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ABSTRACT 26 

Despite the importance of lipooligosaccharides (LOS) in the pathogenicity of campylobacteriosis, little 27 

is known about the genetic and phenotypic diversity of LOS in C. coli. In this study, we investigated 28 

the distribution of LOS locus classes among a large collection of unrelated C. coli isolates sampled 29 

from several different host species. Furthermore, we paired C. coli genomic information and LOS 30 

chemical composition for the first time to investigate possible associations between LOS locus classes 31 

sequence diversity and biochemical heterogeneity. After identifying three new LOS locus classes, only 32 

85% of the 144 isolates tested were assigned to a class, suggesting higher genetic diversity than 33 

previously thought. This genetic diversity is at the basis of a completely unexplored LOS structure 34 

heterogeneity. Mass spectrometry analysis of the LOS of nine isolates, representing four different LOS 35 

classes, identified two features distinguishing C. coli LOS from C. jejuni’s. GlcN-GlcN disaccharides 36 

were present in the lipid A backbone in contrast to the GlcN3N-GlcN backbone observed in C. jejuni. 37 

Moreover, despite that many of the genes putatively involved in Qui3pNAcyl were apparently absent 38 

from the genomes of various isolates, this rare sugar was found in the outer core of all C. coli. 39 

Therefore, regardless the high genetic diversity of LOS biosynthesis locus in C. coli, we identified 40 

species-specific phenotypic features of C. coli LOS which might explain differences between C. jejuni 41 

and C. coli in terms of population dynamics and host adaptation. 42 

 43 

IMPORTANCE 44 

Despite the importance of C. coli to human health and its controversial role as a causative agent of the 45 

Guillain–Barré syndrome, little is known about the genetic and phenotypic diversity of C. coli LOS. 46 

Therefore, we paired C. coli genomic information and LOS chemical composition for the first time to 47 

address this paucity of information. We identified two species-specific phenotypic features of C. coli 48 

LOS, which might contribute to elucidating the reasons behind the differences between C. jejuni and C. 49 

coli in terms of population dynamics and host adaptation.  50 
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INTRODUCTION 51 

Campylobacteriosis is the most common bacterial food-borne disease in developed countries, with over 52 

200,000 human cases reported annually in the European Union alone (1). The true burden of the 53 

disease in the population is likely underestimated, as many infections result in mild gastroenteritis (1). 54 

Approximately ~80% of reported infections are caused by Campylobacter jejuni and 7-18% of cases 55 

are attributed to C. coli. Therefore, C. coli is among the five most important bacterial aetiological 56 

agents of human gastroenteritis (2, 3). 57 

 58 

As in other Gram-negative bacteria, Campylobacter spp. cell surface glycoconjugates, including 59 

lipooligosaccharides (LOS), play an important role in serum and bile resistance, resistance to 60 

phagocytic killing, adhesion, invasion, and survival in host cells (4-8). Current knowledge on LOS 61 

diversity has been based primarily on work in C. jejuni and its role in promoting severe clinical 62 

symptoms (9-12). C. jejuni LOS is a potent TLR4 agonist and the subsequent immune response is 63 

affected by changes in LOS structure and composition (10-14). Additionally, due to molecular mimicry 64 

between human gangliosides and certain LOS structures, C. jejuni has been identified as one of the 65 

causative agents of the Guillain–Barré syndrome (GBS) (15). Contrarily, the little knowledge on C. coli 66 

LOS variability has limited our understanding of the pathogenesis of GBS in patients infected with C. 67 

coli, as it remains unclear whether C. coli is able to mimic human ganglioside structures (16-18).  68 

Valuable insights into the genetic origins of significant strain variable traits have been gained by 69 

studying the effect that C. jejuni LOS genotypes have on phenotype (19-24). However, so far, only two 70 

studies have addressed the variation in gene composition in C. coli LOS biosynthesis locus. Until now, 71 

nine genetic classes composed of a variable combination of 10 to 20 genes have been described in C. 72 

coli (25, 26), but no chemical analysis of their LOS structures was executed. A couple of decades ago 73 

the LOS structure of a single C. coli strain was described (27). Additionally, three other studies have 74 
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explored the chemical composition of C. coli LOS in a few strains (28-30), but no genetic information 75 

of the strains is available.  76 

 77 

In this study, we investigated the diversity and distribution of LOS locus classes among a large 78 

collection of unrelated C. coli isolates sampled from several different host species. We expanded the 79 

current C. coli LOS classification by describing three additional LOS locus classes (25, 26). Moreover, 80 

by analysing genomic data with the LOS chemical composition of selected isolates, we identified 81 

possible associations between gene content in the LOS biosynthesis locus and observed differences in 82 

LOS phenotype. Despite the extensive introgression between C. coli and C. jejuni (31, 32), only 83 

negligible levels of recombination were detected in LOS biosynthesis genes, which might explain the 84 

distinctive species-specific chemical features observed herein. 85 

METHODS 86 

Bacterial isolates, cultivation, and DNA extraction. In total, 144 C. coli isolates, including 90 87 

isolated from swine, 34 from humans, 18 from poultry, and two from wild birds, were chosen for LOS 88 

locus screening. The selection comprised 133 C. coli isolates from previous studies collected between 89 

1996 and 2012 from Finnish human patients, chicken and pigs reared in Finland, and wild birds 90 

sampled in Helsinki region (25, 33-39). This collection was supplemented with 11 C. coli isolates from 91 

the Campynet (CNET) collection (hosted by DSMZ GmbH, https://www.dsmz.de/). Isolate selection 92 

was based on genotype (PFGE, MLST), host, country of origin, and year of isolation to encompass the 93 

largest possible diversity. Cultivation and DNA isolation were carried out as previously described (25), 94 

unless otherwise stated. 95 

 96 

PCR. The length of LOS biosynthesis loci was determined by amplifying the region between 97 

orthologue 10 (LOS biosynthesis glycosyltransferase, waaV) and orthologue 16 (uncharacterized 98 

glycosyltransferase) (ID numbers according to Richards and colleagues (26)). PCR reactions were set 99 
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up as follows: 25 µl reactions containing 0.5 U Phusion high-fidelity (Thermo Scientific), 200 µM of 100 

each dNTP (Thermo Scientific), 0.4 µM of each primer (ORF3F2 and waaV; Table 1), 1 X Phusion GC 101 

buffer (Thermo Scientific), 700 µM of MgCl2 (Thermo Scientific), and 50 ng of template. Cycling 102 

conditions were as follows: one cycle at 98 ºC for 30 s followed by 30 cycles of denaturation at 98 ºC 103 

for 10 s, annealing at 62.4 ºC for 30 s, extension at 72 ºC for 6 min, and a final elongation at 72 ºC for 6 104 

minutes. The size of the LOS locus was estimated by gel electrophoresis with 1 kb-plus (Thermo 105 

Scientific) and long-range (Thermo Scientific) molecular weight markers. Specific primers for each 106 

class, based on the previously described C. coli LOS locus classes (I to IX), were designed (25, 26). 107 

Primer pairs and their amplicon size for each LOS class are shown in Table 1, and a graphic 108 

representation of the primers annealing positions within the LOS locus is shown in Supplementary 109 

Figure 2. Since global alignment using progressiveMauve (40) revealed that LOS locus class IV and V 110 

(26) differ by only 3 single nucleotide polymorphism (which resulted in fragmentation of orthologue 111 

1959 in class V), hereafter the two LOS locus classes are considered as a single class named IV/V. The 112 

specificity of each primer pair was verified in silico. All primers were designed on specific features 113 

characterizing each LOS locus class using, when possible, multiple sequence alignments of 114 

homologous sequences to improve sensibility and specificity. A preliminary gradient PCR was 115 

performed for each primer pair to select the most stringent conditions to minimize artefacts. 116 

Additionally, same results were obtained when primers of PCR-2 to -12 were tested on both genomic 117 

DNA or as a nested PCR using PCR-1 as template. PCRs were carried out in a semi-high-throughput 118 

manner, thus isolates were classified into a LOS class based on the results of all PCRs (Table 1). 119 

Isolates with unexpected LOS size, negative to all tested orthologues, or with unexpected combinations 120 

of orthologues, were classified as untypable. 121 

 122 

Genome sequencing and annotation. For ascertaining the LOS locus classes, 35 isolates were chosen 123 

for genome sequencing (Supplementary Table 1) using either HiSeq or MiSeq. For HiSeq, NGS library 124 
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preparation, enrichment, sequencing, and sequence analyses were performed by the Institute for 125 

Molecular Medicine Finland (FIMM Technology Centre, University of Helsinki, Finland). MiSeq 126 

sequencing was performed by Institute of Life Science, Swansea University (Swansea, United 127 

Kingdom). Reads were filtered and assembled using SPAdes Assembler v. 3.3.0 (41). Primary 128 

annotation of all the genomes was performed using Rapid Annotation using Subsystem Technology 129 

(RAST) (42). Sequences were manually curated using Artemis (43) and LOS locus classes were 130 

aligned and compared with ACT (44). The whole genome sequences of C. coli are publicly available 131 

on the RAST server (http://rast.nmpdr.org) with guest account (login and password 'guest') under IDs: 132 

195.91, 195.96-195.119, 195.124-195.126, 195.128-195.130, 195.133, 195.134, 6666666.94320 133 

 134 

Orthologue clustering and phylogenetic analysis. A database including all the translated coding 135 

sequences of C. jejuni and C. coli LOS biosynthesis was assembled using Richards and colleagues (26) 136 

orthologues nomenclature. Reciprocal all-versus-all BLASTp search was performed (threshold E ≤ 1e-137 

10) (45) and orthologous groups were determined by orthAgogue and MCL (ignoring E-values, percent 138 

match length ≥ 80% and inflation value of 5 (46, 47)). The groups of orthologues (GOs) were then 139 

aligned using MUSCLE and back-translated to nucleotide sequence using Translatorx perl script (48-140 

50). Maximum likelihood phylogenetic reconstruction of each GO was performed in MEGA6.06 (51) 141 

using Kimura-2 as nucleotide substitution model and a discrete Gamma distribution (4 categories) to 142 

model evolutionary rate differences among sites. A total of 100 bootstrap runs were performed and 143 

summarized in a 95% consensus tree. 144 

 145 

LOS silver staining. LOS profiles were assessed by silver staining as described earlier (52), with some 146 

modifications. In brief, the absorbance of the biomass obtained from a 16 h Nutrient broth n°2 (Oxoid) 147 

culture (100 rpm, microaerobic atmosphere, 37 °C) was adjusted to an OD600 of 0.5. Cells were 148 

digested with 20 mg/ml proteinase K (Thermo Scientific), and incubated at 55 °C for 1 h followed by 149 
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boiling for 10 min. Samples were then diluted 1: 5 in loading buffer, and ran in 15% SDS-PAGE gels. 150 

Gels were silver stained for visualization (53).  151 

 152 

CE-MS and EA-OTLC-MS analyses. Biomass was produced in broth as indicated above and LOS 153 

was prepared with the rapid method applying microwave irradiation as previously described (54). In 154 

short, the lyophilized biomass was suspended in 50 μl of 20 mM ammonium acetate buffer (pH 7.5) 155 

containing DNase (100 μg/ml) and RNase (200 μg/ml) and heated by direct microwave irradiation. 156 

Proteinase K was then added to a final concentration of 60 μg/ml and heated under the same conditions. 157 

Solutions were allowed to cool at room temperature and subsequently dried using a Speed Vac 158 

(vacuum centrifuge concentrator; Savant). LOS samples were washed three times with methanol (100 159 

μl) with vigorous stirring. Insoluble residues were collected by centrifugation and resuspended in 30 μl 160 

water for electrophoresis-assisted open-tubular liquid chromatography-electrospray MS (EA-OTLC-161 

MS) analysis. A sheath solution (isopropanol-methanol, 2:1) was delivered at a flow rate of 1.0 162 

µL/minute. Separation was performed using 30 mM morpholine in deionized water, pH 9.0. A 163 

separation voltage of 20 kV, together with a pressure of 500 mbar, was applied for the EA-OTLC-MS 164 

analysis. The electrospray ionization (ESI) voltage applied on the sprayer was set at −5.2 kV. Data 165 

acquisition was performed for an m/z range of 600 to 2000 at a 2s/spectrum scan rate. 166 

 167 

Statistical analysis. Fisher's exact test was used to assess host-LOS locus class association. P values 168 

equal to or less than 0.05 were considered significant. 169 

RESULTS 170 

PCR typing method for C. coli LOS locus diversity. We explored the genetic diversity of the LOS 171 

biosynthesis loci in 144 C. coli isolates (Supplementary table 1) using a PCR typing scheme based on 172 

published LOS locus class definitions (25, 26). Isolates were classified into putative LOS locus classes 173 

according to their PCR-profile and LOS locus size as described in Table 1. The LOS PCR typing 174 



8 
 

scheme was validated by genome sequencing of 35 isolates (isolates marked in yellow in 175 

Supplementary table 1). Typing results are summarised in Table 2. We were able to classify 68% of the 176 

isolates into one of the nine previously published LOS locus classes (25, 26). Most of the isolates were 177 

assigned to LOS locus class II (17%) with the remaining isolates assigned to LOS classes IV/V (15%), 178 

III (13%), VI (13%), VIII (7%), I (2%), VII (1%), and IX (0.7%). The final 46 (out of 144, ~32%) 179 

isolates remained untypable by this method.  180 

 181 

Six untypable isolates, with a LOS locus length of ~11.5 kbp, were sequenced (45, 63, 114, 125, 149, 182 

and 153). All isolates belong to a novel LOS locus class X. This new class shares 12 (out of 15) 183 

orthologues with other LOS locus classes (see below), and is characterised by the presence of three 184 

unique genes (Supplemental Fig. 2). A blastp search of the NCBI database, revealed sequence 185 

similarity with: (i) hypothetical protein of Helicobacter sp. MIT 05-5293 (e-value 1e-98; identity 45%); 186 

(ii) hypothetical protein of Helicobacter hepaticus (e-value 3e-108; identity 53%); (iii) UDP-N-187 

acetylglucosamine 2-epimerase of H. hepaticus (e-value 3e-165; identity 63%). Following this finding, 188 

primers were designed (Table 1) for LOS locus class X which further identified 15% of the isolates 189 

(Table 2). The genomes of isolates 138 and 99, which have a similar LOS size to class X but a different 190 

PCR profile (Supplementary Table 1) were also sequenced. Analysis of these genomes revealed two 191 

additional LOS locus classes, defined as XI (isolate 138) and XII (isolate 99). In total, we were able to 192 

assign a LOS locus class to 85% of the isolates in our collection by incorporating these additional 193 

classes. LOS profile diversity was high, suggesting that further LOS locus classes may be described in 194 

the future.  195 

 196 

Origin of the novel LOS locus classes X, XI, and XII. As in C. jejuni, C. coli exhibits a mosaic LOS 197 

loci (22) with several classes containing similar orthologous loci. LOS locus classes X and XI are very 198 

similar to each other, diverging only at a single locus (1967 vs 1920; Fig. 1). Additionally, these two 199 
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classes also have similarity in gene content and organisation to LOS locus classes I, III, IV/V, VI, and 200 

VII (Fig. 1). To infer evolutionary relationships between these classes, phylogenetic analyses were 201 

performed for each shared GOs. Phylogenetic reconstruction revealed LOS class I and LOS class III as 202 

the two possible origins for the region encompassing orthologue 16 to orthologue 1668 in LOS locus 203 

class X (Fig. 1). Specifically, in the phylogenetic tree of orthologues 16, 1850, and 1668, C. coli 204 

isolates 45, 63, and 114 are monophyletic with strains from LOS locus class III, while C. coli isolates 205 

125 and 149 formed a separate clade with LOS locus class I strains (Supplemental Fig. 1A, B, and C). 206 

Orthologues 8 and 1821 in LOS class X and both IV/V and VI share the same origin. Contrarily, the 207 

origin of the region including orthologues 1967, 1742, and 1743 is less clear. In the phylogenetic tree 208 

of orthologue 1967 (Supplemental Fig. 1D), C. coli isolates 63 and 114 are grouped with LOS locus 209 

class VI isolates, while the other strains form a separate clades. In addition, the star-like phylogeny 210 

inferred for orthologues 1742 and 1743 hampered any kind of conclusion. These results suggest that 211 

extensive recombination and gene reorganisation between LOS locus classes took place, masking the 212 

origin of common shared loci. Excepting for orthologue 1920, LOS locus class XI orthologues are 213 

closely related to those found in LOS locus class X (Supplemental Fig. 1). LOS locus class XII shares 214 

orthologues with LOS locus classes I, IV/V, VII, and IX. Yet, in our phylogenetic analysis LOS locus 215 

class XII orthologues are distantly related to those found in other LOS classes, forming a separate 216 

branch in the phylogenetic trees. Additionally, LOS locus class XII is characterized by the presence of 217 

a set of unique genes having the best BLASTp hit against NCBI nr with: (i) methyltransferase type 12 218 

of H. hepaticus (e-value 6e-75; identity 58%); (ii) hypothetical protein of Anaerovibrio lipolyticus (e-219 

value 5e-102; identity 65%); (iii) phosphoserine phosphatase of Helicobacter sp. MIT 05-5293 (e-value 220 

3e-92; identity 63%) (Fig. 1). Proposed functions for each ORF of the herein newly identified LOS locus 221 

classes are described in Supplemental Table 2.  222 

 223 
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Cluster analysis of the LOS locus classes. Both species share a total of 19 LOS orthologues (26) and 224 

with previous evidence of introgression between C. coli and C. jejuni in mind (31, 32) we attempted to 225 

quantify the level of interspecies recombination in C. coli LOS diversity. We compared individual gene 226 

descriptions of the LOS loci rather than the original gene family ontologies used by Richards and 227 

colleagues (26). Out of the 19 shared orthologues, 16 gene locus descriptions split into species-specific 228 

clusters while only three were common in both species (orthologues 10, 16 and 1821). Interspecies 229 

gene transfer was investigated by comparing the topology of individual gene trees with the overall 230 

population structure (25). Evidence of interspecies gene transfer was only observed for orthologue 10 231 

(26) (lipooligosaccharide biosynthesis glycosyltransferase, waaV) where all C. coli loci of LOS locus 232 

class II formed a monophyletic clade with C. jejuni genes (Fig. 2). Thus, interspecies recombination is 233 

likely to have a limited effect on the LOS loci diversity observed in C. coli.  234 

 235 

Host-LOS locus class association. The non-random distribution of LOS locus classes between hosts 236 

was investigated further by supplementing our isolate collection with Richards and colleagues data 237 

(26). The distribution of LOS locus classes by source of isolation is represented in Figure 3. All LOS 238 

locus classes, except class XII, were present among strains isolated from humans. More than half 239 

(57%) of the clinical isolates were LOS locus classes II, III, and VIII, while LOS locus classes VI, VII, 240 

and X were less commonly found in clinical cases. Most pig isolates were of LOS locus class X, but 241 

also frequently found among LOS locus classes II, III, IV/V, and VI. Only one pig isolate belonged to 242 

LOS locus class VIII and no pig strain was from classes I, IX, or XII. Poultry isolates were also found 243 

among all LOS locus classes, except for classes VII, IX, and XII. Most poultry isolates were classified 244 

as LOS locus class II.  245 

There was a positive association (p <0.05) of class VIII to human clinical infections, while class VI 246 

was negatively associated with clinical cases. Swine was positively associated with classes VI and X, 247 

but negatively associated with classes I and VIII. Poultry was positively associated only with LOS 248 
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locus class I. Bovine and wild-bird isolates were underrepresented in the dataset. However, some 249 

association was observed in bovine (class IV/V) and wild bird isolates (class XII). Isolates classified as 250 

LOS locus classes II and III were equally distributed among humans, pigs, and poultry. 251 

 252 

Chemical analysis of C. coli LOS composition. The LOS phenotype of nine selected isolates was 253 

investigated. This selection included strains from classes overrepresented in clinical isolates, II and 254 

VIII, as well as isolates from two of the newly described LOS classes (X and XI) and which are 255 

uncommon in clinical isolates. Silver staining SDS-PAGE gels of LOS extracts provided migration 256 

profiles for the selected isolates (Fig. 4A). A complimentary mass spectroscopy approach was used 257 

(CE-MS and EA-OTLC-MS) to explore inter- and intra-LOS class structural diversity. Example spectra 258 

is shown in Supplemental Fig. 3. The oligosaccharide (OS) composition of each of the nine isolates 259 

was predicted based on the fragment ions and components of the previously reported C. coli OS (27). 260 

Size and composition of the lipid A group was defined for each glycoform by tandem mass 261 

spectrometry. For example, the fragment ion at m/z 1063.2 (doubly charged ion) in C. coli 137 262 

(Supplemental Fig. 3), which was produced from the glycoform detected as triply charged ion at m/z 263 

1422.8, corresponds to a lipid A with a 2-amino-2-deoxy-D-glucose (GlcN) disaccharide backbone 264 

carrying negative charged groups, PPEtn and PPEtn, substituted by six fatty acid chains and with a 265 

calculated mass of ~2128 Da. Additionally, the fragment ion at m/z 1001.7 corresponds to a second 266 

lower mass lipid A species (~2006 Da) as it carries P and PPEtn instead. All analyzed C. coli isolates 267 

exhibited a hexa-acylated lipid A containing four tetradecanoic (14:0) and two hexadecanoic (16:0) 268 

acid chains, modified with two phosphate residues (55-57). Only GlcN disaccharides were detected in 269 

C. coli isolates, in contrast to the hybrid backbone of β-1’-6 linked 3-diamino-2, 3-dideoxy-D-270 

glucopyranose (GlcN3N) and GlcN observed in C. jejuni (55, 57). Thus, C. coli synthesizes a lipid A 271 

with two ester- and two amide-linked acyl chains, while C. jejuni has a lipid A containing mainly three 272 

amide-linked acyl chains and one ester-linked acyl chain. The lower mass lipid A was detected in all 273 
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samples, while LOS locus class II isolates (except for isolate 65, Supplemental Fig. 3) had an additional 274 

lipid A species as exemplify by strain 137 in the Supplemental Fig. 3.  275 

Like in C. jejuni, C. coli exhibited a conserved inner core consisting of two L-glycero-D-manno-276 

heptose (Hep) residues attached to a 3-deoxy-D-manno-octulosonic residue (Kdo) which is linked to 277 

the lipid A through a Kdo linker (20, 57). In the variable outer core region at least one predicted 278 

Quip3NAcyl residue (where Quip3NAc represents 3-acylamino-3,6-dideoxy-D-glucose in which the 279 

N-acyl residue was a 3-hydroxybutanoyl) was detected in all isolates. Although more than one OS was 280 

detected by MS in all isolates (Fig. 4B), only isolates from LOS locus classes X and XI exhibited 281 

visible high-Mr and low-Mr LOS on SDS-PAGE (Fig. 4A). Intra-LOS class diversity was observed in 282 

both LOS class II and class X. Isolate 65 displayed a LOS composition like other LOS class II isolates 283 

but with the addition of two hexosamines (HexNac) and one deoxyhexose (deoxyHex), and absence of 284 

PEtn residues (Fig. 4B). Likewise, isolates 45 and 63 shared similar LOS composition, with the 285 

exception of a variable Quip3NAcyl residue in isolate 63. In contrast, isolate 114 exhibited a very 286 

different LOS composition compared with other isolates of the same class, including the presence of a 287 

third Hep and a deoxyHex as well as a reduced number of hexoses (Hex) (Fig. 4B). The LOS of 288 

isolates 38, 45, and 138 have similar core size and proposed composition, yet they are classified into 289 

three different LOS locus classes. However, our biochemical analysis is not able to identified 290 

saccharide sequence, stereochemistry, absolute configuration (D or L), anomeric configurations (α or 291 

β), and linkage positions. Thus, further studies would be required to determine whether these three 292 

different LOS classes indeed produce the same LOS structure.   293 

Genetic and phenotypic diversity within C. coli LOS class II. The four strains with LOS locus class 294 

II shared 99.64% DNA sequence similarity and from 99.39% to 99.98% pairwise alignment identity. 295 

Isolate 65 was the most dissimilar among strains with LOS locus class II due to large fragments 296 

deletions. Deletions resulted in shorter 2400 and 2473 orthologues, as one pseudogene (Fig. 5). 297 

Orthologues 2470 and 2471 were also truncated as one pseudogene (re-annotated as 2470-1), as 298 
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evidenced by isolate 151. The remainder of the class II isolates had an insertion of 68 nt in 2470-1, 299 

disrupting the orthologue (Fig. 5). Despite the differences observed in orthologue 2470-1 isolates 73, 300 

137, and 151 were predicted to have identical LOS chemical compositions.  301 

 302 

Amino acid sequences of orthologues 6, 1541, 1501, 2472, and 10 were identical (100%) in all four 303 

class II strains, while orthologues 9004 and 16 exhibited a single amino acid difference in isolate 65. 304 

All isolates, with the exception of 65, exhibited differences in the C-terminal of orthologue 1715 and 305 

were variable in the number of Hep and/or PEtn residues observed. However, no GC homopolymeric 306 

tracts or other possible genetic signals associated with phase variation were identified within the LOS 307 

loci. 308 

 309 

Genetic and phenotypic diversity within C. coli LOS locus class X. In LOS locus class X the overall 310 

sequence identity among strains was 99.31%, with percentage identity ranging from 98.96% to 99.94% 311 

in pairwise alignments, with strain 45 being the most distantly related. Although some minor gaps were 312 

observed, single point mutations were largely responsible for the diversity observed at nucleotide level. 313 

The largest insertion (69 nt) was seen in strain 63 between orthologues 2 and 3. Between strains, 100% 314 

amino acid identity was observed in orthologues 16, 8, and 2, while one or two amino acid substitutions 315 

were present in orthologues 1668, 1, 1821, 1967, and 1743. The most prominent difference was 316 

observed in orthologue 1742 in the form of a deleted A base at position 668, resulting in premature 317 

translational termination in isolates 114 and 63. Furthermore, several single amino acid substitutions 318 

were detected in orthologue 1742 in strain 45, while 100% identity was observed between isolates 63 319 

and 114. In spite of dissimilar LOS composition, the only difference observed within the LOS locus 320 

between isolates 63 and 114 was in eight amino acids at the C-terminal of orthologue 3.  321 

 322 

DISCUSSION 323 
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Campylobacter LOS is a fundamental feature involved in the pathogenesis of gastroenteritis and post-324 

infection sequelae (10-14, 58, 59). However, despite the burden imposed by C. coli and the importance 325 

of this structure in campylobacteriosis, little is known about the LOS diversity in this species (26-29, 326 

60). Therefore, we sought to contribute to the paucity of information by investigating the variability 327 

and distribution of C. coli LOS locus genetic classes in a large collection of isolates and by coupling 328 

genomic and LOS chemical composition data for the first time.  329 

We developed a PCR methodology which was able to classify 85% of the isolates into a LOS class (25, 330 

26). Among them, we described three additional LOS locus classes, named X, XI, and XII, which 331 

accounted for 17% of the isolates in our collection. The remaining untypable isolates (15%) suggests 332 

that further new classes will likely be described in the future and that C. coli LOS biosynthesis is more 333 

diverse than previously observed (26).  334 

This genetic diversity is at the basis of a completely unexplored LOS structure heterogeneity which 335 

might contribute substantially to the population dynamics of C. coli, including host specificity. We 336 

combined our 144 isolates with 33 C. coli previously studied (26) to investigate the non-random 337 

distribution of LOS locus classes among different hosts. All hosts were significantly associated with at 338 

least one LOS locus class. In particular, isolates possessing LOS locus classes VI and X were 339 

predominantly isolated from swine, which have very high prevalence of C. coli (up to 99%) (61). Both 340 

of these classes were rarely detected in human isolates, which is supported by a previous source 341 

attribution study in Scotland in which pigs are a relatively unimportant source of C. coli human 342 

infections (61). The majority of human cases in our study were assigned to LOS locus classes II or III, 343 

which were also found in swine and poultry isolates. However, human isolates were overrepresented 344 

among LOS locus class VIII, which was rarely detected in the sources included in this study. This 345 

indicates the presence of other, unknown potential reservoirs contributing to human infections, which 346 

corroborates with a previous study where 54% of human C. coli strains were attributed to other sources 347 

than poultry and pig (61). In opposition to previous findings (26), we did not observe partitioning 348 
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between bovine and poultry sourced strains, and LOS locus classes previously shown to be associated 349 

with bovine hosts were populated by isolates of poultry and swine origin. Due to the limited number of 350 

isolates available from alternative sources, the host-LOS class associations found in this study may not 351 

necessarily represent the true C. coli population structure in various hosts. However, our findings 352 

suggest that generalist isolates possessing LOS locus class II and III might be more successful at 353 

colonizing multiple species and, as seen in generalist lineages of C. jejuni ST-45 and ST-21 clonal 354 

complexes, being largely responsible for human infections (32). 355 

 356 

Mosaic C. coli LOS classes appear to have arisen by the insertion and/or deletion of genes or gene 357 

cassettes through homologous recombination, as previously described in C. jejuni (22). In spite of 358 

substantial genome-wide introgression between agricultural C. coli and C. jejuni (25, 31), very limited 359 

interspecies recombination was detected among LOS biosynthesis loci. Only orthologue 10 (waaV) in 360 

C. coli LOS locus class II may have originated as result of recombination with C. jejuni. These results 361 

confirmed previous studies (31), and are supported by the species-specific features detected in the 362 

chemical composition of C. coli LOS.  363 

 364 

GlcN disaccharide backbones, which is the most common structure among members of the family 365 

Enterobacteriaceae (57), were predicted in the lipid A of all analysed C. coli strains. This result is in 366 

contrast to the hybrid GlcN3N-GlcN backbone observed in C. jejuni. The genes gnnA and gnnB, 367 

located outside the LOS biosynthesis locus, are associated with the synthesis of GlcN3N-substituted 368 

lipid A (9, 62). Inactivation of either of these genes in C. jejuni resulted in the substitution of an N-369 

linked with an O-linked acyl chain and an increased LOS biological activity in humans (9). C. coli 370 

contains in a similar genomic location both genes, having approximately 70% BLASTp score ratios 371 

against C. jejuni orthologues (9). Yet, C. coli gnnA and gnnB are separated by a putative cobalamin 372 

independent methionine synthase II in the same gene orientation. We suggest therefore three possible 373 
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explanations for the absence of GlcN3N in C. coli lipid A backbone: (i) single or multiple mutations in 374 

the putative active sites of GnnA and GnnB have rendered one or both enzymes inactive, as observed in 375 

functional studies in other bacteria (62, 63); (ii) gnnB-gnnA operon transcription might be hampered by 376 

the presence of the putative methionine synthase II (9); (iii) GnnA and GnnB may be involved in the 377 

biosynthesis of alternative glycoconjugates in C. coli (62). Nevertheless, the substitution of an N-linked 378 

with an O-linked acyl chain in C. coli might have an impact in host-bacterial interaction and adaptation 379 

(9).  380 

 381 

A second species-specific feature, common among all our analysed isolates, was the presence of at least 382 

one putative Quip3NAcyl residue. Quip3N is an unusual deoxysugar, which has been observed in the 383 

O-antigen of various Gram negative bacteria and in the S-layer of glycoprotein glycans of some Gram 384 

positives (64-66). Although rarely studied, Quip3N has also been found in the OS of LOS class E, H, 385 

and P isolates in C. jejuni exclusively as an N-acetyl derivative (Quip3NAc) (54, 67-69). Conversely, 386 

Quip3N has only been reported in C. coli as an N-acyl derivative with two possible substituents; 3-387 

hydroxybutanoyl or 3-hydroxy-2, 3-dimethyl-5-oxoprolyl (30). The presence of Quip3NAcyl in C. coli 388 

was first described by Seltmann and Beer (30), and later on it was reported in several C. coli (28). 389 

However, the molecular basis behind the biosynthesis of this sugar and associated glycoconjugate in C. 390 

coli remains unknown. The dTDP-D-Quip3NAc biosynthesis pathway has, to our knowledge, only 391 

been described in the Gram positive Thermoanaerobacterium thermosaccharolyticum (70). This 392 

pathway involves five enzymes; a thymydylyltransferase (RmlA), a 4, 6-dehydratase (RmlB), a 3, 4-393 

isomerase (QdtA), a transaminase (QdtB), and a transacetylase (QdtC). Genome comparison of T. 394 

thermosaccharolyticum and C. coli identified homologs of rmlA (GO 1743), rmlB (GO 1742), qdtA 395 

(GOs 1920 and 1967), and qdtB (GO 8) in a subset of strains. However, no homologue for qdtC was 396 

found in C. coli. This may be expected as C. coli Quip3N is an N-acyl derivative instead of the N-acetyl 397 

derivative found in T. thermosaccharolyticum (27, 30). Moreover, these results are in agreement with 398 
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previous studies in which C. jejuni isolates carrying the aforementioned orthologues in the LOS locus 399 

have been found to express Quip3NAc in their LOS (26, 54, 67-69). Despite the presence of this sugar 400 

in all C. coli investigated in this study, as described above, the putative dTDP-D-Quip3NAc 401 

biosynthesis genes are only present in a subset of strains all belonging to LOS classes IV/V, VI, VII, X, 402 

and XI (Supplemental Fig. 2). Furthermore, truncation of orthologue 1742 due to a single base deletion 403 

should have resulted in the loss of Quip3NAcyl in isolates 114 and 63, which was not the case. Cross 404 

talk between different glycosylation pathways have been previously observed in C. jejuni (67, 71). 405 

Thus, due to Quip3NAcyl being predicted to be ubiquitously found in C. coli LOS structures, we 406 

hypothesize that the synthesis of this residue might be carried out by genes in conserved glycosylation 407 

pathways. Because of structural similarity between Quip3NAc and bacillosamine precursors, it is 408 

tempting to speculate that the pgl system may play a role in the biosynthesis of Quip3NAc in C. coli.  409 

 410 

In all C. coli, phenotypic variation was observed affecting at least one sugar residue, as strains exhibit 411 

different numbers of Hep, Quip3NAcyl, HexNac, or PEtn (Fig 4B). Phenotypic variation in C. jejuni 412 

has been mainly associated with phase variation of genes containing repeats of GC homopolymeric 413 

tracts (23). However, no GC tracts were detected in the LOS locus of the chemically analysed C. coli 414 

isolates. Further inspection of all the LOS locus sequences generated in this and previous studies (25, 415 

26) revealed that G-tracts are uncommon in C. coli LOS. Only isolates from LOS class IV/V and VI 416 

had G-tracts longer than 5 bases in their LOS biosynthesis locus. It is therefore unlikely that the 417 

observed phenotypic variation in our analysed samples was caused by slipped strand mispairing due to 418 

homopolymeric tracts within the LOS locus. These data suggest that other mechanisms, such as post-419 

transcriptional regulation or epigenetic methylation of DNA, might be responsible for phenotypic 420 

variation in LOS composition in C. coli.  421 

Among LOS locus class II isolates, strain 65 exhibited the most divergent composition. Orthologue 422 

1715 (wlaTB) has been associated with a HexNac residue in C. jejuni 81116 (67) and the diversity 423 
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observed in the C-terminal of this orthologue may be responsible for the absence of HexNAc residues 424 

in isolates 73, 137, and 151. However, further research is required to confirm the exact role of 1715 in 425 

LOS biosynthesis. Similarly to LOS locus class II, strains with LOS locus class X isolates minor 426 

genetic dissimilarities resulted in major differences in LOS chemical composition.  427 

Isolates 65 and 114 also contained a deoxyHex residue in the LOS. No orthologues potentially involved 428 

in deoxyHex synthesis were identified within the LOS region in isolates 65, suggesting that genes 429 

outside the LOS locus may play a bigger role in LOS biosynthesis than previously thought. 430 

Deoxyhexoses, such as 6-deoxy-β-l-altrose, fucose, or rhamnose have been frequently detected in the 431 

O-chain of the lipopolysaccharide (LPS) of several Gram-negative species (72, 73). Nevertheless, in 432 

the genus Campylobacter, these sugars have been described as components of C. jejuni capsule (74) 433 

and C. fetus LPS (75). 434 

 435 

In conclusion, the genetic and biochemical diversity of C. coli is greater than expected. C. coli LOS is 436 

characterised by a lipid A consisting of GlcN-GlcN disaccharides and an outer core substituted with at 437 

least one Quip3NAcyl residue. Our results hint at cross talk between different glycosylation pathways, 438 

which has not been generally considered to play a role in LOS diversity. The relevance of these 439 

characteristic features for the ecology and virulence of C. coli is yet to be explored.  440 

 441 
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FIGURE LEGENDS 675 

Figure 1. LOS locus classes related to X, XI, and XII. Arrows represent ORFs. Genes coloured white 676 

are common to all LOS classes. Genes coloured green are present in class I and/or III. Genes coloured 677 

blue are present in classes IV/V and VI. Grey genes are common among classes X and XI. The orange 678 

genes are particular of the class XII. Striped genes are fragmented. Lines connect closely related 679 

orthologues. Strains are identified if more than one origin was observed in the LOS locus class (see 680 

text). Gene size is not drawn to scale.  681 

Figure 2. Consensus cladogram representing the evolutionary relationship among orthologues 682 

belonging to GO 10 (nomenclature from Richard et al. 26).  C. jejuni strains are highlighted in green. 683 
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C. coli with the exception of LOS locus class II strains are shown in red. C. coli LOS locus class II 684 

strains are highlighted in yellow. The 95% bootstrap consensus tree was built from 100 replicates. 685 

Strains LOS locus class is indicated after the strain’s ID. 686 

Figure 3. Host-LOS locus class association. Circos diagram shows the distribution of LOS locus 687 

classes of C. coli strains isolated from different hosts, from both our collection and those from Richards 688 

and colleagues (26). Ribbon ends represent links between host and LOS locus class while the width of 689 

the ribbon correlates with the percentage of strains belonging to a specific LOS locus class in a certain 690 

host. Segments in the outer ring indicate the percentage of strains representing a certain LOS locus 691 

class or host while the inner ring indicates the number of strains. Human strains are shown in orange, 692 

bovine in red, poultry in green, and swine in cyan.  693 

Figure 4. C.coli LOS biochemical profiles. A) Silver-stained LOS. B) Proposed chemical composition 694 

based on MS and MS/MS results analysis of intact LOS (Supplemental Figure 3). 695 

Figure 5. Comparison of nucleotide sequence of LOS locus class II strains 151 and 65. Genes coloured 696 

white are common to all LOS classes. Genes coloured blue are present in LOS locus classes IV/V, VI, 697 

and VII. Yellow coloured genes are particular to LOS locus class II. Lines between orthologues 698 

represent sequence similarity.  699 

 700 

   701 
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Table 1. List of primers used in the present study and expected sizes of the amplicons. 702 

 703 

PCR Primers Sequence 
LOS locus class 

I II III IV/V VI VII VIII IX X XI XII 

1* 

ORF3-F2 AAA AGC TTG TGG CTG GTG GCC TGA TCA 

7.1 9.9 7.2 12.6 13.2 15.3 18.2 7.1 11.5 11.4 11.1 
waaV-R 

AAG AGC TTT GCA AAG CTG TAT AAA TCA 

GAC 

2 
2209-L TTC AGG TGT TTA TGA TTT GTT TC + 

(355) 
- - - - - - - - - - 

2209-R GCT TGT GCC TTT GGT ATA AGG 

3 
CstIV-F TTC CCA GCA GCT ATA AAT GGA 

- 
+ 

(190) 
- - - - - - - - - 

CstIV-R TTT CAT CTC CAA AAT CCA TGC 

4 
1541-L TGG CAA YTA TGG TTT CAA GG 

- 
+ 

(327) 
- 

+ 

(327) 

+ 

(327) 

+ 

(327) 
- - - - - 

1541-R TGC YCT TTC AAA AGC AAA AAA TTC 

5 
1210-L AAT TTT GCG TGG AAT GCT TG 

- - 
+ 

(337) 
- - - - - - - - 

1210-R GCT GAA GGC AAT TGA TGA TG 

6 
1790-L CCY TAA AYA CYG CTT TTR AAA AC 

- - - 
+ 

(328) 

+ 

(328) 

+ 

(328) 
- - - - 

+ 

(328) 1790-R TGC GTA TCT TGT TGA TTR CAC 

7 
1920-L CCA AGC CAG ATT TTC CAA GA 

- - - 
+ 

(229) 
- 

+ 

(229) 
- - - 

+ 

(229) 

+ 

(229) 1920-R TCG TTA TAG AAA TCA CTT GCC AAT 

8 
2344-L AAA GAA AGA GAA GCC AAA GGA G 

- - - - - 
+ 

(348) 
- - - - - 

2344-R TCT TGG TTT AAT TTT CGC ATA TTC 

9 
1790R TGC GTA TCT TGT TGA TTR CAC 

- - - 
+ 

(2252) 
- 

+ 

(4933) 
- - - - - 

1920L CCA AGC CAG ATT TTC CAA GA 

10 
38_3454 ACG CCT AGC GTG TAA ACC AT 

- - - - - - 
+ 

(1046) 
- - - - 

38_2031 ATC GTC CTA TAG CTA CGG GTG A 

11 
CstV-F TTC CTT TGC AAC ACG AAA TAA 

- - - - - - - 
+ 

(449) 
- - - 

CstV-R GTT TTG GAG CTA GCG GAA TA 

12 

45_8 GTG CTT GAG CGC AAT CTT CT 

- - - - - - - - 
+ 

(1036) 

+ 

(1036) 
- 45_1 GAG GGG CCT TAT GGA GCA AA 

* the amplicons of this PCR are expressed in kb, while all others are in bp. 704 

  705 
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TABLE 2. Distribution of LOS classes among hosts 706 

LOS class Total (%) Human Swine Poultry Wild birds 

I 3 2 0 1 0 

II 24 (17) 7 13 4 0 

III 18 (13) 4 13 0 1 

IV/V 22 (15) 3 16 3 0 

VI 18 (13) 1 15 2 0 

VII 2 (1) 1 1 0 0 

VIII 10 (7) 7 1 2 0 

IX 1 1 0 0 0 

X 22 (15) 3 18 1 0 

XI 1 0 1 0 0 

XII 1 0 0 0 1 

Untypable 22 (15) 5 12 5 0 

 707 

 708 

 709 

 710 

Figure 1. LOS locus classes related to X, XI, and XII. Arrows represent ORFs. Genes coloured white 711 

are common to all LOS classes. Genes coloured green are present in class I and/or III. Genes coloured 712 

blue are present in classes IV/V and VI. Grey genes are common among classes X and XI. The orange 713 

genes are particular of the class XII. Striped genes are fragmented. Lines connect closely related 714 

orthologues. Strains are identified if more than one origin was observed in the LOS locus class (see 715 

text). Gene size is not drawn to scale.  716 
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  717 

Figure 2. Consensus cladogram representing the evolutionary relationship among orthologues 718 

belonging to GO 10 (nomenclature from Richard et al. 26). C. jejuni strains are highlighted in green. C. 719 

coli with the exception of LOS locus class II strains are shown in red. C. coli LOS locus class II strains 720 

are highlighted in yellow. The 95% bootstrap consensus tree was built from 100 replicates. Strains LOS 721 

locus class is indicated after the strain’s ID.  722 
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 723 

Figure 3. Host-LOS locus class association. Circos diagram shows the distribution of LOS locus 724 

classes of C. coli strains isolated from different hosts, from both our collection and those from Richards 725 

and colleagues (26). Ribbon ends represent links between host and LOS locus class while the width of 726 

the ribbon correlates with the percentage of strains belonging to a specific LOS locus class in a certain 727 

host. Segments in the outer ring indicate the percentage of strains representing a certain LOS locus 728 

class or host while the inner ring indicates the number of strains. Human strains are shown in orange, 729 

bovine in red, poultry in green, and swine in cyan.  730 
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 731 

 732 

Figure 4. C.coli LOS biochemical profiles. A) Silver-stained LOS. B) Proposed chemical composition 733 

based on MS and MS/MS results analysis of intact LOS (Supplemental Figure 3). 734 

 735 
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 736 

Figure 5. Comparison of nucleotide sequence of LOS locus class II strains 151 and 65. Genes coloured 737 

white are common to all LOS classes. Genes coloured blue are present in LOS locus classes IV/V, VI, 738 

and VII. Yellow coloured genes are particular to LOS locus class II. Lines between orthologues 739 

represent sequence similarity.  740 

 741 


