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Abstract We examine regular and chaotic responses

of a vibrational energy harvester composed of a

vertical beam and a tip mass. The beam is excited

horizontally by a harmonic inertial force while

mechanical vibrational energy is converted to electri-

cal power through a piezoelectric patch. The mechan-

ical resonator can be described by single or double

well potentials depending on the gravity force from the

tip mass. By changing the tip mass we examine

bifurcations from single well oscillations, to regular

and chaotic vibrations between the potential wells.

The appearance of chaotic responses in the energy

harvesting system is illustrated by the bifurcation

diagram, the corresponding Fourier spectra, the phase

portraits, and is confirmed by the 0–1 test. The

appearance of chaotic vibrations reduces the level of

harvested energy.

Keywords Nonlinear dynamics � Chaotic solutions �
0–1 test � Energy harvesting

1 Introduction

Broadband energy harvesting systems for many

applications are often nonlinear, exhibiting such

nonlinear phenomena as material nonlinearities, geo-

metrical nonlinearities, multi-scale responses and the

appearance of multiple solutions. These phenomena

can be observed from the nonlinear time series

analysis of simulated mathematical models or from

measured system responses in experiments. It is well

known that the efficiency of many engineered systems

may be enhanced by operation in a nonlinear regime.

Nonlinear vibrational energy harvesting shows such

an advantage, making possible broadband frequency

vibration energy accumulation and transduction into

useful electrical power output.

A range of vibration energy harvesting devices

have been proposed [1–6]. The key aspect of nonlinear

harvesters is the use of a double well potential

function, so that the device will have two equilibrium

positions [7–12]. Gammaitoni et al. [8] and Masana

and Daqaq [13] highlighted the advantages of a double

well potential for energy harvesting, particularly when

inter well dynamics were excited. The Duffing oscil-

lator model has been used for many energy harvesting

simulations, with the addition of electromechanical

coupling for the harvesting circuit [14, 15]. Electro-

magnetic harvesters with a cubic force nonlinearity

have also been considered [16]. Litak et al. [17] and

Ali et al. [18] investigated nonlinear piezomagnetoe-

lastic energy harvesting under random broadband
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excitation. McInnes et al. [19] investigated the

stochastic resonance phenomena for a nonlinear

system with a double potential well. Gravitationally

induced double potential wells in a system with a

vertical elastic beam with a tip mass have been studied

extensively [20, 23–25].

Recently, in the context of broad-band energy

harvesting, bifurcations and chaotic vibrations have

been studied in several papers. Cao et al. [26] studied

chaos in the fractionally damped broadband piezo-

electric energy generator in the system with additional

magnets. Syta et al. [27] analysed the dynamic

response of a piezoelectric material attached to a

bistable laminate plate. It is worth to note that chaotic

vibrations are, in most cases, characterized by mod-

erate amplitude of vibrations and simultaneously give

continuous spectrum of frequency, which can be

useful to increase mechanical resonator durability.

In this article we discuss different solutions

appearing in that system. Especially, intra- and inter-

well oscillations as well as periodic and chaotic

vibrations lead to different efficiency in the energy

harvesting. Therefore, we identify the properties of

given solutions by using nonlinear methods.

2 Mathematical model and equations of motion

For nonlinear energy harvesting an inverted elastic

beam is considered with a tip mass and the base is

harmonically excited in the transverse direction.

Only a summary of the equations is provided here;

Friswell et al. [20] give a full derivation of the

equations. Figure 1 shows the beam as a vertical

cantilever of length L with harmonic base excitation

zðtÞ ¼ z0 cosxt. The beam carries a concentrated tip

mass, Mt, with moment of inertia It, at the tip of the

beam. The horizontal and vertical elastic displace-

ments at the tip mass are v and u respectively, and

s represents the distance along the neutral axis of the

beam.

In the following analysis the beam is assumed to

have uniform inertia and stiffness properties; a non-

uniform beam is easily modeled by including the

mechanical beam properties in the energy integrals.

The beam has cross sectional area A, mass density q,
equivalent Young’s modulus E, and secondmoment of

area I.

In this paper we assume that the tip mass is

sufficiently large so that a single mode approximation

of the beam deformation is sufficient. The displace-

ment at any point in the beam is represented as a

function of the tip mass displacement through a

function for the beam deformation, wðsÞ, as

vpðs; tÞ ¼ vpðL; tÞwðsÞ ¼ vðtÞwðsÞ: ð1Þ

In this paper we will assume

wðsÞ ¼ 1� cos
ps
2L

� �
: ð2Þ

The equation of motion of the beam-mass system is

derived in terms of the displacement of the tip mass

using Lagrange’s equations [20–22] as

N2
5 It þMt þ qAN1 þ qAN3 þMtN

2
4 þ N4

5 It
� �

v2
� �

€v

þ qAN3 þMtN
2
4 þ N4

5 It
� �

v _v2

þ EIN6 � N9qAg� N4Mtgþ 2EIN7v
2

� �
v

� H1V �H2v
2V ¼ � qAN2 þMt½ �€z

ð3Þ

P

z t z t0

u

v

vp

up

Mt

s
L

Fig. 1 Schematic of the inverted beam harvester. Mt denotes

the tip mass attached to the elastic beam, while v and u denote

the horizontal and vertical displacements of the mass. P denotes

an arbitrary point on the beamwhose position is described by the

coordinates s, vp, and up. Piezoelectric patches are placed along

the beam but are not shown here
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where the constants are given in the ‘‘Appendix’’.

Damping may also be added to these equations of

motion, for example viscous, material or aerodynamic

damping.

The model of the piezoelectric patches is now

considered. The mechanical stiffness and mass density

of the piezoelectric layers may be included in the beam

constants already derived. The electromechanical

coupling constants are

H1 ¼ ccw
0ðLcÞ and H2 ¼

1

2
ccðw0ðLcÞÞ3 ð4Þ

where Lc is the active length of the piezoelectric

material, which is assumed to start at the clamped end

of the beam. For a unimorph configuration with

excitation in the 31 mode, with thickness hc and width

bc, the constant cc is

cc ¼ Ecd31bc hþ hc

2
� �z

� 	
ð5Þ

where h is the thickness of the beam, d31 is the

piezoelectric constant, Ec is the Young’s modulus of

the piezoelectric material and �z is the effective neutral

axis [28]. These expressions assume a monolithic

piezoceramic actuator perfectly bonded to the beam;

Bilgen et al. [29] considered the effect of the structure

of a Macro-Fiber Composite (MFC) on the coupling

coefficient, and also the effect of the bond and the

insulating Kapton layers.

On the electrical side the piezoelectric patches may

be considered as a capacitor, and the electrical circuit

is represented by a resistive shunt connected across the

piezoelectric patch. The electrical equation then

becomes

Cp
_V þ V

Rl

þH1 _vþH2v
2 _v ¼ 0 ð6Þ

where Rl is the load resistor and Cp is the capacitance

of the piezoelectric patch.

2.1 Equilibrium positions

The equilibrium positions with no forcing are obtained

by setting the velocity and acceleration terms to zero

in Eq. (3) to give,

EIN6 � N9qAg� N4Mtgþ 2EIN7v
2

� �
v ¼ 0: ð7Þ

This equation has either one or three solutions, and

v ¼ 0 is always a solution. Since N4 [ 0, there are

three solutions if

Mt [
EIN6 � N9qAg

N4g
¼ Mtb; ð8Þ

where Mtb is the tip mass so that the beam is about to

buckle.

3 Numerical simulations and results

Following [20] we use the same set of system

parameters, as given in Table 1. The beam-mass

system is excited at the base with harmonic excitation.

Figure 2 shows the equilibrium position of the tip

mass, using the analysis described in Sect. 2.1, and

shows that the post buckled response has two stable

equilibrium positions above the critical tip mass

Mtb ¼ 10 g. In the vicinity of these equilibrium points

small amplitude vibrations can appear provided that

excitation is also present. To observe its influence on

the system dynamical response we used the harmonic

base excitation at a fixed amplitude, z0, and frequency,

f ¼ x=ð2pÞ and varied the tip mass Mt. The corre-

sponding bifurcation results are presented in Fig. 3. As

expected the dynamical bifurcation pattern follows the

split in the equilibrium positions, highlighting the

significant change above the critical value tip mass

Mtb ¼ 10 g. The character of the oscillations change

by undergoing a series of bifurcations starting from the

single frequency (in the limit for small Mt) to non-

periodic vibrations (for relatively large Mt), that

correspond to single point and a widely distributed

set of points in the bifurcation diagram, respectively.

Table 1 Parameter values used in the simulation

Beam and tip mass Energy harvester

q 7850 kg/m3 Lc 28 mm

E 210GN/m2 bc 14 mm

b 16 mm hc 300 lm

h 0.254 mm cc �4:00� 10�5 Nm/V

L 300 mm Cp 51.4 nF

It=Mt 40:87mm2 Rl 100 kX
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Looking more closely at the bifurcation diagram, one

can identify periodic windows characterised by dis-

tributions of discrete points among the non-periodic

solutions. It is also possible that in this regions several

solutions are present. However we used the same

initial conditions for every frequency, and thus our

approach was not able to capture all of the solutions

simultaneously.

Additionally, Fig. 4 shows the energy harvesting

performance, i.e. the power output is plotted versus the

tip mass. One can see that the power output increases

above the value of Mt corresponding to the critical

buckling mass. Moreover the periodic windows vis-

ible in Fig. 3 give a higher power output.

For better clarity we selected six values of Mt

marked by triangles in Figs. 3 and 4 corresponding to

different solutions and calculated the corresponding

time series of the displacement, velocity and the

voltage output. The results are plotted in Fig. 5 for

Mt = 9.69, 9.79, 10.19, 10.24, 10.39, and 10.59 g, for

Fig. 5a–f, respectively. One can easily see the evolu-

tion of the system response. Figure 5a shows a single

frequency, while Fig. 5b shows symmetric oscilla-

tions with two frequencies indicating single well

oscillations around the central equilibrium point (see

Fig. 2). Figure 5c corresponds to a small amplitude

single frequency non-symmetric solution indicating

that the stable equilibrium point has already bifur-

cated. Finally, Fig. 5d–f show cross well oscillatory

responses including periodic (Fig. 5e) and non-peri-

odic cases (Fig. 5d, f). Furthermore, the displacement,

velocity and voltage signals have the same generic

nature. The non-periodicity in the kinematics are

reflected in the voltage output (see Fig. 5d, f).

The cases b, d–f (cases numerated as in Fig. 5) are

considered in more detail in the frequency domain by

calculating the Fourier spectrum of the mechanical

resonator displacement, as shown in Fig. 6. The

corresponding phase portraits (the displacement–ve-

locity phase portraits of the tip mass) are shown in

Fig. 7. It should be noted that these qualitative

measures clearly indicate the appearance of chaotic

motion in cases d and f. Interestingly, the subharmonic

visible in Fig. 5b corresponds to f1 ¼ 0:167 Hz, and

this is one third of the excitation frequency

f ¼ 0:5 Hz. The nature of this solution is illustrated

in Fig. 7b with three loops in the phase portrait and

three isolated Poincaré points. The chaotic solutions

are characterised by strange attractors with complex

trajectories and the wide distributions of the Poincaré

points. It should, however, be noted that these plots are

projections onto the displacement–velocity plane

(neglecting the voltage coordinate).

The next step is to determine the quantitative

parameter showing the chaotic character of the
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Fig. 2 The effect of the tip mass on the equilibrium position.

The dashed line denotes unstable equilibrium positions
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Fig. 3 Bifurcation diagram of the displacement of the tip mass

versus the tip mass for a base excitation of z0 ¼ 16 mm at

frequency 0.5 Hz. The results were obtained using zero initial

conditions for the tip mass displacement and velocity. Triangles

indicate the cases used for more detailed studies, namely

Mt ¼ 9:69, 9.79, 10.19, 10.24, 10.39, and 10.59 g
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Fig. 4 Average harvested power for the same conditions as

shown in Fig. 3
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Fig. 5 Time series for the tip mass displacement, corresponding velocity, and voltage for tip masses Mt = 9.69 g (a), 9.79 g (b),
10.19 g (c), 10.24 g (d), 10.39 g (e), and 10.59 g (f)
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solutions. This can be done by means of the 0–1 test

[30, 31] which is especially simple in systems with

many degrees-of-freedom. The corresponding analy-

sis and the estimation results will be presented in the

next section.

4 The 0–1 test

The ‘0–1 test’, invented by Gottwald and Melbourne

[30, 31], can be applied for any system of finite

dimension to identify chaotic dynamics, but it is based

on the statistical properties of a single coordinate only.

Thus it is suitable to quantify the response where only

one parameter is measured in time. The test is related

to the universal properties of dynamical systems, such

as spectral measures, and can therefore distinguish a

chaotic system from a regular one using a single

variable.

A particular advantage of the 0–1 test over the

frequency spectrum is that it provides information

regarding the dynamics in a single parameter value,

similar to the Lyapunov exponent. However, the

Lyapunov exponent can be difficult to estimate in any

non-smooth simulated system or measured data [32].

Therefore the 0–1 test can provide a suitable algorithm

to identify the chaotic solution [33, 36–38].

To start the analysis, we discretize the investigated

time series vðtÞ ! vðiÞ using the characteristic delay

time dt equal to one quarter of the excitation period

2p=x. This roughly indicates the vanishing of the

mutual information [33, 39]. Starting from one of the

initial map coordinate v(i), for sampling points

i ¼ 1; . . .;N, we define new coordinates p(n) and

q(n) as

pðnÞ ¼
Xn
j¼0

ðvðjÞ � vÞ
rv

cosðjcÞ;

qðnÞ ¼
Xn
j¼0

vðjÞ � vÞ
rv

sinðjcÞ;
ð9Þ

where v denotes the average value of v, rv the

corresponding standard deviation, and c is a constant

2 ½0; p�. Note that q(n) is a complementary coordinate

in the two dimensional space. Furthermore, starting

from bounded coordinate v(i) we build a new series

p(n) which can be either bounded or unbounded

depending on the dynamics of the examined process.

Continuing the calculation procedure, the total

mean square displacement is defined as

McðnÞ ¼ lim
N!1

1

N

XN
j¼1

� pðjþ nÞ � pðjÞð Þ2þ qðjþ nÞ � qðjÞð Þ2
h i

: ð10Þ

The asymptotic growth of McðnÞ can be easily

characterised by the corresponding ratio K 0
cðnÞ
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K 0
cðnÞ ¼

lnðMðnÞÞ
ln n

: ð11Þ

In the limit as n ! 1 (in present calculations n ¼
nmax ¼ 150 while N ¼ 1350) we obtain the corre-

sponding values of Kc for a chosen value of c. Note,

our choice of nmax and N limits (in Eqs. 4, 5) is

consistent with that proposed by Gottwald and Mel-

bourne [34, 35, 40]. N; nmax ! 1 but simultaneously

nmax should be about N/10.

It is important to note that the parameter c acts like a

frequency in a spectral calculation. If c is badly

chosen, it could resonate with the excitation frequency

or its super- or sub- harmonics. In the 0–1 test, regular

motion would yield an expanding behaviour in the

(p, q)-plane [34] and the corresponding McðnÞ has an
asymptotic growth rate even for a regular system. The

disadvantage of the test, its strong dependence on the

chosen parameter c, can be overcome by a proposed

modification. Gottwald and Melbourne [34, 36, 37]

suggested randomly chosen values of c are taken and

the median of the corresponding Kc-values are

computed.

Consequently, the new covariance formulation is

Kc ¼
covðX;McÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞvarðMc

p
Þ
; ð12Þ

where vectors X ¼ ½1; 2; . . .; nmax�, and Mc ¼ ½Mcð1Þ;
Mcð2Þ; . . .;McðnmaxÞ�.

In the above, the covariance covðx; yÞ and variance
varðxÞ, for arbitrary vectors x and y of nmax elements,

and the corresponding averages x and y respectively,

are defined as

covðx; yÞ ¼ 1

nmax

Xnmax
n¼1

ðxðnÞ � xÞðyðnÞ � yÞ;

varðxÞ ¼ covðx; xÞ:
ð13Þ

Finally, the median is taken of the Kc-values in

Eq. (6), corresponding to 100 random values of

c 2 ð0; pÞ. Such an average K-value can now be

estimated for various tip masses, Mt.

Figure 8 shows hKi versus the tip mass. Here the

chaotic solutions are clearly distinguished as hKi � 1,

from any type regular solutions where hKi � 0. This is

consistent with the previous qualitative methods based

on the frequency spectrum (Fig. 6), phase portraits and

the Poincaré maps (Fig. 7). It is worth noting that for

all cases with maximal energy outputs (Fig. 4) their

dynamical responses were periodic (Fig. 8).

5 Conclusions

The examined response vibrational energy harvester

exhibited regular and chaotic oscillations. We have

reported the corresponding transition in the system

behaviour around the equilibrium bifurcation from a

single point to two equilibrium points. We observe this

transition by changing the tip mass. The system was

excited by harmonic inertial force at a constant

frequency, and the harvester responded at this fre-

quency and also with additional subharmonics depen-

dent on the value of the tip mass.

The mechanical vibrational energy was continu-

ously converted to the electrical power through the

piezoelectric patch. Interestingly, we observed the rise

of the power output once the system changed from

single well to cross barrier vibrations. Furthermore the

appearance of the chaotic response lowered the power

output considerably.

The bifurcation between regular and chaotic vibra-

tions was reported using the bifurcation diagram, the

corresponding Fourier spectra, and the phase portraits,

and confirmed by the 0–1 test. We noticed that the

appearance of chaotic vibrations significantly reduced

the harvested energy.
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mass value. The corresponding limit in the summations (Eqs. 10,
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Appendix

The constants N1 to N9 are given by

N1 ¼
Z L

0

ðwðsÞÞ2ds ¼ 3p� 8

2p

� 	
L;

N2 ¼
Z L

0

wðsÞds ¼ p� 2

p

� 	
L;

N3 ¼
Z L

0

Z s

0

ðw0ðnÞÞ2dn
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