

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in : *CATENA*

Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa28098

Paper:

Matthews, J., Owen, G., Winkler, S., Vater, A., Wilson, P., Mourne, R. & Hill, J. (2016). A rock-surface microweathering index from Schmidt hammer R-values and its preliminary application to some common rock types in southern Norway. *CATENA*, *143*, 35-44.

http://dx.doi.org/10.1016/j.catena.2016.03.018

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions. When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO database to judge whether or not it is copyright safe to add this version of the paper to this repository. http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

1	A rock-surface microweathering index from Schmidt hammer R-
2	values and its preliminary application to some common rock types in
3	southern Norway
4	
5 6 7	John A. Matthews ¹ , Geraint Owen ¹ , Stefan Winkler ² , Amber E. Vater ³ , Peter Wilson ⁴ , Richard W. Mourne ⁵ and Jennifer L. Hill ⁵
8	¹ Department of Geography, College of Science, Swansea University, Singleton Park,
9	Swansea SA2 8PP, Wales, UK
10	[J.A.Matthews@Swansea.ac.uk; phone/fax +1633 413291]
11	² Department of Geological Sciences, University of Canterbury, Private Bag 4800,
12	Christchurch 8140, New Zealand
13	³ Natural Environment Research Council, Polaris House, Swindon SN2 8PP, UK
14	⁴ Environmental Sciences Research Institute, School of Geography and
15	Environmental Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA,
16	Northern Ireland, UK
17	⁵ Department of Geography and Environmental Management, University of the West
18	of England, Coldharbour Lane, Bristol BS16 1QY, UK
19	
20	ABSTRACT
21	
22	An index of the degree of rock-surface microweathering based on Schmidt hammer
23	R-values is developed for use in the field without laboratory testing. A series of
24	indices – I_2 to I_n , where n is the number of successive blows with the hammer – is
25	first proposed based on the assumption that the R-values derived from successive
26	impacts on the same spot on a weathered rock surface converge on the value
27	characteristic of an unweathered surface of the same lithology. Of these indices, the I_5
28	index, which measures the difference between the mean R-value derived from first
29	and fifth impacts as a proportion of the mean R-value from the fifth impact, is
30	regarded as optimal: use of fewer impacts (e.g. in an I_2 index) underestimates the
31	degree of weathering whereas use of more impacts (e.g. in an I_{10} index) makes little
32	difference and is therefore inefficient and may also induce an artificial weakening of
33	the rock. Field tests of these indices on weathered glacially-scoured bedrock outcrops
34	of nine common metamorphic and igneous rock types from southern Norway show,

35	however, that even after ten impacts, successive R-values fail to approach the values
36	characteristic of unweathered rock surfaces (e.g. bedrock from glacier forelands and
37	road cuttings). An improved $*I_5$ index is therefore preferred, in which the estimated
38	true R-value of an unweathered rock surface is substituted. Weathered rock surfaces
39	exposed to the atmosphere for ~10,000 years in southern Norway exhibit $*I_5$ indices
40	of 36-57%, values that reflect a similarly high degree of weathering irrespective of the
41	rock type.
42	
43	Key words: Rock microweathering indices, $*I_5$ index, Schmidt hammer R-values,
44	metamorphic and igneous rocks, chemical weathering, Norway
45	
46	
47	1. Introduction
48	
49	The degree to which a rock surface has been affected by microweathering on exposure
50	to the atmosphere can be measured in a variety of ways (Aydin and Duzgoren-Aydin,
51	2002; Moses et al., 2014). Approaches range from the direct measurement of weight
52	loss (Trudgill, 1975; Thorn et al., 2002) and rock-surface lowering (Dahl, 1967;
53	André, 2002; Owen et al., 2007; Nicholson, 2008) to the measurement of weathering
54	rinds (e.g. Chinn, 1981; Coleman and Pierce, 1981; Knuepfer, 1994; Birkeland and
55	Noller, 2000; Oguchi, 2013) and the analysis of solutes in runoff (Darmody et al.,
56	2000; Beylich et al., 2005). A further promising, relatively new approach involves the
57	use of Schmidt hammer rebound values (R-values), which measure rock hardness and
58	hence are sensitive to rock weakening as a result of rock-surface weathering.
59	
60	The Schmidt hammer was designed to test the hardness and strength of
61	concrete (Schmidt, 1950). It has subsequently been widely used in rock mechanics
62	(Hucka, 1965; Poole and Farmer, 1980; Aydin and Basu, 2005; Aydin, 2009) and
63	adopted by geomorphologists who have explored its use in the context of the
64	microweathering and dating of natural rock surfaces and building stone (e.g. Day and
65	Goudie, 1977; McCarroll, 1994; Goudie, 2006, 2013; Nicholson, 2009; Matthews and
66	Owen, 2011; Viles et al., 2011). This paper develops the approach further by focusing
67	on the derivation and application of a quantitative weathering index from R-values,
68	with the aim of providing a measure of the degree of weathering of rock surfaces that

69	is reliable, widely applicable, low cost and easy to use in the field. The index is
70	evaluated with particular reference to common metamorphic and igneous rock types
71	in alpine, subalpine and boreal zones in southern Norway.
72	
73	
74	2. Tested rock types and methods
75	
76	2.1 Weathered and unweathered rock surfaces
77	
78	Weathered and unweathered surfaces of nine different metamorphic and igneous rock
79	types from the Jotunheimen, Jostedalsbreen, Breheimen and Reinheimen regions of
80	southern Norway have been investigated. Identification of rock types was based on
81	field observation combined with geological maps (Lutro and Tveten, 1996; Tveten et
82	al., 1998). Named site locations are shown in Figures 1 and 2. The weathered surfaces
83	are mostly glacially-scoured bedrock outcrops (e.g. Figure 3A), which were
84	deglaciated following the late-Preboreal Erdalen Event, which consisted of two
85	glacier re-advances at about 10,200 and 9700 cal. years BP (Dahl et al., 2002). This
86	class of weathered surface includes all sites in Jotunheimen where pyroxene granulite
87	gneiss (sampled in Gravdalen and Leirdalen) is the commonest rock type (Battey and
88	McRitchie, 1973, 1975) but related gneisses with gabbroic textures (sampled near
89	Bøverbreen and Leirbreen) and peridotite intrusions (sampled in Gravdalen; Figure
90	3B) also occur (Matthews and Owen, 2010, 2011).
91	
92	Calcitic schist was sampled near Bøvertun, north of the Northwestern
93	Boundary Fault of Jotunheimen and quartzitic calcitic schist at Attgløyma, a lake on
94	the Sognefjell (Gibbs and Banham, 1979; Owen et al., 2006). At various sites around
95	the Jostedalsbreen ice cap, granitic gneiss (Fåbergstølen and Jostedalen sites, both in
96	upper Jostedalen), granite (Kvamsdalen, near Veitastrond) and augen gneiss
97	(Loenvatnet) were sampled. Most of these sites have been used previously as control
98	points of age ~10,000 years in studies of Schmidt hammer exposure-age dating
99	(Matthews and Owen, 2010; Matthews and Wilson, 2015). Finally, migmatitic
100	(banded) gneiss was sampled at Øyberget in upper Ottadalen and in Alnesdalen, south
101	of Andalsnes in Møre og Romsdal. The Øyberget site involved boulders on the upper
102	surface of a rock glacier which, on the basis of Schmidt hammer exposure-age dating

103 (Matthews et al., 2013) and unpublished cosmogenic isotope dating (Linge et al.,

submitted), stabilized in the early Holocene ~10,500 years ago. The Alnesdalen site

105 involved boulders on a Younger Dryas end moraine, which dates from ~11,500 cal.

106 years BP (Carlson et al. 1983; Matthews and Wilson, 2015).

107

108 Fresh, unweathered rock surfaces of several different types were sampled from 109 each of the nine rock types. Where available, glacially-scoured bedrock outcrops from 110 'Little Ice Age' glacier forelands were used: in Jotunheimen, Storbreen (pyroxene-111 granulite gneiss and peridotite), Bøverbreen and Leirbreen (gabbroic gneiss), and 112 Mjølkedalsbreen (peridotite); and at the Jostedalsbreen outlet glaciers of Nigardsbreen 113 and Fåbergstølsbreen (granitic gneiss) and Briksdalsbreen (augen gneiss). Based on 114 historical evidence and/or lichenometric dating, the bedrock outcrops selected were all 115 deglacierized since the AD 1930s and therefore represent terrain ages of <90 years 116 (cf. Bickerton and Matthews, 1992, 1993; Matthews, 2005).

117

118 Other types of unweathered rock surface used included: (1) glacially-abraded 119 boulders embedded in fluted moraine on the Storbreen glacier foreland (pyroxene-120 granulite gneiss and peridotite) deglacierized since AD 1951; (2) anthropogenic 121 bedrock surfaces in road cuttings (Gravdalen, pyroxene granulite-gneiss and 122 peridotite; Bøvertunvatnet, calcitic schist), a road tunnel (Jostedalen, granitic gneiss) 123 and a hydro-electric tunnel (Attgløyma, quartzitic calcitic schist), all excavated in the 124 last 90 years; (3) boulders (Nystølsnovi, granite, and Langfjelldalen, migmatitic 125 gneiss) produced by rockfalls that were observed to occur within the last 10 years 126 (Matthews and Wilson, 2015); and (4) subsurface boulders excavated within the last 127 three years in a road cutting in the toe of the Øyberget rock glacier (migmatitic 128 gneiss). An example of an unweathered rock surface is shown in Figure 3C. The 129 characteristics and appropriateness of these surfaces are discussed further below. 130 131 2.2 *R*-value measurements

132

Field measurements were made using a standard mechanical N-type Schmidt hammer
(Proceq, 2004), which was periodically tested against the manufacturer's anvil to
ensure no deterioration in R-values during the study. Successive impacts of the

136 Schmidt hammer were made at particular points on the rock surfaces. Points were

137 selected that avoided lichen and moss cover, edge effects, cracks and other visible 138 structural weaknesses in the rock surface. Areas of water seepage were also avoided 139 and all the measurements were made under dry weather conditions. Special attention 140 was paid to ensuring successive blows were made at precisely the same point on the 141 rock surface (see, for example, Figures 3B and 3C).

142

143 On weathered surfaces, 10 successive impacts were measured at each of 60 points (n = 600 Schmidt hammer blows). Where weathered bedrock surfaces were 144 145 involved, the 60 points were selected from at least three different outcrops or at least 146 three different areas of the rock surface. Where weathered boulders were used, no 147 more than five points were selected from each boulder ensuring that at least 12 148 boulders were sampled. As unweathered surfaces produced generally less variable R-149 values, five successive impacts were taken from each of 20 points on the unweathered 150 rock surfaces (n = 100 Schmidt hammer blows).

151

152 2.3 Derivation of microweathering indices

153

Indices were derived based on the increase in R-values from successive impacts of the Schmidt hammer on the same point of a weathered rock surface. The fact that Rvalues tend to increase with successive impacts, even on fresh rock surfaces, has been noted in previous investigations of the consistency and repeatability of Schmidt hammer measurements, which has led to various recommendations concerning the number of impacts necessary to determine a representative peak R-value that avoids any weathering effects (Hucka, 1965; Poole and Farmer, 1980; Aydin, 2009).

Nicholson (2009) showed that the difference between the first and second
impact with a Schmidt hammer is a reflection of the degree of weathering of a
weathered rock surface and suggested that the second impact approaches the R-value
characteristic of the intact, unweathered rock. In effect, therefore, she proposed a
simple index of the degree of weathering of the rock surface, ÷

168 $Rw_2 - Rw_1, \underline{W}w$ here Rw_1 is the mean R-value of first impacts and Rw_2 is the mean R-169 value of second impacts (our notation).

170

171 Matthews and Owen (2011) pointed out, however, that the second impact will 172 only approximate the R-value characteristic of unweathered rock if the first impact 173 removes all traces of weathered material from the rock surface. The rise in R-value 174 with further impacts after the second impact (Poole and Farmer, 1980; see also the 175 results below) confirm, moreover, that the second impact is unlikely to provide a close 176 approximation to the R-value characteristic of unweathered rock. Furthermore, 177 progressively better indices of degree of weathering are likely to be produced by the 178 use of the third and subsequent impacts as closer approximations to the R-value 179 characteristic of the unweathered rock surface. Thus, an index based on $(Rw_2 - Rw_1)$ is merely the first in a series of indices culminating in $(Rw_n - Rw_1)$ based on the *n*th 180 181 impact.

182

190

192

193

194

195

199

183In this paper, therefore, this series of indices is initially evaluated based on use184of mean values of the second, fifth and tenth impacts. Furthermore, iIn order to take185account of the effects of rock type on the R-value characteristic of unweathered rock,186the differences between the mean R-values characteristic of the first to *n*th impacts187arecan be expressed as a-percentages of the mean R-values characteristic of the *n*th188impacts. The general formula for this series of potential indices therefore takes the189form:

191	$I_n = 100 (Rw_n - Rw_l) / Rw_n$	(1)

Here, this series of indices is evaluated based on use of mean R-values from the second, fifth and tenth impacts:

196	$I_2 = 100 (Rw_2 - Rw_1) / Rw_2$	(2)
197	$I_5 = 100 (Rw_5 - Rw_1) / Rw_5$	(3)

198	$\mathbf{I}_{10} = 100 \; (Rw_{10} - Rw_1) \; / \; Rw_{10}$	(4)
-----	---	-----

Although evaluation of only three of a potentially much larger number of indices may
 appear arbitrary, our results from the nine rock types from southern Norway, and
 comparison with previous work, justify this choice (see below).

204 However,

205	
206	Evaluation of these indices in the context of the nine rock types from southern
207	Norway indicates, however, that even after the tenth impact, R-values characteristic of
208	true, unweathered rock surfaces are not attained (see discussion below). Thus,
209	although the I_5 index may provide an improvement on I_2 and is more efficient than I_{10} ,
210	it remains a relatively poor underestimate of the degree of weathering of the rock
211	surfaces. Consequently, an improved I_5 index (* I_5) is proposed, which combines
212	efficiency with a reliable measure of the difference between R-values characteristic of
213	the weathered and unweathered rock surface. This differs from the initial, uncorrected
214	I ₅ index in two respects. First, a correction factor $(Ru_5 - Rw_5)$ is added to $(Rw_5 - Rw_1)$,
215	where Ru_5 is the mean R-value of the fifth impact from the independent unweathered
216	rock surface of the same lithology. Second, Ru_5 is substituted for Rw_5 in the
217	denominator. Thus,
218	
219	*I ₅ = 100 [($Rw_5 - Rw_1$) + ($Ru_5 - Rw_5$)] / Ru_5 (5)
220	
221	This shortens to:
222	
223	$*I_{5} = 100 (Ru_{5} - Rw_{1}) / Ru_{5} $ (6)
224	
225	Equation (6) described the preferred index in a series of improved indices with the
226	general formula:
227	
228	$\underline{*\mathbf{I}_{n}} = 100 \left(Ru_{n} - Rw_{I} \right) / Ru_{n} $ $\tag{7}$
229	
230	Use of $*I_5$ in preference to other potential indices in the series $*I_2$ to $*I_n$ might
231	again appear arbitrary but is justified by our results, which consistently show only
232	slight differences between mean R-values associated with the fifth and subsequent
233	impacts. Our use of the fifth impact is, moreover, compatible with its use in
234	previously proposed indices. The improved $*I_5$ index is similar to the index of rock
235	weathering (IRW) used by Matthews and Owen (2011) in relation to the Schmidt
236	hammer and to several other indices proposed independently for related devices, such
237	as the Equotip (Aoki and Matsukura, 2007; Yilmaz, 2013; Wilhelm et al., in press). It
238	transpires that the improved $*I_5$ index is equivalent in concept to the deformation ratio

239	(δ) of Aoki and Matsukura (2007), although the latter uses median R-values, and is
240	expressed as a value between 0 and 1, and is close numerically to $(100 - *I_5)$ if
241	expressed as a percentage.
242	
243	
244	3. Results
245	
246	3.1 Mean R-values from weathered rock surfaces
247	
248	The effects of successive impacts on R-values associated with weathered surfaces of
249	the nine rock types investigated from southern Norway are summarized in Table 1.
250	The rock types in this table have been placed in descending order according to the
251	mean R-value of the fifth impact (Rw_5) with replicate samples from four of the rock
252	types listed separately. The 95% confidence intervals indicate both the variability and
253	statistical significance of the differences between mean values. These data and the
254	curves in Figures 4 and 5 show several general patterns:
255	
256	• a clear trend of increasing mean R-values with successive impacts;
257	• consistent large and statistically significant increases in mean R-values
258	between the first (Rw_1) and second (Rw_2) impacts;
259	• the lack of statistically significant differences between mean R-values after the
260	fourth (Rw_4) or fifth (Rw_5) impacts as the curves level off;
261	• distinct differences in mean R-values between rock types, which tend to be
262	maintained with successive impacts;
263	• excellent replication of results between the four rock types for which more
264	than one sample is available (Figure 5).
265	
266	3.2 Mean R-values from unweathered rock surfaces
267	Successive impacts on the unweathered rock surfaces (Table 2) yield generally less
268	variable mean R-values and simpler patterns with a major difference between, on the
269	one hand, the glacially-abraded surfaces (bedrock and boulders) and, on the other
270	hand, the rockfall and rockglacier boulders, and bedrock in road cuttings and tunnel
271	walls. Notable patterns, illustrated in Figure 6, include:

272	
273	• the absence of any statistically significant trend in mean R-values associated
274	with successive impacts on the glacially-abraded surfaces;
275	• remarkably similar mean R-values characteristic of the glacially-abraded
276	surfaces, irrespective of rock type;
277	• consistent (but often not statistically significant) differences between mean
278	Ru_1 and Ru_2 values associated with rockfall boulders and anthropogenic
279	bedrock surfaces; mean Ru ₃ and subsequent values are, however, often
280	significantly different from mean Ru ₁ values.
281	• non-statistically significant differences where the data enable mean Ru_5 values
282	for glacially-abraded surfaces to be compared with rockfall boulders or
283	anthropogenic bedrock surfaces from the same rock type;
284	• mean Ru_5 values that are usually statistically significantly greater than mean
285	Rw_5 values (irrespective of rock type or surface type).
286	
287	3.3 The weathering indices
288	
289	The I_2 , I_5 and I_{10} indices, and the improved $*I_5$ index, are summarized in Table 3.
290	Important features of these results are as follows:
291	
292	• the consistent increase in the percentage value of the indices from I_2 to I_{10} with
293	the improved $*I_5$ index yielding the highest value, which applies to all rock
294	types;
295	• the large differences between the values of I_2 and I_5 (average difference 8.9%
296	across all 13 samples from the nine rock types), which contrast strongly with
297	the much smaller average difference between I_5 and I_{10} (1.7%) and reflect the
298	large differences between the mean R-values of Rw_1 and Rw_2 evident in Figure
299	4.
300	• the even larger differences between the I_5 index and the improved $*I_5$ index
301	(average difference 11.7%), which reflect the inadequacy of Rw_5 values (and
302	also Rw_{10} values) as approximations of R-values characteristic of unweathered
303	rock surfaces, and the improvement brought about by using Ru_5 values;
304	• the relatively small range $(36.1-56.6\%)$ exhibited by the improved $*I_5$ index

between rock types.

307

308 4. Discussion

309

310 The indices of degree of microweathering developed in this paper (I_2 , I_5 , I_{10} and the 311 improved *I₅ index) are measures of the loss of compressional strength of a rock 312 surface as a result of weathering standardized with respect to the estimated strength of 313 unweathered rock of the same lithology. Expressed as a percentage, 0% is the 314 expected value of each index for an unweathered rock of any lithology whereas 100% 315 is the corresponding theoretical value for a surface that has completely disintegrated 316 and hence has been weakened by weathering to such an extent as to exhibit zero 317 strength. 'Indices of rock-surface weakening' is therefore an alternative term, which has been recognized in relation to earlier related indices based on the physical strength 318 319 of rock rather than its chemical make-up (Nicholson, 2009; Matthews and Owen, 320 2011).

321

322 When applied to a particular weathered rock surface, the values of all these 323 indices are highly dependent on the mean R-value of the first impact (Rw_1) . Many 324 forms of microweathering are potential influences on Rw_1 , including chemical 325 weathering, biochemical weathering, biological mechanical weathering and 326 microgelifraction/microgelivation (Nicholson, 2009; Matthews and Owen, 2011). The 327 extent to which Rw_1 differs from the estimated mean R-value for unweathered rock of 328 the same lithology (Rw_5 or Ru_5) is affected especially by the collapse of 329 protruberances that result from differential weathering of minerals at the rock surface. 330 This is particularly noticeable with respect to the Rw_1 values for peridotite, pyroxene-331 granulite gneiss and gabbroic gneiss (Table 1; Figures 3B and 4). Where the 332 protruberances are themselves strong and hard, they resist subsequent impacts and 333 result in a relatively slow increase in the R-values from impacts Rw_3 to Rw_{10} (see 334 again the curve for peridotite in Figure 4). 335

Although indices I_2 to I_{10} may be viewed as progressively closer approximations to the best index of its type, even I_{10} is unsatisfactory because Rw_{10} is not a close estimate of the mean R-value characteristic of unweathered rock surfaces. 339 A number of factors account for the fact that Rw_{10} underestimates the true mean R-340 value of intact, unweathered rock as determined directly in this study (Table 2). These 341 factors include the accumulation of pulverized rock material beneath the hammer, 342 penetration of microweathering effects (especially chemical weathering) deep below 343 the rock surface, and/or the weakening of otherwise intact rock at depths below the 344 weathered surface by shock effects from a large numbers of impacts. Whereas 345 pulverized rock material could be removed by careful cleaning of the rock surface 346 after each successive impact, it is not possible to control effectively for the other 347 factors. Thus, it is unlikely that a close approximation to the true mean R-value 348 characteristic of unweathered rock can be found from weathered rock surfaces, no 349 matter how many successive impacts are made.

350

351 A major advantage of the improved *I₅ index in its shortened form (equation 352 6) over the uncorrected indices is that it does not require measurement of any impacts 353 on the weathered rock surface apart from Rw_1 . This follows because $(Rw_5 - Rw_1) +$ 354 $(Ru_5 - Rw_5)$ from equation 5 is numerically equal to $(Ru_5 - Rw_4)$ from equation 6. 355 Futhermore, by replacing Rw_5 with the fifth impact from the unweathered rock surface 356 (Ru_5) , the improved *I₅ index uses a very close approximation to the true mean R-357 value of the unweathered rock surface. In turn, Ru_5 can be determined accurately from 358 both natural and anthropogenic surfaces that have been recently exposed, thus 359 avoiding the need for laboratory testing of prepared unweathered rock specimens.

360

There is no advantage in using Ru_5 rather than Ru_1 if the unweathered rock surface is a smooth, glacially-abraded surface because the first impacts on these surfaces do not differ from successive impacts. In relation to rockfall boulders and bedrock surfaces in road cuttings or tunnels, however, Ru_1 should not be used because the first impact on these surfaces tends to yield a relatively low R-value (Table 3) because of higher surface roughness. Such roughness effects are only removed after further impacts (usually less than five; Table 2).

368

Thus, the improved $*I_5$ index does not suffer the main limitation of the uncorrected I_5 index (namely, that Rw_5 is a poor approximation of the true mean Rvalue of the unweathered rock surface). An improved $*I_{10}$ index would, moreover,

372 yield little or no additional benefit because the tenth impact from an unweathered rock

373 surface (Ru_{10}) would not be expected to differ significantly from Ru₅. The improved 374 *I₅ index is therefore not only reliable but efficient, requiring a minimum of field 375 measurements. Perhaps the main limitation of this method as a means to quantify 376 degree of weathering is the practical one of obtaining representative and comparable 377 unweathered rock surfaces.

378

379 The relatively narrow range of 36.1-56.6% between rock types in the value of 380 the improved *I₅ index (Table 3) may be interpreted as indicating that the various 381 tested rock types exhibit quite similar degrees of weathering when the initial strength 382 of the unweathered rock is taken into account. As most of these rock surfaces had 383 been subject to weathering for about $10,000 \pm 500$ years (the exception being the 384 Alnesdalen site involving migmatitic gneiss, which has been exposed to weathering 385 for ~11,500 years), these index values indicate similar average weathering rates of 386 3.6-5.7% per 1000 years.

- 387
- 388

389 **5. Conclusion**

390

391 (1) The improved *I₅ index, 100 $(Ru_5 - Rw_1) / Ru_5$, which has a potential range of 0 to 392 100%, provides a field measure of the degree of microweathering of a rock surface 393 from Schmidt-hammer R-values. It measures the difference between the mean R-394 value sampled from the weathered rock surface (Rw_1) and the higher mean R-value 395 characteristic of the fifth successive impact taken from the same spot on an 396 unweathered rock surface of the same lithology (Ru_5) . It therefore reflects the 397 reduction in compressional strength of the rock surface as a result of weathering 398 *relative* to the strength of the unweathered rock.

399

400 (2) This index improves on a series of indices (I_2 to I_n) derived from successive 401 impacts on the weathered rock surface (Rw_1 to Rw_n). All indices in the series assume 402 that the *n*th impact approximates the R-value characteristic of unweathered rock. Field 403 tests on glacially-scoured bedrock outcrops of nine common metamorphic and 404 igneous rock types from southern Norway, which were deglaciated between ~11,500 405 and 9700 years ago, demonstrate that this assumption is incorrect.

407	(3) The improved $*I_5$ index yielded values of 36-57% for the highly weathered
408	metamorphic and igneous rock surfaces tested. It represents a substantial
409	improvement on the uncorrected indices because it effectively corrects for the strength
410	of the initially unweathered rock. It is, moreover, relatively easy to measure and Ru_5
411	can be obtained from a variety of unweathered natural and anthropogenic rock
412	surfaces (e.g. glacially-abraded bedrock and boulders on glacier forelands, or bedrock
413	exposed in modern road cuttings and tunnels) without the requirement for laboratory
414	testing of rock specimens.
415	
416	
417	Acknowledgements
418	Fieldwork was carried out on the Swansea University Jotunheimen Research
419	Expeditions in 2010 and 2015. We are grateful to Anna Ratcliffe for preparing the
420	figures for publication. This paper constitutes Jotunheimen Research Expedition
421	Contribution <u>No. 198</u> .
422	
423	
424	References
425	
426	André, M.F., 2002. Rates of postglacial rock weathering on glacially scoured outcrops
427	(Abisko-Riksgrånsen area, 68°N). Geografiska Annaler 64A, 139-150.
428	
429	Aoki, H., Matsukura, Y., 2007. A new technique for non-destructive field
430	measurement of rock-surface strength: an application of the Equotip hardness tester to
431	weathering studies. Earth Surface Processes and Landforms 32, 1759-1769.
432	
433	Aydin, A., 2009. ISRM suggested method for determination of the Schmidt hammer
434	rebound hardness: revised version. International Journal of Rock Mechanics and
435	Mining Sciences 46, 627-634.
436	
437	Aydin, A., Basu, A., 2005. The Schmidt hammer in rock material characterization.
437 438	Aydin, A., Basu, A., 2005. The Schmidt hammer in rock material characterization. <i>Engineering Geology</i> 81, 1-14.
437 438 439	Aydin, A., Basu, A., 2005. The Schmidt hammer in rock material characterization. <i>Engineering Geology</i> 81, 1-14.

441	weathering-induced changes in rock properties. Environmental and Engineering
442	Geoscience 8, 121-135.
443	
444	Battey, M.H., McRitchie, W.D., 1973. A geological traverse across the pyroxene-
445	granulites of Jotunheimen in the Norwegian Caledonides. Norsk Geologisk Tidsskrift
446	53, 237-265.
447	
448	Battey, M.H., McRitchie, W.D., 1975. The petrology of the pyroxene-granulite facies
449	rocks of Jotunheimen. Norsl Geologisk Tidsskrift 55, 1-49.
450	
451	Beylich, A.A., Molau, U., Luthbom, K., Gintz, D., 2005. Rates of chemical and
452	mechanical fluvial denudation in an Arctic oceanic periglacial environment,
453	Latnjavagge drainage basin, northernmost Swedish Lapland. Arctic, Antarctic and
454	Alpine Research 37, 75-87.
455	
456	Bickerton, R.J., Matthews, J.A., 1992. On the accuracy of lichenometric dates: an
457	assessment based on the 'Little Ice Age' moraine sequence of Nigardsbreen, southern
458	Norway. The Holocene 2, 227-237.
459	
460	Bickerton, R.J., Matthews, J.A., 1993. 'Little Ice Age' variations of outlet glaciers
461	from the Jostedalsbreen ice-cap, southern Norway: a regional lichenometric-dating
462	study of ice-marginal moraine sequences and their climatic significance. Journal of
463	Quaternary Science 8, 45-66.
464	
465	Birkeland, P.W., Noller, J.S., 2000. Rock and mineral weathering. In: Noller, J.S.,
466	Sowers, J.M., Lettis, W.R. (Eds.), Quaternary Geochronology: Methods and
467	Applications. American Geophysical Union, Washington DC, pp. 293-312.
468	
469	Carlson, A.B., Sollid, J.L., Torp, B., 1983. Valldal Kvartaergeologi og
470	geomorphologie, 1319IV [Valldal Quaternary Geology and Geomorphology, Sheet
471	1319 IV] 1:50,000. Geografisk Institutt, Universitet I Oslo, Oslo.
472	
473	Chinn, T.J.H., 1981. Use of rock weathering-rind thickness for Holocene absolute
474	age-dating in New Zealand. Arctic and Alpine Research 13, 33-45.

475	
476	Coleman, S.M., Pierce, K.L., 1981. Weathering rinds on andesitic and basaltic stones
477	as a Quaternary age indicator, western United States. United States Geological Survey
478	Professional Paper 1210, 1-54.
479	
480	Dahl, R., 1967. Post-glacial micro-weathering of bedrock surfaces in the Narvik
481	district of Norway. Geografiska Annaler 49A, 155-166.
482	
483	Dahl, S.O., Nesje, A., Lie, Ø., Fjordheim, K., Matthews, J.A., 2002. Timing,
484	equilibrium-line altitudes and climatic implications of two early-Holocene glacier
485	readvances during the Erdalen Event at Jostedalsbreen, western Norway. The
486	Holocene 12, 17-25.
487	
488	Darmody, R.G., Thorn, C.E., Harder, R.L., Schlyter, J.P.L., Dixon, J.C., 2000.
489	Weathering implications of water chemistry in an arctic-alpine environment, northern
490	Sweden. Geomorphology 34, 89-100.
491	
492	Day, M.J., Goudie, A.S., 1977. Field assessment of rock hardness using the Schmidt
493	hammer. British Geomorphological Research Group Technical Bulletin 18, 19-29.
494	
495	Gibbs, A.D., Banham, P.H., 1979. Sygnefjell, Berggrunnsgeologisk kart 1518 III,
496	1:50,000. Norges Geologiske Undersøkelse, Trondheim.
497	
498	Goudie, A.S., 2006. The Schmidt hammer in geomorphological research. Progress in
499	Physical Geography 30, 703-718.
500	
501	Goudie, A.S., 2013. The Schmidt hammer and related devices in geomorphological
502	research. In: Kennedy, D.M. Switzer, A. (Eds.), Treatise on Geomorphology, Volume
503	14: Methods in Geomorphology. Academic Press-Elsevier, Amsterdam, pp. 338-345.
504	
505	Hucka, V.A., 1965. A rapid method for determining the strength of rocks.
506	International Journal of Rock Mechanics and Mining Sciences 2, 127-134.
507	

508 Knuepfer, P.L.K., 1994. Use of rock weathering rinds in dating geomorphic surfaces.

509	In Beck, C. (Ed.), Dating in Exposed and Surface Contexts. University of New
510	Mexico Press, Albuquerque, pp. 15-28.
511	
512	Linge, H., Nesje, A., Matthews, J.A., Fabel, D., Xu, S., (submitted) ¹⁰ Be surface
513	exposure ages from relict talus-derived rock glacier lobes at Øyberget, upper
514	Ottadalen, southern Norway. Quaternary Geochronology.
515	
516	Lutro, O., Tveten, E., 1996. Geologisk kart over Norge, berggrunskart Årdal
517	[Geological map of Norway: bedrock map, Årdal sheet] 1:250,000. Norges
518	Geologiske Undersøkelse, Trondheim.
519	
520	Matthews, J.A., 2005. 'Little Ice Age' glacier variations in Jotunheimen, southern
521	Norway: a study in regionally-controlled lichenometric dating of recessional moraines
522	with implications for climate and lichen growth rates. The Holocene 15, 1-19.
523	
524	Matthews, J.A., Owen, G., 2010. Schmidt-hammer exposure-age dating: developing
525	linear age-calibration curves using Holocene bedrock surfaces from the Jotunheimen-
526	Jostedalsbreen regions of southern Norway. Boreas 39, 105-115.
527	
528	Matthews, J.A., Owen, G., 2011. Holocene chemical weathering, surface lowering
529	and rock weakening rates on glacially eroded bedrock surfaces in an alpine periglacial
530	environment, Jotunheimen, southern Norway. Permafrost and Periglacial Processes
531	22, 279-290.
532	
533	Matthews, J.A., Wilson, P., 2015. Improved Schmidt-hammer exposure ages for
534	active and relict pronival ramparts in southern Norway, and their palaeoenvironmental
535	implications. Geomorphology 246, 7-21.
536	
537	Matthews, J.A., Nesje, A., Linge, H., 2013. Relict talus-foot rock glaciers at
538	Øyberget, upper Ottadalen, southern Norway: Schmidt-hammer exposure ages and
539	palaeoenvironmental implications. Permafrost and Periglacial Processes 24, 336-
540	346.
541	
542	McCarroll, D., 1994. The Schmidt hammer as a measure of the degree of rock surface

543	weathering and terrain age. In; Beck, C. (Ed.), Dating in Exposed and Surface
544	Contexts. University of New Mexico Press, Albuquerque, pp. 641-651.
545	
546	Moses, C., Robinson, D., Barlow, J., 2014. Methods for measuring rock surface
547	weathering and erosion: a critical review. Earth-Science Reviews 135, 141-161.
548	
549	Nicholson, D.T., 2008. Rock control on microweathering of bedrock surfaces in a
550	periglacial environment. Geomorphology 101, 655-665.
551	
552	Nicholson, D.T., 2009. Holocene microweathering rates and processes on ice-eroded
553	bedrock, Røldal area, Hardangervidda, southern Norway. In: Knight, J., Harrison, S.
554	(Eds.), Periglacial and Paraglacial Processes and Environments, The Geological
555	Society, London: Special Publication 320, pp. 29-49.
556	
557	Oguchi, C.T., 2013. Weathering rinds: formation, processes and weathering rates. In;
558	Pope, G.A. (Ed.), Treatise on Geomorphology, Volume 4: Weathering and Soils
559	Geomorphology. Academic Press-Elsevier, Amsterdam, pp. 98-110.
560	
561	Owen. G., Matthews, J.A., Shakesby, R.A., 2006. Rapid Holocene chemical
562	weathering on a calcitic lake shoreline in an alpine periglacial environment:
563	Attgløyma, Sognefjell, southern Norway. Permafrost and Periglacial Processes 17,
564	3-12.
565	
566	Owen. G., Matthews, J.A., Albert, P.G., 2007. Rates of Holocene chemical
567	weathering, 'Little Ice Age' glacial erosion, and implications for Schmidt-hammer
568	dating at a glacier-foreland boundary, Fåbergstølsbreen, southern Norway. The
569	Holocene 17, 829-834.
570	
571	Poole, R.W., Farmer, I.W., 1980. Consistency and repeatability of Schmidt hammer
572	rebound data during field testing. International Journal of Rock Mechanics and
573	Mining Sciences and Geomechanics Abstracts 17, 167-171.
574	
575	Proceq, 2004. Operating instructions Betonprüfhammer N/NR- L/LR. Proceq SA,
576	Schweizenbach.

577	
578	Schmidt, E., 1950. Der Beton-Prüfhammer. Schweizer Baublatt, Zürich 68(28) 1950,
579	378.
580	
581	Thorn, C.E., Darmody, R.G., Dixon, J.C., Schlyter, P., 2002. Weathering rates of
582	machine-polished rock discs, Kärkevagge, Swedish Lapland. Earth Surface Processes
583	and Landforms 27, 831-845.
584	
585	Trudgill, S.T., 1975. Measurement of erosional weight-loss of stone tablets. British
586	Geomorphological Research Group Technical Bulletin 17, 13-19.
587	
588	Tveten, E., Lutro, O., Thorsnes, T., 1998. Geologisk kart over Norge, berggrunskart
589	Ålesund [Geological map of Norway: bedrock map, Ålesund sheet] 1:250,000.
590	Norges Geologiske Undersøkelse, Trondheim.
591	
592	Viles, H., Goudie, A., Grab, S., Lalley, J., 2011. The use of the Schmidt hammer and
593	Equotip for rock hardness assessment in geomorphology and heritage science: a
594	comparative analysis. Earth Surface Processes and Landforms 36, 320-333.
595	
596	Wilhelm, K., Viles, H., Burke, Ó., (in press) Low impact surface hardness testing
597	(Equotip) on porous rock and stone – advances in methodology with implications for
598	rock weathering and stone deterioration research. Earth Surface Processes and
599	Landforms DOI:10.1002/esp.3882
600	
601	Yilmaz, N.G., 2013. The influence of testing procedures on uniaxial compressive
602	strength prediction on carbonate rocks from Equotip hardness tester (EHT) and
603	proposal of new testing methodology: hybrid dynamic hardness (HDH). Rock
604	Mechanics and Rock Engineering 46, 95-106.
605	
606	
607	
608	
609	
610	

611	
612	
613	
614	
615	
616	
617	
618	
619	Figure captions
620	
621	Figure 1. Locations of field measurement sites (x) in southern Norway.
622	
623	Figure 2. Detailed locations of field measurement sites in Jotunheimen, Jostedalsbreen
624	and Breheimen regions.
625	
626	Figure 3. A, a typical weathered glacially-scoured rock outcrop of granitic gneiss in
627	Jostedalen; B, a weathered bedrock outcrop of peridotite in Gravdalen, Jotunheimen,
628	showing five points on the rock surface where successive Schmidt-hammer impacts
629	were made; C, an unweathered surface of pyroxene-granulite gneiss in a road cutting
630	in Gravdalen showing three points where successive Schmidt-hammer impacts were
631	made. Note Schmidt hammer for scale.
632	
633	Figure 4. Mean Schmidt_hammer R-values for successive impacts on the weathered
634	surfaces of nine rock types. A representative 95% confidence interval is shown (all
635	confidence intervals are given in Table 1).
636	
637	Figure 5. Replication of mean Schmidt_hammer R-values for successive impacts on
638	the weathered surfaces of four rock types (representative 95% confidence intervals are
639	shown).
640	
641	Figure 6. Mean Schmidt hammer R-values (± 95% confidence intervals) for
642	successive impacts on selected unweathered rock surfaces.
643	
644	

646 Word count: 5312 including references and figure captions.