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Rota-Baxter systems, dendriform algebras and
covariant bialgebras

Tomasz Brzeziński

Abstract. A generalisation of the notion of a Rota-Baxter operator is proposed.
This generalisation consists of two operators acting on an associative algebra and
satisfying equations similar to the Rota-Baxter equation. Rota-Baxter operators of
any weights and twisted Rota-Baxter operators are solutions of the proposed system.
It is shown that dendriform algebra structures of a particular kind are equivalent to
Rota-Baxter systems. It is shown further that a Rota-Baxter system induces a weak
peudotwistor [F. Panaite & F. Van Oystaeyen, Twisted algebras, twisted bialgebras
and Rota-Baxter operators, arXiv:1502.05327 (2015)] which can be held responsible
for the existence of a new associative product on the underlying algebra. Examples of
solutions of Rota-Baxter systems are obtained from quasitriangular covariant bialge-
bras hereby introduced as a natural extension of infinitesimal bialgebras [M. Aguiar,
Infinitesimal Hopf algebras, [in:] New trends in Hopf algebra theory (La Falda, 1999),
Contemp. Math., 267, Amer. Math. Soc., Providence, RI, (2000), pp. 1–29].

1. Introduction

This paper arose form an attempt to understand the Jackson q-integral as a Rota-
Baxter operator, and develops and extends connections between three algebraic sys-
tems: Rota-Baxter algebras [16], dendriform algebras [13] and infinitesimal bialgebras
[3].

Given an associative algebra A over a field K and λ ∈ K, a linear operator R : A→
A is called a Rota-Baxter operator of weight λ if, for all a, b ∈ A,

R(a)R(b) = R (R(a)b+ aR(b) + λab) . (1.1)

In this case the triple (A,R, λ) is referred to as a Rota-Baxter algebra of weight λ.
Rota-Baxter operators were introduced in [5] in the context of differential operators
on commutative Banach algebras and since [16] intensively studied in probability and
combinatorics, and more recently in the theory of operads and renormalisation of quan-
tum field theories.

2010 Mathematics Subject Classification. 16T05;16T25.
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2 TOMASZ BRZEZIŃSKI

Introduced in [13, Section 5], a dendriform algebra is a system consisting of a vector
space V and two bilinear operations ≺,� on V such that, for all a, b, c ∈ V ,

(a ≺ b) ≺ c = a ≺ (b ≺ c+ b � c) (1.2a)

a � (b ≺ c) = (a � b) ≺ c (1.2b)

a � (b � c) = (a ≺ b+ a � b) � c (1.2c)

As explained in [2], [8], [9] every Rota-Baxter operator of weight λ on an algebra A
defines a dendriform algebra structure on A in a variety of ways including

a � b := R(a)b, a ≺ b := a(R(b) + λb). (1.3)

An associative (not necessarily unital) algebra A that admits a coassociative co-
multiplication which is a derivation is called an infinitesimal bialgebra [3]. That is, in
addition to the coassociative law, the comultiplication ∆ : A→ A⊗ A satisfies

∆(ab) = a∆(b) + ∆(a)b, for all a, b ∈ A, (1.4)

where A⊗A is viewed as an A-bimodule in the standard way a · (b⊗ c) · d = ab⊗ cd.
As shown in [3], if an element r ∈ A⊗A satisfies the associative classical Yang-Baxter
equation,

r13r12 − r12r23 + r23r13 = 0, (1.5)

(see (1.6) below for the explanation of the index notation used), then the inner deriva-
tion induced by r (i.e. a commutator with r) is coassociative, and thus defines on A
the structure of an infinitesimal bialgebra (called a quaistriangular infinitesimal bial-
gebra). Furthermore, it is proven in [4] that every solution of the associative classical
Yang-Baxter equation defines a Rota-Baxter operator of weight 0.

In this article we propose to study two operators R, S, both acting on the same
associative algebra A, that satisfy equations similar to the Rota-Baxter equation (1.1)
with λ = 0. We show that in the case of a non-degenerate algebra (see the explanation
below) this system of equations is equivalent to the existence of a dendriform algebra
structure of the type given in (1.3) (with R(b) + λb replaced by S(b)). A class of
solutions to Rota-Baxter systems arise from associative Yang-Baxter pairs. These are
defined as pairs of elements r, s ∈ A ⊗ A, which satisfy two equations similar to the
classical associative Yang-Baxter equation (1.5): each equation involves both r and s
albeit not in a symmetric way. In order to give a conceptual grounding for associative
Yang-Baxter pairs we relate them to covariant bialgebras. In this class of algebras the
coproduct is no longer assumed to be a derivation (as is the case for infinitesimal bialge-
bras) but a covariant derivation (or a connection) with respect to a pair of derivations.
This relaxing of the definition of an infinitesimal bialgebra allows us to include other
types of algebras characterised by the existence of a coproduct, such as Frobenius al-
gebras. We give a characterisation and some examples of bicovariant bialgebras, most
significantly we show that an associative Yang-Baxter pair defines a covariant bialgebra,
termed a quasitriangular covariant bialgebra. We define and analyse basic properties of
the representation category of a covariant bialgebra, termed the category of covariant
modules. Finally, we introduce the notion of an endomorphism twisted Rota-Baxter
operator, and observe that such an operator induces a Rota-Baxter system, and that
the Jackson’s q-integral is an example of a twisted Rota-Baxter operator.
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All algebras considered in this paper are associative (but not necessarily unital)
over a field K. We say that an algebra A is non-degenerate provided that for any
b ∈ A, ba = 0 or ab = 0 for all a ∈ A implies that b = 0. Obviously, any unital algebra
is non-degenerate. Given r =

∑
i ai ⊗ bi ∈ A⊗ A, we define

r12 = 1⊗ r, r13 =
∑
i

ai ⊗ 1⊗ bi, r23 = 1⊗ r, (1.6)

where 1 means either the identity of A (if A is unital) or the identity in the extended
unital algebra K⊕ A (if A is non-unital).

2. Rota-Baxter systems and dendriform algebras

In this section we define Rota-Baxter systems and relate them to dendriform alge-
bras.

Definition 2.1. A triple (A,R, S) consisting of an algebra A and two K-linear
operators R, S : A→ A is called a Rota-Baxter system if, for all a, b ∈ A,

R(a)R(b) = R (R(a)b+ aS(b)) , (2.1a)

S(a)S(b) = S (R(a)b+ aS(b)) . (2.1b)

Note that equations (2.1) imply that both R(A) and S(A) are (non-unital) subal-
gebras of A.

Rota-Baxter operators (1.1) together with algebras on which they operate are ex-
amples of Rota-Baxter systems as explained in the following

Lemma 2.2. Let A be an algebra. If R is a Rota-Baxter operator of weight λ on A,
then (A,R,R + λid) and (A,R + λid, A) are Rota-Baxter systems.

Proof. The replacement of S by R + λid in equation (2.1a) gives precisely the
Rota-Baxter relation (1.1). An elementary calculation then reveals that in this case
(2.1b) reproduces (2.1a). The second claim follows by the fact that

(R(a) + λa)b+ aR(b) = R(a)b+ a(R(b) + λb),

compiled with the R-S-symmetry of Definition 2.1. tu

Lemma 2.3. Let A be an algebra, R : A→ A a left A-linear map and let S : A→ A
be a right A-linear map. Then (A,R, S) is a Rota-Baxter system if and only if, for all
a, b ∈ A,

aR ◦ S(b) = 0 = S ◦R(a)b. (2.2)

In particular, if A is a non-degenerate algebra, then (A,R, S) is a Rota-Baxter system
(with A left and S right A-linear) if and only if R and S satisfy the orthogonality
condition

R ◦ S = S ◦R = 0. (2.3)

Proof. If (A,R, S) is a Rota-Baxter system, then, by the left A-linearity of R, for
all a, b ∈ A,

R(a)R(b) = R (R(a)b+ aS(b)) = R(a)R(b) + aR(S(b)),
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hence the first of equations (2.2). In a similar way using the right A-linearity of S and
(2.1b) one obtains the second of equations (2.2). Tracing the above steps backwards
one immediately realises that (2.2) implies (2.1).

The second statement is a straightforward consequence of the first one and the
definition of a non-degenerate algebra. tu

Example 2.4. Suppose that r, s ∈ A are such that rs = 0, with one of them, say
s, being central. Define R, S : A→ A by

R : a 7→ ar, S : a 7→ sa.

Then, for all a, b ∈ A,

aR(S(b)) = asbr = abrs = 0, S(R(a))b = sarb = arsb = 0,

by the centrality of s and since rs = 0. Hence (A,R, S) is a Rota-Baxter system.
As a specific example, take a truncated polynomial algebra A = K[ζ]/〈ζn〉, and

let (p, q) be a partition of n. Define Rp(a) = aζp, Sq(a) = aζq. Then (A,Rp, Sq) is a
Rota-Baxter system.

For a more geometric example, consider A to be a coordinate algebra of the algebraic
variety consisting of two straight lines crossing at one point, and R and S to arise from
projections on the first and the second line respectively. Then (A,R, S) is a Rota-
Baxter system.

The following proposition generalises [2, Proposition 5.1].

Proposition 2.5. Let A be an associative algebra and let R, S : A→ A be K-linear
homomorphisms. Let the K-linear maps ≺,�: A⊗ A→ A be defined by

a ≺ b = aS(b), a � b = R(a)b, for all a, b ∈ A. (2.4)

Then

(1) If (A,R, S) is a Rota-Baxter system then (A,≺,�) is a dendriform algebra.

(2) If A is a non-degenerate algebra and (A,≺,�) is a dendriform algebra, then
(A,R, S) is a Rota-Baxter system.

Proof. (1) If (A,R, S) is a Rota-Baxter system, then, for all a, b, c ∈ A,

(a ≺ b) ≺ c = aS(b)S(c) = aS (R(b)c+ bS(c)) = a ≺ (b ≺ c+ b � c),

by (2.1b). In a similar way (2.1a) implies (1.2c). Finally, (1.2b) follows by the asso-
ciativity of A.

(2) In the converse direction, let us assume that (A,≺,�), with ≺,� given by (2.4),
is a dendriform algebra. Then the dendriform relation (1.2c) comes out as

(R(a)R(b)−R (R(a)b+ aS(b))) c = 0,

and hence it gives (2.1a) by the non-degeneracy of the product in A. In a similar
manner, (1.2a) gives (2.1b). tu
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Remark 2.6. A morphism of Rota-Baxter systems from (A,RA, SA) to (B,RB, SB)
is an algebra map f : A→ B rendering the following diagrams commutative:

A
RA //

f
��

A

f
��

B
RB // B,

A
SA //

f
��

A

f
��

B
SB // B.

The assignment of a dendriform algebra to a Rota-Baxter system described in Propo-
sition 2.5 defines a faithful functor from the category of Rota-Baxter systems to the
category of dendriform algebras.

Corollary 2.7. Let (A,R, S) be a Rota-Baxter system. Then

(1) (A, ∗) with ∗ : A⊗ A→ A, defined by

a ∗ b = R(a)b+ aS(b), for all a, b ∈ A, (2.5)

is an associative algebra.

(2) (A, •) with • : A⊗ A→ A,

a • b = R(a)b− bS(a), for all a, b ∈ A, (2.6)

is a pre-Lie algebra.

Proof. Since a⊗b 7→ R(a)b and a⊗b 7→ aS(b) are dendriform operations, assertion
(1) follows by [13, 5.2 Lemma] and (2) follows by [14, Lemma 13.6.4]. tu

Another way of understanding the associativity of product (2.5) is by connecting
Rota-Baxter systems with recently introduced weak pseudotwistors [15].

Definition 2.8. Let A be an algebra with associative product µ : A ⊗ A → A.
A K-linear map T : A ⊗ A → A ⊗ A is called a weak pseudotwistor if there exists
a K-linear map T : A ⊗ A ⊗ A → A ⊗ A ⊗ A, rendering commutative the following
diagram:

A⊗ A⊗ A id⊗µ // A⊗ A

T

��

A⊗ A⊗ Aµ⊗idoo

A⊗ A⊗ A

id⊗T
66

T ((

A⊗ A⊗ A

T⊗id
hh

Tvv
A⊗ A⊗ A

id⊗µ
// A⊗ A A⊗ A⊗ A.

µ⊗id
oo

(2.7)

The map T is called a weak companion of T .

Lemma 2.9. If (A,R, S) is a Rota-Baxter system, then

T : A⊗ A→ A⊗ A, a⊗ b 7→ R(a)⊗ b+ a⊗ S(b), (2.8)

is a weak pseudotwistor.
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Proof. First we define a K-linear map: T : A⊗ A⊗ A→ A⊗ A⊗ A, by

T (a⊗ b⊗ c) = R(a)⊗R(b)⊗ c+R(a)⊗ b⊗ S(c) + a⊗ S(b)⊗ S(c). (2.9)

Then

(µ⊗ id) ◦ T (a⊗ b⊗ c) = R(a)R(b)⊗ c+R(a)b⊗ S(c) + aS(b)⊗ S(c)

= R(R(a)b)⊗ c+R(aS(b))⊗ c
+R(a)b⊗ S(c) + aS(b)⊗ S(c)

= T ◦ (µ⊗ id) ◦ (T ⊗ id)(a⊗ b⊗ c),

by (2.1a). Thus the right pentagon in (2.7) is commutative. Similarly, (2.1b) renders
the left pentagon commutative, and T is a pseudotwistor with the companion T . tu

Let us note that the product ∗ defined by (2.5) is simply equal to µ ◦ T , where T
is given in (2.8). Hence ∗ is associative by [15, Theorem 2.3]. Furthermore, in a way
similar to the case of dendriform algebras, if A is a non-degenerate algebra, then T
given by (2.8) is a weak pseudotwistor with the companion (2.9) if and only if (A,R, S)
is a Rota-Baxter system.

The remainder of this article is devoted to presentation of examples of Rota-Baxter
systems and to placing them within a comprehensive algebraic framework.

3. Covariant bialgebras

This section is divided into four parts. In the first part a system of equations
is given, whose solution leads to a Rota-Baxter system. In the second, the system
introduced in the first part is given a more conceptual grounding, based on the ideas
developed in [3]. In the third part a representation category for covariant bialgebras
introduced in the second one is studied. Finally, in the fourth part some comments on
extensions of the results of the first two parts to the non-commutative base are made.

3.1. Associative Yang-Baxter pairs.

Definition 3.1. Let A be an associative algebra. An associative Yang-Baxter pair
is a pair of elements r, s ∈ A⊗ A that satisfy the following equations

r13r12 − r12r23 + s23r13 = 0, (3.1a)

s13r12 − s12s23 + s23s13 = 0, (3.1b)

where r12 = r ⊗ 1, r23 = 1⊗ r, etc., see (1.6).

Lemma 3.2. Let f : A→ B be an algebra homomorphism. If (r, s) is an associative
Yang-Baxter pair in A, then

rf := (f ⊗ f) ◦ r and sf := (f ⊗ f) ◦ s (3.2)

form an associative Yang-Baxter pair in B.

Proof. This follows immediately from the multiplicativity of f . tu
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Example 3.3.
(1) The couple (r, r) is an associative Yang-Baxter pair if and only if r is a solution

to the classical associative Yang-Baxter equation (1.5).
(2) If r ∈ A⊗ A is a solution to the Frobenius-separability or FS-equation,

r12r23 = r23r13 = r13r12, (3.3)

[6, Lemma 3.2], [7, Section 8.2], then (r, 0) and (0, r) are associative Yang-Baxter pairs.
(3) If r, s ∈ A⊗ A are solutions to the FS-equation (3.3) such that

s23r13 = s13r12 = 0, (3.4)

then (r, s) is an associative Yang-Baxter pair.
For a specific example, let A = Mm(K) ⊕ Mn(K) be the direct sum of matrix

algebras thought of as block-diagonal matrices in Mm+n(K). Fix k ∈ {1, . . . ,m} and
l ∈ {m+ 1, . . . ,m+ n} and define

r =
m∑
i=1

eik ⊗ eki, s =
m+n∑
j=m+1

ejl ⊗ elj, (3.5)

where eij are the matrices with 1 in the (i, j)-th entry and 0 elsewhere. Then r, s are
solutions to both (3.3) and (3.4), and hence (r, s) is an associative Yang-Baxter pair.

(4) Examples (2) and (3) can be modified by splitting the FS-equation into two
equations

r13r12 = r12r23, s12s23 = s23s13 (3.6)

If r, s satisfy (3.6), then both (r, 0) and (0, s) are associative Yang-Baxter pairs. If,
in addition, r, s satisfy the orthogonality condition (3.4), then(r, s) is an associative
Yang-Baxter pair.

As explained in [7, Section 8.2], the first of equations (3.6) can be interpreted
as an associativity condition for a particular multiplication defined on V ⊗ V , where
V is a finite dimensional vector space. Dually, the second of equations (3.6) can be
interpreted as a coassociativity condition for a particular comultiplication defined on a
unital associative algebra [7, Propositon 153]. From a different perspective the first of
conditions (3.6) can be viewed as the associative version of the integrability or flatness
condition for the Knizhnik-Zamolodchikov connection; see e.g. [12, Chapter XIX] or
[17, Chapter 12].

(5) Suppose that A contains g, h such that g2 = 0 and gh = hg = 0. Then r = g⊗h,
s = h⊗ g is an associative Yang-Baxter pair.

The following proposition generalises [4, Proposition 4.3].

Proposition 3.4. Let (r, s) be an associative Yang-Baxter pair in A. Let us write

r =
∑

r[1] ⊗ r[2], s =
∑

s[1] ⊗ s[2], (3.7)

(summation indices suppressed), and define

R, S : A→ A, R(a) =
∑

r[1]ar[2], S(a) =
∑

s[1]as[2]. (3.8)

Then (A,R, S) is a Rota-Baxter system.
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Furthermore, if f : A → B is an algebra map and (rf , sf ) is the associative Yang-
Baxter pair induced by f as in (3.2), then f is a morphism of Rota-Baxter systems
from the system associated to (r, s) to the system associated to (rf , sf ).

Proof. In terms of the Sweedler-like notation (3.7), equations (3.1) come out as∑
r[1]r̃[1] ⊗ r̃[2] ⊗ r[2] −

∑
r[1] ⊗ r[2]r̃[1] ⊗ r̃[2] +

∑
r[1] ⊗ s[1] ⊗ s[2]r[2] = 0, (3.9a)∑

s[1]r[1] ⊗ r[2] ⊗ s[2] −
∑

s[1] ⊗ s[2]s̃[1] ⊗ s̃[2] +
∑

s̃[1] ⊗ s[1] ⊗ s[2]s̃[2] = 0, (3.9b)

where
∑
r̃[1]⊗ r̃[2],

∑
s̃[1]⊗ s̃[2] denote another copies of r and s respectively. Replacing

tensor products in (3.9) by a and b and using definition (3.8) one obtains equations
(2.1), as required.

The second statement follows by the definition of (rf , sf ) and by the multiplicativity
of f . tu

Example 3.5.
(1) In the case of matrices of Example 3.3 (3), the Rota-Baxter system associated

to (3.5) consists of the operator R, which acting on a (block-diagonal) matrix (aij)
returns a matrix with entries akk on the first m diagonal places and zeros elsewhere. S
returns a matrix containing all in the last n diagonal places as only possible non-zero
entries.

(2) In the case of Example 3.3 (4), the Rota-Baxter system associated to (r, s)
satisfying (3.6) and (3.4) will satisfy the separated equations

R(a)R(b) = R(R(a)b), S(a)S(b) = S(aS(b)), S(R(a)b) = R(aS(b)) = 0.

(3) In the setup of Example 3.3 (5), the Rota-Baxter system associated to g and h
is R(a) = gah, S(a) = hag.

3.2. Covariant bialgebras. In [3] associative classical Yang-Baxter operators
were connected with infinitesimal bialgebras, i.e. algebras admitting a coassociative
coproduct that is a derivation. Following the same line of ideas, associative Yang-
Baxter pairs are related to covariant bialgebras in which coproduct is required to be a
covariant derivation. The aim of this section is to introduce covariant bialgebras and
to reveal this relation.

Definition 3.6. Let A be an associative algebra and δ1, δ2 : A→ A⊗A derivations
(cf. (1.4)).

(1) If M is a right A-module, then a K-linear map ∇ : M →M ⊗A is called a right
covariant derivation (or a right connection) with respect to δ1 if

∇(ma) = ∇(m)a+mδ1(a), for all a ∈ A and m ∈M . (3.10)

(2) If M is a left A-module, then a K-linear map ∇ : M → A ⊗M is called a left
covariant derivation (or a left connection) with respect to δ2 if

∇(am) = a∇(m) + δ2(a)m, for all a ∈ A and m ∈M . (3.11)
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(3) A K-linear map ∇ : A → A ⊗ A is called a covariant derivation with respect to
(δ1, δ2) if it is a right covariant derivation with respect to δ1 and left covariant
derivation with respect to δ2, i.e.

∇(ab) = ∇(a)b+ aδ1(b) = a∇(b) + δ2(a)b, for all a, b ∈ A. (3.12)

Obviously, any derivation δ : A → A ⊗ A is a covariant derivation with respect to
(δ, δ), and a covariant derivation with respect to (0, 0) is the same as an A-bimodule
map A→ A⊗ A. Furthermore, if A is a unital algebra, then a covariant derivation is
fully determined by its value at the identity of A.

Definition 3.7. A covariant bialgebra is a quadruple (A, δ1, δ2,∆), such that

(a) A is an associative algebra,

(b) δ1, δ2 : A→ A⊗ A are derivations,

(c) (A,∆) is a coassociative coalgebra such that ∆ is a covariant derivation with
respect to (δ1, δ2).

If A has identity, then a covariant bialgebra (A, δ1, δ2,∆) is said to be unital provided
∆(1) = 1⊗ 1.

A morphism of covariant bialgebras is a K-linear map that is both an algebra and
a coalgebra map.

Definition 3.8. Let (A, δ1, δ2,∆) be a covariant bialgebra. The subalgebra

C(A) := ker δ1 ∩ ker δ2, (3.13)

is called a constant subalgebra of (A, δ1, δ2,∆). If A has identity, then we say that
(A, δ1, δ2,∆) is left-connected if ker δ1 = K1. Symmetrically, (A, δ1, δ2,∆) is right-
connected if ker δ2 = K1, and it is connected if it is both left- and right-connected.

Since ∆ is a covariant derivation with respect to (δ1, δ2), ∆ is a C(A)-bilinear map.
In the case of a unital algebra A, for all a ∈ K, δ1(a1) = δ2(a1) = 0. Therefore,
(A, δ1, δ2,∆) is right- or left-connected if and only if C(A) = K1.

Example 3.9.
(1) Recall that a unital algebra A is said to be Frobenius if it is isomorphic to its

vector space dual as a right (equivalently, left) A-module. By [1, Proposition 2.1] a uni-
tal algebra A is a Frobenius algebra if and only if it admits a coassociative and counital
comultiplication ∆ that is a morphism of A-bimodules. Thus, if A is a Frobenius al-
gebra, then (A, 0, 0,∆) is a covariant bialgebra. Obviously, the constant subalgebra of
(A, 0, 0,∆) is equal to A.

(2) (A,∆,∆,∆) is a covariant bialgebra if and only if (A,∆) is an infinitesimal
bialgebra [3], i.e. an algebra equipped with a coassociatitive comultiplication which is
also a derivation. Obviously, C(A) = ker ∆.

Proposition 3.10. Let A be a unital algebra, and let δ1, δ2 : A → A ⊗ A be
derivations.
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(1) There exists a coassociative covariant derivation ∆ : A→ A⊗ A with respect to
(δ1, δ2) if and only if there exists u ∈ A⊗ A such that, for all a ∈ A,

(δ1 − δ2)(a) = au− ua, (3.14a)

(δ1 ⊗ id− id⊗ δ1) ◦ δ1(a) = u23δ1(a)13, (3.14b)

(δ1 ⊗ id− id⊗ δ1)(u) = u23u13 − u12u23, (3.14c)

where the leg-numbering notation (1.6) is used. In this case

∆(a) = ua+ δ1(a) = au+ δ2(a). (3.15)

(2) The constant subalgebra of (A, δ1, δ2,∆) is the maximal subalgebra of A over which
∆ is bilinear.

Proof. (1) Let ∆ : A→ A⊗ A be a K-linear map and set u = ∆(1). Then ∆ is a
covariant derivation if and only if, for all a ∈ A,

∆(a) = ua+ δ1(a) = au+ δ2(a),

which is equivalent to (3.14a) and necessarily includes (3.15). The coassociativity of ∆
at a = 1 is equivalent to (3.14c). Writing down the coassociativity condition for ∆ at
general a ∈ A, and using the covariant derivation property and (3.14c), one finds that
this condition is equivalent to (3.14b).

(2) Since ∆ is a covariant derivation, it is bilinear over C(A). Conversely, if b ∈ A
is such that ∆(ab) = ∆(a)b and ∆(ba) = b∆(a), for all a ∈ A, then

δ1(b) = ∆(b)− ub = ∆(1)b− ub = 0.

by (3.15). Similarly, δ2(b) = 0. tu

Corollary 3.11. A quadruple (A, δ1, δ2,∆) consisting of a unital algebra A, deriva-
tions δ1, δ2 : A → A ⊗ A and a K-linear map ∆ : A → A ⊗ A is a unital covariant
bialgebra if and only if, for all a ∈ A,

(δ1 − δ2)(a) = a⊗ 1− 1⊗ a, (3.16a)

(δ1 ⊗ id− id⊗ δ1) ◦ δ1(a) = δ1(a)13, (3.16b)

and

∆(a) = 1⊗ a+ δ1(a). (3.17)

A unital covariant bialgebra is connected.

Proof. If (A, δ1, δ2,∆) is to be a unital covariant bialgebra, then u = 1 ⊗ 1, and
equations (3.14) reduce to (3.16), while (3.15) becomes (3.17).

Obviously, K1 ⊆ C(A). Conversely, if a ∈ ker δ2(a), then δ1(a) = a ⊗ 1 − 1 ⊗ a
by (3.16a). Hence a ∈ K1. Similarly, (3.16a) yields that δ1(a) = 0 implies a ∈ K1.
Therefore, (A, δ1, δ2,∆) is connected. tu

Remark 3.12. It is worth pointing out that if A is a unital algebra, then in a
covariant bialgebra (A, δ1, δ2,∆) both δ2 and ∆ are fully determined by δ1 and ∆(1)
through the relations (3.14a) and (3.15). (In a similar way δ1 and ∆ are determined by
δ2 and ∆(1).) This is a reason for δ2 not featuring in equations (3.14b)-(3.14c). On the
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other hand, using (3.14a) one can replace δ1 by δ2 in (3.14b)-(3.14c) and thus obtain
the equivalent conditions

(id⊗ δ2 − δ2 ⊗ id) ◦ δ2(a) = δ2(a)13u12, (3.18a)

(δ2 ⊗ id− id⊗ δ2)(u) = u12u23 − u13u12, (3.18b)

In the case of a unital covariant bialgebra (A, δ1, δ2,∆), the form of any two of
δ1, δ2,∆ is fully determined by the third one.

Example 3.13. Let A = K[ζ]/〈ζ2〉 be the algebra of dual numbers and consider
the map

δ1 : A→ A⊗ A, 1 7→ 0, ζ 7→ ζ ⊗ ζ.
One easily checks that δ1 is a derivation, and since A is a unital algebra, in the view
of Proposition 3.10 and Remark 3.12, we need to find u ∈ A⊗A that satisfies (3.14b)-
(3.14c). Set

u = a1⊗ ζ + bζ ⊗ ζ + c1⊗ 1 + dζ ⊗ 1.

Since (δ1 ⊗ id− id⊗ δ1) ◦ δ1 = 0, equation (3.14b) is equivalent to

(a1⊗ 1⊗ ζ + b1⊗ ζ ⊗ ζ + c1⊗ 1⊗ 1 + d1⊗ ζ ⊗ 1)ζ ⊗ 1⊗ ζ = 0,

which is satisfied provided c = d = 0. Then (3.14c) becomes

−a21⊗ ζ ⊗ ζ − ab ζ ⊗ ζ ⊗ ζ = −a1⊗ ζ ⊗ ζ,
so that a2 = a and ab = 0. Therefore,

u = 1⊗ ζ or u = bζ ⊗ ζ, b ∈ K.

In the first case,

∆(1) = 1⊗ ζ, ∆(ζ) = ζ ⊗ ζ.
This covariant bialgebra is left-connected but it is not right-connected. In the second
case,

∆(1) = bζ ⊗ ζ, ∆(ζ) = (1 + b)ζ ⊗ ζ,
and the bialgebra is connected. Only when b = 0, ∆ is a derivation, thus making A
into an infinitesimal bialgebra in this case; cf. [3, Example 2.3.6].

Remark 3.14. Dually to unital covariant bialgebras one can consider counital co-
variant bialgebras. If A is a counital coalgebra with a counit ε, and (A, δ1, δ2,∆) is a
covariant bialgebra, then the covariant derivation property of ∆ yields, for all a, b ∈ A,

(ε⊗ id)(aδ1(b)) = 0, (id⊗ ε)(∆(a)b+ aδ1(b)) = ab, (3.19a)

(id⊗ ε)(δ2(a)b) = 0, (ε⊗ id)(a∆(b) + δ2(a)b) = ab. (3.19b)

If in addition it is assumed that ε is a multiplicative map (a condition dual to that
of ∆(1) = 1 ⊗ 1 in the case of unital bialgebras), in which case one feels justified in
talking about a counital covariant bialgebra, equations (3.19) reduce to

(ε⊗ id) ◦ δ1 = 0, a ((id⊗ ε) ◦ δ1(b)− b+ ε(b)) = 0, (3.20a)

(id⊗ ε) ◦ δ2 = 0, ((ε⊗ id) ◦ δ2(a) + a− ε(a)) b = 0, (3.20b)
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for all a, b ∈ A. In contrast to infinitesimal bialgebras [3, Remark 2.2], there exist
non-trivial covariant bialgebras that are both unital and counital. An example of such
a bialgebra is described in Example 3.21.

Next a characterisation of covariant bialgebras with inner derivations and coprod-
ucts is given, thus generalising [3, Proposition 5.1].

Proposition 3.15. Let A be an algebra and r, s ∈ A⊗A and let us define K-linear
maps δr, δs,∆ : A→ A⊗ A by

δr(a) = ar − ra, δs(a) = as− sa, ∆(a) = ar − sa. (3.21)

Then (A, δr, δs,∆) is a covariant bialgebra if and only if, for all a ∈ A,

a(r13r12 − r12r23 + s23r13) = (s13r12 − s12s23 + s23s13)a. (3.22)

Proof. Clearly δr, δs are (inner) derivations and one easily checks that ∆ is a
covariant derivation with respect to (δr, δs). Writing r =

∑
r[1]⊗ r[2], s =

∑
s[1]⊗ s[2],

one can compute, for all a ∈ A,

(id⊗∆) ◦∆(a) =
∑

ar[1] ⊗∆(r[2])−
∑

s[1] ⊗∆(s[2]a)

=
∑

ar[1] ⊗ r[2]r −
∑

ar[1] ⊗ sr[2] − sar +
∑

s[1] ⊗ ss[2]a
= ar12r23 − as23r13 − sar + s23s13a,

and

(∆⊗ id) ◦∆(a) =
∑

∆(ar[1])⊗ r[2] −
∑

∆(s[1])⊗ s[2]a

=
∑

ar[1]r ⊗ r[2] − sar −
∑

s[1]r ⊗ s[2]a+
∑

s[1] ⊗ s[2]sa
= ar13r12 − sar − s13r12a+ s12s23a.

Therefore, ∆ is a coassociative map if and only if the condition (3.22) is satisfied. tu

Remark 3.16. If A is a non-degenerate algebra, then the form of ∆ in (3.21)
specifies the forms of δr and δs. Indeed, let us suppose that ∆(a) = ra − sa is a
(δ1, δ2)-covariant derivation. Then, for all a, b ∈ A,

a(br − rb) = aδ1(b) and (as− sa)b = δ2(a)b.

Since the product in A is non-degenerate, these equations imply that δ1 = δr and
δ2 = δs.

Immediately from Proposition 3.15 one deduces the existence of covariant bialgebras
affiliated with associative Yang-Baxter pairs.

Corollary 3.17. If (r, s) is an associative Yang-Baxter pair on A and δr, δs,∆ are
defined by (3.21), then (A, δr, δs,∆) is a covariant bialgebra. In this case, (A, δr, δs,∆)
is called a quasitriangular covariant bialgebra.

Furthermore, if f : A → B is an algebra map and (rf , sf ) is the associative Yang-
Baxter pair induced by f as in (3.2), then f is a morphism of quasitriangular covariant
bialgebras from the one associated to (r, s) to the one associated to (rf , sf ).
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Proof. The first statement follows immediately from Proposition 3.15. The second
one is a consequence of the definition of the coproduct associated to an associative
Yang-Baxter pair and the multiplicativity of f . tu

Lemma 3.18. Let A be an algebra, r, s ∈ A⊗ A and δr, δs,∆ be defined by (3.21).
Then (A, δr, δs,∆) is a quasitriangular covariant bialgebra if and only if

(id⊗∆)(r) = r13r12 and (∆⊗ id)(s) = −s23s13. (3.23)

Proof. Using the definition of ∆ in (3.21) one easily checks that

(id⊗∆)(r) = r12r23 − s23r13.

Hence the first of equations (3.23) is equivalent to (3.1a). In a similar way, the second
of equations (3.23) is equivalent to (3.1b). tu

Lemma 3.19. Unital quasitriangular covariant bialgebra structures on A are deter-
mined by r ∈ A⊗ A such that

r13 = r13r12 − r12r23 + r23r13, (3.24)

or equivalently,

(id⊗∆)(r) = r13r12 and (∆⊗ id)(r) = −r23r13 + r23 + r13, (3.25)

where ∆(a) = 1⊗ a+ ar − ra.

Proof. A quasitriangular covariant bialgebra (A, δr, δs,∆) is unital if and only if
r − s = 1 ⊗ 1. In this case equations (3.1) reduce to (3.19), while equations (3.23)
become (3.25). tu

Example 3.20. Let e be an idempotent element of a unital algebra A, and let
κ ∈ {0, 1} ⊂ K. Then re = κ1⊗ e+ (1− κ)e⊗ 1 solves equation (3.24). Hence (re, se)
with se = κ1⊗ e+ (1− κ)e⊗ 1− 1⊗ 1 is an associative Yang-Baxter pair, and

∆e(a) = κ(a⊗ e− 1⊗ ea)) + (1− κ)(ae⊗ 1− e⊗ a) + 1⊗ a. (3.26)

The corresponding solutions to the Rota-Baxter system come out as

Re(a) = ea+ κ(ae− ea), Se(a) = (e− 1)a+ κ(ae− ea). (3.27)

The associative and pre-Lie algebra structures on A arising from Corollary 2.7 are

a∗e b = eab+a(e−1)b+κ(abe−eab), a•e b = eab−b(e−1)a+κ(aeb+bea−eab−bae).

Taking e = 0, 1 ∈ A, one obtains from (3.26)

∆0(a) = 1⊗ a, ∆1 = a⊗ 1.

(A, 0, δU ,∆0) and (A, δU , 0,∆1) are unique unital covariant bialgebras associated to the
universal derivation δU : a 7→ a ⊗ 1 − 1 ⊗ a. Seen from a different perspective, these
are unique unital covariant bialgebras in which the comultiplication is either right (the
case of ∆0) or left (the case of ∆1) A-linear.
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For a concrete solution to the Rota-Baxter system of the type (3.27), consider

A = M2(K) and e =

(
1 0
0 0

)
. Then

Re

(
a b
c d

)
=

(
a (1− κ)b
κc 0

)
, Se

(
a b
c d

)
=

(
0 −κb

(κ− 1)c −d

)
Example 3.21. The construction of Example 3.20 can be employed to produce an

example of a quasitriangular unital and counital covariant bialgebra. Let

A = K[a, e]/〈e2 − e, ae〉.
For κ = 1, the unital coproduct (3.26) comes out as

∆e(a
n) = an ⊗ e+ 1⊗ an, ∆e(e) = e⊗ e. (3.28)

The coproduct ∆e admits a multiplicative counit,

ε(1) = ε(e) = 1, ε(an) = 0. (3.29)

Thus A with the coproduct (3.28) and the counit (3.29) is a quasitriangular unital and
counital covariant bialgebra.

3.3. Covariant modules. Hopf modules, i.e. vector spaces with compatible ac-
tions and coactions of a bialgebra, form the representation category of bialgebras. In
a similar manner, the representation category of covariant bialgebras is provided by
covariant modules.

Definition 3.22. Let (A, δ1, δ2,∆) be a covariant bialgebra. A right A-module and
a right A-comodule M is said to be a right covariant A-module provided the coaction
is a right covariant derivation with respect to δ1. Symmetrically, a left A-module and
a left A-comodule N is said to be a left covariant A-module provided the coaction is
a left covariant derivation with respect to δ2. A morphism of covariant modules is a
map that is both A-linear and A-colinear. The category of right covariant A-modules
is denoted by MA

A. If A has an identity, then the full subcategory of MA
A consisting

of unital modules is denoted by uMA
A. If A has a counit, then the full subcategory of

MA
A consisting of counital modules is denoted by cMA

A. The category of right covariant
A-modules that are both unital and counital is denoted by cuMA

A.

By the obvious left-right symmetry of Definition (3.22) whatever is said about right
covariant modules can equally well be said about left covariant modules.

Example 3.23. The algebra A is both a left and right covariant module over
(A, δ1, δ2,∆) via multiplication and comultiplication. Consequently, for any subalgebra
B of the constant algebra C(A) (see Definition 3.8) the assignment

V 7→ V ⊗BA, (v⊗Ba)b = v⊗Bab, v⊗Ba 7→ v⊗B∆(a), v ∈ V, a, b ∈ A (3.30)

defines the functor FB : MB → MA
A from the category of right B-modules to the

category of right covariant A-modules. On morphisms FB is defined by f 7→ f ⊗B id.
Clearly, if A has identity, then the image of FB is in uMA

A, and if A has counit,
then the image of FB is in cMA

A.
The functors FB defined in this example are called free right covariant module

functors relative to B. Symmetrically, free left covariant module functors are defined.
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Proposition 3.24. Let A be a unital algebra and (A, δ1, δ2,∆) be a covariant bial-
gebra, let B ⊆ C(A) be a subalgebra, and let u := ∆(1). For any right covariant
A-module M with coaction %M , the coinvariants are defined by

M coA := {m ∈M | %M(m) = mu}. (3.31)

(1) The functor given on objects by

GB : uMA
A →MB, M 7→M coA, (3.32)

and as identity on morphisms, is the right adjoint to the free covariant module
functor FB : MB → uMA

A in Example 3.23.

(2) If A is flat as a right B-module and ker δ2 = AcoA ⊆ B, then FB is a full and
faithful functor.

Proof. (1) First we note that the functor GB is well-defined, since, for all b ∈ B
and m ∈M coA,

%M(mb) = %M(m)b+ δ1(b) = mub = mbu,

where the second equality follows by the fact that B ⊆ C(A), and the third one is a
consequence of (3.14a).

The unit and counit of the adjunction are defined by, for all V ∈ MB and M ∈
uMA

A,

ηV : V → (V ⊗A A)coA, v 7→ v ⊗B 1, ϕM : M coA ⊗B A→M, m⊗B a 7→ ma.
(3.33)

Clearly, ηV is a well-defined right B-linear map natural in V . It is equally clear that ϕM
is a right A-linear map. To check the right A-colinearity of ϕM , we take any m ∈M coA

and a ∈ A and compute

%M(ϕM(m⊗B a)) = %M(ma) = %M(m)a+mδ1(a)

= mua+mδ1(a) = m∆(a) = (ϕM ⊗ id) ◦ (id⊗B ∆)(m⊗B a).

The second equality follows by the definition of a right covariant A-module, the third
one is a consequence of the fact that m is a coinvariant element of M , and the fourth
equality follows by (3.15). The naturality of ϕM is obvious. Finally, the triangle
equalities that a unit and a counit of an adjunction are required to satisfy follow by
the unitality of the algebra A and its unital modules.

(2) The equality ker δ2 = AcoA in the hypothesis follows by (3.15). For any right
B-module V and

∑
i vi ⊗B ai ∈ (V ⊗B A)coA,∑

i

vi ⊗B ∆(ai) =
∑
i

vi ⊗B aiu.

Hence, in view of the second of equations (3.15),∑
i

vi ⊗B δ2(ai) = 0.

By the flatness of A as a right B-module, δ2(ai) = 0, and since ker δ2 ⊆ B, ai ∈ B.
Thus in this case we can define

η−1V (
∑
i

vi ⊗B ai) :=
∑
i

viai. (3.34)
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One easily checks that η−1V is the (natural) inverse to the unit of adjunction ηV . Hence
FB is a full and faithful functor. tu

Remark 3.25. Using standard methods of Hopf-Galois theory one easily finds a
sufficient condition for the coinvariants functor GB to be a full and faithful functor.
We start with a covariant bialgebra (A, δ1, δ2,∆), choose B ⊆ C(A) and assume that A
is a unital algebra, admits a right counit, and that A is flat as a left B-module. If there
exists a K-linear map τ : A → A⊗B A, written on elements as τ(a) =

∑
a(1) ⊗B a(2),

such that, for all a ∈ A, ∑
a(1)τ(a(2)) = 1⊗B a, (3.35a)

(δ1 ⊗B id) ◦ τ(a) =
∑

a(1)u⊗B a(2) − 1⊗ 1⊗B a, (3.35b)∑
a(1)a(2) = ε(a)1, (3.35c)

where u = ∆(1), then the counit ϕ of the adjunction FB a GB has a natural inverse,
for all M ∈ cuMA

A,

ϕ−1M : M →M coA ⊗B A, m 7→
∑

m(0)τ(m(1)),

where the standard Sweedler notation for coactions %M(m) =
∑
m(0) ⊗m(1) is used.

Therefore, GB is a full and faithful functor in this case. If in addition the hypothesis of
Proposition 3.24(2) is satisfied (in which case, condition (3.35c) implies (3.35a)), then
the free covariant module functor FB : MB → cuMA

A is an equivalence.
While the hypothesis of Proposition 3.24(2) is easily fulfilled (for example, it holds

for B = K and all right-connected covariant bialgebras, thus in particular for all unital
covariant bialgebras), examples of covariant bialgebras admitting a function τ satisfying
conditions (3.35) (apart from the obvious trivial case (K, 0, 0, id)) seem to be hard to
come by. Thus: whether a definition of a covariant Hopf algebra modelled on the
fundamental theorem of Hopf modules which asserts that a bialgebra is a Hopf algebra
if and only if the free Hopf module functor from the category of vector spaces to right
(or left) Hopf modules is an equivalence, and in particular insisting on existence of τ
satisfying condition (3.35), is appropriate in the realm of covariant bialgebras remains
to be seen. The definition of an infinitesimal Hopf algebra proposed in [3] is motivated
by a different viewpoint.

In the case of a quasitriangular covariant bialgebra (A, δr, δs,∆), every A-module
is a covariant module in a natural way (cf. [7, Proposition 153, p. 339]).

Proposition 3.26. Let (A, δr, δs,∆) be a quasitriangular covariant bialgebra asso-
ciated to an associative Yang-Baxter pair (r, s). Then every right A-module M is a
right covariant A-module with the coaction

%M : M →M ⊗ A, m 7→ mr. (3.36)

Similarly, every left A-module N is a left covariant A-module with the coaction

%N : N → A⊗N, n 7→ −sm. (3.37)
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Proof. We observe that, for all m ∈M ,

(%M ⊗ id) ◦ %M(m) = mr13r12,

and this is equal to (id⊗∆)◦%M(m) by Lemma 3.19 and the definition of %M in (3.36).
The second statement is proven in a similar way. tu

3.4. Extensions. Unlike the definition of a bialgebra, the definition of a covari-
ant bialgebra does not use a switch or a twist map between the factors in a tensor
product. Therefore, it can be verbatim transferred to any monoidal category enriched
over vector spaces (or Abelian groups). The same is true about the definition of co-
variant modules. As a special case, one can consider the category of bimodules over
a unital associative ring B with the tensor product over B as a monoidal structure.
Following a long standing Hopf algebra tradition, a covariant bialgebra in this category
might be called a covariant bialgebroid and comprises a B-bimodule A together with
a B-bilinear associative multiplication µ : A⊗B A → A (i.e. (A, µ) is a non-unital B-
ring), two B-bilinear A-derivations δ1, δ2 : A→ A⊗B A and a B-bilinear coassociative
comultiplication ∆ : A→ A⊗B A that is required to be a (δ1, δ2)-covariant derivation.

If a monoidal category has no braiding (as is the case, for example in the category of
B-bimodules), equations (3.1) no longer make sense in general. Still, even in such cases
some additional conditions on r and s can be put, so that an associative Yang-Baxter
pair and the corresponding Rota-Baxter system are formed. For example, in the case
of B-bimodules, for any B-bimodule M , let us denote the centraliser of B in M by

MB := {m ∈ | for all b ∈ B, mb = bm}.

For any r, s ∈ (A ⊗B A)B, equations (3.1) can be formed, maps (3.21) are B-bilinear
and ∆ is a coassociative map provided r, s solve (3.1). Furthermore, Proposition 3.15
and Proposition 3.26 (with the word bialgebra replaced by B-bialgebroid) remain valid
for all r, s ∈ (A⊗B A)B.

4. Twisted Rota-Baxter operators

To allow for the interpretation of Jackson’s q-integral as a Rota-Baxter-type oper-
ator the introduction of an endomorphism twist into the definition of the Rota-Baxter
algebra seems to be needed. This is prompted by the fact that the q-derivation to
which Jackson’s integral is a partial inverse operation is itself a derivation twisted by
an endomorphism (in fact by an automorphism). In this section we propose a suitable
twisting of a Rota-Baxter operator and show that every twisted Rota-Baxter operator
leads to a Rota-Baxter system on the algebra on which it operates.

Definition 4.1. Let A be an associative algebra, let R : A → A be a K-linear
operator, and let B := R(A). The map R is called a σ-twisted Rota-Baxter operator if
there exists a multiplicative map σ : B → A such that, for all a, b ∈ A,

R(a)R(b) = R(R(a)b+ a Rσ(b)), (4.1)

where Rσ := σ ◦R.
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We note in passing that the requirement that σ be a multiplicative map is substanti-
ated by the fact that the image of any K-linear endomorphism R of A that satisfies the
condition (4.1) (for any K-linear map σ : R(A)→ A) is closed under the multiplication
of A.

One should be made aware that the notion introduced in Definition 4.1 is different
from that of [18, Section 3], which uses a cocycle rather than algebra homomorphism
for twisting.

Lemma 4.2. Let R be a σ-twisted Rota-Baxter operator on A. Then (A,R,Rσ) is
a Rota-Baxter system.

Proof. Equation (4.1) is equivalent to (2.1a) with S = Rσ. Applying σ to (4.1)
and using the multiplicativity of σ one obtains (2.1b) with S = Rσ. tu

The introduction of twisted Rota-Baxter operators is motivated by the following

Example 4.3. Assume that K is a field of characteristic zero, and let q ∈ K be
a non-zero number that is not a root of unity. For all integers n denote by [n]q the
q-integers,

[n]q =
1− qn

1− q
.

On the polynomial ring K[x] we define K-linear operators σ, J : K[x]→ K[x] by

σ(xn) = qnxn, J(xn) =
1

[n+ 1]q
xn+1. (4.2)

The operator J is the Jackson q-integral. Clearly, σ is an algebra map and

Jσ(xn) := σ ◦ J(xn) =
qn+1

[n+ 1]q
xn+1,

so that

J(J(xn)xm + xnJσ(xm)) =
[m+ n+ 2]q

[m+ 1]q[n+ 1]q
J(xm+n+1) = J(xn)J(xm).

Therefore, the Jackson q-integral is a twisted Rota-Baxter operator. In view of Corol-
lary 2.7, K[x] has an associative product

xn ∗ xm =
[m+ n+ 2]q

[m+ 1]q[n+ 1]q
xm+n+1,

while

xn • xm = (1− q)xm+n+1,

defines a pre-Lie algebra structure on K[x].

Remark 4.4. The fact that the Jackson integral is a solution to the twisted Rota-
Baxter equation was observed in [10]. This observation led the authors to introduce
the notion of a twisted dendriform algebra [10, Definition 1]. One can easily prove
that in fact, by taking into account the twist in the definition of one of the dendriform
operations (as indicated, for example, by the formula (41) in [10]), a twisted dendriform
algebra can always be interpreted as a dendriform algebra.
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Differential Rota-Baxter algebras provide yet another example of a twisted Rota-
Baxter operator.

Example 4.5. Following [11, Definition 1.1] a differential Rota-Baxter algebra of
weight λ is a triple (A,R, ∂) such that (A,R) is a Rota-Baxter algebra of weight λ, the
K-linear operator ∂ : A→ A satisfies the twisted Leibniz rule,

∂(ab) = ∂(a)b+ a∂(b) + λ∂(a)∂(b), for all a, b ∈ A, (4.3)

and
∂ ◦R = id. (4.4)

The twisted Leibniz rule (4.3) implies that a K-linear operator

σλ : A→ A, a 7→ a+ λ∂(a). (4.5)

is an algebra map, while (4.4) implies that

Rσλ(a) = R(a) + λa.

Hence R is a σλ-twisted Rota-Baxter operator.

Example 4.5 is a special case of a more general situation. Let A be an algebra and
B a subalgebra of A. Given an algebra homomorphism σ : B → A we denote by Aσ
the B-bimodule structure on A twisted by σ on the right, i.e.

b · a · b′ := baσ(b′), for all a ∈ A, b, b′ ∈ B.
In particular, an Aσ-derivation of B is a K-linear map ∂ : B → A such that

∂(ab) = ∂(a)σ(b) + a∂(b), for all a, b ∈ B.

Proposition 4.6. Let A be an associative algebra and let R : A→ A be a K-linear
operator. Set B := R(A).

(1) If (A,R, S) is a Rota-Baxter system and there exists a K-linear map ∂ : B → A
such that ∂ ◦R = id, then the map σ := S ◦ ∂ : B → A is multiplicative, ∂ is an
Aσ-valued derivation of B and S = σ ◦R.

(2) If B is a subalgebra of A and there exist a multiplicative map σ : B → A and an
Aσ-valued derivation of B such that ∂◦R = id, then R is a σ-twisted Rota-Baxter
operator.

Proof. (1) Since ∂ ◦R = id, equation (2.1a) implies that

∂ (R(a)R(b)) = R(a)b+ aS(b), for all a, b ∈ A. (4.6)

Hence, for all a, b ∈ A,

σ (R(a)R(b)) = S (R(a)b+ aS(b)) = S(a)S(b) = σ (R(a))σ (R(b)) ,

by (2.1b), i.e. σ is a multiplicative map B → A as stated. Given the definition of σ and
the splitting property of ∂, (4.6) is equivalent to the statement that ∂ is an Aσ-valued
derivation of B. Clearly, S = S ◦ ∂ ◦R = σ ◦R.

(2) First we note that since ∂ ◦ R = id, the map ∂ is a K-linear monomorphism.
Since ∂ is an Aσ-valued derivation, for all a, b ∈ A,

∂ (R(a)R(b)) = R(a)∂ (R(b)) + ∂ (R(a))σ (R(b)) = R(a)b+ aRσ(b)

= ∂ (R (R(a)b+ aRσ(b))) ,
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which implies that

R(a)R(b) = R (R(a)b+ aRσ(b)) ,

i.e. R is a σ-twisted Rota-Baxter operator. tu
In view of Example 4.5 and Proposition 4.6, by a twisted differential Rota-Baxter

algebra we mean a quadruple (A, σ, ∂, R) consisting of a σ-twisted Rota-Baxter operator
R : A→ A and an Aσ-valued derivation ∂ : R(A)→ A satisfying (4.4).

In the context of the Jackson q-integral Example 4.3, let ∂ : K[x]→ K[x] be defined
by ∂(xn) = [n]qx

n−1. Then (K[x], σ, ∂, J), with σ and J given by (4.2), is a twisted
differential Rota-Baxter algebra.

5. Conclusions

In this paper we proposed a modification of the notion of a Rota-Baxter algebra.
A number of examples (general and specific) as well as an algebraic grounding for
Rota-Baxter systems were presented. Whether Rota-Baxter systems can find applica-
tions in the areas to which traditionally Rota-Baxter algebras are applied (probability,
combinatorics, renormalisation of quantum field theories) remains to be seen. On the
algebraic side, the author believes that covariant bialgebras deserve to be studied fur-
ther, and that such a study constitutes an interesting research avenue.

In a different direction, one can easily write the Lie-algebraic version of classical
Yang-Baxter pairs,

[r12, r13] + [r12, r23] + [s13, r23] = 0, [s12, r13] + [s12, s23] + [s13, s23] = 0. (5.1)

Whether the system of equations (5.1) (e.g. with Poisson brackets as Lie operations)

(a) can find usage in the Hamiltonian theory and lead to solutions of new and existing
examples of integrable systems,

(b) can be quantised and lead to interesting algebraic structures,

in the way similar to the classical Yang-Baxter equations, are open questions which
the author believes are worth further study.
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