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Model Identification and Control Design for a

Humanoid Robot
Wei He, Senior Member, IEEE, Weiliang Ge, Yunchuan Li, Yan-Jun Liu, Member, IEEE, Chenguang Yang, Senior

Member, IEEE, Changyin Sun

Abstract—In this paper, a model identification and adaptive
control design is performed on a humanoid robot based Devanit-
Hartenberg (D-H) model. We focus on the modelling of the 6
degree-of-freedom (DOF) upper limb using recursive Newton-
Euler (RNE) formula for the coordinate frame of each joint.
To obtain sufficient excitation of the robot for modelling, the
particle swarm optimization (PSO) method has been employed to
optimize the trajectory of each joint, such that satisfied parameter
estimation can be obtained. In addition, the estimated inertia
parameters are taken as the initial values of the RNE based
adaptive control design to achieve improved tracking perfor-
mance. Simulation studies are carried out to verify the result
of the identification algorithm and to illustrate the effectiveness
of the control system.

Index Terms—Humanoid Robot, Model Identification, Re-
cursive Newton-Euler Formulation, Adaptive Control, Particle
Swarm Optimization

I. INTRODUCTION

With the rapid development of the robot industry and the

urgent need of a wide range of robot functions, efforts spent

on robotics research have increased significantly in recent

decades. Modern robots are expected to perform various

functions in addition to the fundamental functions like walking

or speaking. The higher level is the functional task, which

includes barrier avoidance, walking up stairs, face recognition,

object localization and pattern learning [1]. Robots with upper

limbs are generated in this environment where the artificial

intelligent technology has explosive improvement.

In the research field of the model identification, quite a

lot works have been carried out. Investigators have devel-

oped various methods for the model identification of robot

manipulators [2]. The robot manipulators are designed and
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processed according to precise kinematic specifications. In

recent years, the kinematics of robot manipulator has been

intensively investigated [3]. The model parameters can be

computed from the CAD/CAM database, but it is rarely

adopted because of the unclear accuracy [4]. To improve the

accuracy, the characteristic-equation based method is proposed

in [5]. The dynamic equations of kinematic model of rigid

bodies are derived by the NE or Lagrangian method [6], [7].

To solve the elastic-deformable or other complex problems,

the finite element method (FEM) can be applied [8], [9]. In

recent decades, the artificial intelligence (AI) method has been

developed dramatically, and has been used in many fields [10].

The model parameters can also be identified by AI method,

such as artificial neural network (ANN) [11]. In this paper, the

model identification method is based on NE principle, and the

identification trajectory is generated by another AI method,

the particle swarm optimization (PSO) [12].

When a humanoid robot picks up or puts down something,

the load of the manipulator changes significantly. This may

cause the robotic control system unstable. To resolve this

problem, the adaptive control scheme is proposed [13], [14],

[15], [16], [17]. Fuzzy adaptive control is investigated in [18],

[19], [20], [21], [22]. Many special conditions like input with

dead-zone, output with constraint or discrete-time systems are

considered in [23], [24], [25], [26], [27], [28], [29], [30]. In

this way, the control system can adjust the physical parameters

to the real uncertain condition [31], [32], [33]. In recent two

decades, many approaches in adaptive control field have been

studied and developed. Under the condition that the output is

measurable, the adaptive neural network control is proposed in

[34], [35], [36], [37], [38], [39], [40], [41], [42], [43]. Using

the fuzzy logic theory, the behaviors of the unknown and

uncertain dynamics of the robot can be learnt by fuzzy logic

systems (FLS) [44], [45], [46], [47], [48], [49], [50], [51], [52],

[53], [54]. Under the condition of motion disturbances and

parametric uncertainties, the robust control theory is applied

to the adaptive control to improve the stability of the robot

system [55], [56], [57], [58], [59].

However, because of the computational complexity of these

approaches, such abundant theoretical and experiment results

fail to improve the practical applicability of adaptive control

algorithms, especially for manipulators with more than 4

DOFs. In this paper, we study the dynamical modeling and

control design for the upper limb manipulator of a biped hu-

manoid robot, HUBO, designed by Korea Advanced Institute

of Science and Technology (KAIST). The internal parameters

of upper limb of HUBO are identified. Based on the estimated
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parameters, the manipulator can track the desired trajectory

efficiently via the proposed control.

As shown in Fig. 2, there are 6 DOFs in the upper limb

of HUBO, i.e. 3 DOFs in the shoulder (yaw, pitch and roll),

2 DOFs in the elbow (yaw and pitch) and 1 DOF in the

wrist (pitch). In order to avoid the computation complexity, the

recursive algorithm based on the NE formulation is proposed

[60]. In this recursive algorithm, the linear in parameters

(LIPs) process can be computed in recursive algorithm based

on NE formulation. In this way, the computation complexity

of the adaptive control algorithm can be reduced dramatically.

No matter how many DOFs the manipulator has, the handling

methods are always same, except the processing time varies

with the variation of DOF.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Fig. 1 illustrates the structure of the model identification

system. The aim of the model identification is to identify

the dynamic model of the upper limb of the humanoid robot,

which provides the foundation of control with high accuracy.

It consists of two sub-modules.

manipulator 

kinematic 

model

Dynamic module

Trajectory 

exciting module

Manipulator 

experiment

Model 

identification 

module

τ 

Recursive 

adaptive control 

algorithm

Upper limb 

manipulator

Desired 

trajectory value

θd

θ

Φ

Model 

identification

Adaptive Control

θ

θ

Fig. 1. System structure

In the model identification module, the robot kinematic

model is treated as the input of the dynamic modeling sub-

module, whose output is the dynamic model, which is also

the input of trajectory planning sub-module. A family of

exciting trajectories are generated by this module. These

trajectories can be used in simulation experiments and actual

robot experiments to collect the kinematic data and torque for

the model identification. For model identification submodule,

the kinematic configuration information of the corresponding

robot, the experiment obtained data along with the exciting

trajectories are the input. And then the identified inertia

parameters of the model are given as the output.

In the adaptive control module, the desired trajectory gener-

ator is used to generate a trajectory which can be obtained with

respect to the actual application condition and environment.

The adaptive control is the kernel sub-module of this part. The

adaptive control law is designed in this sub-module. Based on

the desired and measured position and velocity of the robot

joints, the adaptive control system can generate the actuator

commands to the robot plant. Meanwhile a recursive algorithm

based on NE formulator is used to reduce the algorithm

complexity due to the high DOF.

B. Preliminaries

PSO method is a kind of group algorithm, which is based on

the behavior of a group of living beings. Each particle in the

group can move to a better place based on the adaptive degree.

In PSO algorithm, each particle is assumed as a zero volume

point flying in an m-dimension searching space. The flying

speed can be adjusted based on its own and others’ experience.

We can suppose that the real time position of particle i is xi

and the best position is pi. The best position of the group is

pg. The velocity of particle i is vi. During each update cycle,

both pi and pg are updated. The particle position and velocity

can be updated as [61], [62],

vt+1
i = c0v

t
i + c1r1(pi − xt

i) + c2r2(pg − xt
i), (1)

xt+1
i = xt

i + vt+1
i , (2)

where c0 is the inertial constant; c1 and c2 are the acceler-

ation constant; r1 and r2 are the random number between 0

and 1, c0v
t represents the influence of the particle velocity,

c1r1(pi−xt
i) represents the influence of individual experience

and c2r2(pg−xt
i) represents the influence of group experience,

which is the cooperation of each particle. Based on the

constriction factor method [63], the parameters c0 is chosen

as 0.72894 and c1=c2=1.49618. Using PSO algorithm, the

analysis time can be speeded up without introducing extra

error [64].

Assumption 1: [65] f(D(z,ξ))≤ f(z) and if ξ ∈ S, then

f(D(z,ξ))≤ f(ξ), where ξk is the vector generated from sample

space (Rn, B, µk); B is the σ region of the subset in R
n; µk is

the probability measure in B and D is the recursive method.

Theorem 1: [65] Any recursive satisfies the Assumption 1,

has the convergence property.

Theorem 2: [66] Given the non-linear dynamic systems

ẋ = f(x, t), x(0) = x0, (3)

with an equilibrium point at the origin, and let N be a

neighborhood of the origin, then origin O is stable in the

sense of Lyapunov if for x ∈ N there exists a scalar function

V (x, t) > 0 and V̇ ≤ 0.

III. MODELING AND IDENTIFICATION

In this section, D-H model of the manipulator system

transform matrix are given firstly. Secondly, Newton-Euler

formulation is exploited to derive the model of manipulator.

Then, the trajectories are excited and parameters are optimized

using PSO algorithm.
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A. Kinematic Modeling

To analyze the kinematics of the system, the model can

be viewed as a three-link structure shown in Fig. 2. Ti

are the coordinate frames of the joints. Using the positive

direction of coordinate and the modified D-H model, the link

transformation matrix i−1
i T can be obtained [67]:

Shoulder

3DOFs

Elbow

2DOFs

Wrist

1DOF

b2

b3

T1
T4

T6

T2

T3

T5

Fig. 2. Upper limb manipulator

Remark 1: T1 to T6 denote joint 1 to joint 6, respectively,

and T0 represents the reference coordinate, which is located

at the center of chest.

i−1
i T =




cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sθidi
sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1


 , (4)

which, for short, can be written as (5)

i−1
i T =

[
i−1
i R i−1

i P
0 1

]
. (5)

According to the coordinate frame shown in figure 1, the D-H

parameters can be obtain [67], which is shown in Table I.

Remark 2: b1, b2 and b3 denote the distance between the

center of chest and shoulder, the distance between the shoulder

and elbow and the distance between elbow and wrist, respec-

tively.

B. Dynamic Modeling

From the modified D-H model and the transform matrix

discussed above, we may calculate the angular velocity ωi,

TABLE I
D-H MODEL PARAMETER

Joint ai αi di θi
1 b1 −π

2 0 −π
2

2 0 π
2 0 −π

2
3 0 π

2 0 −π
2

4 b2
π
2 0 −π

2
5 0 π

2 0 0

6 b3 0 0 π

the angular acceleration ω̇i and the line acceleration v̇i:

ωi =
i−1
i Rωi−1 + ziθ̇i,

ω̇i =
i−1
i R ˙ωi−1 +

i−1
i Rωi−1 × ziθ̇i + ziθ̈i,

v̇i =
i−1
i R[v̇i−1 + ω̇i−1 ×

i−1
i P + ωi−1 × (ωi−1

×i−1
i P )],

(6)

where the initial values of the angular velocity, the angular

acceleration, the line acceleration and zi are defined as:

ω0
0 =




0
0
0



 , ω̇0
0 =




0
0
0



 , v̇00 =




−g
0
0



 , zi =




0
0
1



 .

(7)

As mentioned in [67], the Newton-Euler equation is shown in

(8)

fi = Iiai + vi × Iivi, (8)

where ai, vi and Ii represents the spatial acceleration, spatial

velocity and spatial inertia , respectively, and fi denotes the

force applied on i th joint. The Newton-Euler equation can be

further represented as

fi =

[
Īiω̇i + S(ωi)Īiωi − S(d̈0i)mici

mid̈0i + S(ω̇i)mici + S(ωi)S(ωi)mici

]
, (9)

To formulate an estimation algorithm, (9) can be represented

as (10)

fi =

[
0 −S(d̈0i) L(ω̇i) + S(ωi)L(ωi)

d̈0i S(ω̇i) + S(ωi)S(ωi) 0

]




mi

mici
l(Īi)



 ,

(10)

where the mass moment mici appears as a quantity to be

estimated in combination. And d̈0i = v̇i + ωi × vi, S(xi) is a

3× 3 matrix shown in (11), L(xi) is a 3× 6 matrix shown in

(12), and l(Īi) is expressed as (13).

S(xi) =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 (11)

L(xi) =




x1 x2 x3 0 0 0
0 x1 0 x2 x3 0
0 0 x1 0 x2 x3


 (12)
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l(Īi) =




Ixx
Ixy
Ixz
Iyy
Iyz
Izz




(13)

(10) can be expressed more compactly as

fi = AiΦi, (14)

where Ai is a 6× 10 matrix which can be expressed as

Ai =

[
0 −S(d̈0i) L(ω̇i) + S(ωi)L(ωi)

d̈0i S(ω̇i) + S(ωi)S(ωi) 0

]
,

and Φi is a vector of 10 unknown inertia parameters which

can be expressed as

Φi =




mi

mici
l(Īi)



 .

fij is defined as the spatial force at joint i due to the movement

of link j alone. Then fii is the spatial force at joint i due to

movement of its own link which is the same as (14). The total

spatial force ifi at joint i is the sum of the spatial forces ifij
for all joint from j to i

ifi =

6∑

j=i

fij =

6∑

j=i

iXF
j AjΦj , (15)

where iXF
j is the spatial force transform matrix. For conve-

nience, we note that iXF
i = I6×6. Thus, we can derive an

upper-diagonal matrix expression as (16)




1f1
2f2

...
6f6


 =




1XF
1 A1

1XF
2 A2 · · · 1XF

6 A6

0 2XF
2 A2 · · · 2XF

6 A6

...
...

. . .
...

0 0 · · · 6XF
6 A6







Φ1

Φ2

...

Φ6


 ,

(16)

Each ifi must be translated into torque τi since only torque

about the joint rotation axis zi can be measured directly. For

short, we can express it as follow

τ (n) = K(n)Φ, (17)

where

τ (n) =




τ1
τ2
...

τ6


 ,Φ =




Φ1

Φ2

...

Φ6


 .

In this way, each elements of the torque vector or matrix can

be expressed as

τi =

[
zi
0

]T
ifi,

Kij =

[
zi
0

]T
iXF

j Aj ,

and Kij = 01×10 if i > j. For this 6 links manipulator, τ is a

6× 1 vector and K is a 6× 60 matrix.

C. Trajectory Parametrization

It is obviously that the matrix K in (20) is just the function

of the manipulator structure and the movement status of each

joint, derived from (8) to (14). Using the measured joint

angle, angular velocity and acceleration, the matrix K can

be obtained based on (20). The accuracy of the numerical

calculation can be influenced by the matrix condition number

of K. So PSO method is proposed to generate a nice trajectory,

which provides excitation to the system dynamic. Additionally,

the measured angular position data are both band-limited

and periodic. These characteristics make the processing more

simpler and the parameter estimation more accurate. Arbitrary

signal can be expressed as the Fourier expansion as (18). In

this expression, the parameter θ can be designed as band-

limited and periodic signal if N is finite. The upper limit

of N is determined by the frequency response of the robot.

Similarly, the angular velocity and angular acceleration can be

expressed as follows.

θ = θ0 +

N∑

k=1

( ak
kωf

sin(kωf t)−
bk
kωf

cos(kωf t)
)
,

θ̇ = θ̇0 +

N∑

k=1

(
ak cos(kωf t) + bk sin(kωf t)

)
,

θ̈ = θ̈0 −
N∑

k=1

(
kωfak sin(kωf t) + kωfbk cos(kωf t)

)
,

(18)

where ak and bk are the coefficients of Fourier transformation;

θ0, θ̇0, θ̈0 are the offsets of each joint trajectory; ωf is the

fundamental pulsation of the Fourier series; k is the frequency

coefficient. In this paper, the constant N is set as 5, and ωf is

0.1×2π. The parameters needed to be optimized are ak and bk.

As this manipulator system has 6 DOF, and for each joint there

are 10 variables needed to be confirmed. The optimization

vector has 60 dimensions.

D. Parameter Optimization for Trajectory

Based on the Theorem 1, the PSO has the convergence

property. Meanwhile the PSO method guarantees convergence

to the ideality limits in a shorter time for this optimization

problem.

Remark 3: We can treat this parameter optimization for

exciting trajectory as a multi-dimension nonlinear free model

optimization problem. For K in (20) is a nonsingular matrix,

the condition number of matrix S̃ can be defined as the

objective function, where S̃ = diag(σ1, σ2, · · · , σm) is a part

of S shown in (22). Thus the objective function is as Eq. (19)

shown and the variables are Fourier transformation coefficient

ak and bk in (18).

cond(S) = ‖S̃‖2‖S̃
−1‖2. (19)

As shown in (1) and (2), the parameter xi can be substituted

as the Fourier coefficient vector. As mentioned above, the
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minimization of the uncertainty on the model identification

is a complex nonlinear free model optimization with motion

constraint. There are two approaches for constraint setting:

one is the constant boundary constraint, and the other is the

special route from one position to another position or a special

loop. The motion constraints are the limitation impacting on

the angular position, angular velocity and angular acceleration.

In this problem, the upper limit and lower limit are determined

by the real structural in space and working condition. For

example, the fourth DOF in the arm is the elbow joint, which

only can rotate in negative angel. This is very similar as the

elbow of human beings. As HUBO is a humanoid robot, we

are not able to obtain the motion trajectory of each joint in

advance. Therefore the constant boundary constraint method is

used in this paper as Table II shown. The boundary constraint

is the feasible region of this optimization problem.

TABLE II
CONSTRAINTS OF EACH JOINT

Location Joint Minimum Maximum

Shoulder Yaw 1 −90◦ +90◦

Shoulder Pitch 2 −170◦ +170◦

Shoulder Roll 3 0◦ +180◦

Elbow Pitch 4 −150◦ 0◦

Elbow Yaw 5 −120◦ +120◦

Wrist Pitch 6 −90◦ +90◦

As shown in Table II, for joint 1 and joint 6, the absolute

values of the maximum and minimum constraint are not the

same, which may influence the optimization effect of PSO

algorithm. So the parameters θ0, θ̇0, θ̈0 in (18) are used to

offset the asymmetry of the angular constraint.

E. Model Identification Method

With the torque sensors on each joint of the manipulator, τi
can be measured directly. And (17) represents the dynamics

of the joint for one sample point. In this model identification,

there are M data points:

K =




K1

K2

...

KM


 , τ =




τ1

τ2

...

τM


 , τ = KΦ, (20)

where K is a 6M × 60 matrix and τ is a 6M × 1 vector. For

the structure inherent characteristic, the matrix K may be not

full rank. So the least square method is needed. The estimated

of Φ can be expressed as (21)

Φ = (KTK)−1KT τ. (21)

However, KTK is not invertible due to the loss of rank from

restricted degrees of freedom at the proximal links and the

lack of full force-torque sensing.The inertia parameters can

be divided into three groups: fully identifiable, identifiable

in linear combinations and completely unidentifiable[68]. In

this paper, a dividing method is proposed by analyzing the

correlation of each column of K . If a column is all zero, the

relevant parameter is completely unidentifiable. The column

is identifiable in linear combinations when a nonzero column

is abandoned and the rank of the matrix does not reduce.

The other columns are fully identifiable. In this system,

these 60 inertial parameters can be divided into the following

categories:

(a) fully identifiable: Izz1, m2cx2, m2cy2, Ixx2, Ixy2, Ixz2,

Iyz2, Izz2, m3cx3, m3cy3, Ixx3, Ixy3, Ixz3, Iyz3, Izz3,

m4cx4, m4cy4, Ixx4, Ixy4, Ixz4, Iyz4, Izz4, m5cx5,

m5cy5, Ixx5, Ixy5, Ixz5, Iyz5, Izz5, m6cx6, m6cy6, Ixx6,

Ixy6, Ixz6, Iyz6, Izz6;

(b) identifiable in linear combinations: m2cz2, Iyy2, m3cz3,

Iyy3, m4 m4cz4, Iyy4, m5 m5cz5, Iyy5, m6 m6cz6, Iyy6;

(c) completely unidentifiable:m1, m1cx1, m1cy1, m1cz1,

Ixx1, Ixy1, Ixz1, Iyy1, Iyz1, m2, m3.

The following two methods can be applied to solve the nonsin-

gular problem. One method is “Singular Value Decomposition

(SVD)” of K in (20). For the matrix K is only the function of

the geometry of the manipulator structure, it can be generated

by simulation. The SVD of K can be expressed as [67]

K = USV T , (22)

where U and V are orthogonal matrix, S =
diag(σ1, σ2, · · · , σm, 0, · · · , 0) is a diagonal matrix. σi

is the nonzero singular value of K and parameter m
represents the rank of K . Substituting (22) in (20), we have

the new expression of τ as

τ = USV TΦ. (23)

Considering Ψ = V TΦ and ζ = U−1τ = U∗τ , (23) can be

rewritten as

ζ = SΨ, (24)

where S is a 6M × 60 matrix, and Ψ is 60 × 1 matrix. As

S is a diagonal matrix, S6M×60 can be replaced as S̃6M×r,

meanwhile Ψ60×1 can be replaced as Ψ̃r×1, where r is the

rank of matrix S. The new inertia matrix Ψ̂ can be estimated

as

Ψ̂ = (S̃T S̃)−1S̃T ζ. (25)

Considering Ψ̂r×1 = V T
r×60Φ̂60×1, where Φ̂ is the independent

variable vector of the system of equation. Because the number

of independent variables is more than the number of the

equations, the system of equation includes infinite roots. We

can obtain the roots by consistently setting 60−r of the inertia

parameters to zero, leaving only r parameters, which can be

estimated by this method.

Another method is “Ridge Regression”. In this method,

the matrix KTK is substituted by KTK + εI10n. εI10n is

a identity diagonal matrix and ε represents a very small value

which is much less than the smallest nonzero eigenvalue of

KTK . In this way, the estimated can be expressed as

Φ̂ = (KTK + εI60)
−1KT τ. (26)
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The expansion of (26) can be expressed as [67] shows

Φ̂ =

60∑

j=1

(uT
j f)

µj

µ2
j + ε

vj , (27)

where µj is the singular values of K , uj and vj are the

columns of matrix U and V as shown in (22). Hence, a

very small value of µj can be counteracted by ε. Though

the solution can be influenced by the parameter ε, as long

as its magnitude is suitable enough, the solution error can be

controlled in an ideal range.

IV. RECURSIVE ADAPTIVE CONTROL DESIGN

The adaptive control of robotic manipulators has been

studied actively in recent years. Many remarkable results in

this field have been obtained owing to the advances in taking

the nonlinear, time-varying and coupled nature of manipulator

dynamics fully into consideration.

Usually, the computational complexity of these methods is

very tedious for a 6-DOF manipulator because of the com-

plicated linear-in-parameters (LIP) process. Therefore, the

recursive adaptive control algorithm based on Newton-Euler

formulation is employed. Using this recursive algorithm, the

LIP can be computed in an iterative method and the compu-

tational complexity of the adaptive control can be reduced

effectively. In this recursive way, the basic approaches are

always the same no matter how many DOFs the manipulator

has.

A. Adaptive Control

The dynamics of an n-link rigid robotic system without

additional friction or external disturbance can be described

as follows [69]

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (28)

where q ∈ Rn is the coordinates, n is the number of the links

in the robotic system, τ ∈ Rn is the applied joint torque,

M(q) ∈ Rn×n is a inertia matrix, C(q, q̇)q̇ ∈ Rn denotes

the centripetal and Coriolis torques, and G(q) ∈ Rn×n is the

gravitational force. We can know some of properties of these

system parameters.

Property 1: [69] The matrix M(q) is symmetric and posi-

tive definite.

Property 2: [69] The matrix Ṁ(q) − 2C(q, q̇) is skew-

symmetric.

Property 3: [69] Assuming there is no external disturbance,

the left-hand side of the dynamic equation can be linearly

parameterized as

M(q)q̈ + C(q, q̇)q̇ +G(q) = Y (q, q̇, q̈)θ, (29)

where θ ∈ Rp contains the system parameters, and

Y (q, q̇, q̈) ∈ Rn×p is the regression matrix, which contains

known functions of the signal q(t), q̇(t) and q̈(t).
Remark 4: The notation (̂·) represents the computed or

nominal value of (·), and indicates that the theoretically exact

feedback linearization cannot be achieved in practice due to

uncertainties in the robotic system. The error or mismatch

(̃·) = (·)− (̂·) is a measure of one’s knowledge of the system

dynamics. Note that
˙̃θ = −

˙̂
θ since the parameter vector θ is a

constant.

In this paper, the basic adaptive control law follows the

method in [69]. Using the sliding model control method,

both the steady state position error and velocity error can

be eliminated. We denote the desired trajectory of q(t) as

qd(t). And the trajectory error is q̃ = q(t)−qd(t). The control

objective is to track the desired trajectory. We use the sliding

surface error to estimate error as in [70],

s = q̇ − q̇r = ˙̃q + Λq̃, (30)

where Λ is a constant matrix whose real part eigenvalues are

positive strictly. Then we know that if r → 0, ˙̃q andq̃ → 0
as t → ∞ because the error of position and velocity can

convergence to zero by the hyperplane of (30). Meanwhile the

we define qr(t) as the reference trajectory to estimate qd(t) as

follows

qr = qd + Λ

∫ t

0

q̃. (31)

Then, q̇r and q̈r can be represented as

q̇r = q̇d + Λq̃, (32)

q̈r = q̈d + Λ ˙̃q. (33)

As mentioned before, we need to estimate robotic system

parameters by LIP method so that the matrix Y is now a

function of q̇r and q̈r

M̂(q)q̈r + Ĉ(q, q̇)q̇r + Ĝ(q) = Y (q, q̇, q̇r, q̈r)θ̂. (34)

We can design the control law and adaptive law as

τ = Y (q, q̇, q̈)θ̂ −Kr, (35)

˙̂
θ = −Γ−1Y T (q, q̇, q̈)r, (36)

where Γ and K are both diagonal constant matrixes. From the

dynamics of the robotic system, we have

τ = M(q)q̈ + C(q, q̇)q̇ +G(q)

= Y (q, q̇, q̇r, q̈r)θ −M(q)ṙ − C(q, q̇)r.
(37)

According to control law (35) and (37), we have

M̃(q) dotr + C(q, q̇)r +Kr = Y (q, q̇, q̇r, q̈r)θ̃. (38)

Considering the Lyapunov stability, we can design the Lya-

punov function as

V (t) =
1

2
rTMr +

1

2
θ̃TΓθ̃. (39)

We can obtain the time derivative of the last formula

V̇ (t) = rTMṙ +
1

2
rT Ṁr + θ̃TΓ ˙̃θ. (40)

Considering the property mentioned above and substituting the

control law and adaptive law in, we have

V̇ (t) = −rTKr ≤ 0. (41)
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Then, we have
∫ T

0

rTKdt = V (0)− V (T ) ≤ 0. (42)

The property of the diagonal constant matrix K can be obtained

λmin(K)

∫ T

0

rT rdt ≤ V (0). (43)

From the definition, t → ∞, both θ̃ and
˙̃
θ converge to 0.

So we know that r → 0 as the t → ∞. Thus, using this

adaptive control law, the system can be guaranteed to achieve

zero steady-state close loop error for both position and velocity

[70].

B. Recursive Algorithm

In this paper, the initial value of adaptive control is supposed

to be the estimated vector in model identification as shown in

the second portion in the right side of (10). So θ in (35) can

be defined as

θi =[mi,mci,x,mci,y,mci,z , Ii,xx, Ii,xy, Ii,xz,

Ii,yy , Ii,yz, Ii,zz ]
T .

(44)

To simplify the description of the Slotine adaptive control

method in (29), we can define τr as

τr = Ĥ(q)q̈r + Ĉ(q, q̇)q̇r + Ĝ(q) = Y (q, q̇, q̇r, q̈r)θ. (45)

As we know, recursive algorithm is an open-loop model, in

which each joint can be analyzed separately. The control and

adaptive law can be written in a recursive way. We assume that

Γ in (35) is consisted by positive definite matrix Pi ∈ R10×10.

The torque control and adaptive law in (35) can be represented

as follows

τ = τr −KDs, (46)

˙̂
θi = −Pi

i∑

j=1

sjy
T
ji, (47)

where τr,i =
∑n

k=1 yikθk is the ith element of τr, and yik =
(yik,1, yik,2, · · · , yik,10) ∈ R1×10 is the element of Y in (35),

which is given as

Y =




y11 y12 · · · y1n
0 y22 · · · y2n
...

...
. . .

...

0 0 · · · ynn


 . (48)

As the coordinate frame in Fig. 2 shows that, all the joints are

rotational. Just considering the condition of rotational, besides

the (6), the other Newton-Euler dynamic formulation can be

expressed as

τi =zTi ni

Fi =miv̇i + ω̇i ×mci + ωi × (ωi ×mci) +
i
i+1 Rfi+1,

Ni =Iω̇i + ωi × (Iiωi) +mci × v̇i +
i
i+1 R(ii+1P

× fi+1 + ni+1),

(49)

where ωi, ω̇i and v̇i represent the angular velocity, angular

acceleration and linear acceleration of frame i respectively; fi

and ni are the force and moment exerted on link i by link

i− 1; I is the inertia tensor about the origin of frame i; mci
is the mass moment of link i and ci is the mass center. Using

the recursive Newton-Euler equations and the derivation in,

the force and torque matrix can be expressed as follows

ωi{q̇} =i
i−1Rωi−1{q̇}+ ziq̇i,

ωi{q̇r} =i
i−1Rωi−1{q̇r}+ ziq̇r,i,

αi =
i
i−1Rαi−1 +

i
i−1 Rωi−1{q̇r} × ziq̇i

+i
i−1 Rωi−1{q̇} × ziq̇i,r + 2ziq̈i,r,

βi =
i
i−1Rβi−1 +

i
i−1 RΦi−1,r

i−1
i P,

(50)

where

Φi = Γi + [ai×], (51)

Γi = [ωi{q̇r}×][ωi{q̇}×] + ([ωi{q̇r}×][ωi{q̇}×])T(52)

Fi and Ni are represented as follows

Fi = Aiai +
i
i+1 RFi+1, (53)

Ni = Biai +
i
i+1 R(Pi+1 × Fi+1 +Ni+1), (54)

where

Ai =
[
β

... Φi

... 0

]

3×10
, (55)

Bi =
[
0

... −[βi×]
... Ωi

]

3×10
. (56)

Here Ωi is defined as

Ωi = Iiαi + ωi{q̇r} × (Iiωi{q̇}) + ωi{q̇}

×(Iiωi{q̇r}), (57)

and αi,j is the jth element of αi and Γi,jk is the (j, k) element

of Γi. As the derivation in, the parameter yik in (47) can be

expressed as

yik = (µk
i )

TBk + (γk
i )

TAk, (58)

where

µk
i = k

k−1Rµk−1
i , (59)

hk
i+1 = k

k−1R(hk−1
i+1 +k−1

k p), (60)

γk
i = µk

i × hk
i+1, (61)

and i is set from 1 to 6, and k is chosen from i + 1 to 6.

Besides of the parameters defined above, the others can be set

as zero. From the (35) and (46), torque can be calculated.

V. NUMERICAL SIMULATIONS AND DISCUSSION

In this section, the performance of the proposed method of

model identification algorithm is verified through numerical

simulations in Matlab. The effectiveness of the estimated

inertia parameters are proved by comparing in the recursive

adaptive control system with different initial conditions. Based

on the system structure in Fig. 1, the numerical simulation

in this section is divided into three parts: exciting optimal

trajectory, model identification and recursive adaptive control.

A. Exciting Optimal Trajectory

The excitation of optimal trajectory is the first step of the

model identification. Under the constraints described in Table
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II and the objective function, the PSO method is adopted to

obtain the optimal value. In this particular problem, the particle

number is 50. The optimization algorithm will not stop until

the condition number in (19) is less than 130. For the condition

of model identification, the condition number less than 130 is

enough for exciting the full statement of the arm structure.

The optimization results of the Fourier coefficients are shown

in Table III

From the simulation result, it is obvious that the PSO

algorithm has a high convergence efficiency. Using the coef-

ficient parameters in Table III and based on (18), the optimal

trajectory can be obtained as shown in Fig. 3.
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Fig. 3. Optimal trajectory

Remark 5: The Y-axis of Fig. 3 denotes the angle of each

joint, in radian.

In Fig. 3 the solid lines are the joint trajectories, and the

dotted lines are the constraint of each joint shown in Table II.

The figure shows that all the excited trajectories are restrained

in the constraint boundary.

B. Parameter Estimation

Since the actual function of the model identification is

to obtain the model parameter for the adaptive control, the

“Ridge regression” method is suitable for this condition [67].

Following that method, by substituting the trajectory data into

the model identification module, the inertia parameters of the

HUBO robot can be calculated. The measured and estimated

torque are shown in Fig. 4. In this figure, the dotted line is

the measured torque, and the solid line is the estimated torque.

Fig. 4 illustrates that the measured and estimated torque are

almost identical. The estimation error is very small, which is

shown in Fig. 5

From the torque estimation result and estimation error, it is

apparent that the torque of each joint can be estimated with

a high accuracy. The torque estimation errors are less than

5 × 10−7Nm. The high accuracy estimation result indicates

that the estimated inertia parameters are suitable for this set of

trajectories and torques. And the estimated inertia parameters

are shown in Table IV.
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Fig. 4. Measured and estimated torque
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Fig. 5. Estimated error

C. Estimated Parameter Verification

For confirming of the validity of the estimated inertia

parameters, a testing method is proposed. The testing method

is run a simulation with a new trajectory different from the

optimized one in Fig. 3. The new trajectory for testing is

shown in Fig. 8, which is generated arbitrarily within the

constraints. Taking the trajectory as the desired route, the

estimated inertia parameters are shown in Table IV, which are

used to estimate the new torque of each joint as (20), where

K is the new matrix according to the new trajectory, andΦ is

the estimated parameters. The effectiveness and generalization

of the estimated parameters can be judged by estimated effect

of the new trajectory. The small estimated error means that
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TABLE III
COEFFICIENTS

Coefficients Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

a1 0.0809 0.1578 0.0747 -3.084e-4 -0.0175 0.1089

a2 0.1870 -0.1432 -0.1236 0.2508 0.3013 0.0044

a3 -0.0406 -0.1306 0.3670 0.0597 -0.0538 0.1254

a4 -0.1554 -0.1242 0.0960 0.3006 0.0482 0.0967

a5 -0.0376 -0.0860 0.1920 -0.1368 0.0493 -0.1159

b1 -0.1426 -0.3889 -0.2593 0.1383 0.0924 0.2347

b2 0.1021 0.1311 0.3530 -0.103 -0.0603 0.1098

b3 0.1690 0.0790 -0.1844 -0.0430 -0.0339 -0.2097

b4 0.1530 0.3067 -0.4159 -0.0115 0.1136 -0.0243

b5 0.3600 0.1896 -0.2709 -0.1878 0.2461 0.1022

TABLE IV
ESTIMATED PARAMETERS

Parameters Unit Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

mi Kg 0 0 0 1.5370e-02 1.53699e-02 3.55626e-02

mcx Kg ·m 0 9.54103e-08 9.64515e-09 -2.665e-05 1.17065e-02 5.07750e-03

mcy Kg ·m 0 2.72188e-05 -8.1902e-02 8.8609e-03 -1.2679e-05 6.99648e-03

mcz Kg ·m 0 3.40486e-19 -2.7219e-05 8.3420e-02 -8.8609e-03 - 9.35302e-03

Ixx Kg ·m2 0 2.47756e-03 2.13150e-03 4.7763e-03 -4.4776e-03 0.51961e-03

Ixy Kg ·m2 0 7.64263e-07 2.64990e-08 1.4295e-06 4.92949e-08 - 3.23927e-05

Ixz Kg ·m2 0 -1.55390e-07 -6.6769e-08 2.0950e-07 2.98953e-03 - 2.81641e-04

Iyy Kg ·m2 0 2.68877e-03 2.89464e-04 -6.955e-04 1.47890e-02 5.11529e-03

Iyz Kg ·m2 0 -3.45664e-09 -1.4773e-10 1.2946e-05 6.67067e-09 - 1.89297e-04

Izz Kg ·m2 5.16632e-03 -5.65875e-05 1.94927e-03 5.5351e-03 1.93014e-02 7.4893e-04

the estimated inertia parameters have good generalization and

effectiveness.
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Fig. 8. Trajectory for testing

The estimation results and their errors are shown in Fig. 6

and Fig. 7.

Fig. 6 and Fig. 7 illustrate that the estimated torque error in

the versification is less that 5×10−7N ·m, so that the estimated

inertia parameter in Table IV can be used to estimate other

trajectories and the relevant torque primely, which means that

the model identification result is accurate and generalized.

D. Recursive Adaptive Control

On the basis of the RNE adaptive control algorithm, the

simulation experiment is provided in this section. We use

zero as the initial position of each joint. The initial value of

inertia parameters θ in (44) are the estimated data from the

model identification module. The initial values of the other

parameters in recursive algorithm are as follows: α0 = 0,

β0 = 2z0g, Φ0 = 0, hi
i+1 = 0, and iµi = zi/2, where g is the

gravitational acceleration. The gain matrix KD in (46) is given

by diag(22, 10, 13, 13, 11, 12), the sliding surface coefficient

matrix Λ in (30) is given by diag(8, 30, 5, 0.1, 13, 0.1) and

adaptive law matrix P in Eq. (47) is given by 10−6I60, where

I60 is a 60 × 60 identity matrix. According to the set of

initial values, the control simulation effect and control error

are shown in Fig. 9 and Fig. 10. In Fig. 9, the solid and dotted

lines represent the actual and desired trajectory of each joint,

respectively. The desired trajectories are designed as

θd = θd0 +Amp · sin(ωf t), (62)
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where Amp = [180, 80, 180, 150, 120, 180] · 0.5 · π/180,

θd0 = [0, 60, 90,−45, 0, 30] · 0.5 · π/180 and ωf = 5. As

shown in Fig. 9 and Fig. 10, it is illustrated that each joint

can be controlled according to the desired trajectory, and the

control error decreases with time. In this manner, the control

performance of the adaptive control algorithm is verified.
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Fig. 9. Output of the robotic system with adaptive control
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Fig. 10. Tracking error of adaptive control

To further evaluate the result of the estimated inertia param-

eters, we compare the control results of adaptive controller

with the estimated parameters against without the estimated

parameters. Obviously, the simulation results show the fact

that the control scheme when inertia parameters are set as the

estimated parameters shown in Table. IV is better than pure

adaptive controller.

As shown in Fig. 11 and Fig. 12, when the values of the

inertia parameters are set as the estimated parameters, the

convergency rate of torques of each joint and the torque limits

are improved, compared to that when only adaptive controller

is presented. In this way, by choosing the estimated inertia

parameters as the initial value of θ in (44), the nominal torque

of the motor can be well controlled and the performance of

the system is improved.
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Fig. 11. Torque for the estimated inertia parameters
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Remark 6: The unit of Y-axis of Fig. 9 and Fig. 10 is radian,

while the unit of Y-axis of Fig. 11 and Fig. 12 is N ·m.

From the simulation results, we know that the torque of the

motor can be well controlled with high accuracy estimation

inertia parameters. And the trajectory can tracking with small

errors. Then in the future, precision of parameter estimation

can be improved to deal with more complicated situation.

VI. CONCLUSION

In this paper, the D-H model of the upper limb of a hu-

manoid robot is presented and the Newton-Euler formulation

of the manipulator of the HUBO robot has been derived. The

exciting trajectory generation method based on PSO has been

proposed. Using this method, the accuracy and generalization

of the estimation result can be guaranteed and the optimization

efficiency has been improved. Based on the optimized trajec-

tory, the structural inertia parameters have been estimated. To

reduce the complexity of the computation, recursive adaptive

control algorithm plays a pretty good role for improving the

control performance. Using the estimated inertia parameters

as the initial value in adaptive control progress, the torque

convergency of joint motors has been improved. In this paper,

we only consider modeling and control of the the upper limb
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of a humanoid robot, HUBO. Future work includes model

identification for the lower limbs of the humanoid robot, and

the balancing control will be investigated further.
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