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aDepartment of Continuum Mechanics and Structural Analysis, School of Engineering, University of Seville , Camino de los Descubrimientos

s/n, E-41092-Seville, Spain
bDepartment of Mechanics, University of Cordoba, Campus de Rabanales, Cordoba, CP 14071, Spain

cZienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Singleton Park, SA2 8PP, United Kingdom

Highlights

• The CNT distribution and material parameters considered as a sources of uncertainty.

• Power-law and truncated Gaussian functions to define CNT variability along thickness.

• Kriging and RS-HDMR are employed as surrogate models.

Abstract

The remarkable mechanical and sensing properties of carbon nanotubes (CNTs) suggest that they are ideal

candidates for high performance and self-sensing cementitious composites. However, there is still a lack of deeper

knowledge of the uncertainty associated with their incorporation into functionally graded composite materials

(FGM). The influence of these uncertainties can be critical for future applications in the field of Structural Health

Monitoring (SHM), techniques that usually require high accuracy modeling. Most researchers restrict the aim

of their studies to the analysis of composite materials with uniform or linear grading profiles. This study sheds

new light on the basis of stochastic representation of the grading profiles and analyzes the propagation of its

uncertainty into the response of FG-CNT reinforced plates. The finite element method (FEM) is employed to

study the individual and interactive effects of the mechanical properties (matrix/CNTs) and grading profiles via

power-law distributions. The effects of stochastic uncertainties on the overall properties of the composite material

are represented using probability theory.

Keywords:

Uncertainty quantification, Kriging, RS-HDMR, Carbon nanotube, Functionally graded materials, Finite element

method

1. Introduction

Since the discovery of carbon nanotubes (CNTs) by Ijima [1] in 1991, many researchers have investigated

their unique capabilities as reinforcements in composite materials (CNTRC). Due to their remarkable mechan-

ical, electrical and thermal properties, carbon nanotubes are considered as ideal reinforcing fibers for advanced

high strength materials and smart materials with self-sensing capabilities [2, 3]. These features are specially

interesting in the field of Structural Health Monitoring (SHM). The correlation between the variation of the ap-

plied stresses with the electrical resistance leads to infinite possibilities for the control and assessment of civil

structures. Although still in initial development phases, these capabilities have already been demonstrated ex-

perimentally [4–8]. Another promising direction is the application of CNTs as reinforcements in functionally

graded materials (FGMs), a branch of advanced materials characterized by spatially continuous varying prop-

erties. Since its origin in 1984 (see e.g. [9]), this concept has promoted the development of a wide range of

functionally graded composite materials (FGCM). These materials are inhomogeneous composites characterized

by smooth and continuous variations in both compositional profile and material properties. This feature allows

designers to optimize the contribution of each phase of the composite, which has led to an extensive number of

applications in many engineering fields. Given the promising capabilities of the employment of carbon nanotubes

∗Corresponding author.
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as reinforcements in functionally graded materials, it is essential to develop theoretical models to predict the re-

sponse of full-scale functionally graded carbon nanotube reinforced (FG-CNTRC) structural elements. However,

because of its inherent complexity, FG-CNTRC structures are difficult to manufacture according to its exact design

specifications. Hence, undesirable process-induced uncertainties may arise. Since the mechanical properties of the

constituent materials (matrix/CNTs) may vary statistically, as well as the uncertainties inherent in the fabrication

technique, the mass and stiffness matrices of FG-CNTRC structural elements are stochastic in nature. Therefore,

the properties of FG-CNTRC materials should be quantified probabilistically. In order to probabilistically assess

the behavior of FG-CNTRC structures, randomness must be taken into consideration in three coupled aspects: (i)

uncertainty in the material properties, (ii) uncertainty associated with the leap from nano to macroscale through

an homogenization framework and (iii) uncertainty in the reinforcement grading profile.

The number of publications on static and dynamic deterministic analysis of CNTRC and FG-CNTRC structural

elements has increased considerably in recent years with plenty of newly published results. Linear distributions

of single-walled carbon nanotubes (SWCNTs) within an isotropic matrix were proposed by Shen [10]. In this

work, it is shown that nonlinear load-bending moment curves of FG-CNTRC plates in thermal environments can

be significantly increased as a result of a functionally graded reinforcement. Zhu et al. [11] carried out bending

and free vibration analysis of FG-CNTRC plates by FEM based on first-order shear deformation plate theory

(FSDT) with similar conclusions. Yas and Heshmati implemented the Timoshenko beam theory to analyze the

vibration of straight uniform [12] and linear [13] FG-CNTRC beams subjected to moving loads. Zhang et al.

[14] proposed a state-space Levy method for the vibration analysis of FG-CNT composite plates subjected to

in-plane loads based on higher-order shear deformation theory. This research analyzed three different symmetric

linear distributions of the reinforcements along the thickness, namely UD, FG-X and FG-O. They concluded

that FG-X provides the largest frequency and critical buckling in-plane load. On the contrary, the frequency

for the FGO-CNT plate was the lowest. Zhang and Liew [15] presented detailed parametric studies of the large

deflection behaviors of FG-CNTRC quadrilaterals for different types of CNT distributions. They concluded that

the geometric parameters such as side angle, thickness-to-width ratio or plate aspect ratios are more significant

than material parameters such as CNT distribution and CNT volume fraction. Garcı́a-Macı́as et al. [16] proposed

a shell finite element formulation based on the Hu-Washizu principle in general curvilinear coordinates for the

simulation of FG-CNTRCs. In particular, it is applied for an exhaustive parametric analysis of the static response

and free vibration characteristics of FG-CNTRC skew plates with uniform and linear CNT distributions. It should

be noted that all the aforementioned works only took account of linear reinforcement grading profiles.

Uncertainty propagation in nanocomposite structures remains as an unsolved issue. Rouhi and Rohani [17]

analyzed the probabilistic response characteristics of a thin-walled nanocomposite cylinder subjected to buckling

instability. They employed micromechanical approaches based on the Eshelby-Mori-Tanaka method for the math-

ematical modeling of randomly distributed carbon nanofibers (CNFs) in a thermoset polymer material. By using

a dual metamodeling procedure, uncertainty in CNF material properties, CNF waviness and CNF-matrix inter-

phase were taken into consideration to carry out a reliability-based design optimization in terms of a prescribed

maximum probability of failure. Ghasemi et al. [18] proposed a Kriging metamodel-based probabilistic optimiza-

tion procedure. By linking the different scales (nano-, micro-, meso- and macro- scales) by multi-scale analysis,

the Eshelby-Mori-Tanaka model and finite element method, they considered three different uncertainty sources:

material uncertainties (length, waviness, agglomeration, orientation and disperson of CNTs), structural uncertain-

ties (geometry, boundary and loading conditions) and modeling uncertainties (discretization and approximation

errors). Their results showed that the failure probability strongly depends on the CNT parameters, especially the

CNT volume fraction and the waviness. In addition, they also concluded that the influence of the CNT agglomer-

ation is nearly negligible.

The objective of the present study is to investigate the effects of the randomness in CNT distribution cou-

pled with the material uncertainties on the vibrational properties of FG-CNTRC plates. Most researchers restrict

the aim of their studies to the analysis of composite materials with uniform or linear grading profiles. However,

because of its manufacturing complexity, FG-CNTRC structures may be expected to present process-induced un-

certainties that make these linear distributions rather improbable. Thus, two main sources of uncertainty are con-

sidered: uncertainty in the material properties (matrix/CNT) and uncertainty in the reinforcement grading profile

which, in turn, propagates the prior uncertainties within the thickness of the specimen. To increase the compu-

tational efficiency, the expensive-to-evaluate finite element model is surrogated by two metamodels, Kriging and

High-Dimensional Model Representations (RS-HDMR). In these two cases, the actual finite element model is

replaced by a response surface model, making the process computationally efficient and cost effective. Random

samples are drawn uniformly over the entire domain ensuring good prediction capability of the constructed meta-

models in the whole design space including the tail regions. The experience in the application of these techniques

for the uncertainty analysis of composite materials is extensive and with excellent results. The RS-HDMR ap-

proach has been employed in many different fields [19–21]. The uncertainty of the dynamic characteristics of
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angle-ply composite plates was studied by Sudip et al. [22], as well as the effects of noise on stochastic frequency

response functions [23] and thermal uncertainty propagation in laminated composite plates [24]. Sudip et al. [25]

also employed the Kriging metamodel to analyze the uncertainty propagation in the free vibration characteristics

of laminated shallow doubly curved shells. In this paper, in order to cross-validate the results for constructing

the metamodels, a sensitivity analysis is carried out. Furthermore, the efficacy of both metamodels are compared

to direct Monte Carlo simulation (MCS) with accurate results and a drastic reduction of computation cost. Mo-

tivated by [16], a finite element formulation based on a modified Hu-Washizu potential principle is employed.

Four-noded elements with five degrees of freedom at each node are implemented with consideration of transverse

shear strains by first-order shear deformation theory (FSDT). The element is consistently formulated by indepen-

dent approximations of displacements (bilinear), strains and stresses (piecewise constant within subregions). The

paper is organized as follows, Section 2: definition of functionally graded carbon nanotube plates; Section 3: finite

element formulation; Section 4: Surrogate modeling: Kriging and RS-HDMR metamodels; Section 5: results and

discussion; and Section 6: Conclusions.

2. Functionally graded CNTRC plates

In the present paper, FG-CNTRC plates with uniform thickness h, length a and width b are considered as shown

in Fig. 1. Also shown are the four most popular linear reinforcement grading profiles in the literature. UD-CNTRC

represents the uniform distribution and FG-V, FG-O and FG-X CNTRC are linear functionally graded distributions

of carbon nanotubes in the thickness direction of the composite plates. The effective material properties of the

two-phase nanocomposites mixture of uniaxially aligned CNTs reinforcements and a polymeric matrix, can be

estimated according to the Mori-Tanaka scheme [26] or the rule of mixtures [3, 27]. The accuracy of the extended

rule of mixtures (EROM) has been widely discussed and a remarkable synergism with the Mori-Tanaka scheme

for functionally graded ceramic-metal beams is reported in [28]. For simplicity and convenience, in the present

study, the extended rule of mixture was employed by introducing the CNT efficiency parameters and the effective

material properties of CNTRC plates can thus be written as [10]

(a)

x ≡ θ1

y ≡ θ2

z ≡ θ3

b

a

h

(b)

x ≡ θ1

y ≡ θ2

z ≡ θ3

b

a

h

(c)

x ≡ θ1

y ≡ θ2

z ≡ θ3

b

a

h

(d)

x ≡ θ1

y ≡ θ2

z ≡ θ3

b

a

h

Figure 1: Geometry and linear configurations of the functionally graded carbon nanotube-reinforced (FG-CNTRC) plates. (a)

UD CNTRC plate; (b) FG-V CNTRC plate; (c) FG-O CNTRC plate; (d) FG-X CNTRC plate.

E11 = η1VCNT ECNT
11 + VmEm (1a)

η2

E22

=
VCNT

ECNT
22

+
Vm

Em
(1b)

η3

G12

=
VCNT

GCNT
12

+
Vm

Gm
(1c)

where ECNT
11

, ECNT
22

and GCNT
12

indicate the Young’s moduli and shear modulus of SWCNTs, respectively, and Em

and Gm represent the corresponding properties of the isotropic matrix. To account for the scale-dependent material

3
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properties, the CNT efficiency parameters, η j ( j=1,2,3), were introduced and can be calculated by matching the

effective properties of the CNTRC obtained from a molecular dynamics (MD) or multi-scale simulation with those

from the rule of mixtures. VCNT and Vm are the volume fractions of the carbon nanotubes and matrix, respectively,

and the sum of the volume fractions of the two constituents should equal unity. Similarly, the thermal expansion

coefficients, α11 and α22, in the longitudinal and transverse directions respectively, Poisson’s ratio ν12 and the

density ρ of the nanocomposite plates can be determined in the same way as

ν12 = VCNTν
CNT
12 + Vmν

m (2a)

ρ = VCNTρ
CNT + Vmρ

m (2b)

α11 = VCNTα
CNT
11 + Vmα

m (2c)

α22 = (1 + νCNT
12 )VCNTα

CNT
22 + (1 + νm)Vmα

m − ν12α11 (2d)

where νCNT
12

and νm are Poisson’s ratios, and αCNT
11

, αCNT
22

and αm are the thermal expansion coefficients of the CNT

and matrix, respectively. Note that ν12 is considered to be constant over the thickness of the functionally graded

CNTRC plates. The other effective mechanical properties are defined as follows

E33 = E22, G13 = G12, G23 =
1
2

E22

1+ν23
,

ν13 = ν12, ν31 = ν21, ν32 = ν23 = ν21,

ν21 = ν12
E22

E11

(3)

The uniform and three types of linear functionally graded distributions of the carbon nanotubes along the

thickness direction of the nanocomposite plates shown in Fig. 1 are assumed to be

VCNT = V∗
CNT

(UD CNTRC)

VCNT =
4|z|
h

V∗
CNT

(FG-X CNTRC)

VCNT = (1 + 2z
h

)V∗
CNT

(FG-V CNTRC)

VCNT = 2(1 − 2|z|
h

)V∗
CNT

(FG-O CNTRC)

(4)

In the present work, the source of uncertainty in the reinforcement grading profile is considered as a variation

from the linear distribution. In order to take into account this effect, a general distribution shape function f (z) can

be implemented. For a given volume fraction of inclusions V∗
CNT

, the distribution of CNTs as a function of the z

coordinate can be derived as

VCNT (z) = V∗CNT ·
f (z) · h

∫ h/2

−h/2
f (z) dz

(5)

Different expressions for this distribution shape function can be assumed. Some of the most employed distri-

butions in the literature are power-law functions (P-FGM), exponential functions (E-FGM) and sigmoid functions

(S-FGM) [29]. In the present paper, P-FGM is selected. For instance, in the case of FG-V and FG-X distributions,

the CNT volume fraction defined by P-FGM, P-FGV and P-FGX respectively, adopts the following expressions

f (z) = ( h−2z
2h

)k (P-FGV)

f (z) =



















(

2
h
z
)k

0 ≤ z ≤ h
2

(

− 2
h
z
)k
− h

2
≤ z ≤ 0

(P-FGX)
(6)

where the variation around the linear case (k = 1) is controlled by the power-law index k. Fig. 2 shows the different

profiles obtained by P-FGV and P-FGX for different values of the power law index

3. Finite element formulation

Consider CNTRC plate of length a, width b and thickness t as shown in Fig. 1. In this section, the more general

theoretical formulation developed in [16] is adopted here for the case of flat rectangular shells. Denoting byU(γ)

the strain energy and by γ and σ the vectors containing the strain and stress components, respectively, a modified

potential of Hu-Washizu assumes the form [30]

4
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0 0.2 0.4 0.6 0.8 1
−0.5

−0.25

0

0.25

0.5

VCNT (%)

z/
h

P-FGV

k=0

k=1

k=2

k=4

k=6

k=8

0 0.2 0.4 0.6 0.8 1
−0.5

−0.25

0

0.25

0.5

VCNT (%)

z/
h

P-FGX

k=0

k=1

k=2

k=4

k=6

k=8

Figure 2: Variation of the CNT volume fraction through the thickness defined by the power-law distribution function for

different power law indices k, based on FG-V and FG-X linear distributions, namely P-FGV and P-FGX (V∗CNT = 0.11).

ΠHW [v, γ, σ] =

∫

V

[U(γ) − σT (γ − D v) − Πb] dV −
∫

S v̂

(v − v̂)σn dS −
∫

S t

Πt dS (7)

In Eq. (7), v and the index b represent the displacement vector and the body forces, respectively, whereas v̂

are prescribed displacements on the part of the boundary in which displacements are prescribed (S v̂).

The displacement field is constructed by first-order shear deformation. Hence the in-plane deformation γαβ is

expressed in terms of the extensional ( 0γα β) and flexural ( 1γα β) components of the Cauchy-Green strain tensor as

γαβ = 0γα β +θ
3

1γα β . (8)

The constitutive equations are written in Voigt’s notation in the form







































s11

s22

s12

s23

s13







































=







































Q11(z) Q12(z) 0 0 0

Q12(z) Q22(z) 0 0 0

0 0 Q66(z) 0 0

0 0 0 Q44(z) 0

0 0 0 0 Q55(z)







































·







































γ11

γ22

γ12

γ23

γ13







































(9)

Q11 =
E11

1−ν12·ν21
, Q22 =

E22

1−ν12·ν21
, Q12 =

ν21·E11

1−ν12·ν21
,

Q66 = G12, Q44 = G23, Q55 = G13

(10)

Note that Qi j varies with z according to the grading profile of the CNTRC along the thickness. Thus, the

components of the extensional stiffness CE , bending extensional coupling stiffness CC , bending stiffness CB, and

transverse shear stiffness CS are defined by the following integrals

(C
i j

E
,C

i j

C
,C

i j

B
) =
∫ h/2

−h/2
Qi j(z) · (1, z, z2)dz (i, j = 1, 2, 6),

C
i j

S
= 1

ks

∫ h/2

−h/2
Qi j(z)dz (i, j = 4, 5)

(11)

where ks denotes the transverse shear correction factor for FGM, given by [31]

ks =
6 − (νiVi + νmVm)

5
(12)

From Eq. (8) and the thin body assumption, the strain-energy density per unit of area at the reference surface

can be expressed as

U =

∫ h/2

−h/2

Φ dz =

∫ h/2

−h/2

[

1

2
Cαβγδ

(

0γα β + θ
3

1γα β
) (

0γγ δ + θ
3

1γγ δ
)

+ 2 E α3β3 γα3 γβ3

]

dz (13)

5
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Expression (13) for the strain energy can be represented as the sum of the extensional (UE), bending (UB),

coupling (UC) and transverse shear (US ) strain energy as

UTotal = UE + UB + UC + US =

= 1
2

(

0γ
T CE 0γ + 1γ

T CB 1γ + 0γ
T CC 1γ + 1γ

T CC 0γ + γ
T
S

CS γS

) (14)

The shell element derived in the present study is a four-noded rectangular isoparametric finite element with

five degrees of freedom at each node: three components of the displacements u1, u2, u3 and two components of the

rotations ϕ1, ϕ2. Bilinear shape functions Nk are chosen for the components of the displacements and rotations.

The numerical integration over the isoparametric rectangular elements is carried out by a piecewise constant

approximation of the linear variation of the strains and stresses. These piecewise constant approximations can be

improved by introducing four subdomains over the finite element (see Fig. 3). For example, Fig. 4 illustrates the

piecewise approximation of γ11 and γ22 over two subdomains. In the case of the membrane shear strain γ12, it is

approximated by a constant.

1 2

34 (- 1, 1 ) ( 1, 1 )

(- 1, - 1 ) ( 1, - 1)

IV III

III

Û
0

Û
1

-1 0
Û

1

Û
1

0 0

Û
0

Û
0

-1 -1
Û

1

Û
0

0 -1

q
2

q
1

h

x

2 q
0

1

2 q
0

2

Figure 3: Subdomain areas throughout the isoparametric rectangular finite element.

Considering the piecewise approximations through the four subdomains, the extensional (ε), bending (kappa)

and shear strain (γ) over every subdomain are defined as

– Extensional strains (ε11, ε22, ε12) and Bending strains (κ11, κ22, κ12)

(ε11, κ11) =



















(

ε A
11, κ

A
11

)

in AI + AII
(

ε B
11, κ

B
11

)

in AIII + AIV

, (ε22, κ22) =



















(

εC
22, κ

C
22

)

in AI + AIV
(

εD
22, κ

D
22

)

in AII + AIII

,

(ε12, κ12) = (ε̄12, κ̄12) in A

– Shear strains (γ13, γ23)

γ1 =















γ A
1 in AI + AII

γ B
1 in AIII + AIV

, γ2 =















γC
2 in AI + AIV

γD
2 in AII + AIII

(15)

As a consequence of this approximation, the strain energy term in the Hu-Washizu variational principle takes

the form of

∫

A

U dA =
1

2
ε̄T D̄E ε̄ +

1

2
κ̄ T D̄B κ̄ +

1

2
ε̄T D̄C κ̄ +

1

2
κ̄ T D̄C ε̄ +

1

2
γ̄ T D̄S γ̄ (16)

where the vectors ε̄, κ̄ and γ̄ are defined by

6
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η

ε

ε
2

2
−
ε

2
2

ε
2

2
+
ε

2
2

θ
2

θ
1

η

ε

ε
1

2

Figure 4: Schematic representation of the piecewise constant extensional strain (ε) approximation.

ε̄ =







































εA
11

εB
11

εC
22

εD
22

2 ε12







































, κ̄ =







































κA
11

κB
11

κC
22

κD
22

2 κ12







































, γ̄ =































γA
1

γB
1

γC
2

γD
2































(17)

The matrices D̄E, D̄B, D̄C and D̄S are the discretized elasticity matrices according to the four subdomains. In

addition, by introducing the matrices

AN = AM = diag {AI + AII , AIII + AIV , AI + AIV , AII + AIII , A} , (18a)

AQ = diag {AI + AII , AIII + AIV , AI + AIV , AII + AIII} (18b)

along with the discretized strain-displacement relationships, the bilinear approximations for the displacements

and rotations, and also the discrete parameters for the strains and stresses, the discrete form of the generalized

variational principle of Hu-Washizu is given by

ΠHW =
1

2
ε̄T D̄E ε̄ +

1

2
κ̄ T D̄B κ̄ +

1

2
ε̄T D̄C κ̄ +

1

2
κ̄ T D̄C ε̄ +

1

2
γ̄ T D̄S γ̄

− 1

2

(

N T AN ε̄ + ε̄
T AN N

)

− 1

2

(

M T AM κ̄ + κ̄
T AM M

)

− 1

2

(

Q T AQ γ̄ + γ̄
T AQ Q

)

+
1

2

(

N T E∆ + ∆T E N
)

+
1

2

(

M T B∆ + ∆T B M
)

+
1

2

(

Q T G∆ + ∆T G Q
)

(19)

with N, M and Q the discretized stress resultants similarly to Eqs. (17). The Hu-Washizu variational principle

establishes that if the variation is taken with respect to nodal displacements and rotations (∆), strains, and stresses,

then all field equations of elasticity and all boundary conditions appear as Euler-Lagrange equations. In particular,

the stationary condition for the functional (δΠHW = 0) enforces, after some algebraic manipulation, the discrete

equilibrium in terms of nodal displacements and rotations as

[

KExtension +KBending +KCoupling +KS hear

]

∆ = p (20)

Therefore, the stiffness matrix, K20×20, is defined by the sum of the following four terms

7
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KExtension = A−1
N D̄E A−1

N E , (21)

KBending = B T A−1
M D̄F A−1

M B , (22)

KCoupling = B T A−1
M D̄C A−1

N E + E T A−1
N D̄C A−1

M B , (23)

KS hear = G T A−1
Q D̄S A−1

Q G . (24)

The eigenvalue problem for the undamped free vibration problem takes the well-known form

K u = ω2 M u , (25)

where K is the stiffness matrix of the system, u represents the eigenvectors, ω is the natural frequency in rad/s and

M is the mass matrix of the structure. The consistent element mass matrix is derived by discretizing the kinetic

energy

δUK =
1

2

∫

V

ρ 2 v δv̈dV , (26)

and by employing the displacement field defined by first-order shear deformation, the consistent mass matrix can

be represented by

M =





























M11 M12 M13 M14

M22 M23 M24

M33 M34

sym M44





























20×20

(27)

Every Mi j term of the mass matrix, where i and j represent the row and the column respectively, assumes the

following form

Mi j =













































∫

A
I1 Ni N j dA

∫

A
− I1 Ni N j dA 0

∫

A
I2 Ni N j dA

∫

A
− I2 Ni N j dA

∫

A
I1 Ni N j dA 0

∫

A
− I2 Ni N j dA

∫

A
I2 Ni N j dA

∫

A
I1 Ni N j dA 0 0

∫

A
I3 Ni N j dA

∫

A
− I3 Ni N j dA

sym
∫

A
I3 Ni N j dA













































5×5

(28)

where the terms I1, I2, I3 are defined by

I1 =

∫ h/2

−h/2

ρ(z)dz, I2 =

∫ h/2

−h/2

ρ(z) · zdz, I3 =

∫ h/2

−h/2

ρ(z) · z2dz (29)

4. Surrogate modeling

In this section, two metamodels are introduced, Kriging and random sampling high dimensional model repre-

sentation (RS-HDMR). In general, a surrogate model is an approximation of the Input/Output of a main model.

The main purpose of a surrogate model is to fit the outcome obtained by a large model, costly in terms of com-

putation, in a more compact and cost-effective way. There are a set of m observations, so called design sites

X = [x1, . . . , xm]T with xi ∈ Rn, and a set of corresponding outputs Y = [y1, . . . , ym]T with yi ∈ Rq.

4.1. Kriging metamodel

The Kriging model, originated in geostatistics [32], is a commonly used method of interpolation (prediction)

for spatial data. This model expresses the unknown function of interest y(x) for a n dimensional input x ⊆ D ⊆ R
n,

as the sum of a regression model yr(x) and a stochastic function F (x) as follows [33]

y(x) = yr(x) + F (x) (30)

the function F (x) is the realization of a stochastic process with mean zero, variance σ2 and non-zero covariance,

yr(x) is a known regression function dependent on p regression parameters β =
[

β1, . . . , βp

]

and defined functions

f j : Rn → R [34]

8
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yr(β, x) = f (x)Tβ (31)

It can be understood that yr(x) globally approximates the design space, meanwhile F (x) creates the localized

deviations so that the Kriging model interpolates the m-sampled data points. The covariance matrix of F (x) is

Cov
[

F (xi)F (x j)
]

= σ2R
[

R(θ, xi, x j)
]

(32)

between any two of the m-sampled data points xi and x j. R is a m × m symmetric matrix with ones along the

diagonal. Ri j = R(θ, xi, x j) is the correlation model with parameters θ =
[

θ1, . . . , θĺ

]

. The user can specify a

wide variety of correlation functions [35–37] dependent on θ parameters. For example, in the case of a Gaussian

correlation function

R(xi, x j) = exp



















−
ĺ
∑

k=1

θk

∣

∣

∣

∣

xi
k − x

j

k

∣

∣

∣

∣

2



















(33)

The relation between the predicted estimates, ŷ(x) of the response y(x) at an untried point x is defined by the

Kriging predictor as follows

ŷ(x) = f (x)T · β∗ + r(x)T (Y − F · β∗) (34)

where Y is a column vector of length m that contains the sample values of the frequency responses and F is the

m × p observability matrix Fi j = f j(xi). r(x) is a vector with the correlations between the design sites and x:

rT (x) = [R(θ, x1, x), . . . ,R(θ, xm, x)]T (35)

The regression problem F · β ≈ Y has the generalized least squares solution

β∗ = (FT · R−1F)−1 · FT · R−1 · Y (36)

and the variance estimate

σ2 =
1

m
(Y − F · β∗)T · R−1 · (Y − F · β∗) (37)

The matrix R and therefore β∗ and σ2, depend on θ. The optimal choice of θ∗ is defined as the maximum

likelihood estimator (e.g. best guesses),i.e. the maximizer of

max
θ>0
.Γ(θk) =

1

2
(m · lnσ2 + ln |R|) (38)

where |R| is the determinant of R. This optimization process results in a k-dimensional unconstrained non-linear

optimization problem. Note that for a given set of design data the matrices β∗ and the parameters θk are fixed.

For every new x we just have to compute the vectors f (x) ∈ Rp and x ∈ Rm and add two simple products. After

obtaining the Kriging surrogate model, it is possible to compute an approximation error to evaluate the accuracy

of the predicted results. The mean squared error (MS E) of the predictor is defined by

MS E = E
[

(ŷ(x) − y(x))2
]

(39)

4.2. Random Sampling HDMR

The random sampling high dimensional model representation (RS-HDMR) method is a set of tools explored

by Rabitz et al. [38] in order to express the input-output mapping of a high dimensional model with a large number

of input variables and a reduced number of samples [39, 40]. The relationship between the input X = [x1, . . . , xm]T

and output variables X = [ f (x1), . . . , f (xm)]T is expressed as [41, 42]:

f (X) = f0 +

n
∑

i=1

fi(xi) +
∑

1≤i< j≤n

fi j(xi, x j) + . . . + f12...n(x1, x2, . . . , xm) (40)

here the term f0 is a constant (zeroth order) that stands for the mean contribution of all the inputs to the outputs.

The function fi(xi) is a first order term giving the effect of variable xi acting independently upon the output

f (X). The function fi j(xi, x j) is a second order term describing the cooperative effects of the xi and x j upon

the output f (X). The higher order terms reflect the cooperative effects of increasing numbers of input variables

acting together to influence the output f (X). The last term, f(12...m)(x1, x2, . . . , xm), reflects any residual mth order

9
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correlated contribution of all input variables. In most cases, terms up to second order are enough to provide

accurate results [43]. The component functions are determined through and averaging process. Firstly, all the

input variables are rescaled in the range [0, 1]. Hence, the output response function is defined in the domain of a

unit hypercube Km = {(x1, x2, . . . , xm), i = 1, ,m}. The component functions of the RS-HDMR have the following

form:

f0 =

∫

Km

f (x) dx (41a)

fi(xi) =

∫

Km−1

f (x) dxi − f0 (41b)

fi j(xi, x j) =

∫

Km−2

f (x) dxi j − fi(xi) − f0 (41c)

where dxi stands for the product dx1 dx2 . . . dxn without dxi whereas dxi j denotes the same product without dxi and

dx j. The last term f12...n(x1, x2, . . . , xn) is evaluated from the difference between f (x) and all the other component

functions. The zeroth order term f0 is calculated by the average value of all f (X). The determination of the higher

component functions requires the evaluation of high-dimensional integrals that can be approximately calculated

by direct Monte-Carlo integration. However this integration requires high computational cost. Approximations

by analytical basis functions, such as orthonormal polynomials, provide accurate results with considerably less

sampling effort. Thus the first and second order component functions are expressed as

fi(xi) ≈
k
∑

r=1

αi
rϕr(xi) (42a)

fi j(xi, x j) ≈
l
∑

p=1

ĺ
∑

q=1

β
i j
pqϕp(xi)ϕq(x j) (42b)

where k, l and ĺ represent the order of the polynomial expansion, αi
r and β

i j
pq are constant coefficients to be deter-

mined, and ϕr (xi), ϕp (xi) and ϕq

(

x j

)

are the orthonormal basis functions. An orthonormal basis function ϕk(x)

has the following properties in a domain [a, b]

Zero mean:

∫ b

a

ϕk(x) dx = 0, k = 1, 2, . . . (43a)

Unit norm:

∫ b

a

ϕ2
k(x) dx = 1, k = 1, 2, . . . (43b)

Mutually orthogonal:

∫ b

a

ϕk(x)ϕl(x) dx = 0, k , l . . . (43c)

From the above condition, the orthonormal polynomials are constructed in the domain [0, 1] as

ϕ1(x) =
√

3 (2x − 1)

ϕ2(x) = 6
√

5
(

x2 − x + 1
6

)

ϕ3(x) = 20
√

7
(

x3 − 3
2

x2 + 3
5

x − 1
20

)

...

(44)

The expansion coefficients αi
r and β

i j
pq can be determined by a minimization process and Monte Carlo integra-

tion which leads to

αi
r ≈

1

N

N
∑

s=1

f
(

x(s)
)

ϕr

(

x
(s)

i

)

(45a)

β
i j
pq ≈

1

N

N
∑

s=1

f
(

x(s)
)

ϕp

(

x
(s)

i

)

ϕq

(

x
(s)

j

)

(45b)
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Note that only a set of random samples N is necessary to determine all the RS-HDMR component func-

tions. The MC integration for calculating the expansion coefficients α and β controls the accuracy of RS-HDMR.

Variance reduction methods can be employed to improve the accuracy of the Monte Carlo integration without in-

creasing the sample size N. Two methods, the correlation method [39] and ratio control variate method [44], have

been successfully applied in connection with the RS-HDMR. In both cases the determination of the expansion

coefficients is an iterative process and requires an analytical reference function which has to be similar to f (x). A

truncated RS-HDMR expansion can be used as a reference function by calculating its expansion coefficients with

a direct Monte Carlo integration. Since the HDMR component functions are independent, the order of the polyno-

mial approximation can be chosen separately for each component function in order to improve the accuracy of the

final surrogate model. Thereupon, Ziehn and Tomlin [45] developed an optimization method based on the least

square method, which determines the best polynomial order for each of the component functions. Furthermore, a

threshold criterion proposed by Ziehn and Tomlin [46] allows to exclude unimportant component functions from

the RS-HDMR expansion. The final equation of RS-HDMR up to second order component functions are expressed

as

f (X) = f0 +

n
∑

i=1

k
∑

r=1

αi
rϕr(xi) +

∑

1≤i< j≤n

l
∑

p=1

ĺ
∑

q=1

β
i j
pqϕp(xi)ϕq(x j) (46)

4.3. Stochastic approach using Kriging and RS-HDMR

Two main sources of stochasticity are considered for FG-CNT plates: the material properties of the composite

phases such as the elastic modulus and the Poisson’s ratio of the isotropic matrix, mass densities of the matrix

and the CNTs, longitudinal and transverse elastic modulus of the CNTs and volume fraction of CNTs, as well as

variations with respect to the linear distribution of CNTs by a power-law model, defined by the power-law index

k. A variation of ±10% of the uniformly distributed input parameters is assumed for the material variables. In

the case of randomness in the CNTs distribution, a truncated Gaussian distribution is set up with a mean value of

k = 1 and a standard deviation of σk = 0.2 in the range 0 ≤ k ≤ 2. Fig. 5 shows the envelope of all the possible

P-FGV reinforcement grading profiles with V∗
CNT
= 0.11 provided by the truncated Gaussian distribution. The

random variables mentioned above are examined in three sequential stages:

(a) Variation of the material parameters (k = 1):
{

Em, ρm,Vm, E
CNT
11
, ECNT

22
, ρCNT ,VCNT

}

(b) Variation of the reinforcement grading profile: {k}
(c) Combined variation of (a) and (b).

In the present study, the first three natural frequencies are considered as the outputs. The random input vari-

ables are scaled randomly in the range 0 to 1, hence, the output response functions are thus defined in the domain

of an unit hypercube Kn = {(x1, . . . , xn) , i = 1, . . . , n}. Fig. 6 shows a general flowchart describing the uncertainty

representation and propagation steps. Firstly, an initial sample of the design space is generated by MCS which

is afterwards used in the construction of the surrogate models. The quality of these initial sample points governs

the accuracy of the metamodels. Therefore, the quasi-random sequence of Sobol [47] is utilized to ensure a good

uniform distribution of the sample points. The response surface thus represents the result of the structural analysis

encompassing every reasonable combination of all the input variables. From this, thousands of combinations of all

design variables can be created (via simulation) and a pseudo-analysis performed for each variable set, by simply

adopting the corresponding surface values. Once the metamodels are built, they can be used to obtain a represen-

tative sample of the first three stochastic natural frequencies and, finally, statistical analysis of the generated data

is carried out. In order to check the accuracy of the two proposed metamodels, full scale MCS is also carried out

with the same number of original FE analysis as the sampling size.

In order to quantify the contribution of each uncertainty source in the response, a global sensitivity analysis

based on RS-HDMR is employed in this study. The orthogonal relationship between the component functions

of the RS-HDMR expression implies that the component functions are independent and their action contributes

independently to the overall output response. This fact suggests that each individual component function has a

direct statistical correlation with the output. Hence, the sensitivity of each component function can be determined

by calculating the total and partial variances. The total variance (D) is computed using MC integration for a set of

N samples (X(s) =
(

x
(s)

1
, x

(s)

2
, . . . , x

(s)
n

)

, s = 1, 2, . . . ,N and is defined by

D =

∫

Kn

f 2(X) dX − f 2
o ≈

1

N

N
∑

s=1

f 2
(

X(s)
)

− f 2
o (47)

The partial variances (Di and Di j) obtained by using the properties of orthonormal polynomials are expressed

as follows

11
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Figure 5: Envelope of all possible grading profiles provided by a FG-V power-law distribution (P-FGV) with V∗CNT = 0.11

with different power-law indices (k) according to a truncated Gaussian distribution
(

k = 1, σk = 0.5
)

.

Di =

∫ 1

0

f 2
i (xi) dxi ≈

∫ 1

0

















k
∑

r=1

αi
rϕr(xi)

















2

dxi =

k
∑

r=1

(

αi
r

)2
(48a)

Di j =

∫ 1

0

∫ 1

0

f 2
i j(xi, x j) dxi dx j ≈

∫ 1

0

∫ 1

0



















l
∑

p=1

ĺ
∑

q=1

β
i j
pqϕp(xi)ϕq(x j)



















=

l
∑

p=1

ĺ
∑

q=1

(

βpq

)2
(48b)

Finally, the sensitivity indices (S i1,...,is
) are given by

S i1,...,is
=

Di1,...,is

D
, 1 ≤ i1 ≤ i2 . . . ≤ in ≤ n (49)

so that,
∑n

i=1 S i +
∑n

1≤i< j≤n S i j + . . . + S 1,2,...n = 1.

The quality of the proposed approximations is appraised by checking the coefficient of determination (R2). To

ensure accuracy, the value of R2 must be close to one and is expressed as

R2 =
S S R

S S T

= 1 − S S E

S S T

(0 ≤ R2 ≤ 1) (50)

where S S T = S S E + S S R is the total sum of squares, and S S R and S S E are the regression sum of squares and the

residual sum of squares, respectively. The quality of the surrogate models can also be determined by the Relative

Error (RE), computed as

RE(%) =
|F − F′|

F
× 100 (51)

where F is the actual response and F′ is the approximated response using the surrogate models.

5. Results and discussion

In the present study, poly{(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene)vinylene]} (PmPV) [48] is

considered as the matrix and the mean material properties are assumed to be νm = 0.34, ρm = 1.15g/m3 and

Em=2.1GPa at room temperature of 300K. The armchair (10,10) SWCNTs are selected as reinforcements with

properties taken from the MD simulation carried out by Shen and Zhang [49]. The material properties of these

two phases are summarized in Table 1. In this study, it is assumed that the effective material properties are

independent of the geometry of the CNTRC plates. The detailed mean material properties of PmPV/CNT for

the FG-CNTRC plates are selected from the MD results reported by Han and Elliot [48]. The CNT efficiency

parameters η j can be determined by matching the Young’s moduli E11 and E22 with the counterparts computed

by the rule of mixtures. For example, η1 = 0.149 and η2 = 0.934 for the case of V∗
CNT
= 0.11, and η1 = 0.150

and η2 = 0.941 for the case of V∗
CNT
= 0.14, and η1 = 0.149 and η2 = 1.381 for the case of V∗

CNT
= 0.17. In

addition, we assume that η3 = η2 and G23 = G13 = G12. A fully clamped FG-CNTRC plate is considered having

12
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Figure 6: Flowchart of stochastic free vibration analysis of FG-CNTRC plates using Kriging and RS-HDMR metamodels.
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Table 1: Mean material properties of poly{(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene)vinylene]} (PmPV)[11] at

room temperature of 300K and (10,10) single walled carbon nanotubes (SWCNT)[49].

(10,10) SWCNT [49] PmPv (T=300K)[11]

ECNT
11
= 5.6466TPa Em = 2.1GPa

ECNT
22
= 7.0800TPa νm = 0.34

GCNT
12
= 1.9445TPa

νCNT
12
= 0.175

square plan form a/b = 1 and length to thickness ratio a/h = 10. According to the general framework presented

in section 4.3, and due to paucity of space, only a few important representative results are given. In this section,

the nondimensional frequency parameter λ is defined for composites by using the matrix material properties as

follows

λ = ω
b2

π2

√

ρmh

D
; D = Emh3/12(1 − νm2) (52)

5.1. Convergence and comparison studies

The present methodology is validated with the results available in the open literature. Fig. 7 presents the

error in the determination of the first three non-dimensional natural frequencies for PmPv/CNT FG-CNTRC

fully clamped plates (CCCC) with four different linear reinforcement profiles (UD, FG-V, FG-O and FG-X),

V∗
CNT
=0.11, a/b=1 and a/t = 10. The error is defined as the relative difference between the results obtained

by the proposed method and the ones provided by Zhu et al. [11]. Convergence studies are performed using

different uniform mesh divisions of 4×4, 8×8, 12×12, 16×16, 20×20 and 24×24 wherein 12×12 is found to

provide accurate results with differences below 5%. This discretization of a 12 × 12 mesh on the plan area with

144 elements and 169 nodes is used for all the following results. In order to select the initial sample size, another

convergence analysis is carried out with respect to R2 and the maximum error (ME) of the Kriging and RS-HDMR

metamodels for different sample sizes as described in Table 2. According to these results, a sample size of 256

is chosen to optimize the computation time for the combined variation of all the input parameters with R2 around

100%, indicating high accuracy of the fitted models. While evaluating the statistics of responses through full scale

direct MCS, the computational time is excessively high because it involves a high number of repeated FE analyses.

However, in the present methodology MCS is conducted in conjunction with the two proposed surrogate models

which drastically reduces the computational cost. In particular, the required computational time with respect

to direct MCS in the present methodology is observed to be around 1/40 and 1/30 for Kriging and RS-HDMR

respectively. This provides an efficient and affordable way to computationally simulate the uncertainties in natural

frequency. All the statistical analyses are compared to the results provided by direct MCS with 10.000 samples

wherein a good agreement is observed in all cases.

5.2. Statistical analysis

The random input variables are scaled randomly in the range 0 to 1. For the material variables, a lower and

upper limits of ±10% variation are assumed with respect to the mean values for the uniformly distributed input

parameters. In the case of the reinforcement grading profile, a truncated Gaussian distribution (1,0.5) is set up for

values of k varying from 0 to 2. Metamodels are formed to generate the first three natural frequencies of CCCC

FG-CNTRC plates. In the case of the Kriging metamodels, a second order polynomial regression function and

a Gaussian correlation are employed. For the RS-HDMR metamodels, first and second order component func-

tions with orthonormal polynomials up to third order are utilized. Fig. 8 shows the probability density functions

obtained by the original MCS with respect to the first natural frequency (λ1) for simultaneous variation of the

material parameters for fully clamped FG-CNTRC plates with four different linear grading profiles (UD, FG-V,

FG-O and FG-X). It can be seen that the FG-X plates lead to the stiffest solutions and possess the highest frequency

parameters. The explanation of this phenomenon is that reinforcements distributed closer to the extremes result

in stiffener plates than those distributed nearer to the mid-plane. Table 3 presents the comparative study between

the direct MCs and the surrogate models, Kriging and RS-HDMR, for maximum values, minimum values and

percentage of difference for the first three natural frequencies obtained due to combined variability in the material

parameters for CCCC FG-CNTRC with the four linear reinforcement distributions. Fig. 9 shows a sample scatter

plot describing the relationship between the original FE model and the constructed metamodels for natural fre-

quencies. The low scatter of the points around the diagonal line corroborates that the metamodels are both formed

14
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Figure 7: Convergence of errors of the first three frequency parameters (λi, i = 1, 2, 3) with respect to the results provided by

Zhu et al. [11] and to the mesh size (N×N) of CCCC FG-CNTRC plates (a/b = 1, h/b = 0.1 and V
∗
CNT = 0.11).

Table 2: Convergence study for the coefficient of determination
(

R2
)

and maximum error (ME) of the Kriging and RS-HDMR

metamodels with different sample sizes of CCCC P-FGV plates (a/b = 1, h/b = 0.1 and V
∗
CNT = 0.11).

Sample size Metamodel Parameter λ1 λ2 λ3

64

Kriging
R2 99.998 99.996 99.999

ME (%) 0.067 0.091 0.059

RS-HDMR
R2 98.839 98.688 98.894

ME (%) 1.141 1.321 1.131

128

Kriging R2 99.999 99.997 99.999

ME (%) 0.058 0.084 0.053

RS-HDMR
R2 98.793 98.793 98.810

ME (%) 1.054 1.103 1.047

256

Kriging R2 99.999 99.999 99.999

ME (%) 0.044 0.040 0.040

RS-HDMR
R2 99.918 99.536 99.940

ME (%) 0.569 0.745 0.511

512

Kriging R2 99.999 99.998 99.999

ME (%) 0.048 0.056 0.038

RS-HDMR
R2 99.924 99.546 99.948

ME (%) 0.529 0.718 0.382
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Figure 8: Probability density functions (PDF) and cummulative density functions (CDF) of CCCC FG-CNTRC plates with

linear grading profiles and simultaneous variation of the material parameters. (a/b = 1, h/b = 0.1 and V
∗
CNT = 0.11, 10.000

samples).

with accuracy. Due to space limitations, in all the subsequent analyses, only results of the uncertainty of the FG-V

distribution (P-FGV) will be presented. Fig. 10 shows the comparison of the probability density functions (PDF)

obtained by direct MCS and the two surrogate models for the three cases of uncertainty presented in section 4.3.

All the plots obtained by both metamodels are checked and found to be in good agreement ensuring efficiency

and accuracy. Global sensitivity analysis using RS-HDMR is performed for significant input parameter screen-

ing. The sensitivity indices for each input parameter (including the interaction effects) corresponding to different

output responses are shown in Fig. 11, while a typical interaction surface between k and ECNT
11

corresponding to

the second order component function of the fundamental frequency is given in Fig. 12. It is observed that the

matrix parameters have a predominant effect on sensitivity. A significant effect of the power-law index k is found

on the first and third natural frequencies with considerable contribution from the volume fraction of inclusions

V∗
CNT

. It is also noticeable the null sensitivity due to random variation of the transverse elastic modulus of CNTs,

ECNT
22

. Table 4 represents the minimum values, maximum values, mean values and standard deviation using the

two proposed metamodels for the first three natural frequencies obtained due to individual variability of all the

variables.

Finally, some new physical insights are drawn on the dynamic behavior of P-FGV plates by studying the

transient response in the frequency domain and a comparison of the stochastic and deterministic mode shapes. The

transient response of a CCCC P-FGV plate under impulse loading is considered to ascertain the corresponding

amplitude (in dB) of the frequency response function (FRF) as represented in Fig. 13. The Effective Independence

method (EFI) [50] was employed to select the optimal positions of three points, two response points (P-1 and

P-2) and one driving point (DP). This methodology is based on the maximization of the determinant of the Fisher

information matrix (FIM), defined as the product of the mode shape matrix and its transpose. The principal idea of

this method is based on the linear independence of the mode shapes. Proportional Rayleigh damping is assumed

by imposing damping ratios of 1% for the first two natural modes. Higher frequency shows wider volatility in the

simulation bounds of FRF compared to the lower frequency ranges. It is noticeable that the isolated randomness

in the power-law index (k) does not lead to great differences in the FRFs. Nevertheless, its simultaneous variation

along with the material parameters enlarges the shifts around the resonance peaks and widens the FRF bounds.

This can be attributed to the propagating effect of k, which not only incorporates variation by itself, but also

scatters the randomness of the rest of the variables, set up at mid-plane level, along the thickness of the plates.

Fig. 14 shows the comparison between the deterministic modes and the mean of the stochastic modes through

the assessment of the MAC (Modal Assurance Criterion) matrix. In the case of the uncertainty in the material

parameters (a), the mode shapes do not change substantially with zero values along the diagonal of the matrix.

On the contrary, the incorporation of the uncertainty in the power-law index (k) does change the characteristics of

some mode shapes. This effect, which remains in stage (c) with simultaneous variation of all the input parameters,

highlights the propagating effect of k along the thickness of the plates.
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Figure 9: Scatter plot of Kriging and RS-HDMR metamodels with respect to the original model for the first natural frequency

(λ1) for simultaneous variation of the material parameters (CCCC UD-CNTRC plate, a/b = 1, h/b = 0.1, V
∗
CNT = 0.11).

Table 3: Comparative study between MCS (10.000 samples) and Kriging and RS-HDMR (256 samples) for maximum values,

minimum values and percentage of difference for first three frequency parameters for CCCC FG-CNTRC square plates. (a/b =

1, h/b = 0.1 and V
∗
CNT = 0.11).

PF Parameter λ1: First natural frequency λ2: Second natural frequency λ3: Third natural frequency

MC Kriging RS-HDMR Diff. (%) MC Kriging RS-HDMR Diff. (%) MC Kriging RS-HDMR Diff. (%)

UD Max. Val. 19.94 20.03 19.89 -0.46 \ 0.23 26.20 26.27 26.15 -0.30 \ 0.18 38.44 38.60 38.36 -0.41 \ 0.22

Min. Val. 16.38 16.44 16.59 -0.36 \ -1.26 21.52 21.64 21.80 -0.56 \ -1.32 31.58 31.73 31.99 -0.45 \ -1.28

Mean. Val. 18.08 18.08 18.07 -0.01 \ 0.01 23.77 23.78 23.77 -0.01 \ 0.01 34.87 34.87 34.87 -0.01 \ 0.01

Standard deviation 0.66 0.66 0.66 0.37 \ 0.08 0.90 0.89 0.89 0.49 \ 0.13 1.29 1.29 1.29 0.41 \ 0.09

FG-V Max. Val. 19.48 19.42 19.28 0.28 \ 1.03 25.96 25.90 25.72 0.24 \ 0.93 37.74 37.62 37.36 0.30 \ 0.99

Min. Val. 16.02 15.96 16.18 0.41 \ -0.98 21.37 21.29 21.64 0.37 \ -1.27 31.08 30.93 31.39 0.50 \ -1.01

Mean. Val. 17.63 17.63 17.66 0.03 \ -0.16 23.53 23.52 23.57 0.03 \ -0.15 34.18 34.17 34.23 0.03 \ -0.15

Standard deviation 0.65 0.64 0.65 1.66 \ -0.16 0.89 0.88 0.89 1.70 \ -0.13 1.27 1.25 1.27 1.68 \ -0.16

FG-O Max. Val. 18.88 18.90 18.60 -0.07 \ 1.50 25.26 25.26 24.97 -0.03 \ 1.14 36.91 36.94 36.44 -0.08 \ 1.29

Min. Val. 15.37 15.46 15.45 -0.57 \ -0.51 20.69 20.81 20.81 -0.62 \ -0.62 30.11 30.29 30.28 -0.59 \ -0.57

Mean. Val. 17.11 17.10 17.10 0.07 \ 0.03 22.95 22.93 22.94 0.07 \ 0.03 33.48 33.46 33.47 0.07 \ 0.03

Standard deviation 0.61 0.61 0.61 0.86 \ -0.12 0.85 0.84 0.85 0.68 \ -0.07 1.22 1.21 1.22 0.77 \ -0.10

FG-X Max. Val. 20.43 20.49 20.16 -0.30 \ 1.31 26.82 26.97 26.46 -0.54 \ 1.34 39.21 39.34 38.70 -0.32 \ 1.31

Min. Val. 16.83 16.78 17.10 0.33 \ -1.57 22.04 22.01 22.42 0.12 \ -1.75 32.33 32.22 32.82 0.35 \ -1.49

Mean. Val. 18.55 18.55 18.56 0.00 \ -0.03 24.36 24.36 24.36 0.00 \ -0.03 35.62 35.62 35.63 0.00 \ -0.03

Standard deviation 0.68 0.69 0.69 -0.82 \ -1.08 0.92 0.92 0.93 -0.83 \ -1.03 1.32 1.33 1.33 -0.83 \ -1.07

Table 4: Uncertainty analysis due to individual variability of all the input variables by a Kriging and RS-HDMR meatamodels

(256 samples) for the first three natural frequencies for CCCC P-FGV plates. (a/b = 1, h/b = 0.1 and V
∗
CNT = 0.11).

Metamodel Value ρCNT ρm Em ECNT
11

ECNT
22

V∗
CNT

k

λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3

KRIGING Min 17.51 23.37 33.95 16.91 22.56 32.78 16.86 22.40 32.62 17.48 23.43 33.94 17.63 23.52 34.17 17.41 23.32 33.80 17.26 23.46 33.61

Max 17.75 23.68 34.40 18.45 24.62 35.76 18.35 24.58 35.63 17.76 23.61 34.37 17.63 23.53 34.18 17.84 23.73 34.53 17.97 23.68 34.70

Mean 17.63 23.53 34.17 17.65 23.55 34.21 17.62 23.51 34.15 17.63 23.52 34.17 17.63 23.52 34.17 17.63 23.52 34.17 17.63 23.53 34.17

SD 0.07 0.09 0.13 0.44 0.59 0.86 0.43 0.63 0.86 0.08 0.05 0.12 0.00 0.00 0.00 0.12 0.12 0.21 0.09 0.03 0.14

RS-HDMR Min 17.50 23.38 33.93 16.91 22.51 32.77 16.85 22.44 32.61 17.48 23.54 33.94 17.62 23.53 34.14 17.41 23.33 33.80 17.27 23.47 33.62

Max 17.75 23.70 34.40 18.44 24.56 35.75 18.35 24.63 35.63 17.74 23.54 34.37 17.62 23.54 34.14 17.82 23.73 34.50 18.07 23.75 34.85

Mean 17.63 23.54 34.17 17.64 23.53 34.19 17.62 23.54 34.15 17.62 23.54 34.16 17.62 23.53 34.14 17.62 23.53 34.16 17.63 23.54 34.16

SD 0.07 0.09 0.13 0.44 0.59 0.86 0.43 0.63 0.87 0.08 0.00 0.12 0.00 0.00 0.00 0.12 0.12 0.21 0.09 0.03 0.14
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Figure 10: Comparison of the probability density functions (PDF) of the first three natural frequencies of P-FGV CCCC plates

obtained by direct MCS (10.000 samples), Kriging (SM1) and RS-HDMR (SM2) metamodels (256 samples). (a) variation of

the material parameters with linear reinforcement profile, (b) variation of the reinforcement grading profile and (c) combined

variation. (a/b = 1, h/b = 0.1, V
∗
CNT = 0.11).
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Figure 11: Sensitivity indices with respect to the first three natural frequencies for combined variation of all the variables of

CCCC P-FGV plates (a/b = 1, h/b = 0.1, V
∗
CNT = 0.11, 256 samples).
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Figure 13: Frequency response function (FRF) plot of simulation bounds, simulation mean and deterministic mean of P-FGV

CCCC plates obtained by direct MCS (10.000 samples), Kriging and RS-HDMR metamodels (256 samples). (a) variation of

the material parameters with linear reinforcement profile, (b) variation of the reinforcement grading profile and (c) combined

variation. (a/b = 1, h/b = 0.1, V∗CNT = 0.11, P-1:{0.67a, 0.33b}, P-2:{0.33a, 0.58b}, DP:{0.67a, 0.67b}).
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Figure 14: 1-MAC matrix comparing the deterministic modes and the mean of the stochastic modes of P-FGV CCCC plates

obtained by direct MCS (10.000 samples), Kriging and RS-HDMR metamodels (256 samples). (a) variation of the material

parameters with linear reinforcement profile, (b) variation of the reinforcement grading profile and (c) combined variation.

(a/b = 1, h/b = 0.1, V∗CNT = 0.11).
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6. Conclusions

This article illustrates the influence of randomness in the CNT distribution when acting simultaneously with

uncertainty in the CNT/matrix material properties on the vibrational properties of FG-CNTRC plates. The feasi-

bility of applying metamodel-based approaches using Kriging and RS-HDMR is shown in the realm of stochastic

analysis. Although the same sampling size as in direct Monte Carlo Simulation (sample size of 10.000) is consid-

ered, the number of FE analysis is much less compared to direct MCS and is equal to the number of representative

samples (sample size of 256) required to construct the metamodels. It is observed that both metamodels can han-

dle the large number of input parameters. The metamodel formed from a small set of samples is found to establish

accuracy and computational efficiency. The results obtained as probability density functions and cumulative dis-

tribution functions employing Kriging and RS-HDMR metamodels are compared with the results from direct

MCS. It is observed that the matrix parameters have a predominant effect on sensitivity. A significant effect of

the power-law index (k) is found on the first and third natural frequencies with considerable contribution from the

volume fraction of inclusions (V∗
CNT

). Interestingly, null sensitivity is identified for the transverse elastic modulus

of CNTs (E∗
CNT

). The volume fraction of CNTs (V∗
CNT

) is found to hold the maximum sensitivity for the second

natural frequency. New dynamic analyses, transient response under impulse loading and the MAC matrix between

the mean stochastic and deterministic mode shapes, highlight the propagating effect of the power-law index (k).

Process-induced uncertainties in the reinforcement grading profile of FG-CNTRC plates will thus propagate all

the sources of uncertainty defined at mid-plane level along the thickness. The key contributions of this study can

be summarized as follows:

• The CNT distribution is considered as a source of uncertainty. Power-law distribution functions provide a

parametrization of the CNT distribution along the thickness, suitable to characterize uncertainty.

• Metamodel-based approaches using Kriging and RS-HDMR metamodels are shown efficient techniques to

evaluate the uncertainty propagation on the vibrational properties of FG-CNTRC plates.

• The power-law index (k) has an important effect on bending stiffness of FG-CNTRC plates. Any uncertainty

in the material parameters set up at mid-plane level is propagated along the thickness of the plates by means

of the index k.

The future investigation will determine whether the above conclusions hold true for more complex homoge-

nization frameworks.
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