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This paper proposes the novel use of a weighted interval Kalman filter (wIKF) in a robust 

navigational approach for integration with the guidance and control systems of an uninhabited surface 

vehicle named Springer. The way-point tracking capability of this technique is compared with that of 

one that uses a conventional Kalman filter (KF) navigational design, when the model of the sensing 

equipment used by the filter is incorrect. In this case, the KF fails to predict correctly the vehicle’s 

heading, which consequently impacts negatively on the performance of its integrated navigation, 

guidance and control (NGC). However, the use of a wIKF technique that is immune to this kind of 

erroneous modelling endows the integrated NGC system with better accuracy and efficiency in 

completing a mission. 
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1. INTRODUCTION.  Automatic marine control systems for ships of all sizes have been and 

are being designed, and developed to meet the needs of both the military and civil marine 

industries. Although modern ship automatic systems are endowed with a high degree of 

expensive control sophistication, they also possess manual override facilities in case of 

emergencies and unforeseen events. However, when functioning in a truly autonomous mode, 

the luxury of such facilities does not exist on board uninhabited surface vehicles (USVs) (also 

known as unmanned surface vehicles). The application of USVs is forever propagating in 

naval, commercial and scientific sectors such as surveying (Majohr et al., 2000), 

environmental data gathering (Caccia et al., 2008), mine-counter measures (Yan et al., 2010), 

and search and rescue operations (Annamalai, 2012), to name but a few. Thus in order to 

fulfil their missions successfully they are totally reliant upon the integrity of their low cost 

navigation, guidance and control (NGC) systems. 

   At Plymouth University the Springer USV has been built and continues to be evolved. 

Springer is designed primarily for undertaking pollutant tracking and environmental and 

hydrographical surveys in rivers, reservoirs, inland waterways and coastal waters, particularly 

where shallow waters prevail. In order for the vehicle to have such a multi-role capability, the 

USV requires robust, reliable and accurate NGC systems. 

   Over the years studies have been undertaken on unmanned vehicle navigation using various 

variants of the Kalman filter (KF) that have been linked with global positioning system (GPS) 

signals, inertial measurement unit (IMU) data, as well as magnetic compass sensor readings. 

For example, Zhang et al. (2005) described the use of an unscented KF to combine a low-cost 

IMU, GPS and digital compass using a sophisticated dynamical model of the vehicle. Others 
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have successfully implemented KF-based USV navigation without IMUs altogether. In 

previous work with the Springer, data from digital compasses are combined using various 

data-fusion architectures based on KFs (Xu, 2007). The use of redundant data (by using three 

separate compasses simultaneously) allows for the construction of fault-tolerant navigation 

systems. Another example is the USV Charlie that is equipped solely with a GPS and a 

magnetic compass which uses an extended KF (Caccia et al., 2007). Meanwhile, the interval 

Kalman filter (IKF) (Section 3.2) has been proposed for use in aircraft navigation by He and 

Vik (1999), and in vehicle navigation by Tiano et al. (2001, 2005), although as a whole has 

received relatively little attention in the open literature. 

   In order to meet the testing mission demands being imposed by the various sectors, 

autopilots have been designed based on, for example, fuzzy (Park et al., 2005), gain 

scheduling (Alves et al., 2006), H-infinity (Elkaim and Kelbley, 2006), sliding mode 

(Ashrafiuon et al., 2008) and neural network (Qiaomel et al., 2011) techniques, all of which 

have met with varying degrees of success. 

   In this paper, integrated NGC systems for way-point tracking are presented. Navigation is 

based on Kalman filtering using a dynamic compass model and simulated noisy 

measurements. Guidance is based on line-of-sight (LOS), whereas steering control is 

implemented via a model predictive control (MPC) algorithm that uses a dynamic steering 

model of the vessel (Section 2.1). The intention of this paper is to demonstrate the novel 

approach of using a weighted IKF (wIKF) (Section 3.2) in combination with the MPC 

autopilot for surface vehicle navigation. In the present study, firstly a traditional KF is used in 

conjunction with an MPC autopilot. The system is blighted by the use of an incorrect 

compass model, affecting the KF heading estimate and thereby the performance of the 

integrated system as a whole. Maintaining the incorrect model, a wIKF approach is 

implemented, and it is shown that if adequate weights can be found, then this technique can 

provide an accurate estimate of the heading of the vessel, thereby constituting a more robust 

navigation system than when using the more traditional KF methodology. 

   Following on from this introduction, the paper is structured as follows. Section 2 gives a 

brief description of the Springer USV and the modelling of its yaw dynamics. Section 3 

describes the navigational system, the dynamic model of the compass which provides the 

heading, and the KF and wIKF models used in subsequence. Section 4 is devoted to 

describing the guidance system, whereas Section 5 informs about MPC and details the 

particulars of the autopilot implemented for Springer. In Section 6 the integration of the NGC 

system is described and the tracking mission simulated is detailed. The results obtained from 

using a conventional KF in the design of the navigation system and those obtained using the 

wIKF technique are compared and discussed. Finally, the conclusions drawn are highlighted 

in Section 7. 

 

 

2. THE SPRINGER UNINHABITED SURFACE VEHICLE.  Since full details of the 

Springer’s hardware have already been published in Sutton et al. (2011), to make this paper 

self-contained only an outline will be presented here. The Springer USV was designed as a 

medium waterplane twin hull vessel which is versatile in terms of mission profile and 

payload. Measuring 4.2m long and 2.3m wide, it has a displacement of 0.6 tonnes. Its 

propulsion system consists of two propellers powered by a set of 24V 74lbs (334N) Minn 

Kota Riptide transom mounted saltwater trolling motors. As described in Section 2.1, steering 

of the vessel is based on differential propeller revolution rates. 

   In Springer, the full integrated sensor suite combines a GPS, three different types of 

compasses, speed log and depth sensor. All of these sensors are interfaced to a PC via a NI-

PCI 8430/8 (RS232) serial connector. Since the GPS, depth and speed sensors are not used in 
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this study, their characteristics will not be detailed any further. However, TCM2, HMR3000 

and KVH-C100 are the three different types of electronic compass installed in the Springer. 

All of the compasses can output NMEA 0183 standard sentences with special sentence head 

and checksum. As all of these compasses are very sensitive, they were mounted as far as 

possible from any source of magnetic field and from ferrous metal objects. In addition, each 

compass was individually housed in a small waterproof case to provide further isolation and 

insulation. Dynamic models have been obtained for each of the compasses by Xu (2007). In 

this paper only the TCM2 compass model will be utilised and is detailed in Section 2.2. 

  2.1 Modelling the USV Yaw Dynamics. Hydrodynamic modelling is usually very expensive, 

time consuming and requires the use of specialist equipment in the form of a tank testing 

facility. However, the approach does produce detailed models based upon hydrodynamic 

derivatives.  In addition, costs can also rise further if vehicle configurations change and thus, 

the tank testing and modelling procedure have to be repeated. Since the hiring and running 

costs for such a facility were deemed to be prohibitive, it was considered more appropriate to 

model the vehicle dynamics using system identification (SI) techniques. To this end, several 

trials were carried out at Roadford Reservoir, Devon, UK, where the vehicle was driven for 

some calculated manoeuvres and during which relevant data was logged. The characteristics 

of the relevant variables and model obtained are explained in what follows. 

   The vehicle has a differential steering mechanism and thus requires two inputs to adjust its 

course. This can be simply modelled as a two input, single output system in the form depicted 

in Figure 1. 

 
Figure 1. Block diagram representation of a two-input USV 

 

where n1 and n2 being the two propeller speeds in revolutions per minute (rpm). Clearly, 

straight line manoeuvres require both the thrusters running at the same speed, the differential 

thrust being zero in this case. In order to linearise the model at an operating point, it is 

assumed that the vehicle is running at a constant speed. To clarify this further, let nc and nd 

represent the common mode and differential mode thruster velocities defined as: 
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In order to maintain the velocity of the vessel, nc must remain constant at all times. During 

trials, a forward speed of three knots was maintained, which corresponds to a constant value 

of nc = 900 rpm. 

   The differential mode input, however, oscillates about zero depending on the direction of 

the manoeuvre. For data acquisition, several inputs were superimposed with pseudo random 

binary sequence to excite the system’s dynamics and were applied to the thrusters. The 

corresponding heading response was collated, and SI was then applied to the acquired data 

from which a dynamic model for the steering of the vehicle was obtained in the following 

form (Naeem et al., 2008): 
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)()(1)( kukk BA  xx  (2) 

)()( kky xC  (3) 
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with a sampling time of 1s, where u(k) represents the differential thrust input in rpm and y(k) 

the heading angle in radians. Cross correlation and autocorrelation tests were carried out to 

validate the model (Naeem et al., 2008).  

   2.2 Compass Dynamics. A dynamic model for the TCM2 compass has already been derived 

through SI techniques (Xu, 2007) and is given by the following hybrid stochastic-

deterministic state-space model 

 
)()()(1)( kkukk ωxx  BA  (5) 

)()()( kυkky  xC  (6) 

where 
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



0

4364.0
,  C =  01K  

°2{1,1},)(  )var(diagcov ω  

 (7) 

 

and a sampling period of 0.025s. The input to the model is the actual heading of the vessel, in 

degrees, and the output is the compass measurement, also in degrees, whereby it can be 

assumed that the constant K is such that the steady-state gain of the model is unity (resulting 

in K = 0.05339). Correlation tests were carried out to validate the model. 

 

3. THE NAVIGATION SYSTEM.  The navigation system of the vehicle is concerned with 

estimating the actual heading angle of the vessel at each sampling time. The approach used 

here is based on Kalman filtering: firstly, the standard KF is described in this section, and 

secondly, a novel approach based on the wIKF is presented. 

  3.1 Kalman Filter. For linear systems governed by stochastic-deterministic state-space 

equations such as (5) and (6), it is well established that the KF provides statistically optimal 

estimates of the state vector from measured data. The KF equations implemented in this study 

can be found in Motwani et al. (2013b). 

   Despite its widespread use, the optimal nature of the KF relies upon an accurate description 

of the dynamic model and system and measurement noise covariances. An example of the 

effects of erroneous modelling on the heading estimate for the Springer was shown in 

Motwani et al. (2013b), in which accurate KF estimates were only obtained if the model 

description was accurate as well. This poses a significant inconvenience, as this is seldom the 

case in practice, especially for processes susceptible to be affected by numerous external 

factors. 

   In order to reproduce such a non-idealistic scenario, assume that all the coefficients of 

Equation (7) have been underestimated by 0.5%, and that the actual compass dynamics is 

given instead by: 
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This change of behaviour could be the result, for instance, of an unaccounted for weak 

external magnetic field that is biasing the compass readings, or it could be that the model 

obtained in Equation (7) may have resulted from fitting data gathered under non-ideal 

conditions. 

   In either case, it should be noted that even though the model assumed by the KF (given by 

Equation 7) does not reflect the true compass dynamics, the compass measurements 

simulated in this study are generated according to the actual compass dynamics given by 

Equation (8). 

  3.2 Weighted Interval Kalman Filter. The application of interval Kalman filtering to the 

navigation of USVs was discussed in detail in Motwani et al. (2013b), which also described 

the principles of the IKF. However, for completeness, a brief summary of the concepts 

behind the IKF are given here. 

   When system dynamics are not known precisely, but known to lie within finite bounds, a 

version of the KF known as the IKF may be adopted, capable of providing rigorous bounds to 

the optimal state estimate. The algorithm was first proposed by Chen et al. (1997), and can be 

summarised as follows. 

   Let A, B and C contain elements which are uncertain within some definite bounds. The 

system can then be described by: 

 

)()()(1)( kkukk ωxx  II
BA  (9) 

)()()( kkk υxy  I
C  (10) 

 

where ]Δ,Δ[Δ MMMMMMM
I  for },,{ CBAM , and ω(k) and υ(k) are 

white noise sequences with zero-mean Gaussian distributions with known covariances 

cov(ω)= Q, cov(υ)= R, and  E[ω(l) υT(k)] = 0  l,k, E[x(0) ω T(k)] = 0, E[x(0) υ T(k)] = 0  k. 

   The IKF algorithm is given by the recursive Equations (11) to (15), which mimic those of 

the ordinary KF but are described in terms of intervals. Given an initial estimate )0(ˆ I
x  and 

its uncertainty, characterized by )]0(ˆ[ar )0( I
xvI

P , together with the input to the system and 

the output measurement at each time-step, the resulting state estimate is an interval vector 

)(ˆ kI
x  at each time-step k, providing an upper and lower boundary to the estimate, as 

illustrated in Figure 2. 
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in which z(k) is the measurement at time k, that is to say, a particular realisation of y(k).  

 

 
Figure 2. IKF estimate depicting its upper and lower boundaries. 

 

   In order to increase the robustness of the KF, an IKF that uses an interval model is 

employed. This interval model is such that it contains a range of point-valued models which 

are centred around the nominal model given by Equation (7). Specifically, assume that the 

coefficients in Equation (7) are known to be accurate to within 1% of the nominal values. 

Then the following interval model can be adopted: 

 

)()()(1)( kkukk ωxx  II
BA  (16) 

)(υ)()(y kkk  x
I

C  (17) 
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 (18) 

 

   Note that this interval model includes the true compass dynamics given by Equation (8). 

Also, as noted previously, the measurements generated via simulation are point-valued 

measurements from the actual compass dynamics (Equation 8) rather than generated from 

Equation (17). 

   Implementation of the IKF algorithm requires the use of interval arithmetic, which tends to 

yield overly conservative bounds. As discussed in Motwani et al. (2013b), the calculated 

bounds tend to diverge due of the so called dependency effect of interval arithmetic. In order 

to minimise this effect, the IKF expressions involving interval variables may be reformulated 

in several ways to take advantage of different factorisations, and the intersection of the 

resulting values computed using each one of these will provide the smallest interval that 

contains the true result. This constitutes a simple and effective procedure to sharpen interval 

computations, and is the method adopted here in obtaining the IKF interval estimates.  

   Once the IKF bounds are obtained, nonetheless, in practice a single point-valued estimate is 

desired. Chui and Chen (2008) proposed obtaining a weighted average of the boundaries, and 

this method is adopted here. The weighted average, or wIKF estimate, is given by 

 

)](ˆ)(ˆ[)(ˆ)(ˆ infsupinf khkh w(k)khkh wIKFwIKFwIKFwIKF   (19) 

where ĥ  denotes heading estimate, and the subscripts sup and inf refer to the upper and lower 

bounds of the IKF estimate. 



7 
 

   In this study, as well as the wIKF, an ideal KF is simulated in parallel. It is ideal in the 

sense that it adopts the true model of the compass (Equations 5 to 7). The wIKF weight is 

then calculated at each time step as that which is necessary for the weighted average of the 

IKF bounds to coincide with the ideal KF estimate. In other words, 

 

)(ˆ)(ˆ

)(ˆ)(ˆ

infsup

inf

khkh

khkh
  w(k)

wIKFwIKF

wIKF
ideal




  (20) 

 

   Although an ideal KF is simulated in order to compute this weight, it is possible to obtain a 

good approximation of the same without the need of an ideal KF, as will be noted in the 

ensuing discussion. 

 

4. THE GUIDANCE SYSTEM.  Different guidance strategies used in marine environments 

to guide the vehicles are further illustrated in Annamalai (2012). The most popular guidance 

strategy is way-point LOS strategy and is utilised herein. It is briefly illustrated as follows. 

   Based on the current estimated position of the USV and the coordinates of the next way-

point to be reached, the desired or reference heading angle based on LOS is calculated as 

follows: 

















)()(

)()(

kxkx

kyky
 arctan  r(k)

d

d  (21) 

 

where (x, y) is the current location of the vessel and (xd, yd) the target coordinates. In practice, 

because the inverse of the tangent is restricted to (-90°, 90°), the four quadrant inverse 

tangent, arctan2[yd(k)-y(k), xd(k)-x(k)], which takes into account the signs of both arguments, 

is used instead. Also, as the reference (or desired) heading angle changes, care is taken to 

ensure that the vehicle is directed to turn toward it in the direction that requires the lesser 

total change in its own heading, since two possibilities always exist. 

   The guidance system keeps track of the mission status, which includes a log of the way-

points reached or missed and the current target way-point, as well as the total distance 

travelled, deviation from the ideal trajectory, and controller energy consumed. These are 

updated every sampling instant based on the current position of the USV. All of these 

concepts are described next. 

   In order to decide whether a way-point has been reached or not, the guidance system 

considers a circle of acceptance (COA) around each of these (Figure 3). A COA is needed 

since the marine environment is continuously moving with some degree of randomness, 

making it unfeasible in practice to target a single point precisely. Healey and Lienard (1993) 

suggested that the radius of the COA should be at least twice the length of the vehicle. 

However, their concern was to do with underwater vehicles. Since surface vessels benefit 

from GPS localisation, a radius equal to the length of the vessel is deemed sufficient in the 

present investigation. For Springer the length is approximately 4m, thus this is the radius 

assigned to the COA. 

   At each sampling instant, the guidance system calculates the distance left to the next way-

point according to 

 

0
22 )]()([)]()([   kykykxkx dd  (22) 

 

0  being the radius of the COA. When this condition is met, it is regarded that the way-point 

is reached, and the guidance system directs the vessel to the next way-point. 
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Figure 3. Deviation at time k. 

 

However, the vessel might pass by the vicinity of a way-point without entering the COA. 

This condition is determined by checking the derivative dtd / , which when switches from 

negative to positive, indicates that the vessel has missed the way-point. In this case, the 

guidance system also directs the vessel toward the next way-point. 

   The vessel normally follows a path different from the ideal one. Several performance 

indices are used to assess the trajectories followed, which the guidance system computes at 

each time step and keeps track of. The deviation from the ideal trajectory can be measured as 

 

)cos('2')(
22

BPPBBPPBkrd   (23) 

 

where PB  is the distance, at time k, to the next way-point from the position of the vehicle 

were it on the ideal path, and BP '  the distance to the next way-point from its the actual 

position at time k, α being the angle between the two vectors, as shown in Figure 3. 

   Finally, the average controller energy uCE is defined as 

 

N

ku

CE

N

k
c

u





1

2]60)([

 
(24) 

 

where N is the total number of time steps and uc the controller effort at time k in rpm. 

 

5. THE CONTROL SYSTEM.  The concepts and techniques of MPC have been developed 

over the past three decades (Annamalai, 2012), and various authors such as Maciejowski 

(2012), Rawlings and Maybe (2009), Wang (2009), Allgower et al. (2010) suggest that MPC 

is widely used in process and petrochemical industries. In addition, the marine control system 

design fraternity have also embraced this approach since it offers the advantage of being 

capable of enforcing various types of constraints on the plant process as exemplified by 

Naeem et al. (2005), Perez (2005), Oh et al. (2010), Liu and Allen (2011) and Li et al. (2012). 

   In general, the plant output is predicted by using a model of the plant to be controlled. Any 

model that describes the relationship between the input and the output of the plant can be 

used. Further if the plant is subject to disturbances, a disturbance or noise model can be added 

to the plant model. In order to define how well the predicted process output tracks the 
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reference trajectory, a criterion function is used. Typically the criterion or cost function is of 

the following form, 

 





cp H

i

T
H

i

T ikuRikuikeQikeJ
11

)()()()(  (25) 

subject to, 

 
ul uikuu  )(  (26) 

 

where )()(ˆ)( krkyke   is the prediction error, or difference between the predicted process 

output ŷ and the reference trajectory r. The superscripts l and u represent the lower and the 

upper bounds respectively. Q is the weight on the prediction error, and R the weight on the 

change in the input Δu. Hp is the prediction horizon or output horizon, and Hc the control 

horizon. More details can be found in Naeem et al. (2005). For completeness, the general 

structure of an MPC is shown in Figure 4a. 

 

 
(a) General structure of MPC. 

 
 (b) General strategy of MPC. 

Figure 4. MPC (a) General structure; (b) General strategy. 
 

The optimal controller output sequence uopt over the prediction horizon is obtained by 

minimisation of J with respect to u. As a result the future tracking error is minimised. 

   The MPC algorithm consists of the following three steps. 

 Step 1. Use a model explicitly to predict the process output along a future time 

horizon (Prediction Horizon). 

 Step 2. Calculate a control sequence along a future time horizon (Control Horizon, 

Hc), to optimize a performance index.  

 Step 3. Employ a receding horizon strategy so that at each instant the horizon is 

moved  towards the future, which involves the application of the first control signal of 

the sequence calculated at each step. The strategy is illustrated as shown in Figure 4b. 

   In the above Figure 4b, the predicted output and the corresponding optimum input over a 

horizon Hp are shown, where u(k) is the optimum input, ŷ(k) is the predicted output, and y(k) 

the process output. 

   The controller is not fixed and is designed at every sampling instant based on actual sensor 

measurements so disturbances can easily be dealt with as compared to fixed gain controllers. 

   For the integrated NGC system in Springer, an MPC was chosen as autopilot since previous 

studies (Annamalai and Motwani, 2013) have shown that it provides better performance than 

more standard approaches such as linear quadratic Gaussian based controllers. The plant 
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model used by the MPC algorithm is the model of the vehicle described in Section 2.1 

(Equations (2) to (4)), the input u(k) being the differential mode thruster velocity nd (k), and 

the output y(k) corresponding to the heading of the vehicle, which in the integrated NGC 

system is provided by the KF/wIKF estimate rather than assumed to be directly available, as 

this would not be the case in practice. 

   The MPC controller also incorporates the actuator limitations of the vessel as optimization 

constraints. These are given by 

 

rpmnd 300  and rpmnd 20  (27) 

 

that is, a limitation both on the maximum absolute value and on the change of the rpm of the 

motors from one sampling instant to the next. 

   The parameters of the MPC algorithm used are Hp = 10 and Hc = 2, as these values were 

found to be optimal, and the weights Q = 1 and R = 0.1 were chosen for the cost function. 

Further rationale for the choice of these parameters can be found in Annamalai (2014). 

 

6. RESULTS AND DISCUSSION.  The block diagram shown in Figure (5) illustrates the 

integration of the three subsystems. 

 

 
Figure 5. NGC system block diagram. 

 

   The mission plan consists of the set of predefined way-points through which it is desired for 

the vessel to traverse. The particular mission plan used herein consists of seven way-points 

forming a closed circuit (Figures 7a and 9a). Based on the mission plan and current location 

of the vehicle (assumed to be known), the guidance system (described in detail in Section 4) 

keeps track of previous and next-waypoints, distance travelled and remaining, etc. It also 

generates the desired (or reference) heading angle as the angle of the straight line connecting 

the vessel’s current estimated position and the next way-point. (Angles are with respect to a 

reference direction, in this case Due East, given by the x axis in Figures 7a and 9a). In turn, 

based on the desired heading angle and the current estimated heading of the vehicle, the 

autopilot, or controller, generates the most adequate control signal, or differential thrust of the 

motors (recall that steering is controlled via the differential mode thruster velocity, nd). The 

autopilot herein is concerned only with heading control, since, as was previously stated, the 

common mode thruster velocity nc is maintained constant throughout. 

   The position of the vessel at each time step is calculated from the previous using dead 

reckoning, given that the forward speed of the vessel (relative to the water surface) is 

constant and known. Added to this, a constant disturbance consisting of an added velocity of 

10% of the forward speed of the vehicle, acting in a northerly direction, was added to 

consider the effect of surface currents (Figure 6). If x(k) and y(k) represent the position of the 

vessel at time k, then the position at the next sample time is calculated as follows: 
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 )cos(  )(  )1( sTvkxkx   (28) 

ss TvinTvkyky 0.10)(s  )(  )1(    (29) 

 

where v is the constant forward speed of the vessel (three knots), Ts the sampling interval of 

1s, θ the actual heading angle of the vessel at time k, and sTv0.10  the effect of the surface 

current disturbance which is added to the y component of the vehicle’s position. 

 

 
Figure 6. Velocity triangle. 

 

   The actual heading of the vessel is generated according to Equations (2) to (4), with the 

added random input ω(k) in the state equation (Equation 2), rendered as a random Gaussian 

white noise sequence with zero mean and covariance diag{1,1}×10-14, and which models the 

random effects of surface waves. It is shown in Figure 5 as a disturbance that affects the 

heading of the vessel. 

   The way-point tracking mission was simulated using two different approaches which differ 

in the navigation system used. In both cases, LOS and MPC, as described in the previous 

sections, were used for guidance and control of the vehicle, as these methods constitute 

realistic strategies that have been proven to be effective in this area (Annamalai and Motwani 

2013, Naeem et al., 2006), and thus maintained for this study. 

   As far as the navigation system, firstly, a KF based on the incorrect nominal model of the 

TCM2 compass dynamics (Equation 7) was used to estimate the heading of the USV. Figure 

7a shows the trajectory followed by the vehicle, whilst Figure 7b shows the controller output. 

Note that the generated control signal is within the prescribed actuator limits. 

   Figure 8 shows the reference heading generated by the guidance system, as well as the true 

heading of the vehicle and the KF estimate of the same. It can be observed from the figure 

how the estimated heading does not converge to the mean value of the actual heading, since 

the incorrect compass model used in the KF is biased. This inaccuracy in the estimated 

heading in turn affects the guidance and control systems, as can be observed from the 

somewhat winding trajectory followed by the vehicle in this case (Figure 7a). In particular, 

the KF tends to overestimate the heading of the vehicle, increasingly so during the latter part 

of the course (Figure 8). The effect of this is that the vehicle tends to miss way-points, 

bypassing them to its left, because its actual heading falls short of what it should be (the KF 

estimate) to target the way-point exactly. This is apparent in Figure 7(a) in which the vehicle 

misses the last four way-points. 

   In the second instance, a wIKF was used to estimate the heading of the USV, as described 

in Section 3.2. Figures 9a and 9b show the trajectory followed by the vehicle, and the MPC 

control output, respectively. Figure 10 shows the reference heading and compares the actual 

heading of the vehicle with the estimated one. It can be observed that the estimated heading 

matches the true heading much more closely than in the previous case, and this translates into 

a much smoother and more efficiently generated trajectory, as evidenced in Figure 9a. 
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(a) Way point tracking using incorrect TCM2 model. 

 

 
(b) Controller output nd. 

Figure 7. Simulations corresponding to the NGC system with KF based 

 on incorrect TCM2 model; (a) trajectory, (b) MPC output. 

 

 
Figure 8. Comparison of reference heading, actual vehicle heading, and 

 estimated heading, using KF based on incorrect TCM2 model. 
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(a) Way point tracking using wIKF. 

 
(b) Controller output nd. 

Figure 9: Simulations corresponding to the NGC system with 

 wIKF heading estimate; (a) trajectory, (b) MPC output. 

 

 
Figure 10: Comparison of reference heading, actual vehicle heading, 

 and estimated heading from wIKF. 
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   From the two simulations described, global performance parameters were obtained and are 

summarised in Table 1. The number of way-points reached reflects only those for which the 

vehicle entered the COA. In the case of navigation using the KF, four out of the seven way-

points were not reached (namely way-points 4, 5, 6, and 7), although the vehicle was directed 

to the next target when it was detected to have passed one without entering the COA. In the 

case of the system using the wIKF navigation estimate, all way-points were reached. The 

wIKF NGC system also achieved better performance in terms of distance travelled (13% 

reduction), deviation from the ideal trajectory (34% less), energy used (18% lower) and time 

taken (18% less).  

 
Table 1. Comparison of performance parameters. 

Parameters 
NGC with 

KF wIKF 

No. of way-points reached 3/7 7/7 

Total distance travelled 1540 m 1338 m 

Average deviation 32 m 21 m 

Average energy 6.6 (rps)2
 5.4 (rps)2 

Time taken 17 min 14 min 

 

   The preceding results highlight the importance of accurate navigation for the USV mission 

as a whole. The improved heading estimate accuracy can be evidenced by comparing Figures 

8 and 10. A comparison of the navigational accuracy is explicitly shown in Figure 11, which 

shows the errors (difference between true and estimated heading) of the two navigation 

systems. In fact, by definition of the weights used, generated according to Equation (19), the 

wIKF estimates are equal to the KF estimates that would have been obtained had the true 

model of the compass been used. 

 

 
Figure 11. Comparison of wIKF and traditional KF estimation errors. 

 

   Although in order to calculate the ideal weightings for the wIKF, estimates from an ideal 

KF were used, in practice the true dynamics of the system will not generally be known 

precisely. However, studies have shown that it is possible to infer these ideal weights without 

knowledge of the true system dynamics, and hence, without relying on the estimates of an 

ideal KF. Motwani et al. (2013a) have devised a method based on using data generated in a 

simulation study such as this one to train a neural network to predict the optimum weights. 

The idea is basically the following: one can construct a simulation mission and adopt some 

model to simulate the readings of the compass, which will thus represent the “true” compass 

dynamics for that simulation. The chosen compass dynamics must be some model contained 

in the interval model of the compass (which is what is only known in reality). One can then 

simulate an IKF, an ideal KF (that is, based on the model chosen to simulate the compass), 

and some nominal KF (whose model differs from that of the one used to simulate the 

compass, although still contained in the interval model). Based on these simulations, the 
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neural network is then trained to correlate the innovations sequence of the nominal KF 

(which is an indicator of its performance) with the desired wIKF weight (calculated by 

Equation 20). The trained neural network is then capable of estimating this desired weight for 

new missions based on the innovations of any nominal KF contained in the interval model, 

regardless of what the actual dynamics of the compass are (as long as they are contained in 

the interval model). Hence, the method itself does not rely on knowledge of the true system 

dynamics, but only upon being able to describe it via an interval model such as the one given 

by Equation (18). Thus, the arguments presented in this paper are justified even though, for 

the sake of conciseness and clarity, the weights of the wIKF were generated by Equation (20). 

   It should be emphasised that in practice, computing the wIKF estimates requires running 

both a KF and an IKF in parallel, as well as a neural network for predicting the optimal 

weight. The IKF uses exactly the same formulation as that of a regular KF, but operates on 

interval values instead. In practice, this means that an interval arithmetic needs to be 

implemented on a computer. There are many programming languages that incorporate 

interval data types nowadays; in particular, the simulations shown in this paper were 

computed using the open-source extension of MATLAB for interval arithmetic, INTerval 

LABoratory (INTLAB), developed by Rump (1999). Using INTLAB, the computational 

overhead of dense matrix multiplication for interval valued elements translates into an 

estimated timing factor of between 5 and 10 compared to pure floating-point matrix 

multiplication. Regarding the computation of the weight, it should be noted that the training 

of the neural network is done on a training data-set, offline. The actual use of the trained 

network for predicting the weight typically requires two matrix multiplications at each time-

step (in the case of a layered perceptron model with a single hidden layer), that is, 𝑂(𝑁3) 
floating point operations for each one, 𝑁 being the order of the matrix. 

 

7. CONCLUDING REMARKS.  To summarise, the way-point tracking capability of an 

innovative integrated NGC system for an USV is explored in this paper. The Springer used as 

the test platform is described briefly and system identification is used to capture the yaw 

dynamics of the USV and to model a TCM2 electronic compass used on-board the vehicle. 

These models are respectively used by the predictive autopilot and KF-based navigation 

systems. Navigation based on a KF using a biased compass model and another based on a 

wIKF are simulated to complete the way-point tracking mission. In both cases, a way-point 

LOS guidance system is utilised to generate the reference trajectory, and an MPC autopilot as 

the control system to keep the vehicle on course. The performances of the two integrated 

systems are compared. 

   The key aspect of this paper is to show how the novel wIKF can be used effectively in 

conjunction with the aforementioned guidance and control systems, and that it provides a 

navigation system that is robust to (a finite amount of) uncertainty in the model it relies upon. 

This in turn has a marked effect on improving the accuracy and efficiency of the integrated 

NGC system as a whole for the completion of the mission, leading to better overall results in 

terms of total distance travelled, deviation, energy and time consumed, and not least, the 

actual number of way-points successfully tracked by the vehicle. This technique constitutes a 

novel approach to address the increasing demand for autonomous capabilities in cost-

effective USV platforms such as Springer which relies on software-based techniques to 

enhance the effectiveness and reliability of its relatively low-budget sensors and restricted 

modelling facilities. 
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Figures 

 

 
Figure 1. Block diagram representation of a two-input USV 

 

 

 
Figure 2. IKF estimate depicting its upper and lower boundaries. 

 

 

 

 
Figure 3. Deviation at time k. 
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(a) General structure of MPC. 

 
 (b) General strategy of MPC. 

Figure 4. MPC (a) General structure; (b) General strategy. 
 

 

 

 

 
Figure 5. NGC system block diagram. 

 

 

 

 

 
Figure 6. Velocity triangle. 
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Figure 7a. Way point tracking using incorrect TCM2 model. 

 

 
Figure 7b Controller output nd. 

 
Figure 8. Comparison of reference heading, actual vehicle heading, and 

 estimated heading, using KF based on incorrect TCM2 model. 
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Figure 9a. Way point tracking using wIKF. 

 
Figure 9b. Controller output nd. 

 

 
Figure 10: Comparison of reference heading, actual vehicle heading, 

 and estimated heading from wIKF. 
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Figure 11. Comparison of wIKF and traditional KF estimation errors. 

 


