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ABSTRACT 20 

 21 

An index of the degree of rock-surface microweathering based on Schmidt hammer 22 

R-values is developed for use in the field without laboratory testing. A series of 23 

indices – I2 to In , where n is the number of successive blows with the hammer – is 24 

first proposed based on the assumption that the R-values derived from successive 25 

impacts on the same spot on a weathered rock surface converge on the value 26 

characteristic of an unweathered surface of the same lithology. Of these indices, the I5 27 

index, which measures the difference between the mean R-value derived from first 28 

and fifth impacts as a proportion of the mean R-value from the fifth impact, is 29 

regarded as optimal: use of fewer impacts (e.g. in an I2 index) underestimates the 30 

degree of weathering whereas use of more impacts (e.g. in an I10 index) makes little 31 

difference and is therefore inefficient and may also induce an artificial weakening of 32 

the rock. Field tests of these indices on weathered glacially-scoured bedrock outcrops 33 

of nine common metamorphic and igneous rock types from southern Norway show, 34 
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however, that even after ten impacts, successive R-values fail to approach the values 35 

characteristic of unweathered rock surfaces (e.g. bedrock from glacier forelands and 36 

road cuttings). An improved *I5 index is therefore preferred, in which the estimated 37 

true R-value of an unweathered rock surface is substituted. Weathered rock surfaces 38 

exposed to the atmosphere for ~10,000 years in southern Norway exhibit *I5 indices 39 

of 36-57%, values that reflect a similarly high degree of weathering irrespective of the 40 

rock type.   41 

 42 

Key words: Rock microweathering indices, *I5 index, Schmidt hammer R-values, 43 

metamorphic and igneous rocks, chemical weathering, Norway 44 

 45 

 46 

1. Introduction 47 

 48 

The degree to which a rock surface has been affected by microweathering on exposure 49 

to the atmosphere can be measured in a variety of ways (Aydin and Duzgoren-Aydin, 50 

2002; Moses et al., 2014). Approaches range from the direct measurement of weight 51 

loss (Trudgill, 1975; Thorn et al., 2002) and rock-surface lowering (Dahl, 1967; 52 

André, 2002; Owen et al., 2007; Nicholson, 2008) to the measurement of weathering 53 

rinds (e.g. Chinn, 1981; Coleman and Pierce, 1981; Knuepfer, 1994; Birkeland and 54 

Noller, 2000; Oguchi, 2013) and the analysis of solutes in runoff (Darmody et al., 55 

2000; Beylich et al., 2005). A further  promising, relatively new approach involves the 56 

use of Schmidt hammer rebound values (R-values), which measure rock hardness and 57 

hence are sensitive to rock weakening as a result of rock-surface weathering. 58 

 59 

 The Schmidt hammer was designed to test the hardness and strength of 60 

concrete (Schmidt, 1950). It has subsequently been widely used in rock mechanics 61 

(Hucka, 1965; Poole and Farmer, 1980; Aydin and Basu, 2005; Aydin, 2009) and 62 

adopted by geomorphologists who have explored its use in the context of the 63 

microweathering and dating of natural rock surfaces and building stone (e.g. Day and 64 

Goudie, 1977; McCarroll, 1994; Goudie, 2006, 2013; Nicholson, 2009; Matthews and 65 

Owen, 2011; Viles et al., 2011). This paper develops the approach further by focusing 66 

on the derivation and application of a quantitative weathering index from R-values, 67 

with the aim of providing a measure of the degree of weathering of rock surfaces that 68 
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is reliable, widely applicable, low cost and easy to use in the field. The index is 69 

evaluated with particular reference to common metamorphic and igneous rock types 70 

in alpine, subalpine and boreal zones in southern Norway.  71 

 72 

 73 

2. Tested rock types and methods 74 

 75 

2.1 Weathered and unweathered rock surfaces 76 

 77 

Weathered and unweathered surfaces of nine different metamorphic and igneous rock 78 

types from the Jotunheimen, Jostedalsbreen, Breheimen and Reinheimen regions of 79 

southern Norway have been investigated. Identification of rock types was based on 80 

field observation combined with geological maps (Lutro and Tveten, 1996; Tveten et 81 

al., 1998). Named site locations are shown in Figures 1 and 2. The weathered surfaces 82 

are mostly glacially-scoured bedrock outcrops (e.g. Figure 3A), which were 83 

deglaciated following the late-Preboreal Erdalen Event, which consisted of two 84 

glacier re-advances at about 10,200 and 9700 cal. years BP (Dahl et al., 2002). This 85 

class of weathered surface includes all sites in Jotunheimen where pyroxene granulite 86 

gneiss (sampled in Gravdalen and Leirdalen) is the commonest rock type (Battey and 87 

McRitchie, 1973, 1975) but related gneisses with gabbroic textures (sampled near 88 

Bøverbreen and Leirbreen) and peridotite intrusions (sampled in Gravdalen; Figure 89 

3B) also occur (Matthews and Owen, 2010, 2011). 90 

 91 

 Calcitic schist was sampled near Bøvertun, north of the Northwestern 92 

Boundary Fault of Jotunheimen and quartzitic calcitic schist at Attgløyma, a lake on 93 

the Sognefjell (Gibbs and Banham, 1979; Owen et al., 2006). At various sites around 94 

the Jostedalsbreen ice cap, granitic gneiss (Fåbergstølen and Jostedalen sites, both in 95 

upper Jostedalen), granite (Kvamsdalen, near Veitastrond) and augen gneiss 96 

(Loenvatnet) were sampled. Most of these sites have been used previously as control 97 

points of age ~10,000 years in studies of Schmidt hammer exposure-age dating 98 

(Matthews and Owen, 2010; Matthews and Wilson, 2015). Finally, migmatitic 99 

(banded) gneiss was sampled at Øyberget in upper Ottadalen and in Alnesdalen, south 100 

of Andalsnes in Møre og Romsdal. The Øyberget site involved boulders on the upper 101 

surface of a rock glacier which, on the basis of Schmidt hammer exposure-age dating 102 
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(Matthews et al., 2013) and unpublished cosmogenic isotope dating (Linge et al., 103 

submitted), stabilized in the early Holocene ~10,500 years ago. The Alnesdalen site 104 

involved boulders on a Younger Dryas end moraine, which dates from ~11,500 cal. 105 

years BP (Carlson et al. 1983; Matthews and Wilson, 2015). 106 

 107 

 Fresh, unweathered rock surfaces of several different types were sampled from 108 

each of the nine rock types. Where available, glacially-scoured bedrock outcrops from 109 

‘Little Ice Age’ glacier forelands were used: in Jotunheimen, Storbreen (pyroxene-110 

granulite gneiss and peridotite), Bøverbreen and Leirbreen (gabbroic gneiss), and 111 

Mjølkedalsbreen (peridotite); and at the Jostedalsbreen outlet glaciers of Nigardsbreen 112 

and Fåbergstølsbreen (granitic gneiss) and Briksdalsbreen (augen gneiss). Based on 113 

historical evidence and/or lichenometric dating, the bedrock outcrops selected were all 114 

deglacierized since the AD 1930s and therefore represent terrain ages of <90 years 115 

(cf. Bickerton and Matthews, 1992, 1993; Matthews, 2005). 116 

 117 

 Other types of unweathered rock surface used included:  (1) glacially-abraded 118 

boulders embedded in fluted moraine on the Storbreen glacier foreland (pyroxene-119 

granulite gneiss and peridotite) deglacierized since AD 1951; (2) anthropogenic 120 

bedrock surfaces in road cuttings (Gravdalen, pyroxene granulite-gneiss and 121 

peridotite; Bøvertunvatnet, calcitic schist), a road tunnel (Jostedalen, granitic gneiss) 122 

and a hydro-electric tunnel (Attgløyma, quartzitic calcitic schist), all excavated in the 123 

last 90 years; (3) boulders (Nystølsnovi, granite, and Langfjelldalen, migmatitic 124 

gneiss) produced by rockfalls that were observed to occur within the last 10 years 125 

(Matthews and Wilson, 2015); and (4) subsurface boulders excavated within the last 126 

three years in a road cutting in the toe of the Øyberget rock glacier (migmatitic 127 

gneiss). An example of an unweathered rock surface is shown in Figure 3C. The 128 

characteristics and appropriateness of these surfaces are discussed further below.    129 

 130 

2.2 R-value measurements 131 

 132 

Field measurements were made using a standard mechanical N-type Schmidt hammer 133 

(Proceq, 2004), which was periodically tested against the manufacturer’s anvil to 134 

ensure no deterioration in R-values during the study. Successive impacts of the 135 

Schmidt hammer were made at particular points on the rock surfaces. Points were 136 
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selected that avoided lichen and moss cover, edge effects, cracks and other visible 137 

structural weaknesses in the rock surface. Areas of water seepage were also avoided 138 

and all the measurements were made under dry weather conditions. Special attention 139 

was paid to ensuring successive blows were made at precisely the same point on the 140 

rock surface (see, for example, Figures 3B and 3C).  141 

 142 

 On weathered surfaces, 10 successive impacts were measured at each of 60 143 

points (n = 600 Schmidt hammer blows). Where weathered bedrock surfaces were 144 

involved, the 60 points were selected from at least three different outcrops or at least 145 

three different areas of the rock surface. Where weathered boulders were used, no 146 

more than five points were selected from each boulder ensuring that at least 12 147 

boulders were sampled. As unweathered surfaces produced generally less variable R-148 

values, five successive impacts were taken from each of 20 points on the unweathered 149 

rock surfaces (n = 100 Schmidt hammer blows).  150 

 151 

2.3 Derivation of microweathering indices 152 

 153 

Indices were derived based on the increase in R-values from successive impacts of the 154 

Schmidt hammer on the same point of a weathered rock surface. The fact that R-155 

values tend to increase with successive impacts, even on fresh rock surfaces, has been 156 

noted in previous investigations of the consistency and repeatability of Schmidt 157 

hammer measurements, which has led to various recommendations concerning the 158 

number of impacts necessary to determine a representative peak R-value that avoids 159 

any weathering effects (Hucka, 1965; Poole and Farmer, 1980; Aydin, 2009). 160 

 161 

 Nicholson (2009) showed that the difference between the first and second 162 

impact with a Schmidt hammer is a reflection of the degree of weathering of a 163 

weathered rock surface and suggested that the second impact approaches the R-value 164 

characteristic of the intact, unweathered rock. In effect, therefore, she proposed a 165 

simple index of the degree of weathering of the rock surface, : 166 

 167 

Rw2 – Rw1, Wwhere Rw1 is the mean R-value of first impacts and Rw2 is the mean R-168 

value of second impacts (our notation). 169 

 170 



 6 

 Matthews and Owen (2011) pointed out, however, that the second impact will 171 

only approximate the R-value characteristic of unweathered rock if the first impact 172 

removes all traces of weathered material from the rock surface. The rise in R-value 173 

with further impacts after the second impact (Poole and Farmer, 1980; see also the 174 

results below) confirm, moreover, that the second impact is unlikely to provide a close 175 

approximation to the R-value characteristic of unweathered rock. Furthermore, 176 

progressively better indices of degree of weathering are likely to be produced by the 177 

use of the third and subsequent impacts as closer approximations to the R-value 178 

characteristic of the unweathered rock surface. Thus, an index based on (Rw2 – Rw1) 179 

is merely the first in a series of indices culminating in (Rwn – Rw1) based on the nth 180 

impact.  181 

 182 

 In this paper, therefore, this series of indices is initially evaluated based on use 183 

of mean values of the second, fifth and tenth impacts. Furthermore, iIn order to take 184 

account of the effects of rock type on the R-value characteristic of unweathered rock, 185 

the differences between the mean R-values characteristic of the first to nth impacts 186 

arecan be expressed as a percentages of the mean R-values characteristic of the nth 187 

impacts. The general formula for this series of potential indices therefore takes the 188 

form: 189 

 190 

In = 100 (Rwn – Rw1) / Rwn                                                                                        (1)          191 

 192 

Here, this series of indices is evaluated based on use of mean R-values from the 193 

second, fifth and tenth impacts: 194 

 195 

I2 = 100 (Rw2 – Rw1) / Rw2                                                                                         (2) 196 

I5 = 100 (Rw5 – Rw1) / Rw5                                                                                         (3) 197 

I10 = 100 (Rw10 – Rw1) / Rw10                                                                                     (4)          198 

 199 

Although evaluation of only three of a potentially much larger number of indices may 200 

appear arbitrary, our results from the nine rock types from southern Norway, and 201 

comparison with previous work, justify this choice (see below). 202 

 203 

 However,   204 
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 205 

 Evaluation of these indices in the context of the nine rock types from southern 206 

Norway indicates, however, that even after the tenth impact, R-values characteristic of 207 

true, unweathered rock surfaces are not attained (see discussion below). Thus, 208 

although the I5 index may provide an improvement on I2 and is more efficient than I10, 209 

it remains a relatively poor underestimate of the degree of weathering of the rock 210 

surfaces. Consequently, an improved I5 index (*I5) is proposed, which combines 211 

efficiency with a reliable measure of the difference between R-values characteristic of 212 

the weathered and unweathered rock surface. This differs from the initial, uncorrected 213 

I5 index in two respects. First, a correction factor (Ru5 – Rw5) is added to (Rw5 – Rw1), 214 

where Ru5 is the mean R-value of the fifth impact from the independent unweathered 215 

rock surface of the same lithology. Second, Ru5 is substituted for Rw5 in the 216 

denominator. Thus, 217 

 218 

*I5 = 100 [(Rw5 – Rw1) + (Ru5 – Rw5)] / Ru5                                                               (5)             219 

 220 

This shortens to: 221 

 222 

*I5 = 100 (Ru5 – Rw1) / Ru5                                                                                          (6) 223 

 224 

Equation (6) described the preferred index in a series of improved indices with the 225 

general formula: 226 

 227 

*In = 100 (Run – Rw1) / Run                                                                                          (7) 228 

 229 

 Use of *I5 in preference to other potential indices in the series *I2 to *In might 230 

again appear arbitrary but is justified by our results, which consistently show only 231 

slight differences between mean R-values associated with the fifth and subsequent 232 

impacts. Our use of the fifth impact is, moreover, compatible with its use in 233 

previously proposed indices. The improved *I5 index is similar to the index of rock 234 

weathering (IRW) used by Matthews and Owen (2011) in relation to the Schmidt 235 

hammer and to several other indices proposed independently for related devices, such 236 

as the Equotip (Aoki and Matsukura, 2007; Yilmaz, 2013; Wilhelm et al., in press). It 237 

transpires that the improved *I5 index is equivalent in concept to the deformation ratio 238 
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(δ) of Aoki and Matsukura (2007), although the latter uses median R-values, and is 239 

expressed as a value between 0 and 1, and is close numerically to (100 – *I5) if 240 

expressed as a percentage.   241 

 242 

 243 

3. Results 244 

 245 

3.1 Mean R-values from weathered rock surfaces 246 

 247 

The effects of successive impacts on R-values associated with weathered surfaces of 248 

the nine rock types investigated from southern Norway are summarized in Table 1. 249 

The rock types in this table have been placed in descending order according to the 250 

mean R-value of the fifth impact (Rw5) with replicate samples from four of the rock 251 

types listed separately. The 95% confidence intervals indicate both the variability and 252 

statistical significance of the differences between mean values. These data and the 253 

curves in Figures 4 and 5 show several general patterns: 254 

 255 

 a clear trend of increasing mean R-values with successive impacts; 256 

 consistent large and statistically significant increases in mean R-values 257 

between the first (Rw1) and second (Rw2) impacts;  258 

 the lack of statistically significant differences between mean R-values after the 259 

fourth (Rw4) or fifth (Rw5) impacts as the curves level off; 260 

 distinct differences in mean R-values between rock types, which tend to be 261 

maintained with successive impacts; 262 

 excellent replication of results between the four rock types for which more 263 

than one sample is available (Figure 5). 264 

 265 

3.2 Mean R-values from unweathered rock surfaces 266 

Successive impacts on the unweathered rock surfaces (Table 2) yield generally less 267 

variable mean R-values and simpler patterns with a major difference between, on the 268 

one hand, the glacially-abraded surfaces (bedrock and boulders) and, on the other 269 

hand, the rockfall and rockglacier boulders, and bedrock in road cuttings and tunnel 270 

walls.  Notable patterns, illustrated in Figure 6, include: 271 
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 272 

 the absence of any statistically significant trend in mean R-values associated 273 

with successive impacts on the glacially-abraded surfaces; 274 

 remarkably similar mean R-values characteristic of the glacially-abraded 275 

surfaces, irrespective of rock type; 276 

 consistent (but often not statistically significant) differences between mean 277 

Ru1 and Ru2 values associated with rockfall boulders and anthropogenic 278 

bedrock surfaces; mean Ru3 and subsequent values are, however, often 279 

significantly different from mean Ru1 values. 280 

 non-statistically significant differences where the data enable mean Ru5 values 281 

for glacially-abraded surfaces to be compared with rockfall boulders or 282 

anthropogenic bedrock surfaces from the same rock type; 283 

 mean Ru5 values that are usually statistically significantly greater than mean 284 

Rw5 values (irrespective of rock type or surface type).  285 

 286 

3.3 The weathering indices 287 

 288 

The I2, I5 and I10 indices, and the improved *I5 index, are summarized in Table 3. 289 

Important features of these results are as follows: 290 

 291 

 the consistent increase in the percentage value of the indices from I2 to I10 with 292 

the improved *I5 index yielding the highest value, which applies to all rock 293 

types; 294 

 the large differences between the values of I2 and I5 (average difference 8.9% 295 

across all 13 samples from the nine rock types), which contrast strongly with 296 

the much smaller average difference between I5 and I10 (1.7%) and reflect the 297 

large differences between the mean R-values of Rw1 and Rw2 evident in Figure 298 

4. 299 

 the even larger differences between the I5 index and the improved *I5 index 300 

(average difference 11.7%), which reflect the inadequacy of Rw5 values (and 301 

also Rw10 values) as approximations of R-values characteristic of unweathered 302 

rock surfaces, and the improvement brought about by using Ru5 values; 303 

 the relatively small range (36.1-56.6%) exhibited by the improved *I5 index 304 
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between rock types. 305 

 306 

 307 

4. Discussion 308 

 309 

The indices of degree of microweathering developed in this paper (I2, I5, I10 and the 310 

improved *I5 index) are measures of the loss of compressional strength of a rock 311 

surface as a result of weathering standardized with respect to the estimated strength of 312 

unweathered rock of the same lithology. Expressed as a percentage, 0% is the 313 

expected value of each index for an unweathered rock of any lithology whereas 100% 314 

is the corresponding theoretical value for a surface that has completely disintegrated 315 

and hence has been weakened by weathering to such an extent as to exhibit zero 316 

strength. ‘Indices of rock-surface weakening’ is therefore an alternative term, which 317 

has been recognized in relation to earlier related indices based on the physical strength 318 

of rock rather than its chemical make-up (Nicholson, 2009; Matthews and Owen, 319 

2011). 320 

 321 

 When applied to a particular weathered rock surface, the values of all these 322 

indices are highly dependent on the mean R-value of the first impact (Rw1). Many 323 

forms of microweathering are potential influences on Rw1, including chemical 324 

weathering, biochemical weathering, biological mechanical weathering and 325 

microgelifraction/microgelivation (Nicholson, 2009; Matthews and Owen, 2011). The 326 

extent to which Rw1 differs from the estimated mean R-value for unweathered rock of 327 

the same lithology (Rw5 or Ru5) is affected especially by the collapse of 328 

protruberances that result from differential weathering of minerals at the rock surface. 329 

This is particularly noticeable with respect to the Rw1 values for peridotite, pyroxene-330 

granulite gneiss and gabbroic gneiss (Table 1; Figures 3B and 4). Where the 331 

protruberances are themselves strong and hard, they resist subsequent impacts and 332 

result in a relatively slow increase in the R-values from impacts Rw3 to Rw10 (see 333 

again the curve for peridotite in Figure 4).  334 

 335 

 Although indices I2 to I10 may be viewed as progressively closer 336 

approximations to the best index of its type, even I10 is unsatisfactory because Rw10 is 337 

not a close estimate of the mean R-value characteristic of unweathered rock surfaces.  338 
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A number of factors account for the fact that Rw10 underestimates the true mean R-339 

value of intact, unweathered rock as determined directly in this study (Table 2). These 340 

factors include the accumulation of pulverized rock material beneath the hammer, 341 

penetration of microweathering effects (especially chemical weathering) deep below 342 

the rock surface, and/or the weakening of otherwise intact rock at depths below the 343 

weathered surface by shock effects from a large numbers of impacts. Whereas 344 

pulverized rock material could be removed by careful cleaning of the rock surface 345 

after each successive impact, it is not possible to control effectively for the other 346 

factors. Thus, it is unlikely that a close approximation to the true mean R-value 347 

characteristic of unweathered rock can be found from weathered rock surfaces, no 348 

matter how many successive impacts are made. 349 

 350 

 A major advantage of the improved *I5 index in its shortened form (equation 351 

6) over the uncorrected indices is that it does not require measurement of any impacts 352 

on the weathered rock surface apart from Rw1. This follows because (Rw5 – Rw1) + 353 

(Ru5 – Rw5) from equation 5 is numerically equal to (Ru5 – Rw1) from equation 6. 354 

Futhermore, by replacing Rw5 with the fifth impact from the unweathered rock surface 355 

(Ru5), the improved *I5 index uses a very close approximation to the true mean R-356 

value of the unweathered rock surface. In turn, Ru5 can be determined accurately from 357 

both natural and anthropogenic surfaces that have been recently exposed, thus 358 

avoiding the need for laboratory testing of prepared unweathered rock specimens. 359 

 360 

 There is no advantage in using Ru5 rather than Ru1 if the unweathered rock 361 

surface is a smooth, glacially-abraded surface because the first impacts on these 362 

surfaces do not differ from successive impacts. In relation to rockfall boulders and 363 

bedrock surfaces in road cuttings or tunnels, however, Ru1 should not be used because 364 

the first impact on these surfaces tends to yield a relatively low R-value (Table 3) 365 

because of higher surface roughness. Such roughness effects are only removed after 366 

further impacts (usually less than five; Table 2). 367 

 368 

 Thus, the improved *I5 index does not suffer the main limitation of the 369 

uncorrected I5 index (namely, that Rw5 is a poor approximation of the true mean R-370 

value of the unweathered rock surface). An improved *I10 index would, moreover, 371 

yield little or no additional benefit because the tenth impact from an unweathered rock 372 
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surface (Ru10) would not be expected to differ significantly from Ru5. The improved 373 

*I5 index is therefore not only reliable but efficient, requiring a minimum of field 374 

measurements. Perhaps the main limitation of this method as a means to quantify 375 

degree of weathering is the practical one of obtaining representative and comparable 376 

unweathered rock surfaces. 377 

 378 

 The relatively narrow range of 36.1-56.6% between rock types in the value of 379 

the improved *I5 index (Table 3) may be interpreted as indicating that the various 380 

tested rock types exhibit quite similar degrees of weathering when the initial strength 381 

of the unweathered rock is taken into account. As most of these rock surfaces had 382 

been subject to weathering for about 10,000 ± 500 years (the exception being the 383 

Alnesdalen site involving migmatitic gneiss, which has been exposed to weathering 384 

for ~11,500 years), these index values indicate similar average weathering rates of 385 

3.6-5.7% per 1000 years.      386 

 387 

 388 

5. Conclusion 389 

 390 

(1) The improved *I5 index, 100 (Ru5 – Rw1) / Ru5, which has a potential range of 0 to 391 

100%, provides a field measure of the degree of microweathering of a rock surface 392 

from Schmidt-hammer R-values. It measures the difference between the mean R-393 

value sampled from the weathered rock surface (Rw1) and the higher mean R-value 394 

characteristic of the fifth successive impact taken from the same spot on an 395 

unweathered rock surface of the same lithology (Ru5). It therefore reflects the 396 

reduction in compressional strength of the rock surface as a result of weathering 397 

relative to the strength of the unweathered rock. 398 

 399 

(2) This index improves on a series of indices (I2 to In) derived from successive 400 

impacts on the weathered rock surface (Rw1 to Rwn). All indices in the series assume 401 

that the nth impact approximates the R-value characteristic of unweathered rock. Field 402 

tests on glacially-scoured bedrock outcrops of nine common metamorphic and 403 

igneous rock types from southern Norway, which were deglaciated between ~11,500 404 

and 9700 years ago, demonstrate that this assumption is incorrect. 405 

  406 
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(3) The improved *I5 index yielded values of 36-57% for the highly weathered 407 

metamorphic and igneous rock surfaces tested. It represents a substantial 408 

improvement on the uncorrected indices because it effectively corrects for the strength 409 

of the initially unweathered rock. It is, moreover, relatively easy to measure and Ru5 410 

can be obtained from a variety of unweathered natural and anthropogenic rock 411 

surfaces (e.g. glacially-abraded bedrock and boulders on glacier forelands, or bedrock 412 

exposed in modern road cuttings and tunnels) without the requirement for laboratory 413 

testing of rock specimens.    414 

 415 

 416 
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 618 

Figure captions 619 

 620 

Figure 1. Locations of field measurement sites (x) in southern Norway. 621 

 622 

Figure 2. Detailed locations of field measurement sites in Jotunheimen, Jostedalsbreen 623 

and Breheimen regions. 624 

 625 

Figure 3. A, a typical weathered glacially-scoured rock outcrop of granitic gneiss in 626 

Jostedalen; B, a weathered bedrock outcrop of peridotite in Gravdalen, Jotunheimen, 627 

showing five points on the rock surface where successive Schmidt-hammer impacts 628 

were made; C, an unweathered surface of pyroxene-granulite gneiss in a road cutting 629 

in Gravdalen showing three points where successive Schmidt-hammer impacts were 630 

made. Note Schmidt hammer for scale.     631 

 632 

Figure 4. Mean Schmidt hammer R-values for successive impacts on the weathered 633 

surfaces of nine rock types. A representative 95% confidence interval is shown (all 634 

confidence intervals are given in Table 1). 635 

 636 

Figure 5. Replication of mean Schmidt hammer R-values for successive impacts on 637 

the weathered surfaces of four rock types (representative 95% confidence intervals are 638 

shown). 639 

 640 

Figure 6. Mean Schmidt hammer R-values (± 95% confidence intervals) for 641 

successive impacts on selected unweathered rock surfaces. 642 

 643 

 644 
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