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Abstract 

-amylase is an established marker for diagnosis of pancreatic and salivary disease, and 

recent research has seen a substantial expansion of its use in therapeutic and diagnostic applications 

for infection, cancer and wound healing. The lack of bedside monitoring devices for -amylase 

detection has hitherto restricted the clinical progress of such applications.  

We have developed a highly sensitive α-amylase immunosensor platform, produced via in 

situ electropolymerization of aniline onto a screen-printed graphene support (SPE). Covalently 

binding an α-amylase specific antibody to a polyaniline (PANI) layer and controlling device 

assembly using electrochemical impedance spectroscopy (EIS), we have achieved a highly linear 

response against α-amylase concentration. Each stage of the assembly was characterized using a 

suite of high-resolution topographical, chemical and mechanical techniques. Quantitative, highly 

sensitive detection was demonstrated using an artificially spiked human blood plasma samples. The 

device has a remarkably wide limit of quantification (0.025-1000 IU/L) compared to -amylase 

assays in current clinical use. With potential for simple scale up to volume manufacturing though 

standard semiconductor production techniques and subsequently clinical application, this biosensor 

will enable clinical benefit through early disease detection, and better informed administration of 

correct therapeutic dose of drugs used to treat -amylase related diseases.  

 

Keywords: Immunosensor; Screen-printed electrode; Graphene; Antibody; Polyaniline; -amylase. 

1. Introduction 

 -amylase was the very first enzyme to be discovered and characterized (Whitcomb and Lowe 

2007) and  has been used for the past two centuries as a disease biomarker. -amylase is a well-

established marker for the diagnosis, monitoring of progression and outcome of pancreatic disease, a 

common cause of hospital admissions with high morbidity and mortality (Seetharaman and Bertoft 
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2012). Despite this historic utility, it is only very recently that a substantial expansion of its role into 

therapeutic and diagnostic applications in other areas of high clinical demand including 

inflammation, infection, cancer and wound healing has occurred (Azzopardi et al. 2013, 2014, 2015; 

Duncan 2014). In particular, amylase has been extensively investigated as a trigger for controlled, 

bioresponsive release of advanced therapeutics such as dextrin conjugates of growth factors, 

antibiotics, and anticancer agents (Duncan 2008; Hardwicke et al. 2008). It is also exploited as a 

replacement enzyme, whilst some of its inhibitors are clinically licenced for the treatment of diabetes 

and weight management.  

Current α-amylase assays in clinical use are laboratory based, utilize analytical equipment with a 

large footprint, have an appreciable turnaround time (TAT), measure activity rather than 

concentration, and are susceptible to hemolysis and inactivation. These substantial limitations restrict 

further expansion of α-amylase based diagnostics and theranostics into viable clinical practice. 

Moreover, the host of controlled release medications that have been developed on the premise of α-

amylase activated release would benefit from rapid, accurate, point-of-care quantification 

(Hardwicke et al. 2008; Gaspar and Duncan 2011; Azzopardi et al. 2014, 2015).
 
Furthermore, 

availability of bedside diagnostics would push the scope of these applications from secondary into 

primary care, leading to improved clinical and economic outcomes (Price 2001).  

Due to their ease of manufacture, high-sensitivity and potential for miniaturization, electrochemical 

immunosensors have emerged as a major technology platform for point of care /at the bedside 

(POC/B) biomarker detection (Tothill 2009). Electrochemical impedance spectroscopy (EIS) enables 

detection and signal output due to its ability to measure subtle changes in the electrochemical 

properties of materials at their interface with conducting electrodes (Ensafi and Karimi-Maleh 2010; 

Beitollah et al., 2012; Shahmiri et al., 2013; Moradi et al., 2013; Karimi-Maleh et al., 2013; Karimi-

Maleh et al., 2014). Gold, zinc oxide, iron oxide, and carbon are the main substrates that are being 

developed for use in such sensors (Pena Pereira et al. 2012). Carbon nanostructures, and more 
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recently graphene, are now being widely adopted as alternatives to gold as electrode substrates 

(Pumera et al., 2010; Song and Xuefeng 2012; Wenjing et al., 2013; Toktam et al., 2014). Graphene 

is of particular interest as a biosensor platform due to intrinsic properties such as its large surface 

area, high electrical conductivity and biocompatibility (Dan et al., 2008; Jing et al., 2009; Li et al., 

2009; Qin et al., 2011).
 
Graphene based devices have been developed that can measure minute 

changes in analyte concentration levels, and have been used to detect for cancer tumor markers, 

human chorionic gonadotrophin (hCG) and markers of cardiac diseases (Yasufumi et al., 2010; Hyun 

Jung et al., 2010; Nguyen Xuan et al., 2013; Zhang et al., 2015).  

Composed of sp
2
 carbon, graphene is chemically unsaturated. Intrinsically, it can undergo covalent 

addition to change the carbons from sp
2
 to sp

3
 following hybridization, however, carbon atoms in the 

graphene basal plane are protected by their π-conjugation system, the motion of which is constrained 

by surrounding carbon atoms. Therefore, basal plane covalent addition usually encounters large 

energy barriers, and reactive chemical groups, such as atomic hydrogen, fluorine, and pre-cursors of 

other chemical radicals, are usually needed as reactants.  The controlled functional association of 

biomolecules with graphene is therefore key to developing any high throughput biosensor platform. 

The chemical modification of graphene is difficult to control, with reactions occurring predominantly 

at the surface edge thereby limiting surface reactivity and limits of detection (Martin 2011). 

Additionally, defects can be introduced to the graphene through functionalization procedures, which 

are required to immobilize biomolecules to the graphene surface.   

Polyaniline (PANI) is a conductive polymer and has been widely used as an additive transducer layer 

in sensors to avoid the introduction of graphene surface defects (Ates 2013). In addition the use of 

PANI improves antibody attachment to sensor electrodes while preserving optimal electrical 

characteristics (Wang et al., 2011; Ates 2013). In addition, PANI has excellent acid/base sensitivity, 

a huge range of tunable conductivity, (Srinives et al., 2015) redox sensitivity, environmental 

stability, (Ruecha et al., 2015; Zhang et al., 2015) short reversible response times, (Nipapan Ruecha 
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2015)  and is easily synthesized (Nipapan Ruecha 2015) and functionalized. A detailed description of 

state of the art sensors under development or fully developed is provided in the supplementary 

material.  

The present work describes an approach toward the development of an α-amylase specific 

immunosensor, using a combination of electro-polymerization of PANI on a graphene support and 

subsequent antibody binding to the polymer film. The biosensor platform enables fully quantitative 

analysis of analyte concentrations in a simulated biological sample and in human plasma. The device 

displays a linear response to increasing α-amylase concentration between 1 and 1000 International 

Units/L (IU/L), and a LOD of 0.025 U/L.  

 

2. Experimental Section 

2.1. Chemicals and Materials 

All chemicals used were of analytical grade and water was ultrapure grade. Potassium 

hexacyanoferrate III (K3[Fe(CN)6]), potassium hexacyanoferrate II (K4[Fe(CN)6]) trihydrate, N-(3-

Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC), N-Hydroxysuccinimide (NHS), 

bovine serum albumin (BSA), Phosphate Buffered Saline (PBS) and aniline were obtained from 

Sigma Aldrich-UK; alpha-amylase and anti-α-amylase antibody was purchased from Abcam (UK); 

A 0.1 M aniline solution was prepared in 2.5 M H2SO4. EDAC, NHS and antibody solutions were 

prepared in PBS buffer.  A redox probe solution was prepared in PBS buffer to a concentration of 5.0 

mmol/L of [Fe(CN)6]
3- 

and 5.0mmol/L of [Fe(CN)6]
4- 

 

2.2. Apparatus 

Electrochemical measurements were conducted with a potentiostat/galvanostat, Metrohm Autolab, 

PGSTAT302N, controlled by Nova software and equipped with a Frequency Response Analysis 

module. Graphene-SPEs were purchased from DropSens (DRP-110GPH) and were composed of a 
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carbon counter electrode, an silver pseudo-reference electrode, and a printed graphene working 

electrode (4 mm ). Electrical characterization of SPEs was performed by connecting the SPEs to 

the potentiostat/galvanostat via a suitable switch box (DropSens). 

Micro-Raman measurements were performed using a Renishaw InVia system with a 100 mW 532 

nm excitation laser with approximately 10 mW of power on the sample. Ultra-high resolution SEM 

measurements were performed using a Hitachi High-Technologies S-4800 and AFM measurements 

were performed using a BioScope Catalyst™ BioAFM.  

Atomic Force Microscopy (AFM) samples were imaged in PeakForce Tapping using a Bruker 

BioScope Catalyst. NanoWorld Arrow
TM

 NCR cantilevers, with a nominal spring constant of 42 

N/m, were used as probes. A total of three regions per sample were imaged, each region having an 

area of 25 μm
2
. The roughness subroutine in the Nanoscope Analysis software, v1.50, was used. For 

each 25 μm
2
 region the RMS roughness Rq (Equation1) was measured on ten different areas of 1 μm

2
 

each, according to the procedure described in (Lewis et al., 2009): 

        Rq= √
∑  

 

 
       (1) 

where, N is the number of height points in the analyzed area and Zi is the vertical distance of data 

point i from the mean image data plane. 

 

2.3. Single Molecule Force Spectroscopy  

All experiments were performed using a JPK Nanowizard II AFM (JPK, Berlin, Germany). A two-

step chemical procedure was developed in order to link the amylase protein to the AFM probe 

surface. Briefly, after a 5-min wash in acetone, triangular silicon nitride cantilevers (DNP-10; 

Bruker-nano, Coventry, UK) were cleaned by immersion in piranha solution (H2SO4:H2O2; 3:1; v/v) 

for 30 min. The cantilevers were then incubated with 1ml of 0.1% w/v of APTES pH 7.2 for 10 min, 

creating an amino-terminated tip surface, which were rinsed several times with PBS and water before 
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incubation with LC-SPDP for 45 min to obtain a reactive pyridyl-disulfide surface. The amylase 

protein (Abcam, concentration : 300ug/ml) was modified by reaction with SATP for 30min in order 

to produce a free sulfhydryl group, followed by a series of purification steps through a dextran 

column (Fischer scientific). LC-SPDP functionalized cantilevers were then washed and incubated in 

the presence of thiolated activated amylase, forming an Amylase functionalised probe through a 

disulfide exchange reaction with SPDP-activated protein (thiol chemistry is less sensitive to 

hydrolysis in aqueous solution compared to NHS chemistry, and thus enables the use of longer 

incubation times for efficient conjugation(Chemical Functionalization and Bioconjugation Strategies 

for Atomic Force Microscope Cantilevers (Magnus Bergkvist 2011). 

Set to operate in force spectroscopy mode, amylase functionalised DNP-10 (Bruker Nano, Coventry, 

UK) probes were used, with nominal spring constants of 0.065N/m following functionalization 

(checked using the Thermal tune method). The maximum load force was set at 1.5nN and the z speed 

for both extend and retract adjusted to 4um/s. A force delay of 200ms was added to ensure contact 

time between the Amylase protein and the substrate surface. Data was collected from all channels 

and 768 force curves were collected as a series of 16x16 FV maps, from negative control, non-

activated amylase and Fc region activated Amylase substrates to monitor alterations in the adhesions 

affinity of the device surface. A minimum of 3 biological repeats were used for this study and all 

data shown is representative of the binding rupture arrays observed.  

2.4. Surface modification 

The polyaniline (PANI) film was obtained according to our previous work (Teixeira at al., 2014).  A 

drop of activated antibody solution was added to the PANI layer on the working electrode, and 

incubated for 2 hours, at room temperature. The activated antibody solution had been pre-prepared, 

by incubating a 0.5 mg/mL antibody solution in 25 mmol/L EDAC and 50 mmol/L of NHS, for 2 

hours, at room temperature. Following exposure of the working electrode to the activated antibody 

solution the working electrode was then rinsed with PBS and incubated in BSA solution (0.5 mg/mL 
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in PBS), for 30 minutes. The immunosensor was then washed (3 times) with PBS and kept at 4ºC 

until use.  

 

2.5. Alpha-amylase binding  

Alpha-amylase binding to the immobilized antibody was achieved by placing a drop of alpha-

amylase solution on the immunosensor working electrode surface. Different concentrations of alpha-

amylase solutions, ranging from 0.01 to 1000 U/L, were prepared by dilution of the 1000 U/mL 

standard alpha-amylase solutions in PBS or plasma. Alpha-amylase was also detected in human 

plasma samples and pus samples from patients. A period of 15 minutes was allowed for 

antigen/antibody binding. This was followed by PBS washing (3 times) prior to redox probe EIS 

measurements. 

 

2.6. Electrochemical measurements  

CV and EIS assays were conducted in triplicate. CV measurements were conducted in 5.0 mmol/L of 

[Fe(CN)6]
3- 

and 5.0 mmol/L of [Fe(CN)6]
4-

, prepared in PBS buffer, pH 7.4, using a potential scan 

from -0.7 to +0.7 V, at 50 mV/s. EIS assays were made using the same redox couple [Fe(CN)6]
3-/4-

 

solution, at a standard potential of +0.10 V, using a sinusoidal potential perturbation with amplitude 

of 100 mV and a frequency of 50 Hz, logarithmically distributed over a frequency range of 1000-

0.01 Hz. Impedance data was fitted to a [R(C[R(RC)])] circuit, using the Nova Software.  

The immunosensor response to varying alpha-amylase concentrations was assessed by EIS 

measurements. The Limit of Detection (LOD) was defined as the alpha-amylase concentration at 

which the calibration curve corresponded to a signal of 3, where  is the standard deviation of EIS 

blank signals (obtained in the absence of the alpha-amylase). 
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3. Results and discussion 

3.1. Coating of screen-printed graphene electrode with thin film polyaniline 

A screen-printed graphene electrode was functionalized via polymerization with a thin film of 

polyaniline to provide amine groups on the SPE-graphene/ PANI (Figure 1B). The PANI film was 

formed by coating the electrode in a solution of aniline and subsequent electropolymerization to form 

a conductive polymer layer over the graphene support, enabling the transport of electron carriers to 

the graphene SPE (Li et al., 2009; Bhadra et al., 2011; Zhixiang et al., 2012; Zi-Long et al., 2012).  

 

Figure 1. Schematic diagram for the immunosensor assembly. 

Having deposited polyaniline, the sensor was then functionalized through covalently linking a -

amylase antibody to the PANI layer (Figure 1C). A carbodiimide crosslinker chemistry EDAC/NHS 
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was used for the specific activation of the –COOH terminated amino acid chains in the antibody. 

This forms a highly reactive O-Acylisourea intermediate that rapidly reacts with NHS to produce a 

stable succinimydyl ester (Kuiyang et al., 2004). This ester then undergoes a nucleophilic 

substitution reaction with the amine groups on the PANI, leading to the formation of an orientated 

antibody grafted PANI layer (Figure 1C). Due to exposure to the EDAC/NHS reagents, it is possible 

that each of -COOH groups at the antibody may have been activated. It is not possible therefore to 

ensure exclusive antibody binding through the Fc region, only that orientation via the Fc region is 

significantly higher than with random antibody adsorption. Bovine serum albumin (BSA) was then 

added to the sensor surface randomly (Figure 1D), and serves to prevent any non-specific 

interactions with the sensor surface thereby eliminating the possibility of the sensor generating any 

non-specific background signal. 

 

3.2. Single Molecule Force Spectroscopy  

In order to demonstrate the stability of antigen–antibody binding during the device development 

process single molecule force spectroscopy (SMFS), using an amylase-functionalized silicon nitride 

cantilever was employed (Yi Cao et al., 2007; Fuhrmann and Ros 2010; Chunmei Lv et al., 2014). A 

short LC-SPDP (sulfosuccinimidyl 6-(3'-(2-pyridyldithio)propionamido)hexanoate) linker molecule 

was used to permit free rotation of the immobilized amylase protein on the probe, mimicking 

amylase mobility at the substrate surface in solution (Ebner 2007; Neundlinger et al., 2011). 

Following dynamic ramping of the α- amylase probes to the sensor surface, the force distance curve 

data was used to determine the stability of the covalent cross linking at the PANI antibody interface 

and its effect on sensor affinity for its target analyte. Figure 2, shows that both the ‘random 

adsorption (non-activated Ab)’ and ‘EDAC/NHS linker (Fc activated Ab coupling)’ substrate 

surfaces resulted in a high number of specific force rupture events in the AFM retraction curve (47% 
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and 53% of total curves respectively) demonstrating retention of antibody function on the PANI-

graphene surface.  

  

Figure 2.  Percentage of occurrence of steps according to their force values for the activated antibody (Ab) 

compare to the non-activated antibody. 

 

A significantly higher percentage (40 %) of rupture events occurred at a force above 500pN with the 

‘EDAC/NHS linker (Fc activated Ab coupling)’ sample compared to just 16% for the random 

adsorption (non-activated samples) (Figure 2). This indicates that EDAC/NHS coupling achieves an 

increased percentage of Fc immobilized antibodies compared to the random adsorption method.  

 

3.3. Qualitative analysis of the immunosensor surface 

Throughout the sensor development process a series of surface characterization techniques were used 

to monitor the step-wise assembly of the device to inform process optimization. 

Raman Spectroscopy (RS) - Raman spectra indicate the chemical nature of the surface through 

molecular vibrational transitions. RS was used here to provide information on the structure, carbon 

atom hybridization state, defects, functionalization and graphene layer depth during the fabrication 
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stages (Figure 3) (Nafie 2001). Control graphene-SPE spectra showed three Raman bands at 1350, 

1600 and 2700 cm
-1

 that are assigned to the well-documented D, G and 2D bands in standard 

graphene (Elias et al., 2009). The G band represents the in-plane bond-stretching vibrations of sp
2
-

hybridized carbon atoms, while band D is related to the vibrations of the carbon atoms of sp
3
-

hybridised carbon atoms of disordered and/or defected graphite (Elias et al., 2009). The intensity 

ratio of IG/ID bands can be used to quantify the defect density in graphene. The IG/ID ratio measured 

on the sensor surface for graphene was 1.15 and 1.18 respectively (Figure 3A and B) indicating 

significant disorder as a result of structural defects (Jijun Ding 2013). 

 

 

Figure 3. Raman spectra of (A) graphene-SPE, (B) PANI/graphene-SPE and (C) anti-alpha 

amylase/PANI/graphene-SPE. 
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Similar spectra were obtained from both SPE-Graphene/PANI (Figure 3B) and SPE-

Graphene/PANI/Ab (Figure 3C) surfaces, showing an increased intensity of D peak, corresponding 

to an IG/ID ratio equal to 1.16 when compared to the control. After electrochemical polymerization, 

all of the Raman spectra exhibited distinct bands attributable to PANI, (Da-Wei et al, 2009) which 

overlap the characteristic bands of standard graphene (at 1300 and 1600 cm
-1

; Figure 3 B). The sp
3
 

graphene peak became more intense and broad following PANI deposition, (Yan Liu 2012) resulting 

in a significant increase in the intensity ratio of bands D/G. Antibody binding therefore introduced an 

additional increase in the Raman intensity (Figure 3C).  

 

3.4. Scanning Electron (SEM) and Atomic Force Microscopy (AFM)  

The morphology, topography and structure of the SPE-graphene following each fabrication stage 

were also characterized using both SEM and AFM (Figure 4).  
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Figure 4. SEM images of: (A) unmodified graphene; (B) graphene modified with PANI (C); Antibody 

attached to the PANI layer and (D) Plot of the roughness Rq for the different samples: Graphene Rq= 13.5 ± 

6.36 nm; PANI Rq=81.9 ± 14.8 nm; Antibody Rq= 20.8 ± 2.86 nm. 

 

Unmodified graphene exhibits a flat, smooth area with few significant topographical features (Figure 

4A). The addition of PANI results in the introduction of a fibrous structure following the 

electropolymerization process was observed at both the micro and nanoscale (Figures 4B) which 

demonstrates that the polymer is in a crystalline form (Kavitha et al., 2012). Following the 

functionalization with the anti- α-amylase antibody, the fibrous structure becomes uniformly coated 

with globular antibody clusters (Figures 4C). 

Surface roughness (Rq) analysis using AFM further demonstrated the reproducibility of each stage of 

the fabrication process. (Figure 4D). Non-functionalized graphene exhibited lower Rq values of 13.5 

± 6.36 nm. The addition of PANI resulted in a significant increased Rq of 81.9 ± 14.8 nm (P<0.001), 

and following antibody addition, the surface Rq values significantly decreased to 20.8 ± 2.86 nm 

(p<0.001). 

 

3.5. Electrochemical characterization 

The effects of modifications at the graphene surface were monitored using cyclic voltammetry (CV) 

and electrochemical impedance spectroscopy (EIS) respectively, in order to characterise changes in 

electron transfer properties against the redox probe (Jonathan  and Nader 2007). Nyquist plots were 

used to show the frequency response of the electrode/electrolyte system and an area plot of the 

imaginary component (Z``) of the impedance against the real component (Z`) (Figure 5). The charge-

transfer resistance (Rct) at the electrode surface is depicted by a semi-circular output plot obtained 

from EIS that can be used to define the interface properties of the electrode.  
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As shown in Figure 5A a peak-to-peak potential difference (ΔEp) and peak-to-peak current   

difference (ΔIp) of the [Fe(CN)6]
3-/4-

 redox couple show the changes at each step of the surface 

modification of graphene-SPE. The unmodified graphene-SPE shows a quasi-reversible 

electrochemical response for the [Fe(CN)6]
3-/4-

 redox couple with ΔEp of  0.164 V and ΔIp of 0.248 

mA. The modification of graphene-SPE surface with PANI in a ΔIp increase of 0.139 mA and a ΔEp 

decrease of 0.241 V.  This result is attributed that a positively charged amino group of the PANI 

molecule which attracts the negative charge of [Fe(CN)6]
3-/4-

, causing an easy electron transfer 

reaction on the electrode surface (Erhan et al., 2013). 

A cyclic voltammogram of the SPE-graphene/PANI/Ab electrode showed a decrease peak-to-peak 

potential separation (ΔEp of 0.088 V). Further, addition of the BSA blocking agent to the SPE-

graphene/PANI/Ab electrode surface gave rise to a change on the electrochemical behavior of the 

[Fe(CN)6]
3-/4-

 couple, leading to ΔEp increase of 0.03 V and decreased ΔIp value of 0.067 mA. BSA 

molecules cause masking of the electrode surface for oxidation/reduction of the redox probe 

[Fe(CN)6]
3-/4-

 (Heli et al., 2007).  
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Figure 5. CV data taken at each assembly stage of the immunosensor (A), EIS spectra of each stage (B). (A) 

CV record after modification of PANI/graphene-SPE with antibody and BSA. (B) Nyquist plots of BSA/anti-

alpha amylase/PANI/graphene-SPE sensor, obtained in 5.0mM [Fe(CN)6]3-/4- PBS buffer pH 7.4. EIS spectra 

of calibration along with its calibration plot (C) and (D). (C) Nyquist plots of the BSA/anti-alpha 

amylase/PANI/graphene-SPE sensor, previously incubated in increasing concentrations of amylase, obtained 

in obtained in 5.0mM [Fe(CN)6]3-/4- PBS buffer pH 7.4; (D) the Rct values of the previous calibration plotted 

against log amylase concentration, with a standard deviation of 13.929%. 

 

The unmodified graphene surface shows a very fast electron-transfer process (Rct = 572.5 Ω, Figure 

5B). Following the electrochemical deposition of PANI onto the graphene-SPE a similar resistance 

was obtained (lilac curve, Rct = 624.5 Ω), indicating that the PANI is an excellent electric 
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conducting material which accelerated the electron transfer process. After covalent attachment of  

anti-α- amylase  antibody, the  Rct increased to  866.2 Ω  (green curve), demonstrating that  anti-

alpha amylase was successfully immobilized on  the  PANI surface and blocked the  electron 

exchange between the  redox probe and the electrode. The Rct increased further when BSA was 

added to the SPE-graphene/PANI/Ab (red curve, Rct = 1454.7 Ω), due to the nonconductive nature 

of the protein. 

 

3.6. α-amylase measurements in phosphate buffered saline (PBS), mouse and human plasma 

PBS - Having determined the electrochemical properties of the functionalized sensor, the sensor was 

tested for its ability to measure amylase concentrations in a phosphate buffered solution that was 

used as a blood plasma mimic.  Increasing amylase concentrations, from 1 to 500U/L, which covers 

the clinically relevant range of amylase levels in the human body, were applied to individual sensors. 

Both Nyquist plots (Figure 5C) and the resulting EIS calibration curve (Figure 5D) clearly 

demonstrate the effective response of the immunosensor to increasing amylase concentrations. 

The diameter of the semicircle increased with increasing amylase concentrations demonstrating an 

increased resistance as a result of increased analyte concentration at the sensor surface. In general, 

the change in the semicircle diameter is a result of the change in the interfacial charge transfer 

resistance (Rct); that is, the resistance corresponding to the carrier transfer from the modified 

electrode to the ferricyanide in the solution. Thus, the observed diameter increase is explained as the 

adsorption of plasma onto anti-alpha amylase following an antigen–antibody reaction, where the 

adsorption of plasma effectively blocks the [Fe(CN)6]
3-/4-

 leading to an increase of Rct.   The Rct in 

the Nyquist plot increased linearly with the amylase concentrations. This is as expected because 

protein structures bound to the surface of an electrode typically act as barriers to electric transfer. 

The average slope of the Rct versus log [amylase, U/L] was 0.348 KΩ/[amylase, U/L] with an R
2
 

coefficient of determination of 0.93. The limit of detection (LOD) was 0.025U/L. This was as 
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expected as protein structures bound to the surface of an electrode typically act as barriers to electric 

transfer.  

 

3.7. Mouse Plasma 

In order to determine whether sensor function was effective when exposed to a complex biological 

fluid, mouse plasma containing known quantities of amylase were used. α-amylase concentrations 

were measured in un-spiked and plasma samples with purified human- α-amylase. The linear 

response ranged from 1 to 1000 U/L and the average slope was of 0.472 KΩ[amylase, U/L]. The EIS 

calibration curve of the immunosensor in response to increasing concentrations of amylase in mouse 

plasma showed no adverse effect on sensor performance in the presence of a more complex fluid 

compared to the PBS (Figure 6A).  

 

Figure 6. (A) Nyquist plots of BSA/anti-alpha amylase/PANI/graphene-SPE sensor, in 5.0mM [Fe(CN)6]3-/4- 

mouse plasma, previously incubated in increasing concentrations of amylase. Inset (A): corresponding 

calibration curve, plotting log(amylase) against Rct, with a standard deviation of 3.42%. (B) Nyquist plots 

corresponding to the calibration of the immunosensor in human plasma with amylase standards in U/L. Inset 

(B): corresponding calibration curve, plotting log(amylase) against Rct, with a standard deviation of 12.987%. 

 

3.8. Human Plasma  
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To provide an initial demonstration of the potential clinical utility of the device, human plasma 

samples obtained from a patient suffering with clinical infection were analyzed. By spiking the 

human plasma with known concentrations of amylase we were able to determine the effectiveness 

and LOD of the sensor at physiologically relevant analyte concentrations.  

Nyquist plots (Figure 6B) of EIS spectra show the dynamic range detectable when the sensor was 

exposed to various human plasma concentrations (9.9 – 1009.9 U/L).   

In the development model used for this pilot study, the maximum interval to obtain a result was 300 

seconds. In clinical practice, turnaround times (TAT) is a key indicator of laboratory performance 

(Chauhan et al., 2014). The current TAT for clinical assays in current practice is 45 min (Fei et al., 

2015). Such studies, however, invariably omit the time taken for phlebotomy, transport of samples, 

and the interval from when samples are available to when they are picked up and interpreted by the 

attending physician. This is important when considering diseases whose mortality and morbidity 

increases with delayed diagnosis and clinical decision times (Debi et al., 2013). With optimisation 

and miniaturisation of the developmental model used in these studies, it is expected that the 300 

second interval from loading a sample to obtaining a result will be substantially shortened. Moreover 

haemolysis, sample inactivation, and presence of contaminants interfering with colorimetric assays 

commonly lead to assay failure with current clinical assay systems. Since the system described in 

this study is label-free, and does not require either colorimetric change, it is reasonable to support the 

notion that the new technology will not be affected.  

Finally, it is worth noting that the results indicate a three-log fold expansion in the lower limit of 

quantification when compared to current clinical assay systems (Bowling and Katayev 2010; Federal 

Drug Agency (FDA) 2015). This is of interest to forensic medicine where detection of amylase can 

lead to a DNA profile from saliva, semen or vaginal secretions (Casey and Price 2010). 

 

4. Conclusion 
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The graphene-based label-free immune sensor we describe in this study represents a step change in 

the quantification of -amylase. Quantitative, highly sensitive amylase sensing is achieved, with a 

wide limit of detection (0.025-1000 IU/L using spiked human blood plasma samples. Unlike current 

clinical assays, this technology is not based on enzymatic activity and/or colorimetric change, and 

would therefore not be affected by hemolysis, structural or functional inactivation of the amylase 

enzyme itself. The sensor design is compatible with miniaturization to a bedside diagnostic, avoiding 

the requirement for laboratory set-up, and the associated turnaround times, enabling the potential for 

a clinically compatible technology with a log fold expansion in the usable limits of quantification. 

The potential for a substantially more cost-effective, fully portable test that can be administered by 

the bedside, and the scalability for this diagnostic technology that can be achieved though standard 

semiconductor manufacturing techniques, would also expand the remit of such diagnostics beyond 

the secondary care sector, whilst avoiding the need for formal phlebotomy. Whilst retaining the 

potential for substantial cost-saving, and the possibility for expansion to multiplex and re-usable 

systems, the manufacture process is straightforward and easily applicable to any target molecule for 

which an antibody can be manufactured.  

 

Acknowledgements 

This work is funded by the European Social Fund (ESF) through the European Union’s Convergence 

programme administered by the Welsh Government, Knowledge Economy Skills Scholarships 

(KESS), and St David’s Medical Foundation. The authors would like to acknowledge Dr Dominic 

Fung for his help with SEM and Dr Greg Burwell for his help with Raman microscopy and BBI 

group for their contribution. The authors would like to acknowledge the Welsh National Research 

Network in Advanced Engineering and Materials (NRN). Research ethics council approval (REC 

14/NE/1082) and local institutional R&D approval (T157) were obtained for the conduct of this 

study. 



21 

References 

Ates, M., 2013. Mat Sci Eng C-Bio A 33, 1853-1859.  

Azzopardi, E. A., Camilleri, L., Moseley, R; Thomas, D. W.; Ferguson, E. L., 2013. J Carbohyd 

Chem, 32, 438-449.  

Azzopardi, E. Ferguson, E., Thomas, D., 2014. The Lancet 383.  

Azzopardi, E. Lloyd, C.; Rodrigues Teixeira, S.; Conlan, R.; Whitaker, I., 2015. Surgery Manuscript 

No. 20150922 (Accepted for Publication).  

Bhadra, S., Singha, N. K., and Khastgir, D., 2011. J Chem Eng J Mater Sci. 2, 1-11.  

Bergkvist, M., Cady, N. C., 2011. Method Mol Cell Biol 751: 381-400.  

Beitollah H., Goodarzian M., Khalilzadeh M. A., Karimi-Maleh H., Hassanzadeh M., Tajbakhsh M., 

2012. J Mol Liq 173,137–143. 

Bowling, J. L. and A. Katayev (2010). Lab Medicine 41(7): 398-402.  

Casey, D. G. and J. Price (2010). Forensic science international 194(1): 67-71.  

Chauhan, K. P.; Trivedi, A. P.; Patel, D.; Gami, B.; 2014. Haridas, N., Indian J Biochem 29, 505509. 

Chunmei Lv, Gao, X., Li, W., Xue, B., Qin, M., Burtnick, L. D., Zhou, H., Cao, Y., Robinson, R. 

C., Wang, W., 2014. Nat. Commun.   

Dan Li; Mueller, M. B. G., Scott; Kaner, Richard B; Wallace, Gordon G, 2008. Nat. Nanotechnol. 

(3), 101.  

Da-Wei, W.; Feng, L.; Jinping, Z.; Wencai, R.; Zhi-Gang, C.; Jun, T.; Zhong-Shuai, W.; Ian, G.; Gao 

Qing, L.; Hui-Ming, C., 2009. ACS nano, 3, 1745-1752.  

Debi, U.; Kaur, R.; Prasad, K. K.; Sinha, S. K.; Sinha, A.; Singh, K., 2013. World J Gastroentero. 19, 

9003.  

Ding, J., Wang, M., Yan, X., Zhang, X., Ran, C., Chen, H., Yao, X., 2013. J Colloid Interf Sci. 395, 

40-44.  

Duncan, R., 2014. Toxicological Testing to Personalized Medicine.  

Duncan, R., Gilbert, H., Carbajo, R., Vicent, M., 2008. Biomacromolecules. 9, 1146 - 1154.  

Ebner, A., Wildling, L., Kamruzzahan, A.S., Rankl, C., Wruss, J., Hahn, C.D., Hölzl, M., Zhu, R., 

Kienberger, F., Blaas, D., Hinterdorfer, P., Gruber, H.J., 2007. Bioconjugate Chem. 18, 1176-

1184.  

Erhan, Z.; Imren, P.; Haluk, B.; Mustafa, E., 2013. Biosens Bioelectron. 42, 321-325. 

Ensafi, A. A., Karimi-Maleh, H., 2010. J Electroanal Chem 640, 75–83. 

Federal Drug Agency (FDA). (2015). 

http://www.accessdata.fda.gov/cdrh_docs/reviews/K040534.pdf. 



22 

Fei, Y.; Zeng, R.; Wang, W.; He, F.; Zhong, K.; Wang, Z., 2015. Biochem medica. 25, 213-221. 

Fuhrmann R., Ros, A., 2010. Nanomedicine, 5, 657 - 666.  

Gaspar, R.; Duncan. R., 2011. Mol. Pharmaceutics. 8, 2101 - 2141.  

Hardwicke, J.; Ferguson, E. L.; Moseley, R.; Stephens, P.; Thomas, D. W.; Duncan, R., 2008. J 

Control Release130, 275-283. 

Heli, H.; Sattarahmady, N.; Jabbari, A.; Moosavi-Movahedi, A. A.; Hakimelahi, G. H.; Tsai, F.Y., 

2007. J Electroanal Chem. 610, 67-74.  

Hyun Jung, L.; Sang Hyun, L.; Tomoyuki, Y.; Javier, R. A.; Fumio, M.; Kosuke, I.; Hitoshi, S.; 

Tomokazu, M., 2010. Talanta.  81, 657-663.  

Li, J., Guo, S., Zhai, Y., Wang, E., 2009. Electrochem. Commun. 11, 1085.  

Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y., 2011. Trends Biotechnol. 29, 205-212  

Jonathan, S. D., Nader, P. 2007. Electroanal. 19(12): 1239-1257.  

Karimi-Maleh, H., Biparva, P., Hatami, M., 2013. Biosens Bioelectron 48, 270–275. 

Karimi-Maleh, H., Tahernejad-Javazmi, F., Ensafi, A. A., Moradi R., Mallakpour, S., Beitollahi, H., 

2014. Biosens Bioelectron 60, 1–7. 

Lewis, W. F.; Paul, D. L.; Deyarina, G.; Timothy, A. R.; Gordon, W.; Lisa, A. J.; John, O. W.; Chris, 

J. W.; Conlan, R. S., 2009. Biology of the Cell. 101, 481-493.  

Yueming, L., Longhua, T., Jinghong, L., 2009. Electrochem. Commun. 11, 846.  

Kavitha, B., Kumar, K. S., Narsimlu, N., 2012.  Indian J Pure Ap Phy. 51, 207-209.  

Martin, P. 2011. Materials Today 14.  

Moradi, R., Sebt, S. A., Karimi-Maleh, H., Sadeghi, R., Karimi, F., Baharie, A. Arabif, H., 2013. 

Phys. Chem. Chem. Phys.15, 5888. 

Nafie, L. 2001. Handbook of Raman Spectroscopy, Practical Spectroscopy Series.  

Neundlinger, I., Poturnayova, A., Karpisova, I., Rankl, C., Hinterdorfer, P., Snejdarkova, M., 

Hianik,T., Ebner, A., 2011.  Biophys J. 101, 1781 - 1787.  

Nguyen Xuan, V.; Miyuki, C.; Yoshiaki, U.; Kenzo, M.; Kazuhiko, M.; Eiichi, T.; Pham Hung, V.; 

Yuzuru, T., 2013. Biosens Bioelectron.  42, 592-597.  

Pena-Pereira, F.; Duarte, R. M. B. O.; Duarte, A. C., 2012.  Trends Anal Chem. 40, 90-105. 

Pumera, M.; Ambrosi, A.; Bonanni, A.; Chang, E. L. K., 2010. Trends Anal Chem. Price, 2001. 

BMJ: British Medical Journal 322, 1285.  

Qin, W.; Ru, L.; Bin, D.; Dan, W.; Yanyan, H.; Yanyan, C.; Yanfang, Z.; Xiaodong, X.; He, L.; 

Minghui, Y., 2011. Sensor Actuat B-Chem. 153.  

Ruecha, N., Rodthongkum, N., Cate, D. M., Volckens, J., Chailapakul, O., Henry, C. S., 2015. Anal 

Chim Acta. 874, 40-48.  



23 

Seetharaman, K., Bertoft, E., 2012.  Starch‐Stärke 64, 765-769.  

Song, L.; Xuefeng, G., 2012. NPG Asia Materials 4.  

Srinives, S.; Sarkar, T.; Hernandez, R.; Mulchandani, A., 2015. Anal Chim Acta 874, 54-58. 

Shahmiri, M. R., Bahari A., Karimi-Malehb, H., Hosseinzadeh, R., Mirnia, N., 2013. Sensor 

Actuator B 177, 70–77. 

Teixeira S.; Conlan, R. S., Guy, O. J.; Sales, M. G. F., 2014. J Mat Chem B 2, 1852-1865.  

Tothill, I. E. 2009. Seminars in Cell & Developmental Biology 20, 5562.  

Toktam, N.; Brian, G. C.; Alexander, M. S., 2014. Arch Toxicol.  

Wenjing, Y.; Yu, Z.; Yingru, L.; Chun, L.; Hailin, P.; Jin, Z.; Zhongfan, L.; Liming, D.; Gaoquan, S., 

2013.  Sci Rep 3, 22-48.  

Whitcomb, D., M. Lowe 2007. Digest Dis Sci. 52, 1-17.  

Yasufumi, T.; Andrew, I. S.; Pavel, N.; Yumi, M.; Hitoshi, S.; Yuri, E. K.; Tomokazu, M., 2010. J 

Am Chem Soc 132, 10118-10126.  

Yi Cao, Balamurali, M. M., Sharma, D., Li, H., 2007. PNAS 104, 15677 - 15681.  

Liu,Y., Deng, R., Wang, Z., Liu, H., 2012. J. Mater. Chem. 22, 13619-13624.  

Zhang, Q.; Prabhu, A.; San, A.; Al-Sharab, J. F.; Levon, K., 2015. Biosens Bioelectron.  72, 100-

106.  

Zi-Long, W.; Rui, G.; Gao-Ren, L.; Han-Lun, L.; Zhao-Qing, L.; Fang-Ming, X.; Mingqiu, Z.; 

YeXiang, T., 2012. J Mat Chem. 22.  

Zhixiang, Z.; Yongling, D.; Qingliang, F.; Zaihua, W.; Chunming, W., 2012. J Mol Catal A-Chem.  

353-354.  

 

 

 

 

Highlights 

 Sensitive α-amylase immunosensor platform, produced via in situ electropolymerization of 

aniline onto a screen-printed graphene support (SPE). 

 Fully quantitative, highly sensitive alpha-amylase biosensing. 

 Specific attachment of anti alpha-amylase to modified graphene devices. 

 The device has a remarkably wide limit of quantification (0.025-1000 IU/L) compared to 

alpha-amylase assays in current clinical use. 

 


