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Abstract 14 

Animals that forage in groups have access to social information concerning the quality and location of food 15 

resources available. The degree to which individuals rely on social information over their own private information 16 

depends on a myriad of ecological and social factors. In general, where resources are patchy in space and/or time, 17 

individuals that use social information and join others at previously identified food patches can reduce both search 18 

times and the variance in finding food. Here, we explore social foraging dynamics of shoals of three-spined 19 

sticklebacks (Gasterosteus aculeatus) and investigate when fish tend to use private information and find food 20 

themselves, or rely on social information and attend to the food discoveries of others.  We show that fish’s allocation 21 

to alternative foraging tactics (i.e. finding or joining) can be explained by environmental quality. In environments 22 

with large food patches, fish experience a reduced finder’s share and tend to adopt joining foraging tactics; in 23 

environments with small food patches, fish rely on private information and tend to discover their own food patches. 24 

However, we found that finding and joining do not result in equal foraging returns as predicted by theory, and 25 

instead payoffs were higher for fish adopting finding tactics in all environments we studied. These unequal payoffs 26 

may be explained, in part, by consistent inter-individual differences in the amount of food fish consumed per 27 
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foraging event and by heavier fish consuming more food. Overall, our simple experimental approach suggests that 28 

socially foraging three-spined sticklebacks do show a degree of behavioural flexibility that enables them to 29 

efficiently exploit food patches under a range of environmental conditions. 30 

 31 

Keywords: finder-joiner dynamics, social foraging, information sharing, three-spined sticklebacks 32 

 33 

Statement of Significance 34 

Animals must continually make decisions to secure resources to survive and reproduce, however, inherent 35 

variability in the spatio-temporal distribution of resources means that the best decision is not fixed. How do animals 36 

ensure they respond effectively to variation? For animals that live and forage in groups, how do environmental 37 

conditions determine whether they use private information or social information to meet these challenges? These are 38 

important questions in behavioural ecology and have great significance to animals’ ability to deal with unheralded 39 

environmental change. Here, we show empirically that three-spine sticklebacks flexibly and adaptively switch 40 

between behavioural tactics to acquire foraging resources in accordance with the abundance and distribution of 41 

forage in their environment, establishing a new model system to extend and build our understanding of social 42 

foraging dynamics and how animal groups optimally function in a variable world. 43 

 44 

Introduction 45 

Social animals can gather ‘personal information’ directly from environmental cues and ‘social information’ from 46 

the behaviour of conspecifics (Dall et al. 2005). In a foraging context, where resources are patchy in space and/or 47 

time, those individuals that use social information (i.e. attend to cues that provide information about the foraging 48 

success of conspecifics) can reduce both search times and the variance in finding food (Caraco 1981; Caraco and 49 

Giraldeau 1991; Clark and Mangel 1984; Ranta et al. 1993; Ruxton et al. 1995). However, the payoff for an 50 

individual relying upon social information decreases with an increasing number of conspecifics also using social 51 

information (Clark and Mangel 1986; Vickery et al. 1991; Barta and Giraldeau 2001; Beauchamp 2008; Kurvers et 52 

al. 2012). This is best understood by considering individuals that rely on personal information to ‘find’ food patches, 53 

and those relying on social information to ‘join’ others at food patches (Coolen et al. 2001). The more individuals 54 
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choosing to join others at food patches, the greater the payoff to finding your own patch and acquiring a greater 55 

share of the resource (termed the ‘finder’s share’) (Giraldeau and Caraco 2000).  56 

 57 

If foraging animals can simultaneously search for and find food, while also monitoring the behavior of 58 

conspecifics for joining opportunities, then the system can be classified as an ‘information sharing’ system with 59 

foragers considered ‘opportunists’ (Clark and Mangel 1984; Vickery et al. 1991; Giraldeau and Caraco 2000). 60 

Conversely, if finding and joining are incompatible tactics, or doing both is costly, then individuals may adopt the 61 

tactic that provides the greatest expected returns; this is considered a ‘producer-scrounger’ system (Barnard and 62 

Sibly 1981; Giraldeau and Caraco 2000). In producer-scrounger systems, the adoption of either tactic is frequency 63 

dependent, whereby the payoffs for scrounging decrease with increasing number of individuals adopting this tactic 64 

(Caraco and Giraldeau 1991). Accordingly, individuals are expected to converge to an equilibrium ratio of 65 

‘producers’ and ‘scroungers’ in which both tactics attain the same payoff (Mottley and Giraldeau 2000).  66 

 67 

The decision of socially foraging animals to either gather their own information and act as producers or rely on 68 

others’ information and act as scroungers, is affected by a myriad of ecological and social factors. The single most 69 

important factor, however, is the quality and distribution of food resources (Giraldeau and Caraco 2000). If food 70 

resources in the environment are dispersed and of low value, then the finder’s share will be large and consequently, 71 

the majority of a population should independently search for food and rely on personal information. In contrast, 72 

where food resources are clumped (i.e. low density) and of high value, then this should promote the use of social 73 

information by foraging individuals. Recent theoretical work promoting the use of a simulation model based on 74 

individual learning, and the associated empirical test of this model, show that scrounging should also increase in 75 

environments where patch quality is variable (Afshar and Giraldeau 2014; Afshar et al. 2015). The use of either 76 

tactic does not need be fixed, however, and socially foraging animals may also flexibly respond to both personal and 77 

social information and adopt either tactic. This is predicted to occur when there is little incompatibility to acting as a 78 

producer or scrounger, that is, when individual foragers can monitor the behaviour and food discoveries of 79 

conspecifics with little cost to their personal rate of food discovery (Vickery et al. 1991). These predictions, 80 

generated by agent-based and theoretical work (Waltz 1982; Clark and Mangel 1986; Caraco and Giraldea 1991; 81 

Vickery et al. 1991; Barta and Giraldeau 2001; Beauchamp 2004, 2008; Kurvers et al. 2012; Afshar and Giraldeau 82 
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2014) are supported by a number of empirical tests (e.g. Koops and Giraldeau 1996; Giraldeau and Livoreil 1998; 83 

Coolen et al. 2001; Beauchamp 2013, 2014; Afshar et al. 2015).   84 

 85 

Much recent work into social foraging theory has focused on consistent individual differences in tactic use 86 

(Beauchamp 2001; Mathot et al. 2009; Morand-Ferron et al. 2011a), and how and when intrinsic differences in 87 

dominance (Barta and Giraldeau 1998; Liker and Barta 2002; McCormack et al. 2007; King et al. 2009), metabolism 88 

(Mathot et al. 2009), exploratory tendency (Kurvers et al. 2010; Kurvers et al. 2012), sex (Pfeffer et al. 2002; King 89 

et al. 2009) and kinship (Vickery et al. 1991; Tóth et al. 2009; Mathot and Giraldeau 2010), may lead to an 90 

individual focusing on one foraging tactic over the other. Other work has looked at frequency dependent reward 91 

dynamics and how rewards from past foraging decisions will affect subsequent decisions (Giraldeau 1984; 92 

Giraldeau and Caraco 2000; Giraldeau and Dubois 2008; Katsnelson et al. 2008; Morand-Ferron and Giraldeau 93 

2010; Morand-Ferron et al. 2011b; Dubois et al. 2012). 94 

 95 

Although social foraging theory is now well developed a vast majority of empirical tests have been conducted on 96 

birds in captive environments (Beauchamp 2013), with only a handful of tests on birds foraging in their natural 97 

environment (e.g. Morand-Ferron et al. 2007: Quiscalus lugubris; Beauchamp 2014: Calidris pusilla) and some 98 

investigations into social foraging theory in wild primates (e.g. King et al. 2009: Papio ursinus; Bicca‐Marques and 99 

Garber 2004: Saguinus sp; Di Bitetti and Janson 2001: Cebus apella). The main reason for this bias in species and 100 

context is that distinguishing the tactic used by an animal, the boundaries of patches, and the individual pay-offs for 101 

discrete foraging events are experimental/observational hurdles that can prove difficult to clear. Consequently, much 102 

experimental work in laboratory settings looking at finder-joiner behaviour involves constraining individuals to one 103 

of the two tactics using specially designed apparatus (Mottley and Giraldeau 2000), or training a proportion of 104 

individuals in a foraging task so that when combined with naïve individuals only the trained individuals can express 105 

the finding foraging tactic (Ólafsdóttir et al. 2014). While this is extremely valuable and often necessary when 106 

testing predictions from producer-scrounger theory, it is less likely to represent social foraging behaviour in the 107 

wild, where animals may well perform both tactics either in consecutive foraging events or simultaneously (King et 108 

al. 2009). 109 

 110 
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Fish have a long history of being used as subjects for empirical explorations of foraging theory, particularly in 111 

relation to competition theory (reviewed by Ward et al. 2006) and ideal free distribution theory (reviewed by 112 

Milinski 1988). However, fish have rarely been used to explore finder-joiner dynamics (but see Hamilton and Dill 113 

2003; Ólafsdóttir et al. 2014). There are considerable benefits to using fish to explore finder-joiner dynamics: (1) 114 

foraging behaviour of individual fish in shoals has been shown to be flexible in response to changes in the 115 

distribution of resources in the environment (e.g. Ryer and Olla 1992, 1995), (2) the experimental manipulation of 116 

individual state, group composition and the environment is relatively simple, and (3) they are found in a vast array 117 

of habitats and hence have diverse morphology and behaviours. Finally, (4) the experimental arenas for fish are 118 

often smaller than for other vertebrates and an entire experimental space can recorded by video, enabling an 119 

observer to explore how an individual’s behaviour is affected by its conspecifics at any given time. Three-spined 120 

sticklebacks (Gasterosteus aculeatus) are often used in foraging studies (Ranta and Juvonen 1993; Ólafsdóttir et al. 121 

2014) and have recently been used as a model system to explore social learning and the trade-off between using 122 

private and social information (Webster and Hart 2006; Laland et al. 2011; Webster and Laland 2012). As such they 123 

are a good choice of fish to extend and build our understanding of finder-joiner dynamics. 124 

 125 

Here we explore the finder-joiner dynamics of socially foraging three-spined sticklebacks and ask to what degree 126 

fishes’ allocation to alternative foraging strategies can be explained by patch size and distribution (which we termed 127 

‘environmental quality’). We expected that the relative frequency of finding behaviour should decrease in 128 

environments with large and/or clumped food patches as a result of a reduced finder’s share (prediction 1) 129 

(Giraldeau et al. 1990; Giraldeau and Livoreil 1998) resulting in more fish exploiting patches (i.e. larger foraging 130 

group size) in these environments (prediction 2) (Afshar and Giraldeau 2014). In accordance with negative 131 

frequency dependent use of foraging tactics, we also expected approximately equal foraging returns for the use of 132 

either finding or joining tactic in response to changing environments (prediction 3) (Mottley and Giraldeau 2000). 133 

 134 

Methods 135 

Study Animals 136 

Subjects were N=48 three-spined sticklebacks (Gasterosteus aculeatus), wild-caught on Swansea University 137 

campus, Wales, UK (mean weight wet ± SD = 1.12±0.26g). Subjects were kept in a holding tank (30 x 39 x 122 cm) 138 
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containing gravel substrate, plants and driftwood for 8 weeks prior to the experiment at a consistent temperature of 139 

17°C at 8L:16D photoperiod regime. On day 1 of the experiment, 24 fish were weighed and a 6 mm diameter 140 

circular plastic identification tag was placed on their first dorsal spine (Webster and Laland 2009) (Fig. 1a). Fish 141 

were randomly allocated to groups of n=6 according to their identification tags (six blue, black, green, white, blue-142 

white and yellow tags were used) resulting in four groups of 6 fish: A, B, C or D before being placed into individual 143 

2.8L (9.5x 16 x 18.5 cm) gravel-lined, aerated tanks. The following day (day 2) this procedure was repeated with 144 

another 24 fish and they were randomly allocated to groups E, F, G or H. Fish remained in these individual tanks for 145 

the experimental period when not being assayed. Water was changed every two days and all fish were fed 5 146 

defrosted bloodworms (Chironomid larvae) at 9am every day that they were not being assayed. Two days after being 147 

housed in individual tanks, fish were habituated to the experimental arena (see below) in their allocated groups for 148 

60 min.  149 

 150 

Setup and Environmental Treatments 151 

Four identical experimental arenas were placed next to each other on the laboratory floor. The arenas were created 152 

by inserting a plastic grid structure into a clear plastic tank (50 x 65 x 12 cm) (see Webster and Laland 2012) for a 153 

description of a similar set-up). The plastic grid structure was made up of 10 x 10 cm squares that were 6 cm deep. 154 

We filled the grid with 3 cm of white gravel leaving 3 cm of the grid visible (Fig. 1a). We filled the test arena with 155 

aged aerated water to 4 cm above the grid structure, meaning the maximum depth was 7 cm. Defrosted bloodworms 156 

could be placed onto the gravel within any grid square to create distinct foraging patches. This key feature of our 157 

experimental design meant that the head of a fish had to be within the grid square for it to be able to see the 158 

bloodworms (Webster and Laland 2012), and thus, we defined our grids as ‘patches’.  White card was placed 159 

between the four arenas and all four arenas were surrounded by white screen (PhotoSEL BK13CW White Screen) 160 

held up by a custom built metal frame (Fig. 1b). Four photographer’s lights (each with 4 x 25w 240v 6400K True 161 

Day light bulbs) lit the arenas from outside the white sheet, dispersing light evenly over the four arenas. 162 

Experiments were filmed using 2 Panasonic HDC-SD60 HD video cameras, each filmed two arenas (Panasonic 163 

Corporation of North America, Seraucus, NJ, USA) mounted above the arenas (Fig. 1b).   164 

 165 
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We used a 2x2 experimental design to vary the foraging environment.  Factor 1 was ‘patch size’ and had two 166 

levels - small (2 bloodworms per patch) and large (6 bloodworms per patch). Factor 2 was ‘patch distribution’ and 167 

also had two levels – clumped and dispersed. In the clumped distribution there were three clumps of three patches. 168 

The three clumps were separated by two grid squares, and the three patches within the clumps were all directly next 169 

to each other. In the dispersed treatment, all 9 patches were separated by one grid square (Fig. 1c). Therefore the 4 170 

environmental treatments were: small and clumped (SC), small and dispersed (SD), large and clumped (LC) and 171 

large and dispersed (LD) (Fig. 1c). All fish were left for 2 days in their individual tanks before they were habituated 172 

to the experimental arena in their allocated groups for 60min. A day later, each group was then assayed once in each 173 

of the 4 treatments, with a day’s rest in-between assays. Trial order was controlled for each group.  174 

 175 

Experimental Procedure 176 

At 13:00h the day prior to the experimental assay the arenas were set-up and filled with aged aerated water. At 177 

9:30h on the day of the experimental assay bloodworms were distributed in each of the experimental arenas 178 

according to the allocated environmental treatment (see above). The group of fish was then placed into a clear 179 

plastic container, placed at one end of the arena for 10 min before being released into the arena and allowed to 180 

forage for 30 min. The fish were released from the container by pulling on a monofilament line, extending outside of 181 

the experimental arenas and surrounding screen. The container was removed from the arena as the fish were 182 

released. After 30 min the fish were returned to their individual tanks and the arenas were cleaned and set-up for the 183 

next day’s assay.  184 

 185 

Data Collection 186 

Videos were played back in VirtualDub (v 1.10.4, 1998-2012, Avery Lee) and each fish’s behaviour was scored 187 

(one fish observed at a time). Every time a fish entered a patch containing bloodworm it was recorded.  Following 188 

(Coolen et al. 2001), entering an unoccupied patch (by other fish) was considered “finding”, whereas entering an 189 

occupied patch was considered “joining”. If a fish entered an unoccupied patch and ingested at least one bloodworm, 190 

it was defined as a “finding event”. If it failed to ingest the bloodworm, i.e. it pecked at it or if it subsequently spat 191 

the worm out after ingesting it (sticklebacks tend to do this as a means of manipulating the food to be able to 192 

swallow it), this was considered a “failed finding event”. If a fish entered into a patch that was already occupied and 193 
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ingested a worm, stole a worm out of a conspecific’s mouth, or ingested a worm spat out by a conspecific, this was 194 

defined as a “joining event”. If the fish entered an occupied patch but failed to ingest any bloodworm, or it 195 

attempted to steal but failed to ingest the worm, it was defined as a “failed joining event”. If a conspecific had 196 

entered the patch beforehand, but the patch was unoccupied when the focal fish entered the patch and ate a 197 

bloodworm, this was still considered finding behaviour since it was not possible to know for sure whether the focal 198 

fish had attained information on the patch being previously discovered. However, if the focal fish made a directed 199 

movement towards a patch whilst a conspecific in that patch was feeding, and the focal fish subsequently ate a 200 

bloodworm from that patch then it was defined as joining behaviour (Table 1).  201 

 202 

For each foraging event recorded, we recorded: the time that the event occurred, the patch location, and the 203 

number and identity of all other fish on the patch (where this was a joining event) as well as the identity of near-204 

neighbours (i.e. fish within one grid square). We also recorded the number of bloodworms available at the patch 205 

before the foraging event, the event payoff (i.e. the number of bloodworms ingested by the fish), and the number of 206 

bloodworms available at the patch after the event. For an unknown reason, Group H did not engage with the 207 

foraging trials (they did not eat nor did they explore the arena to any great extent) and so we could not use their data 208 

and removed them from all analyses. In the remaining 7 groups, out of a total of 42 fish, there were 5 fish that did 209 

not have a foraging event in one of the two small patch treatments; likely because food was depleted quickly by the 210 

other fish. These 5 fish and all other fish had foraging events and consumed bloodworms in the large patch 211 

treatments.  212 

 213 

Statistical Analyses 214 

 We used mixed effect models fitted in R (R Development Core Team, 2014, R i386 3.1.2) using lme4 and glmer 215 

packages (Bates et al. 2014) by maximum likelihood t-tests and used Satterthwaite approximations for degrees of 216 

freedom to approximate p-values to test our predictions. In all models, we included Group (A-G) as a random effect 217 

since our groups are drawn from a larger population that could (in principle) have been selected, and included fish 218 

identity (1-42) as a random effect to allow individuals to vary in their responses (see e.g. Carter et al. 2012; 219 

Fürtbauer et al. 2015). 220 

 221 
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To test whether finding behaviour decreased in environments with large and/or clumped food patches (prediction 222 

1) we fitted a LMM with the percentage of an individual’s feeding events classified as “finding” as our response 223 

variable. We fitted patch size (small, large) and patch distribution (dispersed, clumped) as fixed effects. To further 224 

explore the dynamics of joining, we fitted a LMM with the percentage of an individual’s “joining events” that were  225 

classified as steals (Table 1) as our response variable, and patch size (small, large), patch distribution (dispersed, 226 

clumped) and fish weight (g) as fixed effects.  227 

 228 

To test whether fish form larger foraging groups in large and/or clumped food patch environments (prediction 2), 229 

we fitted a LMM with group size on the patch at each foraging event as the response variable. We fitted patch size 230 

(small, large) and patch distribution (dispersed, clumped) as fixed effects.  231 

 232 

To test whether fish received approximately equal foraging returns for the use of either finding or joining tactic 233 

(prediction 3) we explored variation in individual foraging returns at the event level. We fitted a generalized linear 234 

mixed model (GLMM) with Poisson error structure and ran the model separately for small and large patch trials. 235 

Event payoff (bloodworms consumed) was included as the response variable, and foraging decision (find, join) and 236 

weight (g) were fitted as fixed effects.  237 

 238 

We also calculated the finder’s share, a/F, where a = finder’s advantage, which is the difference in the amount of 239 

food items eaten when an individual finds compared to when it joins, and F = number of food items (Giraldeau and 240 

Caraco 2000) across our four environmental treatments, and tested for differences across treatments using Wilcoxon 241 

signed rank test in SPSS (IBM
® 

SPSS
® 

Statistics, Version 20). 242 

To minimize observer bias, blinded methods were used when all behavioural data were recorded and analysed. 243 

 244 

Results: 245 

In all trials all patches were found and exploited by the fish. In the small patch treatments, all 18 bloodworms 246 

provided were eaten, except for group C in the small-clumped environment where they only ate 14. In the large 247 

patch environmental treatments, no groups ate all the available 54 bloodworms, and on average 36±7 and 38±7 248 



10 

 

(mean ± SD) bloodworms were eaten in the large-clumped and large-dispersed environmental treatments 249 

respectively (Table 2).  250 

 251 

Fish used the finding tactic (mean%SD) in 46%0.09 of foraging events in the large-clumped environment, 252 

45%0.08 in the large-dispersed environment, 60%0.11 in the small-clumped environment and 55%0.06 in the 253 

small-dispersed environment. Consequently, the finder tactic was significantly less common in large patch 254 

environments in accordance with our first prediction (LMM: t(1,121.19)= 3.306, p=0.001; Table 3a), but the distribution 255 

of resources (i.e. clumped of dispersed) had no effect (LMM: t(1,121.27)= -1.083, p=0.28; Table 3a). The finder’s share 256 

was significantly smaller in environments with large patches (Median=-0.02) compared to environments with small 257 

patches (Median=0.25) (T=1, r=0.89, p=0.018; Fig. 2), but was not significantly different between clumped 258 

(Median=0.15) and dispersed (Median=0.16) environmental treatments (T=10, r=-0.26, p=0.5).  259 

 260 

Increased frequency of joining tactics in large patch environments resulted in larger group sizes at patches (LMM: 261 

t(1,1019.2)= -2.008, p=0.04; Table 3b) in accordance with our second prediction, but there was no significant effect of 262 

patch distribution (LMM: t(1,1023.5)= 1.512, p=0.13; Table 3b).  When joining, the likelihood that fish actively stole 263 

the food from another fish already in the patch was higher in large patch environmental treatments (LMM: t(1,111.02)=-264 

2.253, p=0.026; Table 3c), but larger fish did not steal more food (LMM: t(1,41.74)= -1.494, p=0.1427; Table 3c), and 265 

the distribution of resources (clumped versus dispersed) also had no significant effect on stealing (LMM: t(1,112.41)= 266 

1.954, p=0.0531; Table 3c). 267 

 268 

 Contrary to our third prediction, we found unequal foraging returns for tactic use, with the event payoff being 269 

greater for ‘finding events’ in both environments with small patches (GLMM: z = -3.549, p=0.0004; Table 4a), and 270 

larger patches (GLMM: z= -2.868, p=0.004; Table 4b). In the environments with large patches, heavier individuals 271 

also had a significantly greater event payoff (GLMM: z= 1.995, p=0.046; Table 4b), meaning bigger fish ate more 272 

worms.  273 

 274 

Discussion: 275 
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Our investigations into the finder-joiner dynamics of socially foraging three-spined sticklebacks suggest that fish 276 

adaptively switched between finding and joining behaviour to acquire foraging resources in accordance with the 277 

abundance and distribution of forage in their environment. In line with our first prediction, we found finding tactics 278 

were more frequent in environments with small patches compared to environments with large patches, which is 279 

coherent with the significantly greater finder’s share in environments with small patches (Giraldeau and Livoreil 280 

1998; Giraldeau and Caraco 2000). This process resulted in larger group sizes at patches in large patch environments 281 

in support of our second prediction. Although the effect of patch size on finder-joiner dynamics matched 282 

expectations, the effect of patch distribution did not (see Giraldeau and Livoreil 1998) and patch distribution 283 

(clumped or dispersed) did not alter the use of the finding tactic. Although initially surprising, it appears that the 284 

time/cost to travel between food items on what we termed ‘clumped’ and ‘dispersed’ was minimal (as reflected in 285 

equivalent finder’s advantages, see above) and so future experiments exploring finder-joiner dynamics in three-286 

spined sticklebacks (and other small fish) should use a larger arena, where patch distribution can be manipulated to 287 

ensure the costs of travel between patches is realised. Given that the distribution of patches did not influence 288 

foraging dynamics in our experiments, we focus the rest of our discussions upon patch size. 289 

 290 

Given that fish altered their tactic use in accordance with the patch size in the environment, we expected that these 291 

adjustments should result in approximately equal foraging returns for the use of either tactic. Instead, we found that 292 

per foraging event, finding was significantly more profitable. Unequal pay-offs can arise when foragers attain 293 

different payoffs when using the same tactic. For example, dominant individuals may receive a larger reward when 294 

scrounging than more subordinate individuals (Barta and Giraldeau 1998; Stahl et al. 2001; Bugnyar and Kotrschal 295 

2002; Liker and Barta 2002; McCormack et al. 2007; King et al. 2009; Held et al. 2010; Jolles et al. 2013). Whilst 296 

we did not observe overt aggression among individuals, for example, where dominant individuals use aggression to 297 

stop the joiner from using the resource (Ólafsdóttir et al. 2014), we did find that bigger (heavier) fish could ingest 298 

more food, and it is known that larger sticklebacks have an increased probability of successful food capture and eat 299 

at a faster rate (Gill and Hart 1996).  300 

 301 

The lack of any role for aggression in our study may lie in the prior information fish had, and/or patch types used. 302 

In our study there was a level of uncertainty due to our experimental treatment and randomisation of the location of 303 
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patches in trials. Additionally, patches were relatively quickly depleted. Together, this may make resouces in our 304 

experiment more difficult to defend (Dubois and Giraldeau 2007; Overington et al. 2008). Indeed, in Ólafsdóttir et 305 

al.’s 2014 study, dominant individuals were those trained to expect food from a certain patch before foraging 306 

partners were released into the arena. We were, however, able to distinguish between tolerated access to patches and 307 

stealing behaviour as fish would often attempt to steal food from a conspecific’s mouth or consume food that a fish 308 

had momentarily spat out, even though food was available elsewhere in the environment. This was particularly 309 

evident in the large patch environmental treatment where a greater proportion of “joining” events were steals (fish 310 

weight had no effect) and food at a single patch was rapidly consumed by a minority of individuals before being 311 

kleptoparasitized by others. We believe that, here, size determined the rate of consumption for individuals with 312 

larger individuals quickly consuming bloodworms, but often regurgitating them, providing opportunities for 313 

conspecifics to steal. It is also possible that satiation effects were prevalent here and that larger fish were able to 314 

consume more before becoming satiated. Overall, given that finding is more profitable and bigger fish were able to 315 

acquire a greater share of the resources, it would be interesting to further investigate the consequences of these 316 

differences for shoaling preferences and homophily, for example, size-assortative shoaling (Croft et al. 2009).    317 

 318 

These findings therefore represent an information sharing system, with fish flexibility adopting finding and 319 

joining tactics according to their environment. Flexible foraging by fish has been previously reported (Abrahams 320 

and Dill 1989; Ryer and Olla 1992, 1995; Hill et al. 2002; Mittlebach 2002), in particular, work with juvenile 321 

walleye Pollock (Theragra chalcagramma) showed that fish exposed to clumped food or dispersed food for four 322 

weeks adjusted their foraging behaviour by increasing and decreasing their use of social information respectively 323 

(Ryer and Olla 1995). In our experiments, fish could only see a food item when they swam over it or whilst a 324 

conspecific was handling it. We are aware that the fish would likely be able detect the food via olfactory cues in the 325 

arena, but considering the density of the food, it would be unlikely fish were able to use olfactory cues alone to 326 

precisely locate the food (Webster et al. 2007). Moreover, fish never made strong directional movements towards a 327 

food item until they were within the patch itself. Seemingly then, fish in this environment could swim around 328 

monitoring other conspecifics whilst individually searching for food and opportunistically eating food items when 329 

they became aware of them, either from an unoccupied patch or from an occupied patch. It is important to note, 330 

however, that fish did not always eat a food item when they swam over it. It is not known whether this is because 331 
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they did not see the food item, however, it is not because the fish ignored the food item due to satiation as often they 332 

would subsequently join and eat from a patch where conspecifics were feeding.  333 

 334 

Overall, we have shown that fishes’ allocation to alternative foraging strategies can be explained by environmental 335 

quality (patch size) (reduced finder’s share: (Giraldeau et al. 1990; Giraldeau and Livoreil 1998)), resulting in larger 336 

group sizes on the patches in these environments. However, each tactic does not result in equal foraging returns, 337 

instead payoffs for finding are greater in all the scenarios we investigated. Based on our set of experiments we 338 

suggest two areas where we believe considerable progress in social foraging theory can be made using this fish 339 

system. First, considering the increased use of three-spine stickleback in social learning theory (Laland et al. 2011) 340 

we suggest that future experiments explore how joining behaviour affects social learning (Giraldeau and Caraco 341 

2000; Caldwell and Whiten 2003; Humle and Snowdon 2008; Thornton and Malapert 2009; Ilan et al. 2013). 342 

Second, fine-scale tracking of multiple agents should allow for empirical tests of how spatial properties and 343 

approximations of the fish’s field of view (Strandburg-Peshkin et al. 2013) affect tactic use and finder’s advantage 344 

(Giraldeau et al. 1990; Barta et al. 1997; Di Bitetti and Janson 2001; Mathot and Giraldeau 2008; Beauchamp 2013). 345 

In conclusion, we have shown empirically that three-spine sticklebacks flexibly and adaptively switch between 346 

behavioural tactics to acquire foraging resources in accordance with the abundance and distribution of forage in their 347 

environment, establishing a new model system to extend and build our understanding of social foraging dynamics 348 

and how animal groups optimally function in a variable world. 349 
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Figure Legends 517 

 518 

Fig 1 Experimental set-up. (a) Still-shot from experimental video of two arenas each with, individually marked fish 519 

(n=6) and (b) view of the experimental arenas and filming setup. (c) Shows the four experimental arenas and 520 

distribution of bloodworms in each of the 4 treatments: large and clumped (LC), large and dispersed (LD), small and 521 

clumped (SC) and small and dispersed (SD) 522 

 523 

 524 

Fig 2 Boxplot representing the finder’s share for the groups (n=7) in the large patch and small patch treatments. 525 

Finders share = a/F, where a = finder’s advantage, that is, the difference in amount of food items eaten when an 526 

individual finds and when it joins, and F = number of food items (Giraldeau & Caraco (2000). Boxes represent first 527 

and third quartiles and whiskers extend to the highest value that is within 1.5 times the inter-quartile range. The dot 528 

point represents an outlier observation, a data point outside the whiskers 529 

530 



22 

 

Table Legends  531 

 532 

Table 1 Definitions of behavioural tactics   533 

 534 

Table 2 Descriptive statistics of the number of bloodworms eaten by finding (F) and joining (J) for each group in 535 

each treatment  536 

 537 

Table 3 The effect of patch size and distribution on (a) the percent of total events that were 'finding events', (b) the 538 

proportion of ‘joining’ events that were steals, and (c) the effect of size and distribution treatments on mean group 539 

size on patches. The reference category for patch size was ‘large’ and the reference category for patch distribution 540 

was ‘dispersed’. All results are estimated from linear mixed models. Group and fish identity were fitted as random 541 

effects. Significant p-values are presented in bold 542 

 543 

Table 4 The effect of tactic; ‘finding event’ (F; reference category) or ‘joining event’ (J), and weight on the event 544 

payoff (number of bloodworms consumed) as estimated from a generalised linear mixed model. Separate models 545 

were run on the for the (a) small patch treatment and (b) the large patch treatment. Group and fish identity were 546 

fitted as random effects. Significant p-values are presented in bold 547 

548 
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Table 1 549 

Tactic Success Description of behaviour 

Finding 

 

 

Successful  

Failed 

 

-Focal fish enters an unoccupied patch and ingests ≥ 1 bloodworm 

-Focal fish enters an unoccupied patch and does not ingest a     

bloodworm, i.e. pecks at it or spits worm out 

Joining 

 
Successful  

Failed 

 

-Focal fish enters an occupied patch and ingests ≥ 1 bloodworm 

-Focal fish steals a worm out of a conspecifics mouth 

-Focal fish ingests a worm spat out by a conspecific 

-Focal fish enters an occupied patch and does not ingest a 

bloodworm, i.e. pecks at it or spits worm out 

-Focal fish attempts to steal a bloodworm from a conspecific but 

does not ingest it                                                                            

-Focal fish attempts to ingest a bloodworm spat out by a 

conspecific but does not ingest it 

 550 

551 



24 

 

Table 2 552 

Number of Bloodworms Eaten 

 Small Large 

  Clumped Dispersed Clumped Dispersed 

Group F J Total F J Total F J Total F J Total 

A 16 2 18 13 5 18 22 19 41 29 18 47 

B 12 6 18 15 3 18 12 18 30 19 21 40 

C 11 3 14 11 7 18 27 20 47 19 25 44 

D 9 9 18 12 6 18 14 21 35 24 16 40 

E 12 6 18 10 8 18 27 13 40 16 22 38 

F 13 5 18 12 6 18 15 16 31 8 21 29 

G 10 8 18 11 7 18 18 9 27 19 9 28 

Mean 11.86 5.57 17.43 12.00 6.00 18.00 19.29 16.57 35.86 19.14 18.86 38.00 

StDev 2.28 2.51 1.51 1.63 1.63 0.00 6.16 4.28 7.13 6.52 5.21 7.14 

Min 9 2 14 10 3 18 12 9 27 8 9 28 

Max 16 9 18 15 8 18 27 21 47 29 25 47 

Range 7 7 4 5 5 0 15 12 20 21 16 19 

 553 

554 
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Table 3 555 

 (a) Percentage 'finding events'   

  Estimate Standard Error DF t-value Pr (>|t|) 

(Intercept) 45.48 3.57 131.67 12.74  

Patch Size 12.51 3.78 121.19 3.31 <0.002 

Patch Distribution -4.10 3.78 121.27 -1.08 0.280 

(b) Percentage joining events that were ‘steals’   

  Estimate Standard Error DF t-value Pr (>|t|) 

(Intercept) 0.67                       0.13          49.1            5.03    

Patch Size -0.13                     0.06          111.02        -2.25         0.026 

Patch Distribution 0.11                        0.06          112.41        1.95        0.053 

Fish weight -0.17                       0.11          41.74 -1.50 0.142 

 (c) Mean group size on patches   

  Estimate Standard Error DF t-value Pr (>|t|) 

(Intercept) 1.77                       0.06          13.9            28.31    

Patch Size -0.17 0.09 1019.2 -2.01 0.030 

Patch Distribution 0.09 0.06 1023.5 1.51 0.130 

 556 

557 
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Table 4  558 

(a) The event payoff in the small patch treatment 

  Estimate Standard Error z-value Pr (>|z|) 

(Intercept) 0.03 0.30 0.11  

F or J -0.48 0.14 -3.55 <0.001 

Weight 0.10 0.24 0.43 0.669 

(b) The event payoff in the large patch treatment  

  Estimate Standard Error z-value Pr (>|z|) 

(Intercept) -0.70 0.24 -2.88  

F or J -0.25 0.09 -2.87 <0.005 

Weight 0.36 0.18 2.00 0.046 

 559 
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 570 
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Figures 577 
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