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Abstract 

The ternary carbides and nitrides, known as MAX phases combine the attractive 

properties of both ceramics and metals; for example the Ti2AlC ceramics examined in 

this work have attracted attention for aerospace applications. In the current work 

Ti2AlC ceramics were subjected to high level thermal shock (ΔT=1100°C) from a 

temperature of 1200oC with a cooling rate of more than 90oC/sec. After the thermal 

shock process the mechanical properties and the microstructure were investigated. 

Combined thermal shock and mechanical loading with an applied stress of 0, 50, 100 

and 150 MPa was examined and in all cases the samples maintained their 

microstructure without any micro-cracks or phase change as observed. Compression 

testing of all samples to failure indicated that their mechanical properties did not 

show any deterioration in the testing range examined. Such ceramic materials 

therefore show potential for high temperature and high load applications. 

Keywords: MAX phases, mechanical properties, thermal shock 

 

1 Introduction 

Ti2AlC is one of the particular MAX phase ceramics that have attracted significant 

interest due to their unique behaviour that provides it with properties and attributes 

that are characteristic of both metals and ceramics. Ti2AlC is a ternary carbide that 

belongs to a larger class of ceramics with a general formula Mn+1AXn, where n=1-3, M 

is an early transition metal, A is an A-group element and X is carbon or nitrogen. 

These ceramics are intriguing as they are electrically and thermally conductive [1], 

damage tolerant and readily machinable while also exhibiting high temperature 

resistance. The Ti2AlC is of particular interest since it has excellent oxidation 

resistance due to it being an alumina former which provides it with some protection 

to oxidation [2]; this allows it to be used in high temperature applications while 

maintaining its mechanical properties. In addition, the density of Ti2AlC is relatively 

low [2], 4.11 g/cm3, which is beneficial when it is used as a structural material for 

aerospace application requiring low mass.  

A variety of methods have been reported to manufacture high purity and high 

density Ti2AlC samples with the most successful being hot isostatic pressing (HIP) [3-

7]. The disadvantage of the HIP process is that it can be time consuming, costly and 

requires a relatively high level of energy input. Additional work has examined 

pressureless sintering (PS) that can be more suitable for mass production of 
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mechanical parts with complex shapes [7], but the materials are typically more 

porous/lower density. 

Since the Ti2AlC materials are good conductors of heat (46 W/mK [8]) and electricity 

(3x106 Ω-1m-1 [1]), they are promising candidates as heating elements and electrodes 

[9, 10]. Their ability to provide high temperature mechanical properties make it clear 

that MAX phase ceramics have the potential for high temperature applications such 

as aerospace engines, where the engine efficiency is strongly related to operating 

temperature [2].  

Previous studies on the mechanical properties of Ti2AlC have included room 

temperature assessment of the mechanical properties. Wang et al. measured 

compressive strength of 670MPa and a Vicker’s hardness was 4.2-5.7 MPa [10]. 

These promising mechanical properties are a result of the localised lattice distortions 

that allow the delamination of multiple layers of the structure. Zhou et al. [11] 

studied the mechanical properties of Ti2AlC through compression testing from room 

temperature up to 1200oC, reporting a change in the plasticity and strength above 

1000oC where the stress upon failure decreased indicating that the material 

deformed with some degree of plastically. Bai et al. measured a flexural strength of 

432 MPa by conducting three-point bending test from room temperature up to 

950oC and observed a change in plasticity above 750oC [8].  

While a limited amount of work has undertaken mechanical testing, less has 

examined thermal shock behaviour. Bhattacharya and Goulbourne [12] heated Ti2AlC 

to temperatures of 220, 550 and 900oC and quenched in water at 20oC to evaluate 

the mechanical properties after the thermal shock. This work therefore focuses on 

studying the mechanical properties of Ti2AlC after thermal shock under mechanical 

stress. The samples are heated to temperature of 1200oC and then quenched to 

evaluate their resistance in thermal shock. To the best of our knowledge this is the 

first work on studying the mechanical properties of Ti2AlC after thermal shock at 

such high temperature and is of particular importance for applications such as 

furnace elements or aerospace components at high temperature where there is 

significant potential for such loading conditions to occur. 

 

2 Experimental methods 

The material used in this work is commercial polycrystalline Ti2AlC from Kanthal 

(Kanthal, Sweden) with a density of 4.1 g/cm3 [13], prepared via HIP. The samples for 

the mechanical testing were cylinders of 10 mm in diameter and 15 mm in height. 

Due to the high electrical conductivity of the Ti2AlC ceramic the thermal shock was 

performed on a Gleeble 3500 dynamic system (Dynamic Systems Inc.). The system 

uses direct resistance heating with high thermal conductivity grips to hold the 

specimen for high heating and cooling rates [14]; such an approach to high 

temperature testing in not feasible on conventional electrically insulating ceramics. 
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Fig. 1 presents a schematic representation of the Gleeble testing set up to test the 

ceramics. 

 

 
Figure 1: Schematic representation of the Gleeble testing set up. Electrically conductive grips allow 

Joule heating of the ceramic materials. 

 

The thermal shock cycle involved heating the sample to a temperature of 1200oC and 

then cooling the materials at cooling rates above 90 oC/sec by quenching with gas. 

The temperature of 1200oC was chosen since it is below the sintering temperature 

(1300oC-1400oC [3]) so we won’t observe any decomposition, but above the brittle-

to-ductile transition detected in previous work [8, 11]. Thermocouples were 

attached to the Ti2AlC to provide feedback control of specimen temperatures during 

resistive heating. While quenching the material to induce a thermal shock a 

compressive load of 0, 50, 100 or 150 MPa was applied on the materials. In order to 

investigate any potential changes in the mechanical properties the strain was also 

recorded while heating and cooling. After thermal shock the samples were subjected 

to compression testing (Instron 5585H) to study the residual mechanical properties. 

A control sample that was not subjected to any mechanical load or thermal shock 

treatment was also tested. Complementary, dilatometry measurements using a DIL 

402C Netzsch were performed allowing the measurement of the expansion of the 

material from room temperature up to 1200oC to detect potential phase changes in 

the materials or changes in the thermal expansion with temperature. Density 

measurements were conducted based on the BS EN623:2 standard [15] to determine 

the density of the samples before testing. Scanning electron microscopy (SEM) was 

also undertaken to examine the microstructure using a JEOL JSM6480LV and Field 

Emission SEM (FESEM) was used to examine the nanostructure (JEOL JSM-6301F). 

Energy dispersive X-ray (EDX) was also undertaken in an SEM JEOL 6480 for an 

elemental analysis of the specimen. Finally, X-ray diffraction (XRD) was conducted to 

detect any phase changes in the samples due to the high temperature heat 

treatment, using a Phillips PW1730 (Cu-Kα, λ=1,541838Å, 40kV, 25mA).  

 

3 Results and discussion 
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3.1 XRD and microstructure  

X-ray diffraction prior to thermal shock confirmed the presence of the dominant 

phase of Ti2AlC, as shown in Fig. 2a, along with the presence of the secondary phases 

consisting of AlTi3 and TiC; such secondary phases are commonly observed in these 

materials [7, 16-17]. The bulk density measured by the Archimedes method was 

96.6% of the theoretical (theoretical density 4.11 g/cm3 [7]) that agrees with the 

high density microstructure in Fig. 2b, the apparent solid porosity was measured at 

0.23%. The FESEM image in Fig. 2b shows the sample microstructure prior to thermal 

shock and shows characteristic [18-19] large size grains, with average length of 30.9 

μm and thickness of 6.2 μm that are composed of a number of micro-laminates 

(Fig.1b inset). There are no microcracks visible before the thermal shock as 

observed. 
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Figure 2: a. XRD spectrum, b. FESEM image of Ti2AlC before the thermal shock 

 

EDΧ was conducted to determine the location of the Ti2AlC, TiC and AlTi3 phases and 

Fig. 3a shows the mircostructure and Fig 3b shows the EDΧ spectra from a variety of 

sites of interest indicated in Fig. 3a. The dominant phase of Ti2AlC is present in the 

characteristic long grains, whereas TiC seems to form as a second phase that appears 

darker in the SEM image, since Spectrum 5 shows a lower content of Al. The AlTi3 is 

present in the grain boundaries (see Spectrum 2 & 3). 
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Figure 3: Site of interest and EDS spectrums of the MAX phase samples before the thermal shock 

 

3.2 Room temperature compression testing 

Compression testing before thermal shock was performed in order to determine the 

maximum applied stress before failure (strength), this was 722.3 MPa (Fig. 4a). This 

value is within the range of the reported values of the mechanical properties that are 

670 MPa by Wang [7] and 763 MPa by Zhou and Wang [11]. The failure mechanism 

of the material is shown in Fig. 4b and is not characteristic of a typical brittle ceramic 

material and is indicative of the ductile nature of Ti2AlC. This cross-shape formation 

is characteristic of quasi-brittle or composite materials [20]. The yield and fracture 

occur in a band, oriented at approximately 45o with respect to the loading axis. One 

face is stiffer, whereas the other phase of lower strength endows the material with 

ductility [21]. Fig. 5 shows a schematic of the failure mode of quasi-brittle (Fig. 5a) 

and brittle (Fig. 5b) materials. 
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Figure 4: a. Compression test stress-strain curve of Ti2AlC before the thermal shock, b. Image of sample 

after failure, sample diameter is 10mm for scale  

 

  

a b 

Fig. 5: Failure mode of (a) quasi brittle and (b) brittle samples under compressive test 

 

3.3 Thermal shock testing 

Fig. 6 shows the thermal profile during thermal shock testing. Initially, the samples 

were heated to temperatures of up to 1200oC at a rate of 10 oC/sec and maintained 

at elevated temperature for 20s to attain equilibrium. Then, the samples were 

rapidly cooled by quenching with cooling rates between 60-90oC/sec from 1200oC 

down to 850oC. The cooling rate decreases as it approaches room temperature. The 

first sample was heated to a temperature of 1200oC and then during quenching no 

load was applied. Fig. 7a and 7b shows the strain recorded during heating and 

quenching. In Fig. 7a there is a change in the strain slope around 700oC that may 

indicate a phase change or a change in the deformation mechanism. A change in the 

strain slope is also observed during quenching as shown in Fig. 7b at approximately 

1100oC. Fig. 8 shows the XRD data and an SEM image after the thermal shock with 

no load applied. Ti2AlC is shown as the dominant phase present in the XRD spectrum 

and no microcracks are visible in the microstructure after the thermal shock. 

According to Zhou et al. [11] the Ti2AlC undergoes a brittle-to-ductile-transition 
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(BDTT) at 1050oC at which the deformation mechanism changes. At low 

temperatures the deformation occurs mainly through delamination of the grains and 

basal plane dislocation slip, whereas at high temperatures due to the availability and 

mobility of dislocation systems (cavities formation, grain rotation, intergranular 

sliding) deformation occurs more plastically. Therefore the strain change at 

approximately 1050oC that was observed during quenching may be attributed to the 

BDTT – grain rotation or intergranular sliding due to high temperature. However, Y. 

Bai et al. studied the mechanical properties of the materials and detected a BDTT at 

approximately 750oC [8]. Recently, Benitez et al. published work on Ti2AlC hysteresis 

loops in the stress-strain curve as a result of elastic-plastic anisotropy due to the 

different orientation of the grains [22]. A possible explanation of this difference of 

the BDTT temperature during heating and cooling could be a change of the 

orientation of the grains in high temperature. 
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Figure 6: Temperature profile while heating and cooling by quenching 

  
a b 

Figure 7: a. Heating ramp before the thermal shock, b. Temperature vs time (right axes) and strain vs 

time (left axes) during quenching 
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Figure 8: a. XRD spectrum and b. SEM image of the Ti2AlC after the thermal shock without any load 

applied 

 

Even though no phase change is detected, dilatometry was also performed to 

identify any potential changes in sample volume during heating and cooling and 

compare with the change in stain slope during the mechanical testing. Fig. 9 shows 

the dilatometry data and presents temperature, expansion (dl/l0) and the 1st 

derivative of the expansion vs time. The thermal expansion coefficient from room 

temperature to 100oC is typically 7.5-10x10-6 oC-1. Although there is no significant 

change in the dl/l0 (%), although the first derivative does indicate a small change in 

the slope of the dl/l0 (%) at approximately 950oC during heating (circle 1, Fig. 9) and 

at approximately 850oC when cooling (circle 2, Fig. 9). These temperatures are 

slightly different to those reported by Zhou et al, 1050oC, [12] and by Bai et al, 

750oC, [8]. Different grain orientation could be the cause of the differences in the 

temperature that the deformation mechanism changes.  
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Figure 9: Temperature, expansion and 1

st
 derivative of the expansion vs time, data obtained from 

dilatometry 

 

1 2 



9 

 

The heating and quenching cycles using the Gleeble were applied to three more 

samples under load, with an applied compressive stress of 50, 100 and 150 MPa 

applied respectively on the samples. Figure 10a, b and c show the strain vs time 

graph during the thermal shock from 1200oC. In this case the strain decreases with 

reduction in temperature, possibly because of the additional load applied. 

 

 
a 

 
b 

 
c 

Figure 10: Temperature vs time (right axes) and strain vs time (left axes) during quenching of the 

samples that a load of a. 50 MPa, b. 100 MPa and c. 150 MPa was applied 
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As shown from the XRD spectra in Fig. 11 there are changes in the phase 

composition due to the thermal treatment or load applied during quenching. A semi-

quantitive analysis was performed by calculating and comparing the integrated area 

of the main peaks of the three phases present (38o for the Ti2AlC, 41o for TiC and 48o 

for AlTi3). The SEM images in Fig. 12 shows that again there are no cracks observed in 

the microstructure as a result of the combination of applied mechanical load and 

thermal shock. 
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Figure 11: XRD spectra after the thermal shock of the samples that a load of a. 0 MPa, b. 50 MPa and 

c. 100 MPa and d. 150 MPa was applied during quenching 

 

   
a b c 

Figure 12: SEM after the thermal shock of the samples that a load of a. 50 MPa, b. 100 MPa and c. 150 

MPa was applied during quenching 

 

3.4 Residual strength testing after thermal shock 

Following the thermal shock and combined thermal shock and mechanical loading 

the materials were subjected to compression testing to investigate any possible 

b.Thermal shock – 50 MPa 

c.Thermal shock – 100 MPa 

d.Thermal shock – 150 MPa 

a.Thermal shock – no load 

Control sample 
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effects of reduction in strength. Fig. 13 shows the compression test of the control 

sample (no thermal shock) and all the samples after being subjected to thermal 

shock under 0, 50, 100 and 150MPa. Table 1 also compares the results showing that 

no significant changes in the maximum strength are observed, any difference in the 

values is within the uncertainties of the test. 
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Figure 13: Compression stress – strain graph of all samples 

 

Table 1: Maximum stress of all samples prior to failure. 

 Control 

sample 

Thermal 

shock (no 

stress 

applied) 

Thermal 

shock 

(50MPa 

applied) 

Thermal 

shock 

(100MPa 

applied) 

Thermal 

shock 

(150MPa 

applied) 

Max. strength 

(MPa) 

722.3 735.4 750.7 833.4 774.7 

 

4 Conclusions 

 

This paper provides the first data on the mechanical properties of polycrystalline 

Ti2AlC after a thermal shock. At room temperature Ti2AlC the failure mechanism of 

the material indicated a degree of plastic deformation due to the laminated grains 

that are composed of a number of thin hexagonal slices that allow shear-slip. The 

high electrical conductivity of the ceramic enables novel testing of the material at 

elevated temperature using closed-loop resistive heating; an approach normally 

limited to metallic materials. The Ti2AlC was subjected to combined thermal shock 

and mechanical loading and the current work indicates that  Ti2AlC retains its 
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mechanical properties after thermal shock from 1200oC with a cooling rate higher 

than 90oC/sec; even when subjected to mechanical loads up to 150MPa. The 

microstructure and the phases of the samples after the thermal shock were studied 

and no significant changes or defects were observed supporting the preservation of 

the mechanical properties. Such ceramic materials therefore show potential for high 

temperature and high load applications. 
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