforcement of constraints (26), (27) and
(28) leads to the same result as when the enforcement of constraints (31),
(33) and (36) is considered.

Appendix F. Auxiliary calculations

For simplicity let us consider Cartesian coordinates to see that

[(Pµ ⊗ xµ)S]ijk =
1

2

(
[Pµ]ij[xµ]k + [Pµ]ik[xµ]j

)
=

1

2

(
[Pµ]il

∂[xµ]j
∂[xµ]l

[xµ]k + [Pµ]il
∂[xµ]k
∂[xµ]l

[xµ]j

)
=

1

2

(
∂

∂[xµ]l
([Pµ]il[xµ]j[xµ]k)−

∂[Pµ]il
∂[xµ]l

[xµ]j[xµ]k − [Pµ]il[xµ]j
∂[xµ]k
∂[xµ]l

)

+
1

2

(
∂

∂[xµ]l
([Pµ]il[xµ]k[xµ]j)−

∂[Pµ]il
∂[xµ]l

[xµ]k[xµ]j − [Pµ]il[xµ]k
∂[xµ]j
∂[xµ]l

)
=

∂

∂[xµ]l
([Pµ]il[xµ]j[xµ]k)−

∂[Pµ]il
∂[xµ]l

[xµ]j[xµ]k−
1

2

(
[Pµ]il[xµ]jδkl+[Pµ]il[xµ]kδjl

)
=

∂

∂[xµ]l
([Pµ]il[xµ]j[xµ]k)−

∂[Pµ]il
∂[xµ]l

[xµ]j[xµ]k −
1

2

(
[Pµ]ik[xµ]j + [Pµ]ij[xµ]k

)
=

∂

∂[xµ]l
([Pµ]il[xµ]j[xµ]k)−

∂[Pµ]il
∂[xµ]l

[xµ]j[xµ]k − [(Pµ ⊗ xµ)S]ijk. (F.1)
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Thus, integrating over the micro-scale domain Ωµ, it results

∫

Ωµ

[(Pµ ⊗ xµ)S]ijk dΩµ =

∫

Ωµ

[
∂

∂[xµ]l
([Pµ]il[xµ]j[xµ]k)−

∂[Pµ]il
∂[xµ]l

[xµ]j[xµ]k − [(Pµ ⊗ xµ)S]ijk

]
dΩµ,

(F.2)

that is

2

∫

Ωµ

[(Pµ ⊗ xµ)S]ijk dΩµ =

∫

Ωµ

[
∂

∂[xµ]l
([Pµ]il[xµ]j[xµ]k)−

∂[Pµ]il
∂[xµ]l

[xµ]j[xµ]k

]
dΩµ, (F.3)

and taking the first term in the right hand side to the boundary results

2

∫

Ωµ

[(Pµ ⊗ xµ)S]ijk dΩµ =

∫

∂Ωµ

[Pµ]il[nµ]l[xµ]j[xµ]k d∂Ωµ −
∫

Ωµ

∂[Pµ]il
∂[xµ]l

[xµ]j[xµ]k dΩµ. (F.4)

Therefore, this finally implies

∫

Ωµ

(Pµ ⊗ xµ)S dΩµ = −1

2

∫

Ωµ

divµ Pµ ⊗ xµ ⊗ xµ dΩµ

+
1

2

∫

∂Ωµ

Pµnµ ⊗ xµ ⊗ xµ d∂Ωµ. (F.5)
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