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Abstract

We present a review on the current state of publicly available datasets within the hu-

man action recognition community; highlighting the revival of pose based methods and

recent progress of understanding person-person interaction modeling. We categorize

datasets regarding several key properties for usage as a benchmark dataset; including

the number of class labels, ground truths provided, and application domain they oc-

cupy. We also consider the level of abstraction of each dataset; grouping those that

present actions, interactions and higher level semantic activities. The survey identifies

key appearance and pose based datasets, noting a tendency for simplistic, emphasized,

or scripted action classes that are often readily definable by a stable collection of sub-

action gestures. There is a clear lack of datasets that provide closely related actions,

those that are not implicitly identified via a series of poses and gestures, but rather

a dynamic set of interactions. We therefore propose a novel dataset that represents

complex conversational interactions between two individuals via 3D pose. 8 pairwise

interactions describing 7 separate conversation based scenarios were collected using

two Kinect depth sensors. The intention is to provide events that are constructed from

numerous primitive actions, interactions and motions, over a period of time; providing

a set of subtle action classes that are more representative of the real world, and a chal-

lenge to currently developed recognition methodologies. We believe this is among one

of the first datasets devoted to conversational interaction classification using 3D pose
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features and the attributed papers show this task is indeed possible. The full dataset is

made publicly available to the research community at [1].

1. Introduction

Recent advances in human motion capture and action recognition have a range

of applications including surveillance, synthesis of computer generated imagery, and

human-computer interfaces. Despite this progress there are still several problems that

require solving, including the understanding of complex classes and maintaining accu-5

racy rates on significantly large datasets. The field has moved fluidly between the use

of both appearance and pose based features since its conception, with datasets being

produced for both modalities that can be used for cross comparison between developed

methods. The release of a commercial depth sensor has revived the use of pose based

features in recent years, however the datasets have yet to represent the complexity of10

classes that are provided by appearance based sets. We therefore intend to highlight

datasets within the field and then introduce the proposed dataset to build on the current

state.

The Beginning of Human Action Recognition

In 1973 and 1975 [2, 3] presented a model for the representation of the human15

form that closely followed the biological interpretation of human movement, the hu-

man skeleton representational model, based in Gestalt principles that provide key in-

terest points in the movement. Model representations were then expanded by [4–9] to

develop systems that are able to identify human walking actions. A review of the field

was reported in [10], focusing on the recognition of the articulated movement by the20

human body and acknowledging the benefit of a priori shape models in Human Action

Recognition (HAR). [11] used 3D coordinates of 14 joints to perform event recogni-

tion from a continuous sequence of ballet moves. In following years the use of pose

estimation was reduced in favor of video sequence analysis, due in part to their ease of

acquisition and relatively lower cost compared to the use of marker capture systems at25

the time. [12] formed another review of the field, discussing the use of both body part
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representation and the global motion of the body; recognising the need for accurate

tracking of body parts when undertaking 3D estimation from 2D projections, noting

the difficulty in estimating the position of joints in the scene when using appearance

based pose extraction methods. The review then draws light on the use of tracking mo-30

tion without needing to directly identify body parts; making use of image processing

methods for appearance based tracking such as bounding box locality [13] and mesh

features [14–18]. This use of motion lead to the use of appearance features in the recog-

nition of activities, with use of image features including motion fields [19, 20], motion

histories [20] and space-time interest points [21–23]. Around 2004/2005 the KTH and35

Weizmann action recognition datasets were publicly released to the field, providing

a collection of sequences with which to evaluate developed methodologies [22, 24].

Despite their huge success as a comparison dataset, both sets were representative of

the time of their release, containing single camera recordings of individual subjects

performing discrete actions. Since the release of the KTH and Weizmann action sets,40

recent appearance based HAR has moved towards understanding complex interactions

between multiple individuals. Contextual understanding of the scene as a whole has

been explored in recent years, with [25] utilizing the behaviors of multiple subjects in

the scene to help obtain accurate classification of a given individual’s action. Further

appearance datasets are reviewed in [26] with identification of sets that provide classes45

for specific domains and describing complex scenarios; including meta-source sets,

multiview recordings, and repositories of long observations.

The Use of Pose

The uses of low-level and high-level featuresin HAR have been established. Low-

level features typically limit recognition of actions and interactions to those of distinct50

or exaggerated classes which can be distinguished via strong spatio-temporal gestures

or poses; such as the jumping jack, handshake and high-five. The use of higher level

temporal tracking can often out-perform low-level features in HAR, and [27] suggested

the consideration of 3D pose features as a benefit over lower level appearance features,

acknowledging previous difficulties in obtaining accurate 3D pose features. The re-55

cent advances within pose capture and estimation methodologies has helped to reduce
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the difficulty in collecting 3D human pose from an observed scene, thus increasing

the prominence of 3D pose in HAR. Various features have been developed from the

body pose domain; including joint-joint/joint-plane distances, motion velocities, and

histograms of joint orientations [27–29]. Recent work has moved into the application60

of fusing multiple modalities for recognition, with particular highlight on the bene-

fit of audio-visual fusion [30–32]. With this resurgence of 3D pose it is worthwhile

reviewing the datasets that are available to the HAR community in order to facilitate

comparable evaluation of research methods. Discussing these datasets in terms of their

reflectance of real world scenarios and ability to provide challenges to a rapidly moving65

field highlights the difference between the appearance and pose based areas of the com-

munity, with challenges that have been explored in the image modality being relatively

untouched in the pose domain.

Human Action Recognition Methods

Methods in classifying individual actions have been well studied in both the image70

processing and depth based methods. Relatively simplistic pose rich actions such as

waving, walking and clapping have been the focus of research for decades, with numer-

ous datasets providing standard benchmarks with which evaluate the performance of

new methodologies. HAR has often focused on the analysis of spatio-temporal features

that are extracted from data collected in the raw domain. Schuldt et al. [22] makes use75

of local space-time features to identify key interest points of motion; these points are

then used to develop a vocabulary of action primitives that train a Support Vector Ma-

chine (SVM) classifier. Blank et al. [24] presented the action event as an XYT volume,

extracting local saliency and orientation combined with global space-time features to

perform spectral clustering based classification. Methods designed for action represen-80

tation, segmentation and recognition via appearance information has been reported in

[33]; identifying the spatial features, temporal model, temporal segmentation, and view

invariance provided by each method for appearance based recognition. For pose based

recognition the depth sensor has become an efficient method of tracking and extract-

ing human skeletal model representations of subjects during experimental recordings85

[34–36]. This has lead to a renaissance in pose estimation techniques [27, 37–39], and
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to the production of numerous public datasets for pose estimation method validation

[37, 40, 41]. In addition, many recognition methods have been developed which are

more generic in their ability to use both appearance and skeletal model derived fea-

tures; focusing on the learning of similar representative sub-action primitives, which90

are then verified using both appearance and skeletal features [42–45].

Human Action Recognition Problem

Over the development of the field some main problems have revealed themselves;

namely, variation in execution style and appearance. Appearance effects are reduced

by considering the individual as a human skeleton model, removing all external stimuli95

except for pose articulation. Despite the benefit of removing anecdotal image domain

information by considering pose, it is argued that this lack of appearance data may

remove higher level contextual information [27]. Temporal execution variation has a

large impact on the ability to recognize events, not only in execution speed but also the

order in which action primitives are executed. Some actions can be subject to more100

variation than others; some even have a definitive order in which primitives must be

executed in order to fulfill the higher level contextual semantics of the action, often

described as a sequence of key poses [36, 46–48]. Execution length variance became

a large part of the HAR problem, with actions being executed at differing speeds. As

such, Dynamic Time Warping (DTW) has been used to align two sequences of actions,105

adapted from [49] by [50, 51]. This method of sequence alignment has since been

used to compare sequences of differing execution length, [44, 52–54]; however the

use of DTW has also been criticized, especially when aligning highly periodic actions

[41] or actions where the time taken to execute of a key feature, such as walking and

running [48]. Exemplar based methods make use of key poses almost as a series of110

checkpoints frames which make up an action, and therefore are believed to not require

a time warping alignment phase [55, 56]. These developed methodologies seem to

provide reliable accuracy for the publicly available datasets on which they are often

validated, despite their variance in execution rates and styles.

Another issue in the community is the lack of methods which are able to extend115

beyond the recognition of simplistic action classes. [33] reports upon the predictive

5



accuracy of methods that are evaluated on the KTH, Weizmann and IXMAS datasets;

showing that in recent years the level of accuracy can often reach over 90%. State

of the art performance accuracy is also reported within [57], with older datasets of-

ten reporting the highest number of correct classifications. [57] also shows that those120

datasets which are more representative of real world observations tend to challenge the

current methods within the community; such as Hollywood1/2, HMDB51 and Olympic

Sports. This suggests that current HAR methods are able to easily classify the relatively

simplistic classes presented in established datasets, but that the community requires

challenging with complex scenarios.125

Contributions

This study aims to first consider a large selection of the current datasets that are

available for human action recognition, evaluating properties that facilitate compara-

ble testing of developed HAR methods. The survey identifies the growth of the field

from consideration of generic emphasized actions towards the understanding of inter-130

actions between numerous individuals. Datasets are analyzed based on a variety of key

properties that influences their use for various HAR techniques, including number of

action classes, complexity of events and their application domain. Differing levels of

abstraction within the understanding of human behavior are described, detailing the

nature between pose, gesture, action, interaction, and activity. Despite the progression135

of the field towards higher levels of behavior abstraction there is still need for a dataset

that provides interaction classes that contain complex person to person activities, rep-

resenting actions and interactions that are not readily identifiable by the presence of a

given gesture or pose. The second part of this study then aims to help occupy this gap

in the community with a dataset describing subtle conversational interaction classes.140

CONVERSE provides a collection of interactions in which the activity develops over

a long period of time, with realistic representations of behaviors that have contextual

differences that are difficult to define by motion.
The rest of this paper will outline the current state of data available to the commu-

nity and outline the requirement for a novel conversational set. In section 2 we present145

the evaluation of a plethora of available datasets, evaluating each one based on the
provided set of criteria and highlighting the need for a dataset which introduces subtle
interactions between individuals. Section 3 then describes the surveyed sets, providing
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Table 1: Comparisons of key action recognition datasets, detailing the download location, associated de-
scriptive publications, and number of simultaneous viewpoints.

Name Modality URL Description Views
50 Salads RGB-D, IMU [58] [59] 1
BEHAVE RGB [60] [61] 2
Berkeley MHAD RGB-D, IMU, Audio, MoCap [62] [30] 14
BIT Interaction RGB [63] [64] 1
CAD120 RGB-D [65] [66] 2
CAD60 RGB-D [65] [67] 2
CASIA RGB [68] [69] 3
CAVIAR RGB [70] [71] 1, 2
CMU MMAC RGB, MoCap, IMU [72] [73] 6
CMU MoCap MoCap [74] - 1
CONVERSE RGB-D [1] [75–77] 1
Drinking/Smoking RGB [78] [79] 1
ETISEO RGB [80] [81] 1, 3, 4
G3D RGB-D [82] [83] 1
G3Di RGB-D [84] [85] 1
HMDB51 RGB [86] [87] 1
Hollywood RGB [88] [89] 1
Hollywood-2 RGB [90] [91] 1
Hollywood3D RGB-D [92] [93] 1
HumanEVA-I RGB, MoCap [94] [95] 7
HumanEVA-II RGB, MoCap [94] [95] 4
IXMAS RGB, Silhouette [96] [97] 5
JPL RGB [98] [99] 1
K3HI RGB-D [100] [101] 1
KTH RGB [102] [22] 1
LIRIS RGB-D [103] [104] 1
MPI08 RGB, IMU, Laser Scan [105] [106, 107] 8
MPII Cooking RGB [108] [109] 1
MPII Composite RGB [110] [111] 1
MSR Action-I RGB [112] [113] 1
MSR Action-II RGB [112] [114] 1
MSR Action3D RGB-D [112] [40] 1
MSR DA3D RGB-D [112] [41] 1
MSR Gesture3D RGB-D [112] [115] 1
MuHAVi RGB, Silhouette [116] [117] 8
Olympic Sports RGB [118] [119] 1
POETICON RGB, MoCap [120] [121] 7
Rochester AoDL RGB [122] [123] 1
SBU Kinect Interaction RGB-D [124] [125] 1
Stanford 40 Actions Image [126] [127] 1
TUM Kitchen RGB, Markerless MoCap, RFID [128] [129] 4
UCF101 RGB [130] [131] 1
UCF11 RGB [132] [133] 1
UCF50 RGB [134] [135] 1
UCF Sport RGB [136] [137] 1
UMPM RGB, MoCap [138] [139] 1
UT Interaction RGB [140] [141] 1
ViHASi RGB, Silhouette [142] [143] 40
VIRAT RGB [144] [145] -
Weizmann RGB, Silhouette [146] [24, 147] 1
WVU MultiView RGB [148] [149, 150] 8

key information regarding their composition and usage. Section 4 then draws on these
findings to present our novel dataset, describing the composition of the data and its150

usage in HAR, and providing a baseline set of classification results for comparison.
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2. Discussion of Current State

Numerous HAR datasets have been produced and publicly released in the last

decade for the purpose of detecting and identifying action events in an observed scene.

Many of these sets have the added benefit of allowing cross-verification of methodolo-155

gies developed in the field of computer vision; specifically those of action detection

and classification. Available datasets contain a variety of traits which require consid-

eration when deciding upon their appropriate usage. Sets differ in the data collection

modality; including RGB videos, depth maps, accelerometers and marker based motion

capture. They also differ in the actions carried out; including simple gestures, discrete160

actions, and continuous sequences of actions, multi-user interactions and person-object

interactions. Some datasets make use of original data collection, allowing a degree of

control over certain parameters within the data collection methodologies. Others use

meta-data collected from video clips that are publicly available from media such as

films and online video clips; these tend to have large amounts of variation between in-165

dividual sequences, however they are also among the largest of the datasets, with some

meta-sets containing thousands of sequences [87, 131]. Numerous sets have ground

truth labels for an entire sequence; however many are either manually segmented out

of a continuous sequence of multiple actions, or are left for users to perform labeling

before their use. Ground truth labeling on a frame-by-frame basis is rare, due to the170

complexity in determining the exact frame at which an action begins.

Datasets, such as KTH, Weizmann and MSR Action3D [22, 24, 40], provide the

common examples of well annotated and discrete action executions; including kicking,

walking, and shaking. Others, such as the CMU Motion Capture set [74], expand the

complexity further by containing sequences of multiple actions executed in a continu-175

ous manner. Recently, sets have moved towards recognizing interaction between two

people, including SBU Kinect, BIT-Interaction and K3HI [37, 64, 101]; however, these

sets still provide interactions using the classic simplistic actions of pushing, punching

and kicking. A few studies, including MSR DailyActivity3D and the TUM Kitchen

[41, 129], have made steps towards the recognition of so-called ’daily activities’, natu-180

ral actions which may be more representative of the real world executions.
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Despite this abundance of datasets, there is still a lack of sets that make use of

subtle interaction classes, representing loosely defined actions such as those in natural

conversational styles, or in context dependent situations. With [76, 77], we have pre-

sented methodology, using a dataset of subtle conversational interactions, which is able185

to classify such subtle action events, based upon 3D pose features.

The following section will evaluate the public datasets detailed within section 3 and

summarized in Table 1, identifying key features for their usage in the HAR community.

Several parameters that require consideration when developing and evaluating action

recognition methodologies using publicly available data are identified; including the190

modality of data acquisition, data provided by the set, and consistent training and test-

ing subsets. The complexity of each dataset is also evaluated, based upon the number

of individual classes they present, the number of samples provided, and the presence of

complex and realistic class scenarios. Summaries are provided in Tables 1, 2, 4, 5, 6,

7, 8, and 9. The proposed CONVERSE dataset [1] is included within the evaluations to195

highlight the necessity for such a set and identify where it resides amongst the currently

available data. A detailed explanation of the proposed dataset is given in section 4.

2.1. Modality

In Table 2 we cluster the datasets based on their method of data capture; from

video, depth maps, skeletal tracking, Motion Capture (MoCap) marker tracking, IMU,200

and audio. The majority of sets in HAR make use of vision, however recent progress

has been made towards the use of 3D pose estimation via depth sensors; therefore

understanding the modality provided by a dataset will often impact on the choice of

features used to describe each sequence.

Video205

Appearance based HAR makes use of datasets that are often collected via still im-

ages or video, as cameras can provide a relatively cost effective method of obtaining

both real-world and staged execution samples from both a laboratory or real-world

environment. In Table 1 it can be seen that all of the datasets presented contain some

form of video or appearance based data (except CMU MoCap, K3HI and UCF iPhone),210
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Table 2: Comparison of provided data and presence of dedicated validation sets.

Datasets

Data

RGB/Greyscale All sets except CMU MoCap, K3HI,

MoCap Berkeley MHAD, CMU MMAC, CMU MoCap, HumanEVA-I, HumanEVA-II,
POETICON, TUM Kitchen, UMPM

Depth 50 Salads, Berkeley MHAD, CAD120, CAD60, G3D, G3Di, Hollywood3D, LIRIS, MSR
Action3D, MSR DA3D, MSR Gesture3D, SBU Kinect Interaction, CONVERSE

Skeleton Berkeley MHAD, CAD120, CAD60, G3D, G3Di, K3HI, MSR Action3D, MSR DA3D,
SBU Kinect Interaction, CONVERSE

IMU 50 Salads, Berkeley MHAD, CMU MMAC, MPI08, TUM Kitchen

Audio Berkeley MHAD, POETICON

Laser Scan MP108

Appearance sets Pose sets

Train/Test split

Yes Drinking/Smoking, ETISEO, Hollywood,
Hollywood 2, IXMAS1, KTH, Olympic
Sports, Rochester AoDL1, Stanford 40
Actions, UCF101, UCF111, UCF501, UCF
Sport1, UT Interaction, ViHASi1, VIRAT1,
Weizmann1, WVU MultiView-I, WVU
MultiView-II

Hollywood3D, HumanEVA-I, HumanEVA-II,
LIRIS, MSR Action3D, SBU Kinect Interac-
tion, TUM Kitchen1, CONVERSE1

No BEHAVE, BIT-Interaction, CASIA,
CAVIAR, HMDB51, JPL, MPII Cook-
ing, MPII Composite, MSR Action-I, MSR
Action-I, MuHAVi

50 Salads, Berkeley MHAD, CAD120,
CAD60, CMU MMAC, CMU MoCap, G3D,
G3Di, K3HI, MPI08, MSR DA3D, MSR Ges-
ture3D, POETICON, UMPM

1 provided in description paper via Leave Out cross validation methodology

therefore in Table 2 we omit the video data. The quality of the recordings varies greatly

between sets, with some specializing in evaluating action detection and recognition in

low quality or small scale recordings. High intra-set and inter-sequence variation in im-

age quality, camera motion, scale and viewpoint are common in meta-data sets that col-

lect observations from multiple sources, such as UCF101, UCF50, UCF11, Hollywood,215

Hollywood-2 and HMDB51, and these pose a more realistic problem to the commu-

nity. Visual based HAR can provide an intuitive representation of the scene, however

there can often be superfluous information contained within an observation that nega-

tively impacts on the reliable global recognition of a given action; therefore, appearance

based modalities can often make use of subject localization and background removal,220

coupled with the extraction of descriptors such as Space-Time Interest Point (STIP)s,

Histogram of Oriented Gradients (HOG), Histograms of Optical Flow (HOF) or lo-

cal regions of motion features to enable the global recognition of actions regardless
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of background information or subject-specific appearance. Many depth based datasets

also provide simultaneously captured video representations of their data; this appear-225

ance data can either be omitted from the learning, or combined to form a multi-modal

system. Of the appearance based datasets, the KTH and Weizmann datasets have been

cited the most for single action recognition method evaluation. For appearance based

interaction recognition the CAVIAR, Hollywood and UT Interaction datasets have been

used frequently by the community.230

MoCap

Motion capture concerns the recording of numerous markers placed upon the body

by multi-camera systems, providing accurate tracking of the markers within a volume

over time. MoCap often provides a method of capturing a spatial ground truth for the

marker locations within the scene, being used as a stand-alone modality or augmenting235

datasets captured through other methods. MoCap systems are often calibrated using

built in software and a calibration tool, allowing all cameras to be spatially and tem-

porally synchronized, increasing confidence in the marker tracking. Placement of the

markers varies between datasets and as such datasets which make use of MoCap pro-

vide details of the marker placement on the body, allowing semantic affordance to be240

applied to each marker. MoCap can be seen as a cost-expensive method of data col-

lection, often requiring dedicated systems, however the generation of a spacial ground

truth and reliable pose tracking method is of great benefit when developing pose from

appearance or pose based action recognition methodologies. Despite this, an imple-

mentation of marker based MoCap systems in a real world environment is impractical,245

requiring individuals to wear a motion capture suit to be detected by the system would

provide little benefit to the user; as such there has been some effort has also been made

to produce human skeletal tracking without the use of markers from simple RGB image

recording [129] and from depth maps [40].

Of the HAR datasets that utilize MoCap, the HumanEVA, Berkeley Multimodal250

Human Action Database (MHAD) and Carnegie Mellon University (CMU) MoCap

datasets are most commonly used. The HumanEVA dataset provides a set of evalu-

ation metrics for the purpose of action recognition, Berkeley MHAD provides a de-
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tailed dataset containing multiple modalities for fusion based action recognition, and

the CMU MoCap dataset contains a vast number of continuous sequences which can255

be used for action detection and sequence segmentation.

Depth

The production of a consumer level depth sensor, most notably the Microsoft Kinect,

coupled with efficient and accurate joint tracking software has provided the HAR com-

munity with an inexpensive method of collecting 3D poses of a subject performing260

actions within a scene [34–36]. This has allowed for the development of methods that

represent the action as a series of key poses or bag of words model [46, 47, 77], extract-

ing the key frames that describe the overall action event. Datasets such as 50 Salads,

Berkeley MHAD, CAD120, CAD60, G3D, G3Di, K3HI, LIRIS, MSR Action3D, MSR

DA3D, MSR Gesture3D, and SBU Kinect Interaction all make use of the Kinect depth265

sensor to collect data providing the depth map of the scene. The Hollywood3D set

utilizes commercial films that have been recorded using a 3D stereo camera system to

provide depth maps. By obtaining a 3D pose estimation of the subjects within the scene

users are able to, given accurate tracking, generate pose, scale, and appearance invari-

ant features for the purpose of HAR that include joint trajectories, joint-joint distances,270

joint-plane distances, and joint motion histories. Many of the depth datasets captured

using the Kinect provide the associated estimated skeleton representation of the indi-

vidual, tracking a number of joints across the scene. The number of joints tracked and

the position of the provided markers often depends on the method used to extract the

skeleton; those using the Microsoft Kinect SDK often provide 20 points, whilst those275

using the OpenNI standard track 15 joints on the body. The selection of joints often

aligns with the major joints of the human body, and so provides an estimation of limb

motion. Currently the use of depth sensors are limited to a viewpoint that is in a roughly

front-on position due to the method of estimating depth, using distortions of infra-red

projections into the scene which is then captured by a receiving sensor. This method280

has little ability to handle scene occlusions which can cause shadowed regions in the

depth map, resulting in lost or noisy tracking in the extracted skeletons.

The most prominent depth datasets for single person actions include those pre-
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sented by the Microsoft Research group, namely the Action3D and DA3D datasets.

Despite the small number of samples and action classes provided by the MSR Ac-285

tion3D dataset there has been a vast number of citations for its use as an evaluation

dataset. For person-person interactions there are few datasets available which make

use of depth based data; the K3HI and SBU Kinect Interaction datasets provide se-

quences of single executions of a given interaction, analogous to those provided by the

BIT Interaction and UT Interaction appearance datasets, however their recent release290

may reflect their low citation and usage for evaluation of pose based methods.

Other

Various other methods of data capture have been used for HAR purposes, including

the use of audio recordings [30, 151] and IMUs [30, 152, 153]. These methods can

provide reasonable classification results on their own, however they are often used in295

a multi-modality system to improve the accuracy rates of single modality methods.

These datasets are beyond the scope of this survey and omitted for brevity.

2.2. Action class types

Human behaviors are often a set of events with differing levels of abstraction and

complexity, therefore to aid comparison between HAR class types we shall first define300

assumptions made about terminology we wish to use. Many class labels provided

within HAR datasets can often be re-labeled to fit within a different level of abstraction,

however we attempt to use common terminology found across the community, with an

overview provided in Figure 1 and a summary of the datasets in Table 4. Example

images from datasets that describe differing levels of abstraction are given in Table305

3.

Pose An atomic observation of the spatial arrangement of a human body at a single

temporal instance, e.g. ‘Arm above head’.

Gesture A temporal series of poses on a sub-action scale, sometimes described as

action primitives e.g. ‘Arm moves left’.310
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Action Type Dataset Example frames

Action Berkeley
MHAD

Action HumanEva

P-P
Interaction

SBU
Kinect
Interaction

P-O
Interaction

50
Salads

Activity MSR
DA3D

Activity TUM
Kitchen

Table 3: Example frames of currently available depth based human action recognition datasets. Images are
provided here to give insight into the types of classes provided by pose based data.
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Action A series of gestures which form a contextual event, e.g. Repeated gestures of

arm moving left and then right can be contextual described as an ’overhead wave

action’. These are the most commonly used class labels found within current

datasets, describing single actions executed by a subject including ‘run’,‘jump’,

and ‘wave’.315

Interaction A pairwise or reciprocal action is committed by two entities on each other.

Each entity therefore has a single action that reflects it’s state compared to the

other entity, i.e. consider the action of person A shaking the hand of person B;

A executes the action of shaking the hand of B, B executes the action of having

their hand shaken by A, together this pairwise action execution can be described320

as that of a ’handshake’ interaction. For the purpose of action recognition inter-

actions are often further divided into differing interaction types based on if the

entities include people, objects or groups. For this study we have omitted group

interaction datasets due to space limitations.

Person-Person An action is committed directly by one individual upon another.325

This definition does not include crowded scenes in which an individual

performs a single person action with other subjects in the environment.

The class labels in a P-P interaction treats the interaction as a single entity,

rather than two separate single person actions, e.g. we consider the class

‘punching’ as an interaction between person A, the puncher, and person B,330

the individual being punched.

Person-Object An action is committed directly by one individual upon an ob-

ject. This includes the manipulation of objects. We consider class labels

such as ‘lift chair’ and ‘open box’ as person-object interactions as the ac-

tions ‘lift’ and ‘open’ are performed on the objects ‘chair’ and ‘box’ re-335

spectively.

Groups Characterized as interactions carried out between a collected entity of

more than two individuals. Group interactions can include inter- and intra-

group behaviors and the interaction of the group on other objects, individ-

uals, or even other groups. These often form their own subsets of group340
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behaviors.

Activity A collection of actions and/or interactions that compound to describe a high

level event. These are common within the sets that describe daily behaviors, e.g.

‘cook a meal’ and ‘tidy room’ can often include numerous actions and interac-

tions that are executed. Each action and interaction can therefore be thought of345

a sub-activity event in such scenarios. Activity is also used to describe the daily

activities, a more realistic observation execution than the exaggerated instances

such as ’punch’ and ’kick’.

A common scenario presented within HAR instances is that of a single person

executing a singular action, in which an individual actor performs an action with no in-350

teraction to other individuals or objects, such as within KTH, Weizmann, MSR Action,

and MSR Action3D. In recent years, interaction datasets have become more prominent,

often displaying actions where one actor performs an action upon which another actor

is the recipient. These interaction sets can still exhibit behaviors that are quite well

defined, with a single instigator and a single recipient, such as punching, pushing and355

move towards. The most notable interaction sets include BIT Interaction, UT Interac-

tion, K3HI, and SBU Kinect Interact datasets. There also exists interaction classes that

are more complex in their composition, involving multiple entities, object manipula-

tion or requiring higher level semantics; these are prominent in the TUM, BEHAVE,

VIRAT, ETISEO, and POETICON datasets. The higher level activity datasets often360

provide observations of an entire task being carried out and require the understand-

ing of the sub-activity actions and interactions being carried out over the course of the

recording. In the current sets there are often annotations of lower level actions which

are encompassed within a higher level activity context, with sets such as MPII Com-

posite, 50 Salads and TUM Kitchen providing annotations of both levels of abstraction365

and the objects that are subject to interactions during the course of the activity.

The choice of classes that are performed by the actors is a key motivation in the

generation and usage of the proposed dataset. Often the actions executed are those

of a visually definable nature, comprising single executions of a discrete action which

contain key poses and gestures. The complexity of the problem can then be increased370
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Figure 1: Levels of abstraction within human action recognition.
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by observing multiple executions of actions in a sequence, either with distinct bound-

aries between the classes or with a natural flow between different classes. These are all

complex issues that are the focus of the community, with segmentation methods often

utilized to separate out actions from a continuous sequence. Judging the difference

in complexity between two classes can be subjective, depending upon the subtlety of375

gestures, the context of any interactions, and the spatio-temporal rigidity of the exe-

cutions; subtle gestures, for example, may well present a more complex recognition

problem than the simplest of activity classes. We can however make some generalized

assumptions about the complexity within the different abstraction levels. Lower levels

of abstraction such as pose and gesture should provide less challenges to the field in its380

current state, while higher levels of abstraction, especially those involving interactions

between two or more entities, still remain a challenging issue.

Obviously with the definitions of the action types presented there can be some

overlap in how to handle events in which an entity is not only interacted with, but

also pivotal to the context of the label. Consider the class label ‘smoking’, this event385

can fit both into the definition of a singular action in which the object is explicit to

the action, a person-object interaction between the person and cigarette, and also into

its own activity class in which smoking is the task executed. Consider also the class

label of ‘pushing’, this may be a class label that can be readily classified as a single

action, person-person interaction, or person-object interaction depending upon the en-390

tities present, and also as an activity if there is a contextual background to the event.

This highlights the complexity in describing class labels and requires the careful con-

sideration of overlaps that appear to be presented between datasets with similar action

classes. To further this point, we ask should the community consider an interaction

as its own complete class, or should the system understand the states occupied by all395

entities within the interaction, i.e. the class label of ‘pushing’ may be deconstructed

into sub-classes that describe the action of the instigator and the reaction of the recip-

ient. Many interaction datasets handle the class labeling as a single complete unit of

interaction, often reliant on the action committed by the instigator, e.g. K3HI, SBU

Kinect Interaction, and UT Interaction. However the TUM Kitchen, 50 Salads and400

MPII Composite sets explicitly annotate the states of both entities to define the person-
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Table 4: Comparison of dataset interaction types. Note that datasets can contain instances of several types of
behaviors based on the labeling it provides.

Appearance sets Pose sets

Event type

Action CASIA, CAVIAR, Drinking/Smoking,
ETISEO, HMDB51, Hollywood,
Hollywood-2, IXMAS, KTH, MSR
Action-I, MSR Action-II, MuHAVi,
UCF11, UCF Sports, ViHASi, VIRAT,
Weizmann, WVU MultiView-I, WVU
MultiView-II

50 Salads, Berkeley MHAD, CAD120,
CAD60, CMU MoCap, G3D, Holly-
wood3D, HumanEVA-I, HumanEVA-II,
LIRIS, MPI08, MSR Action3D, MSR
Gesture3D, POETICON, TUM Kitchen,
UMPM

Interaction: Person - Person BEHAVE, BIT Interaction, CA-
SIA, CAVIAR, ETISEO, Hollywood,
Hollywood-2, JPL, UT Interaction

CMU MoCap, G3Di, Hollywood3D,
K3HI, LIRIS, POETICON, SBU Kinect
Interaction, UMPM, CONVERSE

Interaction: Person - Object ETISEO, MPII Cooking, MPII Compos-
ite, VIRAT

50 Salads, CAD120, CMU MMAC,
LIRIS, POETICON, TUM Kitchen,
UMPM

Activity CASIA, MPII Composite, MuHAVi,
Olympic Sports, Rochester AoDL, Stan-
ford 40 Actions, UCF101, UCF11,
UCF50, UCF Sports, ViHASi

50 Salads, MSR DA3D, CAD60, LIRIS,
TUM Kitchen, CONVERSE

object interactions for the purpose of activity recognition. The use of a single interac-

tion class that encompasses all sub-divisions of that interaction may provide learning

that is broad and resistant to variation of intra-class behaviors; however by learning the

sub-divisions of an interaction class, considering the different actions and reactions as405

their own states, there may be an ability to learn more effective boundaries for execu-

tion variations. For this study we have considered and evaluated upon the class labels

provided by the original datasets; however we invite the community towards potentially

defining multi-scale class labeling for the purpose of action and activity recognition.

%comparisons table410

2.3. Size

The size of a dataset, not just in the number of sequences but also in the range of

different action classes and participants, can impact on it’s suitability for method eval-

uation. Testing on a small-scale dataset can provide misleading results during analysis

which may not be replicated when introducing more class labels or observations, due415

in part to the highly variable nature of inter- and intra-instance executions. Contrar-

ily there are implications in the usage of large datasets; not only the collection and

storage of data, but also in the processing of features, class learning and validation.
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Due to the inherent issues in obtaining a large number of participants, action classes,

and sequences, the largest sets tend to be meta-sets, which collect action sequences420

from various sources, such as YouTube and films, containing large variation between

sequences; this often makes meta-sets highly variable and challenging problems to be

solved. A summary of dataset sizes is given in Table 5

Number of classes

Datasets with a small number of action classes, such as MSR Action-I, MSR Action-425

II, and Drinking/Smoking, can often provide strong recognition results in part due to

the low number of partitions needed to divide the actions provided within the set. Those

sets that contain a large number of action classes, namely HMDB51, UCF101, and

UCF50, provide a difficult challenge to HAR methods due to the need to find par-

titioning information within each class that allows for inter-class partitioning, whilst430

preserving intra-class similarity. Due to the inconceivable number of possible actions

and interactions that can exist in the real world it can be beneficial to evaluate method-

ologies on datasets with a large number of distinct action classes.

Number of subjects

Datasets that are able to provide more individual subjects performing an action are435

able to portray the variability in inter- and intra-subject execution of a given class. Ob-

servations of the same action class can often differ greatly in both their temporal rate

and spatial occupancy, leading to complexity in learning the action for recognition pur-

poses. Methods that are able to provide subject invariant action recognition should pro-

vide consistent results on a dataset which contains a large number of subjects. Again,440

the meta-sets tend to provide the highest number of subjects, almost capturing a new

subject per sequence, representing a large range of inter-subject variation.

Number of samples per class

The number of observations per class can impact on the ability of a system to

suitable learn a given class. A low number of observed instances of a class can result in445

weak recognition of unobserved instances of the same class. HMDB51 provides over

100 instances of each action class it contains, providing a range of observations across
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differing viewpoints, quality and executions, as such it can provide a useful benchmark

for the recognition of actions from a subject and observation invariant methodology.

Current pose based datasets contain few repeated instances of an action class, often450

with 3-5 repetitions per subject per class. To increase the number of instances per class

it is possible to segment those datasets which contain continuous recordings of multiple

executions into discrete single execution clips, this includes the KTH dataset.

Number of sequences

The total number of sequences within a dataset should be a factor of the number of455

subjects, classes, and number of class executions, and as such can impact on the relia-

bility of the results produced. Larger datasets can provide larger testing sets for which

to evaluate a system, allowing for more confidence in the results of the validation. Size

alone however is only one parameter in the selection of evaluation benchmark, with

domain, class complexity and modality impacting on the application of methodologies460

to real world implementations.

2.4. Application Domain

The intended application domain of a dataset can provide certain intrinsic features

in the data collection methodology and action classes captured, from low resolution

images of CCTV surveillance footage to more complex action sequences of daily liv-465

ing. Some actions are representative of the domain from which they are intended; for

example the UCF-Sports dataset, [137], makes use of numerous actions from various

sports, such as javelin throws and long jumps. We classify the datasets into 4 action

class domains; generic actions, daily living, surveillance, and sport. Generic action

datasets have no overall theme, instead providing classes that are pan-domain; these470

include the classes ‘running’, ‘jumping’, ‘punching’, and also more complex interac-

tions such as ‘handshake’ or ‘play guitar’. Daily living datasets often include actions

and activities that are more natural in their execution and environment, this includes

classes based on assisted living and household tasks. Surveillance datasets often make

use of elevated view points and lower resolution images, mirroring the common camera475

setups in the security industry [145, 154]. Sports based action recognition often makes
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Table 5: Comparison of dataset sizes.

Appearance sets Pose sets

# Actions

≤ 5 Drinking/Smoking, MSR Action-I, MSR Action-
II

6 - 10 BEHAVE, BIT Interaction, CAVIAR, Holly-
wood, Hollywood-2, JPL, KTH, Rochester
AoDL, UCF Sport, UT Interaction, Weizmann,
WVU MultiView-II

CMU MMAC, HumanEva-I, HumanEva-II,
K3HI, LIRIS, MPI08, POETICON, SBU Kinect
Interaction, UMPM, CONVERSE

11 - 15 CASIA, ETISEO, IXMAS, UCF11, VIRAT,
WVU MultiView-I

Berkeley MHAD, CAD60, G3Di, Hollywood3D,
MSR Gesture3D, TUM Kitchen

16 - 20 MuHAVi, Olympic Sports, ViHASi 50 Salads, CAD120, G3D, MSR Action3D, MSR
DA3D

≥ 21 HMDB51, MPII Cooking, MPII Composite,
Stanford 40 Actions, UCF101, UCF50

CMU MoCap

# Subjects

≤ 5 Rochester AoDL CAD120, CAD60, HumanEVA-I, HumanEVA-
II, MPI08, POETICON, TUM Kitchen

6 - 10 MSR Action-I, MSR Action-II, UT Interaction,
ViHASi, Weizmann

G3D, MSR Action3D, MSR DA3D, MSR Ges-
ture3D, SBU Kinect Interaction

11 - 20 IXMAS, MPII Cooking, MuHAVi Berkeley MHAD, G3Di, K3HI, CONVERSE

≥ 21 CASIA, KTH, MPII Composite 50 Salads, CMU MMAC, CMU MoCap, UMPM

Undefined BEHAVE, BIT Interaction, CAVIAR, Drink-
ing/Smoking, ETISEO, HMDB51, Hollywood,
Hollywood-2, JPL, Olympic Sports, Stanford 40
Actions, UCF101, UCF11, UCF50, UCF Sport,
VIRAT, WVU MultiView-I, WVU MultiView-II

Hollywood3D, LIRIS

# Sequences

≤ 20 BEHAVE, CAVIAR, MSR Action-I,UT Interac-
tion, WVU MultiView-II

HumanEVA-II, TUM Kitchen, CONVERSE

21 - 100 ETISEO, JPL, MPII Cooking, MSR Action-II,
Weizmann

50 Salads, CAD60, CMU MMAC, G3Di,
HumanEVA-I, MPI08, POETICON, UMPM

101 - 500 BIT Interaction, Drinking/Smoking, Hollywood,
MPII Composite, Rochester AoDL, UCF Sport,
ViHASi

CAD120, G3D, K3HI, MSR DA3D, MSR Ges-
ture3D, SBU Kinect Interaction

501 - 1000 KTH, Olympic Sports, WVU MultiView-I Berkeley MHAD, Hollywood3D, LIRIS, MSR
Action3D

≥ 1001 CASIA, Hollywood2, HMDB51, IXMAS,
MuHAVi, Stanford 40 Actions, UCF101,
UCF11, UCF50, VIRAT

CMU MoCap

use of previously captured data from multiple sources, often containing varying image

quality and varying levels of camera motion. A summary of the domains for each of

the datasets is provided in Table 6.
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Generic480

Many action recognition datasets often contain generic action classes that are ob-

servable in numerous domains. The intention is to cover a wide variety of actions to

allow domain invariant action recognition, with generic datasets being the most widely

used for validation purposes, including the KTH [22], Weizmann [24] and MSR Ac-

tion3D [41] sets. Many generic datasets are collected in a laboratory environment; with485

static cameras, static backgrounds and calibrated data-capture setups, including Berke-

ley MHAD and CMU MoCap. Others may be collected outdoors with a controlled

clutter free setting, such as Weizmann and KTH. Others are collected within cluttered

environments, featuring non-participatory subjects that complicate the scene, such as

MSR Action-I and Action-II. Pose based datasets which make use of a depth sensor490

and the pose estimation technique of extracting the 3D skeleton are often captured in a

relatively clutter free scene due to the limitations of the skeletal tracking methodology

used.

Daily living

Daily living sets are designed to closely represent the natural world in both the en-495

vironmental surroundings and the natural style of action classes executed. The Tum

Kitchen [129], MSR DA3D [40, 41], MPII Cooking [155], and Rochester AoDL [156]

sets are commonly used for the analysis of methodology in the recognition of day-to-

day activities. Activities include ‘having a conversation’, ‘phone calls’, ‘laying down’,

‘drinking’ and ‘eating’, but may also include sub-actions within a higher level task,500

such as ‘setting a table’ or ‘cooking a meal’. The executions may be allowed to occur

naturally as in the 50 Salads, MPII Cooking, and MPII Composite datasets; or the ob-

servations may be more scripted, such as in the POETICON and the robotic class of the

TUM Kitchen set [59, 121, 129]. By understanding the actions and interactions within

a daily activity dataset the field is moving towards learning higher level semantics of505

human behavior via natural representations.
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Surveillance

Surveillance is a domain concerned with detecting and identifying activity within

a continuous observation of a scene, often making use of video-based action recog-

nition samples that are taken from a distance, prone to crowding, and contain poor510

resolution recordings. A surveillance domain sequence may contain more frames of

empty or redundant information, sporadically interspersed with temporally short re-

gions of interest. Datasets such as UT-Interaction, CASIA, and BEHAVE make use of

surveillance style setups to capture emphasized person-person interaction classes such

as ‘come together’ and ‘fight’. The CAVIAR, ETISEO, and VIRAT datasets all make515

use of detailed ground truth annotations to provide information regarding persons and

objects within the scene, enabling the evaluation of methods in detecting varies entities

and their interactions within a scene for higher semantic understanding of the events.

Sport

The UCF-Sports, [137], and Olympic Sports, [119], datasets are focused explic-520

itly on sports related action examples. These sets contain samples that are collected

from various sources of TV and online recordings, providing samples that vary in their

recording quality and containing both static and dynamic camera movements. As such

these can often be challenging datasets. In both cases the intent of the dataset is to

be able to recognize the sport being performed, this can be more challenging than in525

the case of learning sports related actions, such as in the case of ‘tennis serve’ and

‘boxing’ from some of the generic action datasets. A sport as a high level class can

contain numerous action and interaction actions that make up the overall activity and

learning a sporting class may require learning vastly different observations that belong

to the same class. 3D pose based HAR in the sports domain has few datasets due to530

the complexity in capturing a large volume in which the activity can be played. The

G3Di dataset provides interactions between two people in the context of a sporting

game played through a console, however we treat the provided classes as being generic

actions rather than true sporting based actions.
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Table 6: Comparison of dataset domain applications.

Appearance sets Pose sets

Domain

Generic BIT Interaction, HMDB51, Hollywood,
Hollywood-2, IXMAS, JPL, KTH, MSR
Action-I, MSR Action-II, MuHAVi,
Stanford 40 Actions, UCF101, UCF50,
UCF11, ViHASi, Weizmann, WVU
MultiView

Berkeley MHAD, CMU MoCap, G3D,
G3Di, Hollywood3D, HumanEVA,
K3HI, MPI08, MSR Action3D, MSR
Gesture3D, SBU Kinect Interaction,
UMPM

Daily Living Drinking/Smoking, MPII Cooking,
MPII Composite, Rochester AoDL

50 Salads, CAD120, CAD60, CMU
MMAC, LIRIS, MSR DA3D, POETI-
CON, TUM Kitchen, CONVERSE

Surveillance BEHAVE, CASIA, CAVIAR, ETISEO,
UT-Interaction, VIRAT

Sport Olympic Sports, UCF Sports

2.5. Ground truth535

Table 7 outlines various ground truths provided with each dataset, both for spatial

ground truths and labeling of action classes. Providing consistent ground truth with

which to evaluate results is important for developing benchmarks against which to test

developed methodologies, aiding in the generation of a metric score that can be used to

compare implementations.540

Class label ground truths and scene annotations of a dataset can provide a clear

benchmark for quantifying the performance of a developed methodology. Some datasets

provide frame-by-frame labeling of the scene, whilst others label an entire sequence as

containing a given class label. These annotations allow quantification of results ob-

tained from various methodologies, with predicted class labels and detections being545

compared against the ground truth. The collection of the class ground truth can be ei-

ther manually annotated by the author or produced via some form of machine learning.

Manual annotation can provide detailed descriptions of the entire scene, with locations

and affordances being given to persons and objects within the scene, as can be seen with

the ETISEO and HMDB51 datasets. These can be extremely useful when tracking the550

states of multiple entities within the scene, or for the understanding of a high level

abstracted class; however the manual labeling of individual frames can produce obser-

vation bias into the dataset, requiring strict objective criterion to gain consistent ground

truths. Machine based annotations can combined machine learning with data labeling
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to rapidly provide ground truths to large datasets, e.g. the Hollywood and Hollywood-2555

datasets are partially annotated by learning textual descriptions within the film’s scripts.

An automated ground truth annotation may require subsequent manual verification to

ensure the false labeling is minimized. The simplest form of ground truth labeling

provided by HAR datasets is by attributing the entire sequence to a specific label, ac-

knowledging that a given action occurs at some point within the observation, as is the560

case with CASIA, CMU MMAC, MSR Action3D, and many more. Having simplistic

whole sequence labeling can make it hard to use such datasets for detection purposes,

as evaluating the beginning and end frames of an action can be problematic to deter-

mine manually. For action recognition purposes the learning of background frames

from a sequence may also provide some level of noise to the partitioning of that class.565

Spatial truth can be provided by explicitly locating the subjects and objects within

the environment or by highlighting regions of interest in which the the subject, object

or event resides by using bounding boxes or silhouette masks. Calibrated ground truth

methods can be used to determine the spatial locations of the subjects within a scene,

often using motion capture suits and markers to explicitly track the body through a cap-570

ture volume, providing either a raw point cloud or the predicted skeletal frame of the

body. The accuracy of motion capture systems can vary from method to method, how-

ever the resolution accuracy is often within a range of a few millimeters, providing su-

perior body tracking than using machine learning based pose extraction. Marker based

motion capture systems, such as those used in CMU MoCap and Berkeley MHAD,575

require the application of each marker to the individual at certain predetermined lo-

cations, and variation in placement of the markers on the body from sequence to se-

quence can introduce small errors in obtaining truly explicit spatial truths. The use of

depth maps to extract an estimated 3D pose of the subject in the scene has become

a prominent inclusion in depth based HAR datasets such as MSR Action3D, K3HI,580

SBU Kinect Interaction, CAD120, and CAD60. The observation is fed into a skeleton

extractor, such as the OpenNI, Microsoft Kinect SDK softwares, or custom methods

[157–159], in which a subject is located and a human skeleton model is fitted, pre-

dicting the 3D coordinates for a number of joints. Although an approximation of true

3D spatial orientation of the joints, depth sensors and joint tracking has been shown585
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to be relatively accurate in the tracking of humans [34, 36]. The use of bounding

boxes to describe regions of interest in a scene are common within appearance based

datasets, such as BEHAVE, CAVIAR, ETISEO and MSR Action, especially those that

consider person-object interactions or belong to the surveillance domain. They simply

provide an area of focus that contains relevant annotated information, such as object590

and subject location. The use of silhouette masks also provide a region of interest,

whilst simultaneously removing external and internal appearance information, repre-

senting the subject as a binary classification as either belonging to the background or

foreground. These regions of interest can also be utilized to validate action detection

and localization methodologies, removing the unwanted information from the overall595

observation.

2.6. Viewpoint

Camera based methods can also make use of various viewpoints, from single cam-

era to multi-camera simultaneous viewpoint capture. Viewpoints can also differ greatly,

capturing events from roughly a parallel plane with the ground, elevated above head600

height, or from an almost top-down viewpoint. Often events are captured from a view-

point that is roughly parallel to the ground, producing observations that are almost

representative of a human-eye view of the event, examples can be found in MSR Ac-

tion3D, K3HI, and CMU MoCap. A summary of dataset viewpoint representation is

given in Table 8. Sets such as BEHAVE, UT Interaction and CASIA contain events605

recorded from an elevated angle; these viewpoints are common within the surveillance

domain due to the positioning of surveillance cameras for capturing a large scene at

once. Recently there has been work towards the recognition of actions from a first per-

son perspective, with data captured from the viewpoint of the observer [99, 160, 161].

This field is often working towards the understand of interactions by robots for the610

purpose of human-robot interaction. Such a viewpoint is believed to provide more

meaningful information when the observer has an active role in the interaction rather

than simply observing a scene, as is the case in human-robotics interactions. There are

also datasets which attempt to capture simultaneous multi-camera views of an event for

the purpose of evaluating supposedly pose-invariant methodologies. Sets such as WVU615
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Table 7: Description of ground truths provided by datasets.

Name Spatial ground truth labels Class ground truth labels
50 Salads - Frame labeling
BEHAVE Bounding boxes Frame annotation
Berkley MHAD MoCap tracking File labeling
BIT Interaction - File labeling
CAD120 Extracted skeleton, bounding boxes Frame labeling
CAD60 Extracted skeleton File labeling
CASIA - File labeling
CAVIAR Bounding box Frame labeling
CMU MMAC MoCap tracking File labeling
CMU MoCap MoCap tracking File labeling
CONVERSE Extracted skeleton Frame labeling
Drinking/Smoking Bounding box Frame labeling
ETISEO Bounding box Frame labeling including calibration parameters, scene

descriptions, object affordance
G3D Extracted skeleton File labeling
G3Di Extracted skeleton File labeling
HMDB51 Bounding boxes File labeling including view, camera motion, visible

body parts, quality, and number of subjects
Hollywood - Frame labeling
Hollywood-2 - Frame labeling
Hollywood 3D - File labeling
HumanEVA-I MoCap tracking File labeling
HumanEVA-II MoCap tracking File labeling
IXMAS Silhouette masks Frame labeling
JPL - Frame labeling
K3HI Extracted skeleton File labeling
KTH - Frame labeling including scenario labeling
LIRIS Bounding boxes Frame labeling
MPI08 MoCap tracking and 3D scan File labeling
MPII Cooking - Frame labeling
MPII Composite - Frame labeling
MSR Action-I Bounding box Frame labeling
MSR Action-II Bounding box Frame labeling
MSR Action3D Extracted skeleton File labeling
MSR DA3D Extracted skeleton File labeling
MSR Gesture3D Extracted skeleton File labeling
MuHAVi Silhouette masks Frame labeling
Olympic Sports - File labeling
POETICON MoCap tracking File labeling
Rochester AoDL - File labeling
SBU Kinect Interaction Extracted skeleton File labeling
Stanford 40 Actions Bounding box File labeling
TUM Kitchen Markerless MoCap tracking Frame labeling including body trunk, left arm, right arm,

and object affordance
UCF101 - Frame labeling
UCF11 - Frame labeling
UCF50 - Frame labeling
UCF Sport - File labeling
UMPM MoCap tracking File labeling
UT Interaction Bounding box Frame labeling
ViHASi Silhouette masks File labeling
VIRAT Bounding box Frame labeling including object affordance
Weizmann Silhouette masks File labeling
WVU MultiView-I - File labeling
WVU MultiView-II - File labeling

MultiView, Berkeley MHAD and TUM Kitchen all contain numerous cameras located

in differing positions capturing the same scene. Depth based data, such as tracked
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Table 8: Comparison of dataset viewpoints and scenario control.

Appearance sets Pose sets

Simultaneous Views

Monocular BIT Interaction, Drinking/Smoking,
HMDB51, Hollywood, Hollywood-2,
JPL, KTH, MPII Cooking, MPII Composite,
MSR Action-I, MSR Action-II, Olympic
Sports, Rochester AoDL, Stanford 40 Ac-
tions, UCF101, UCF11, UCF50, UCF Sport,
UT Interaction, Weizmann

50 Salads, CMU MoCap, G3D, G3Di, Hol-
lywood3D, K3HI, LIRIS, MSR Action3D,
MSR DA3D, MSR Gesture3D, SBU Kinect,
UMPM

Multi-view BEHAVE, CASIA, CAVIAR, ETISEO, IX-
MAS, MuHAVi, TUM Kitchen, ViHASi,
WVU MultiView-I, WVU MultiView-II

Berkeley MHAD, CAD120, CAD60, CMU
MMAC, HumanEVA-I, HumanEVA-II,
MPI08, POETICON, CONVERSE

Environment

Interior Natural CAVIAR, Drinking/Smoking, HMDB51,
Hollywood, Hollywood-2, JPL, MuHAVi,
Olympic Sports, Stanford 40 Actions,
UCF101, UCF11, UCF50

Hollywood3D

Interior Controlled IXMAS,MPII Cooking, MPII Composite,
Rochester AoDL, ViHASi, WVU MultiView-
I, WVU MultiView-II

50 Salads, Berkeley MHAD, CAD120,
CAD60, CMU MMAC, CMU MoCap, G3D,
G3Di, HumanEva-I, HumanEva-II, K3HI,
LIRIS, MPI08, MSR DA3D, MSR Ges-
ture3D, POETICON, SBU Kinect Interaction,
TUM Kitchen, UMPM, CONVERSE

Exterior Natural BEHAVE, BIT Interaction, Drink-
ing/Smoking, ETISEO, HMDB51, Hol-
lywood, Hollywood-2, MSR Action-I, MSR
Action-II, Olympic Sports, Stanford 40
Actions, UCF101, UCF11, UCF50, UT
Interaction, VIRAT

Hollywood3D

Exterior Controlled BIT Interaction, KTH, Weizmann

skeletons and motion capture marker coordinates, can be orientated arbitrarily about

its three axes to develop multi-view methodology, with some pose alignment used to

reduce the effect of orientation discrepancies, [162]. However this is dependent upon620

accurate pose estimation in order to provide data which has confident tracking. Due

to the nature of extracting pose estimation from depth based methods there are lim-

ited numbers of datasets that utilize multiple depth sensors; however Berkeley MHAD

provides multiple Kinect recordings alongside it’s vast number of appearance views,

with the sensors located in positions from which the infrared sensors are not causing625

occlusions.

2.7. Use in Community

Popularity of a dataset within the community can be difficult to evaluate, however

here we attempt to identify the number of citations that are made to the dataset’s de-
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scription publication via Google Scholar. Using this count as a measure of how well630

adopted a given dataset has become, we rank each set in Table 9. Note that older sets

can often show higher citation due in part to their steady accumulation of references

over time. Similarly, the number of citations made may not explicitly reflect the use

of dataset as a benchmark, as often the datasets are published in parallel with a novel

methodology which may accrue its own citations. It can be seen from Table 9 that the635

pose based datasets show considerably fewer citations, most likely due to the relative

age of the rapidly growing field.

3. Current Datasets

The following section will now detail the datasets evaluated above, describing the

composition of each dataset and a brief discussion of their usage in literature. We also640

report on some of the accuracy rates achieved using each dataset; however due to the

multitude of evaluation criteria these are used as an indicative measure of the dataset

complexity as opposed to a definitive survey of state-of-the-art results obtained. It

would be unfair to directly compare results obtained between datasets, or even within

datasets for differing purposes. Such a survey would require extensive analysis to en-645

sure that cross comparison between results are fair and reflective of their achievement.

The section is divided into the appearance and pose based datasets, with further

grouping into their respective abstraction levels as described by figure 1.

3.1. Appearance Based Datasets

Even though we wish to examine datasets that utilize pose estimation techniques for650

action recognition, we will briefly discuss availability and impact of video based sets.

Video provides a relatively cheap method of obtaining sample sequences, with both

real-world and staged executions being obtained. Collection methods can make use of

single or multi-camera setups. Actions can be performed from a singular viewpoint,

most often face-on, or from differing angles.655
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Table 9: Citation count for dataset description paper. Correct at time of submission. Note: CMU MoCap has
no attributed publication

Name Year of Publication Total Citations
Appearance
KTH 2004 2013
Hollywood 2008 1772
Weizmann 2005 1182
UCF11 2009 602
IXMAS 2006 590
UCF Sport 2008 584
Hollywood-2 2009 580
Drinking/Smoking 2007 327
UT Interaction 2009 303
Olympic Sports 2010 283
Rochester AoDL 2009 266
HMDB51 2011 265
MSR Action-I 2009 189
UCF101 2012 155
VIRAT 2011 144
Stanford 40 Actions 2011 137
UCF50 2013 131
ETISEO 2007 103
CAVIAR 2004 90
MSR Action-II 2011 82
MPII Cooking 2012 67
MuHAVi 2010 60
MPI08 2010 48
JPL 2013 38
ViHASi 2008 33
BEHAVE 2010 33
MPII Composite 2012 32
BIT Interaction 2012 19
CASIA 2009 12
WVU MultiView 2011 0
Pose
HumanEVA 2010 373
MSR Action3D 2010 333
MSR DA3D 2012 311
CAD120 2012 159
TUM Kitchen 2009 117
CAD60 2013 81
MSR Gesture3D 2012 75
Berkeley MHAD 2013 50
CMU MMAC 2008 48
SBU Kinect Interaction 2012 33
Hollywood3D 2013 32
G3D 2012 28
POETICON 2011 8
UMPM 2011 7
50 Salads 2013 6
LIRIS 2014 5
CONVERSE 2015 4
K3HI 2013 2
G3Di 2014 0
CMU MoCap - -

3.1.1. Action

Drinking/Smoking. The Drinking/Smoking dataset [78], Figure 2, contains 308 se-

quences of either drinking or smoking actions taken from 3 sources (two movies and
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Figure 2: Example images for Drinking/Smoking dataset

Figure 3: Example images for HMDB51 dataset - punch, swing baseball, and hand shake

one custom recorded set). The dataset can be used for detection, recognition and lo-

calization evaluation. There are 159 instances of drinking and 149 of smoking, from660

either a front or side viewpoint. Instances are taken from two movies and some custom

lab recordings. The dataset provides the training and testing samples that were utilized

for method evaluation in [79], allowing for direct comparison to the original method-

ology. [79] used singular key frames, coupled with a space-time action classifier to

detect the events in a given scene. The dataset has been utilized for validation several665

times, notably in the evaluation of modeling person-object interactions via the object

trajectory [163] and the recognition of an action class based on a single observation

training instance [164].

HMDB51. The HMDB51 [86], Figure 3, is a dataset of 6849 video sequences of 51

different actions with a minimum of 101 executions per label. Videos are taken from670

a mixture of online clips, movies and television. The actions encompass 5 perceived

top level classes; facial expressions, facial object interaction, body movement, body

object interaction and person-to-person interaction. The dataset also provides detailed

labeling of video quality, number of people in scene, viewpoint, visible body parts and

camera motion. Instances of the same class can vary greatly in terms of the execution675

style, the subject appearance, the quality of the images and the camera view. As such

the HMDB51 dataset is one of the more challenging appearance datasets for use as
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Figure 4: Example images for Hollywood dataset - sit down, answer phone, handshake

Figure 5: Example images for Hollywood-2 dataset - hug, answer phone, stand up

an evaluation tool. The original publication attempts to use the HOG/HOF feature

combination to recognize action events within the scene [87], developing a collection

of visual words to train an SVM classifier. It has since been used for the recognition of680

actions within natural settings and loosely controlled parameters [135, 165, 166].

Hollywood. The Hollywood dataset [88], Figure 4, intends to provide realistic human

behaviors from unconstrained videos, namely those produced for purposes other than

HAR, e.g. films and television. The set provides 5 action classes: answer phone, get

out of car, sit down, sit up, and stand up and 3 interaction classes: handshake, hug, and685

kiss. The sequences are automatically annotated by forming alignments with the script,

subtitle and time stamps of the sequence. A subsample of these have been manually

corrected to provide ‘clean’ training and testing sets. In the associated publication [89]

the videos are represented by STIPs at multiple spatio-temporal scales. Each STIP is

then used to generate a set of HOG and HOF features which are then used to train a690

non-linear Support Vector Machine (SVM) for event classification. The Hollywood

dataset, and it’s sister dataset Hollywood2 (see below), are often used for the valida-

tion of methods under realistic conditions; due to the high variation in the quality and

examples of behaviors observed.
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Figure 6: Example images for IXMAS dataset - throw, sit down, check watch

Hollywood-2. The Hollywood-2 dataset [90], Figure 5, is an extension on the Holly-695

wood dataset, greatly increasing the number of observed sequences and action classes.

The set contains 3669 sequences of 8 single person actions and 4 interactions. There

is a large overlap with the Hollywood dataset in terms of the action classes provided,

including answer phone, get out of car, handshake, hug, kiss, sit down, sit up, and

stand up. The set also introduces 4 new classes; drive car, eat, fight person, and run.700

To explore the relationship between an action and the scene it occurs within the dataset

provides 10 scenario locations, with a large focus on interior environments. The set

takes scenes from 69 movies and automatically annotates them using the same script

synchronization as with the Hollywood dataset. The set is divided into a training and

testing set, selecting given films for each set. There is some intersection between the705

Hollywood and Hollywood-2 sets, with some films being included in the training set

for Hollywood and the testing set for Hollywood-2, thus the two sets should be used in-

dependently of each other to avoid issues in training on samples that may be duplicated

in the training sets. Marszalek [91] utilizes the set for the learning of both actions and

scenes; locating space-time salient motion with a 3D-Harris detector, and static salient710

areas using 2D-Harris regions. They compute HOG/HOF descriptors from the 3D-

Harris, and Scale Invariant Feature Transform (SIFT) descriptors from the 2D-Harris

points. These features provide a vocabulary for a bag of words representation of the

scene and action. Hollywood-2 has been used as an evaluation set for a number of

studies, including multi-modal fusion of audio-visual cues for action recognition [31]715

and the use of action primitives for classification [167].
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Figure 7: Example images for KTH dataset - punch, run, hand waving

IXMAS. The INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset [96],

Figure 6, is a multi-view dataset designed for view invariant HAR. 5 cameras cap-

ture simultaneous views of 12 actors performing 13 actions with 3 repetitions; check

watch, cross arms, scratch head, sit down, get up, turn around, walk, wave, punch,720

kick, point, pick up, and throw. There is an additional labeling for the action class

‘nothing’, and the throwing action is divided into an over-head and underarm subclass.

The ground truth is provided in the form of frame-by-frame annotation of the action

class label present within the scene, subject silhouettes, and reconstructed volumes.

The dataset is initially used for the recognition of actions regardless of viewpoint [168]725

and history volumes [97]. It has since been used widely to evaluate methodology on

view-invariant recognition [169–171].

KTH Action. Presented in 2004 by [22], the KTH dataset [102], Figure 7, consists

25 subjects performing 6 actions in 4 scenario types, recorded via a static camera. Ac-

tions are performed with single subjects visible in a frame, with multiple executions of730

an action in a sequence. Actions performed were walking, jogging, running, boxing,

hand waving, and hand clapping. Scenarios covered involved outdoor, scale variations,

clothing variation and indoor recordings. For the original study, the 600 continuous

recordings are divided to provide 2391 single execution sequences. Despite the sim-

plistic nature of the actions performed, the set has become prominent within the appear-735

ance based HAR community, with hundreds of citations making use of the dataset for

validation. The original study [22] used the dataset to extract local space-time features

from the observation for classification. Of the vast number of subsequent uses of the

KTH dataset there have been uses of individual sequences for classification method-
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Figure 8: Example images for MSR Action-I dataset - boxing, boxing and waving, clapping

ologies [172–175], while several sequences are often appended to test segmentation740

methods [44].

MSR Action. The Microsoft Research group have provided a number of appearance

based HAR datasets, including MSR Action-I and Action-II, Figure 8,. These sets are

readily available to the research community at [112] and include actions, daily activities

and gestures. The Microsoft Research (MSR) Action I dataset [112] contains 16 video745

sequences of 10 subjects performing 3 different action classes: clapping, waving and

boxing. Each sequence contains continuous recording of different actions being car-

ried out in series, often in a cluttered outdoor environment or with multiple subjects in

the observation. Manually provided ground truth labeling is given as a spatio-temporal

bounding box over for each frame in which the action is present, and in [113] cor-750

rect detection is determined by the overlap of ground truth and prediction areas. The

dataset is used within [113] for the purpose of action detection and localization within

the scene; it has since been used for evaluating a variety of HAR recognition and de-

tection methods [176, 177] MSR Action II [112] is an expansion on the previous set,

containing the same 3 action classes; clapping, waving and boxing. The set includes755

54 continuous video sequences recorded in crowded environments, including multiple

subjects and non-subject individuals. Both the MSR Action I and Action II datasets

contain action classes that allow them to be overlapped with the KTH dataset, intend-

ing to promote cross-dataset action detection evaluation. The dataset has been used to

validate methods in action detection, localization and recognition [114, 178, 179]760

MuHAVi. The Multicamera Human Action Video (MuHAVi) dataset [116], Figure 9,

is a large scale multi-view action recognition set, capturing 17 action classes performed
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Figure 9: Example images for MuHAVi dataset - climb ladder, pick up and throw, punch

Figure 10: Example images for Olympic Sports dataset - diving springboard, snatch, tennis serve

by 14 subjects. The action classes are performed within the capture area and include

punch, kick, run and stop, walk and turn, collapse, pull object, pick up and throw, walk

and fall, look in car, crawl, wave, draw graffiti, jump over fence, drunk walk, climb765

ladder, smash object, and jump over gap. Many of these classes contain sub-action

primitive action classes themselves, which can either be handled separately or as a

compound action. The project is ongoing, and provides ground truth silhouette masks

for a number of sequences and ground truth frame annotation for all sequences. A large

number of publications use the MuHAVi set for evaluation of action recognition and770

view invariant methods, most of which are detailed in [116].

Olympic Sports. The Stanford Olympic Sports dataset [118], Figure 10, contains

video clips of 16 sport actions taken from YouTube; high-jump, long-jump, triple-

jump, pole-vault, basketball, bowling, tennis-serve, platform, discus, hammer, javelin,

shot put, springboard, snatch, clean and jerk, and vault. The clips include cluttered775

scenes, dynamic camera movement, varying scales and execution styles. [119] uses

the dataset to evaluate their method of modeling temporal structure motion for action

recognition. The suggested testing and training split of the 50 video sequences is pro-

vided at [118] and the ground truth is provided as simple whole sequence labels.
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Figure 11: Example images for Stanford 40 Actions dataset - applauding, fixing a bike, jumping

Stanford 40 Actions. The Stanford 40 Actions dataset [180], Figure 11, is a collection780

of 9532 still images that represent naturally executed actions including riding a horse,

rowing a boat, fishing, applauding, and smoking. There are between 180-300 images

per action class and the dataset provides bounding box annotation for the subject in the

observation for the purpose of action localization and recognition. The challenge of

understanding human action from a singular instance is explored in [127], learning the785

context between actions and the objects contained within the image, with further study

into the use of still image understanding being evaluated on the dataset [181, 182].

UCF. The UCF action datasets are a collection that make use of video to represent ac-

tion sequences. UCF-11, UCF-50 and UCF-101 are all video sets taken from YouTube

designed to provide an action recognition problem that focuses on the accurate recog-790

nition of observations in which there are highly variable training observation samples.

The UCF-11 dataset [132], Figure 12, was produced to enable the evaluation of

recognition methods upon unconstrained observations of an action class. The collec-

tion provides 1168 sequences from 11 different action classes, with over 100 instances

in each action class. The actions presented include basketball shooting, cycling, diving,795

golf swinging, horse back riding, soccer juggling, swinging, tennis swinging, trampo-

line jumping, volleyball spiking, and walking with a dog. [133] presents this dataset

as an evaluation set for the understanding of action classes from natural observations

that were produced for reasons other than for HAR, providing little knowledge about

camera quality, viewpoint and motion. The samples are grouped into 25 categories,800

with each category containing numerous instances of the same action from similar sce-

narios.
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Figure 12: Example images for UCF11 dataset - biking, basketball, tennis swing

Figure 13: Example images for UCF50 dataset - high jump, skiing, yo-yo

UCF-50 [134], Figure 13, extends upon the UCF-11 dataset by introducing yet

more action classes, increasing the total count to 50, including baseball pitch, basket-

ball shooting, bench press, biking, billiards shot, breaststroke, clean and jerk, diving,805

drumming, fencing, golf swing, playing guitar, high jump, horse race, horse riding,

hula hoop, javelin throw, juggling balls, jump rope, jumping jack, kayaking, lunges,

military parade, mixing batter, nunchucks, playing piano, pizza tossing, pole vault,

pommel horse, pull ups, punch, push ups, rock climbing indoor, rope climbing, row-

ing, salsa spins, skate boarding, skiing, skijet, soccer juggling, swing, playing tabla, tai810

chi, tennis swing, trampoline jumping, playing violin, volleyball spiking, walking with

a dog, and yo yo. Again the initial use of the dataset is in the recognition of actions

from an unconstrained set of recordings [135]. This dataset has since been superseded

by the UCF-101 dataset.

UCF-101 [130], Figure 14, is the latest extension of the UCF appearance based815

action datasets, containing 101 separate action classes collected from various sources,

which are grouped into 5 activity types; Human-Object Interaction, Body-Motion Only,

Human-Human Interaction, Playing Musical Instruments and Sports. The sub-activity

actions include apply eye makeup, apply lipstick, archery, baby crawling, balance
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beam, band marching, baseball pitch, basketball shooting, basketball dunk, bench820

press, biking, billiards shot, blow dry hair, blowing candles, body weight squats, bowl-

ing, boxing punching bag, boxing speed bag, breaststroke, brushing teeth, clean and

jerk, cliff diving, cricket bowling, cricket shot, cutting in kitchen, diving, drumming,

fencing, field hockey penalty, floor gymnastics, frisbee catch, front crawl, golf swing,

haircut, hammer throw, hammering, handstand pushups, handstand walking, head mas-825

sage, high jump, horse race, horse riding, hula hoop, ice dancing, javelin throw, jug-

gling balls, jump rope, jumping jack, kayaking, knitting, long jump, lunges, military

parade, mixing batter, mopping floor, nunchucks, parallel bars, pizza tossing, playing

guitar, playing piano, playing tabla, playing violin, playing cello, playing daf, play-

ing dhol, playing flute, playing sitar, pole vault, pommel horse, pull ups, punch, push830

ups, rafting, rock climbing indoor, rope climbing, rowing, salsa spins, shaving beard,

shotput, skate boarding, skiing, skijet, sky diving, soccer juggling, soccer penalty, still

rings, sumo wrestling, surfing, swing, table tennis shot, tai chi, tennis swing, throw dis-

cus, trampoline jumping, typing, uneven bars, volleyball spiking, walking with a dog,

wall pushups, writing on board, and yo yo. Over 13,320 sequences are collected to pro-835

vide over 100 instances of each action class, with each sequence containing variation

in subject, scenario and camera parameters. The original publication [131] provides a

baseline recognition score by extracting Harris3D corners from a clip and represent-

ing them via HOG/HOF descriptors. These descriptors were then used to generate a

histogram of video words, utilizing the training and testing splits provided at [130]840

to evaluate the performance of an SVM developed on the histogram vectors. These

baseline results allow for the evaluation of novel methods on the previously developed

methods by utilizing the benchmark splits.

Overall the use of the UCF Action datasets for method evaluation has been reported

within numerous publications, especially in the recognition of action classes from ob-845

servations that contain little similarity in regards to the camera positioning and quality

[165, 166, 183].

UCF Sport. The UCF Sport dataset [136], Figure 15, is similar in construction to the

previous UCF Action sets, with sequences being collected from previously recorded
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Figure 14: Example images for UCF101 dataset - apply eye makeup, drumming, mopping floor

Figure 15: Example images for UCF Sport dataset - skateboarding front, kicking side, golf swing side

events. The main difference is that the focal domain of the dataset is within the recog-850

nition of sporting activity domain, providing class labels such as diving, golf swing-

ing, kicking, lifting, horseback riding, running, skating, swinging, and walking. The

dataset collects 200 sequences and contains the same unconstrained camera parame-

ters as the previous action sets. The dataset has since been used for the evaluation of

action recognition methodologies both within the generic and sports specific domain,855

including [174, 184, 185].

ViHASi. The Virtual Human Action Silhouette (ViHASi) dataset [142], Figure 16,

provides synthetic silhouette masks that have been produced by using 20 actions per-

Figure 16: Example images for ViHASi dataset - punch, running, jump kick
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Figure 17: Example images for Weizmann dataset - bend, jump forwards, two-handed wave

formed by 9 virtual actors. The use of a virtual environment has allowed for the gen-

eration of 40 virtual viewpoints from which the silhouettes are produced, creating a860

dataset that provides evaluation of view invariant silhouette based action recognition.

The 20 action performances are generated using the same motion capture sequences,

ensuring that each virtual actual performs the same action execution. Classes include

hang on bar, jump on bar, jump over object, run and pull object, run and push ob-

ject, run and turn left, run and turn right, hero smash, hero door slam, knockout spin,865

knockout, grenade, collapse, stand and look, punch, jump kick, walk, walk and turn

back, and run. Differing subjects were developed that included not only differences in

body proportions but also variation in clothing which impact upon the silhouettes pro-

duced. Despite being a niche dataset there have been several works that make use of the

ViHASi dataset, evaluating the use of silhouette pose projection for action recognition870

[143, 186–188].

Weizmann. One of the three main appearance based action recognition datasets, the

Weizmann dataset [24, 146], Figure 17, provides RGB recordings of 10 actions per-

formed by 9 subjects, captured at 50fps. Actions performed were running, walking,

skipping, jumping-jacks, jump forwards, jump in place, sideways gallop, two-handed875

wave, one-handed wave and bend. Each recording uses a static camera to capture

multiple executions of the same action against a solid wall background. Tangential to

the main dataset are a series of samples deemed for method robustness testing; with

recordings including occlusion, abnormal execution style and carrying objects. De-

spite providing readily definable action classes, the Weizmann dataset has been used880

repeatedly for HAR method validation since its creation [48, 173, 174, 189–192].
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Figure 18: Example images for WVU MultiView dataset - waving, standing still, waving from alternate
viewpoint

Figure 19: Example images for BEHAVE dataset - in group, fight, following

WVU MultiView. The WVU MultiView dataset [148], Figure 18, is comprised of

two sets; with WVU MultiView-I containing sequences of a single action execution

from one of 12 action classes, and WVU MultiView-II describing continuous combi-

nations of 9 available actions in an interleaved fashion. The intention is to utilize the885

first dataset to perform action recognition, while the second requires detection and seg-

mentation. WVU MultiView makes use of 8 cameras to collect data that can be used

to test view-invariant methods. The classes included in the first dataset are standing

still, nodding head, clapping, waving one hand, waving two hands, punching, jogging,

jumping jack, kicking, picking up, throwing and bowling. In WVU-II the actions show890

slight overlap; including clapping hands, waving one arm, waving two arms, punching,

jogging in place, jumping in place, kicking, bending, and underarm bowling. The two

datasets are often used as a validation method for multiple distributed camera action

recognition [149, 150, 193].

3.1.2. Interaction895

BEHAVE. BEHAVE, Figure 19, is a human action recognition project that is com-

prised of two separate datasets, the Multiagent Interaction dataset [60], featuring multi-
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Figure 20: Example images for BIT Interaction dataset - bow, handshake, push

person interactions captured from an elevated viewpoint, and the Optical Flow set

[194], containing recordings of human flow in a train station exit under three scenar-

ios. The Multiagent Interaction set contains 10 interaction classes being performed900

by multiple individuals in an outdoors environment, recorded using static RGB cam-

eras from 2 non-simultaneous viewpoints. The set contains bounding box annotations

of the individual and their action class, including; InGroup, Approach, WalkTogether,

Meet, Split, Ignore, Chase, Fight, RunTogether, Following. There are 163 instances

with varying number of instances per class. The class WalkTogether contains 43 in-905

stances at a total of 6694 frames, while the classes Meet and Following only contain

a single instance each, comprising of less than 100 frames each. The majority of the

sequences are annotated by providing the ground truth individual bounding box loca-

tions. Action labels are then provided along with start and end frames for the event; this

is coupled with the identification labels for each individual involved in the event. [60]910

also provides image pixel position measurements for the computation of the ground

plane homography. One viewpoint of the set is captured from inside a building, filmed

through a window, and as such contains a large amount of noise in the illumination of

the scene due to reflections from the glass. The BEHAVE Optical Flow dataset has

been used several times for event detection in crowded scenes [195, 196], while the915

Multiagent Interaction set has been utilized for the recognition of actions and identifi-

cation of individuals within the surveillance domain [197–200].

BIT-Interaction. The Beijing Institute of Technology (BIT)-Interaction dataset [63],

Figure 20, consists of 400 AVI video clips capturing 8 interaction events with 50 videos

per class. The dataset provides a further level of complexity by introducing varying920
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Figure 21: Example images for CAVIAR dataset - fight, slump, leave bag unattended

occlusions, appearances, temporal and spatial scale. The classes include these which

are definable by their respective poses, such as bow, boxing, handshake, high-five,

hug, kick, pat, and push. The presence of pedestrians, occlusions and variable views

results in a dataset that can be used for detection, localization and recognition. The

original publication [64] utilized the BIT-Interaction set to develop a set of high-level925

phrases which describe the interaction in terms of the interdependencies of lower-level

attributes belonging to each individual in the interaction.

CAVIAR. The Context Aware Vision using Image-based Active Recognition (CAVIAR)

project [70], Figure 21, provides action recognition sets for the purpose of determining

if local image descriptors guided by contextual knowledge of the scene can improve930

image-based action recognition. The project provides two RGB sets, one from an

entrance lobby of the Institut National de Recherche en Informatique et en Automa-

tique (INRIA) labs, the second utilizes 2 simultaneous views from within a shopping

center. The INRIA subset provides 4 single person actions: walk, browse, rest/slump,

and leave bag unattended; the set also provides 2 interaction classes: meet and fight.935

The shopping center subset provides the remaining 3 action classes enter shop, win-

dow shop, and leave shop. Both subsets provide the ground plane homography mea-

surements for the scene. The ground truth labeling in the sets are XML hand labeled

bounding boxes for each image in the sequence. The CAVIAR dataset is one of the

most utilized appearance based datasets for human action recognition alongside KTH940

and Weizmann, being utilized for evaluation of numerous methodologies, including

tracking, recognition and segmentation [201–203].

45



Figure 22: Example images for ETISEO dataset

Figure 23: Example images for JPL dataset - throwing object, handshake, punch

ETISEO. The ETISEO dataset [80], Figure 22, provides a methodology and accom-

panying dataset for video surveillance evaluation. 5 main scenarios are presented, con-

taining instances of 15 action classes. 10 are single person actions: walk, run, sit, ly-945

ing, crouching, holding, jumping, pick up, put down, and tailgate. 5 are person-person

interactions: push, fight, meet, exchange, and queue. The dataset is annotated with

bounding boxes detailing both events and physical objects within the frame, and the

project provides evaluation metrics on a variety of problems including object detec-

tion, object localization, object tracking, object classification, and event recognition.950

The project is a multi-institute venture into developing a benchmark for evaluating

security and surveillance domain observations, containing detailed information regard-

ing it’s use as a validation tool and the data structures provided [81]. ETISEO has been

used as a benchmark for the detection, localization, and recognition of both pedestrians

and behavioral actions in a surveillance domain [204–206].955

JPL First-Person Interaction. The Jet Propulsion Laboratory (JPL), Figure 23, at

the California Institute of Technology provide a first person viewpoint dataset into

person-person interactions [98]. The project captures a mixture of positive and nega-
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Figure 24: Example images for UT Interaction dataset - kick, handshake, hug

tive interactions from a camera positioned on a non-static subject as they traverse an

office environment. During the sequences the subject encounters 7 interactions which960

are recorded from their perspective of recipient; including handshake, petting subject,

wave at subject, conversation with pointing at subject, punching subject, and throwing

objects at subject. In the associated publication [99] the use of local motion descriptors

across space-time provides a bag of visual words representation for recognition of first

person recipient view interactions. The egocentric domain is often used for determining965

the actions of the observer and of the subject observed [99, 207], with complications

arising from the motion and perspective captured by the camera’s location on the body

[208, 209].

UT-Interaction. The UT-Interaction dataset [140], Figure 24, contains 20 continuous

static camera recordings of multiple subjects performing multiple interactions within a970

scene. Each recording captures all action classes recorded from an elevated angle. The

interactions between two individuals including handshake, hug, kick, point, punch, and

push. Several subsets are present within the dataset; with static backgrounds, dynamic

backgrounds, multiple events in the scene and crowded scenes. Ground truths are

provided in terms of bounding box frame-by-frame annotation. The UT-Interaction set975

has often been used for evaluating interaction recognition within a surveillance domain

[141, 210, 211].

VIRAT. The VIRAT dataset [144], Figure 25, provides action classes expected within

a surveillance domain, describing natural scenes and interactions between individuals

and the environment. The sequences within the collection are annotated with a high980
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Figure 25: Example images for VIRAT dataset

level of detail, providing information via bounding box annotations regarding the peo-

ple, objects, vehicles and the interactions that occur between them. 12 activity classes

are provided, including loading an object on a vehicle, unloading an object from a vehi-

cle, opening the trunk of a vehicle, closing the trunk of a vehicle, getting in to a vehicle,

getting out of a vehicle, gesturing, digging, carrying an object, running, entering a fa-985

cility, and exiting a facility. The challenge of this dataset is in the natural executions

of the interactions, and also in the cluttered scene that is observed, a common problem

task for real world surveillance domain. Common use of the VIRAT dataset is in the

analysis of surveillance domain action detection and localisation [212–215].

3.1.3. Activity990

CASIA. The CASIA action database [68] provides a multi-view action and interac-

tion dataset containing 8 single person actions and 7 person-person interactions. The

single person actions include walk, run, bend, jump, crouch, faint, wander, and punch

car. The interactions include rob, fight, follow, follow and gather, meet and part, meet

and together, and overtake. The scene is captured from three simultaneous static view-995

points; horizontal/side on, top down and angle, although global locations of the cam-

eras are not provided. The choice of viewpoint provides a surveillance style dataset

with simultaneous viewing allowing the evaluation of view-invariant methods. Each
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Figure 26: Example images for MPII Cooking dataset

AVI sequence is annotated as a whole clip by filename; detailing the viewing angle, ac-

tion class, subject ID, and action repetition number. The CASIA dataset has been used1000

to evaluate view-independent, surveillance based action recognition [69, 216–218].

MPII Cooking. The Max Planck Institut Informatik (MPII) Cooking datasets, Figure

26, are a pair of closely related datasets that concern the daily living activities of cook-

ing and the action and interactions that are compounded into the higher level semantic

classes. The MPII Cooking Activities dataset [108] contains 44 continuous recordings1005

of naturally executed daily cooking activities, with 12 participants completing activi-

ties that included any number of 65 potential activities, such as chopping and pouring.

These fine grained activities are recorded as part of a higher level semantic activity,

such as preparing a salad or cake, allowing flow between each action to be natural. The

focus of [109] is to detect and recognize the execution of the lower level actions within1010

an activity, with the dataset providing detailed frame annotation to facilitate evaluation.

The MPII Composite set [110] is an expansion upon the MPII Cooking set, introduc-

ing more detailed information regarding the higher level activity classes. 14 activities,

such as cake, omelet, mashed potato, and pancake, are provided as composite activ-

ities which are built from the finer actions provided by the MPII Cooking Activities1015

set. These two sets provide a method of evaluating methods that are able to recognize

events at differing levels of abstraction. The overall activity can be decomposed into a

set of lower level actions and interactions.

Rochester AoDL. The Rochester Activities of Daily Living (AoDL), Figure 27, dataset

contains 10 natural action classes performed 3 times by five subjects in front of a waist1020

height desk. Actions performed include answering a phone, dialing a phone, looking
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Figure 27: Example images for Rochester AoDL dataset - answering phone, chopping banana, eat snack
chips

up a phone number in a telephone directory, writing a phone number on a white-board,

drinking a glass of water, eating snack chips, peeling a banana, eating a banana, chop-

ping a banana, and eating food with silverware. The intention of the project is to

perform HAR on more realistic executions of behavior classes, with [123, 219–221]1025

using tracked key point trajectories for action recognition and [222] considering the

pairwise spatio-temporal relationships of the interest points in the scene.

3.2. Pose Based sets

MoCap has allowed for highly accurate localization of body positioning, using

markers to identify joints and bones in coordinates of a volume space. Motion capture1030

techniques often utilize the pose of an individual during an action’s execution. There

are several purely MoCap datasets available, however most now use MoCap techniques

as part of a multimodal collection. In recent years community focus has moved from

traditional motion capture techniques to the collection of joint positioning via commer-

cial depth sensors, such as the Microsoft Kinect. Depth data has become prolific in the1035

community since the release of the Microsoft Kinect depth sensor; mostly due to its

ability to accurately track a human, and provide a skeleton representation in 3D. Most

depth sets also provide their corresponding skeleton representations so that the same

skeletons are also part of the standard training and testing methods. It’s not only visual

information that is used to identify action events. Often there can be use of accelerom-1040

eters and gyroscopes to capture the kinematics of the body during the performance of

an action. Sometimes these additional depth based modalities are captured in parallel

with more conventional methods, sometimes they are the sole modality under focus.

3.2.1. Action
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Figure 28: Example images for Berkeley MHAD dataset - two handed wave RGB, two handed wave depth,
sit down

Berkeley Multimodal Human Activity Database. The Berkeley MHAD [62], Figure1045

28, contains 660 sequences of 12 participants performing 11 actions, recorded using

RGB video, depth sensors, marker based motion capture, accelerometers and micro-

phones. Action classes include jumping jacks, bend, punch, two handed wave, one

handed wave, clap hands, throw, sit down and stand, sit, and stand. Each class was

recorded 5 times, with jumping jacks, bend, punch, two handed wave, one handed1050

wave, clap hands, sit down and stand containing 5 continuous repetitions per record-

ing. 3D coordinates for 43 markers were recorded via 8 MoCap cameras. 12 RGB

cameras were grouped into 2 stereo vision clusters and 2 4-camera multi-view clusters.

Two Kinect sensors captured RGB-D data. 6 tri-axial accelerometers were affixed to

the wrist, ankles and hips to record limb dynamics during an action. Sensor recordings1055

are geometrically and temporally synchronized to allow multimodal HAR. The mo-

tion capture system is first calibrated, with RGB and Kinect sensors being calibrated

for both intrinsic and extrinsic parameters, referencing all sequences to a the motion

capture world coordinate system. Due to the vast amount of data provided across nu-

merous modalities the MHAD dataset has been used to evaluated methods that make1060

use of modality fusion [39, 223], motion capture data [224, 225] and RGB-D joint

tracking information for the purpose of action recognition [225, 226]

Carnegie Mellon University Motion Capture. The CMU Graphics Lab action dataset

[74], Figure 29, contains marker-based MoCap sequences of subjects performing a

large variety of actions. Sequences are grouped in 6 types; Human Interaction, In-1065

teraction with Environment, Locomotion, Physical Activities & Sports, Situations &

Scenarios and Test Motions. Sequences can contain multiple action executions and
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Figure 29: Example images for CMU MoCap dataset - jump, punch, kick

Figure 30: Example images for G3D dataset - bowling RGB, depth, skeleton

can include person-to-person interactions. The set uses 40-60 markers to capture the

full human skeleton of 109 subjects in 2605 sequences. The C3D format markers are

not consistent from sequence to sequence, and thus require the user to determine the1070

marker locations beforehand when using the C3D data. However the use of the AMC

formatted joint angles are consistent between sequences. Evaluation on the CMU Mo-

Cap dataset often utilizes a subset of the overall dataset, due to the large number of

sequences and action classes [41, 42, 227].

G3D. The G3D dataset [82], Figure 30, is an action set that focuses on the recognition1075

of actions designed for gaming and computer interaction. 10 subjects perform 20 game

based actions, with up to 3 repetitions, in front of a stationary Kinect sensor, capturing

synchronized RGB-D data and 20 joint skeletons. Actions recorded by the dataset

include punch right, punch left, kick right, kick left, defend, golf swing, tennis swing

forehand, tennis swing backhand, tennis serve, throw bowling ball, aim and fire gun,1080

walk, run, jump, climb, crouch, steer a car, wave, flap and clap. The purpose of the
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Figure 31: Example images for Hollywood3D dataset - run, hug, use phone

dataset is to develop a framework for the real time recognition of actions within a

observed scene [83].

Hollywood3D. The Hollywood3D dataset [92], Figure 31, contains similar action

classes to that of the appearance based Hollywood and Hollywood-2 datasets; null,1085

run, punch, kick, shoot, eat, drive, use phone, kiss, hug, stand up, sit down, swim,

and dance. However the data modality in this dataset consists of depth maps obtained

from the production of commercial 3D movies. The purpose of [93] is to expand the

complexity of using non-HAR based recordings for the purpose of action recognition

by representing the observations as depth data. The dataset provided a significant chal-1090

lenge to the community, describing natural observations of action classes as depth in-

formation [228–230].

HumanEva. The HumanEVA-I dataset [95, 231] contains video sequences synchro-

nized with motion capture poses, capturing 6 actions performed by 4 subjects. Actions

include walking, jogging, gesturing, throwing & catching, boxing, and a combo action.1095

Actions were repeated 3 times, once with MoCap and then twice with a combination

of MoCap and video. The set contains separate training, testing and validation sets,

detailed in [95], allowing comparative results. The MoCap markers were tracked using

6 ViconPeak cameras, while the video data was collected using 3 RGB cameras and

4 greyscale cameras. The greyscale cameras are located in the corners of the capture1100

space, with the color cameras positioned to the front, left, and right viewpoints of the

subject.

HumanEVA-II, Figure 32, then expands on the previous set by having 2 subjects

perform combinations of the previous actions to develop a secondary testing set that is
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Figure 32: Example images for HumanEva dataset

Figure 33: Example images for MSR Action3D dataset - pick up and throw, two hand wave, side kick

ten times smaller than that of HumanEva-I. The dataset is designed as a testing set for1105

the methods developed on the HumanEva-I dataset, providing only complex continuous

sequences; starting with walking a path, then jogging, concluding with the subject

alternating balancing on each foot. The intent is to use the HumanEva-I set to train

and validate the system, with testing be executed on the HumanEva-II set. The MoCap

markers are tracked using 12 ViconPeak cameras, twice as many as the original dataset,1110

and the video data is collected by 4 color cameras located in the corners of the capture

space. The HumanEva sets have been used repeatedly to evaluate the performance of

pose estimation and sequence segmentation algorithms due to it’s continuous series

of multiple action classes performed in the combo-action observations and the motion

capture ground truth [232, 233].1115

Microsoft Research Action3D. The MSR Action3D dataset [40, 41, 112], Figure

33, provides the first example of a public depth map dataset for HAR, capturing both

the depth data for 20 gaming related actions performed by 10 subjects, with up to
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Figure 34: Example images for MSR Gesture3D dataset - where, J, finish

3 executions of an action by each subject. Action classes include high arm wave,

horizontal arm wave, hammer, hand catch, forward punch, high throw, draw x, draw1120

tick, draw circle, hand clap, two hand wave, side boxing, bend, forward kick, side kick,

jogging, tennis swing, tennis serve, pickup and throw, and golf swing. In recent years

the dataset has been expanded to include the tracked joints in screen and real world

coordinates, each skeleton consists of 20 joints captured with a device similar to the

Kinect; head, shoulder center, left shoulder, right shoulder, left elbow, right elbow, left1125

wrist, right wrist, left hand, right hand, spine, hip center, left hip, right hip, left knee,

right knee, left ankle, right ankle, left foot, and right foot. Due to the computation

involved in learning the 20 total actions the total dataset is divided into 3 subsets, each

containing 8 of the 20 possible actions, dubbed Action Sets. Action Set 1 contains

similar action classes such as high throw and tennis serve. Action Set 2 contains actions1130

that involve subtle actions with the arms and hands, including draw tick and draw circle.

Action Set 3 then aims to group complicated actions together, including the sporting

actions. 10 samples are considered to be too noisy and are omitted from the use of the

dataset for evaluation [112]. The MSR Action3D dataset is one of the most prominent

action recognition depth based datasets available, with numerous action recognition1135

methods utilizing the set for evaluation purposes [28, 39, 45, 162, 234].

Microsoft Research Gesture3D. The MSR Gesture3D dataset, Figure 34, contains

336 sequences of American Sign Language gestures. 10 subjects remain in a seated

position and perform 12 different dynamic sign language gestures in up to three rep-

etitions. The dataset provides the depth maps for each frame in the sequence. In the1140

associated publication [115] it was possible to develop a real-time system to recognize
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Figure 35: Example images for MPI08 dataset

Figure 36: Example images for 50 Salads dataset

input to the Kinect sensor at 10fps. The dataset is captured from a front-on view, with

the lower half of the subject obscured by a table, with focus being on the body, head,

arms and hands. Due to it’s focus on the behavior displayed by the hands the MSR Ges-

ture3D dataset has often been used in the hand pose estimation and action recognition1145

community [235, 236].

MPI08. The MPI08 dataset [105], Figure 35, collects motion capture recordings of

subjects performing tasks for the purpose of multi-modal body tracking fusion. Despite

this primary purpose it provides several sequences of highly accurate spatial tracking

whilst the subjects execute their actions. The use of modality fusion within this dataset1150

could be exploited for the purpose of action recognition, utilizing the frame labeling of

the files for action recognition [106, 107].

3.2.2. Interaction

50 Salads. The University of Dundee 50 Salads dataset [58], Figure 36, is a collec-

tion of birds-eye-view recordings of food preparations using an RGB-D sensor and ac-1155

celerometers for the purpose of recognizing gestures and person-object interactions. 25
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participants prepared 2 salads each, utilizing a variety of tools and ingredients, result-

ing in a total of 966 observed action instances, with an average of over 55 observations

per lower level class. The sequences are annotated with a label being assigned to all

frames between a given start and stop frame. There are two tiers of labeling, the first1160

describing the higher level action as one of 3 tasks; cut and mix ingredients, prepare

dressing, and serve salad. The second tier describes the frames in terms of a lower level

actions such as peel cucumber, cut cucumber, place cucumber into bowl, cut tomato,

place tomato into bowl, cut cheese, place cheese into bowl, cut lettuce, place lettuce

into bowl, mix ingredients, add oil, add vinegar, add salt, add pepper, mix dressing,1165

serve salad onto plate, and add dressing. Each of the lower level action labels are given

a suffix of being either prep, core or post the action. Tri-axis accelerometer recordings

are provided for 7 tools used in the sequences. [58] provide the RGB video recordings,

depth maps, accelerometer sequences and the synchronization of all sequences. The

sequences begin with an assistant making 4-5 sharp knocks to an IMU in the scene,1170

allowing synchronization to that point. The 50 Salads set has been used to explore the

impact of learning differing levels of abstraction, focusing on the information gained

between higher and lower level behaviors [237] and the understanding of complex sce-

narios [238].

G3Di. A progression on G3D, the G3Di [84, 85] dataset makes use of a single Kinect1175

depth sensor to track two individuals interacting within the scene. This dataset cap-

tures 6 pairs of subjects performing actions taken from 6 sports, with 14 action classes.

The top level sports are boxing, volleyball, football, table tennis, sprint, and hurdles.

The primitive actions include right punch, left punch, defend, overhand hit, underhand

hit, jump hit, kick, block, save, serve, forehand hit, backhand hit, run, and jump. The1180

action classes run and serve span two classes, whereas the remainder are top level ac-

tion specific. The G3Di dataset presents interactions between two individuals who are

side by side with both subjects facing the sensor. This makes it possible to separately

recognize an individuals action, before then compounding this knowledge to recognize

an interaction [85].1185
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Figure 37: Example images for K3HI dataset - kicking, pushing, shaking

Figure 38: Example images for SBU Kinect Interaction dataset - handshake, punch, hug

Kinect Based 3D Human Interaction. The K3HI dataset [101], Figure 37, contains

8 pairwise person-person interactions performed by 15 individuals. Each of the 320

sequences captures a single execution of one of the 8 action classes; approaching,

departing, kicking, punching, pointing, pushing, exchanging an object, and shaking

hands. Both individuals in the scene are tracked using the Kinect sensor, capturing the1190

15 joints of each subject. The OpenNI skeleton representation was extracted, tracking

the head, neck, left shoulder, right shoulder, left elbow, right elbow, left hand, right

hand, torso, left hip, right hip, left knee, right knee, left foot, and right foot. The use of

approaching and departing classes are dismissed for method evaluation in [101], due

to their simplistic nature and high recognition accuracy rates. [101] uses a 4-fold cross1195

validation method for their initially reported experimentation on the dataset, however

the training/testing splits are not provided in the dataset itself. The dataset has been

used to evaluate positive action recognition in [101].
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Figure 39: Example images for UMPM dataset - sit (one person), meet (four person), grab (two person)

Stony Brook University Kinect Interaction. The SBU Kinect Interaction dataset

[37, 124], Figure 38, presents person-person interaction recorded via synchronized1200

video, depth maps and skeletal models of both actors. 7 individuals, in 21 pairings,

performed 8 types of interaction. The interactions between the two individuals are

captured from a side-on view and include approaching, departing, pushing, kicking,

punching, exchanging objects, hugging, and shaking hands. These interactions provide

several classes that involve similar gestures in the arms, namely pushing, punching,1205

shaking hands and exchanging objects. The dataset provides the RGB video and depth

maps, alongside the OpenNI 15 joint skeleton tracking. The skeleton joints are head,

neck, torso, left shoulder, right shoulder, left elbow, right elbow, left hand, right hand,

left hip, right hip, left knee, right knee, left foot, right foot. In [37] the dataset was used

to identify joint distance and velocity features that are coupled between the individuals1210

in the scene.

UMPM. The Utrecht Multi-Person Benchmark (UMPM) [138, 239], Figure 39, is

a synchronized video and marker-based MoCap set that includes numerous subjects

interacting and occluding one another. The set intends to provide a ground truth labeled

standard dataset for the recognition of dense scenes, at risk of inter- and intra-subject1215

occlusions. The dataset records 9 different scenarios using 4 RGB cameras and a 37

marker MoCap system; 1) walk,jog or run, 2) walk along circle or triangle shape, 3)

walk around while another person hangs or sits on chair, 4) sit, lie, hang or stand on

table, 5) grab object on table, 6) conversation with gestures, 7) throw or pass ball while

moving, 8) stand still and 9) move around. These are all complex activities that contain1220

actions, interactions and higher level activities that require recognition. This is coupled
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Figure 40: Example images for CMU MMAC dataset

with a multi-view approach and the occurrence of a cluttered scene. UMPM has been

used to explore tracking and action recognition that occurs in a scene that contains

numerous complex occlusions [239].

3.2.3. Activity1225

Carnegie Mellon University Multimodal Activity. The CMU Multimodal Activity

dataset, [73] Figure 40, commonly known as the CMU MMAC, aims to understand

recognition of complicated human daily actions. The dataset utilizes RGB video,

marker-based motion capture, audio, accelerometers and gyroscopes for the capture

of 5 differing cooking recipes by 43 subjects. 6 RGB camera viewpoints record the1230

scene with a variety of spatial and temporal resolutions, including a first person view

from a head-mounted camera. 63 markers are tracked using a Vicon motion capture

system of 12 cameras which provide the spatial ground truth for the body tracking.

The CMU MMAC database has been used to evaluate the temporal segmentation of

complex activities from a first person perspective [240], and the segmentation of joint1235

gestures for classification [241].

Cornell Activity Dataset 60. The CAD-60 dataset [65], Figure 41, provides 60 RGB-

D recordings of 4 subjects performing 12 activities across 5 different environments.

Participants were captured executing more natural actions, including rinsing mouth,

brushing teeth, wearing contact lens, talking on phone, drinking water, opening con-1240

tainer, chopping, stirring, talking on couch, relaxing on couch, writing on white-board,

and working on computer. The dataset is provided as a collection of RGB images,

depth maps and the corresponding 15-joint tracked skeletons. [66] first introduced the
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Figure 41: Example images for CAD60 dataset - Using whiteboard depth, RGB, skeleton

Figure 42: Example images for CAD120 dataset - taking medicine RGB, taking medicine depth, making
cereal

dataset to classify unstructured human activity by constructing a graph of sub-activities

that compound into the top level activities.1245

Cornell Activity Dataset 120. The CAD-120 set [65], Figure 42, focuses on the ex-

ecution of long daily activities, capturing high and low level actions. 4 participants

provide 120 sequences capturing 10 high level activities, which are each comprised of

a number of 10 potential sub-activities. The compound actions include making cereal,

taking medicine, stacking objects, unstacking objects, microwaving food, picking ob-1250

jects, cleaning objects, taking food, arranging objects, and having a meal. Gestures

are labeled as reaching, moving, pouring, eating, drinking, opening, placing, closing,

scrubbing and null.

LIRIS Human Activities. The LIRIS Human Activities dataset [104], Figure 43, pro-

vides RGB-D recordings of 21 subjects completing 10 behavioral classes; discussion,1255

giving an item, picking up or putting down, entering or leave room, unsuccessful at-

tempt to enter room, unlock room and enter, leaving an unattended bag, handshake,

typing on a keyboard, and talking on a telephone. The dataset attempts to be pur-
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Figure 43: Example images for LIRIS dataset - enter door RGB, exchange object RGB, exchange object
depth map

Figure 44: Example images for MSR DA3D dataset - play guitar RGB, play guitar skeleton, lay down on
sofa RGB

posefully difficult by introducing very little constraint in the execution of the behavior,

relying more on the semantics of the behavior. To introduce a more realistic repre-1260

sentation the use of different contexts and tools within an action class is provided, i.e.

different types of phone are used, and discussions can occur seated or standing. Two

different semi-independent sets are provided, the first represents the depth maps cap-

tured from a Kinect mounted on a joystick controlled robot, the other is a stationary

mounted RGB camcorder.1265

Microsoft Research Daily Activities 3D. Using the Kinect sensor, 10 subjects were

recorded performing 16 natural daily actions, [41], Figure 44; drink, eat, read book,

call cellphone, write on paper, use laptop, use vacuum cleaner, cheer up, sit still, toss

paper, play game, lie down on sofa, walk, play guitar, stand up, sit down. The actions

were recorded, were possible, in both standing and seated positions in a living room1270

environment. The majority of the action classes involve person-object interactions,

such as toss paper and write on paper, thus provide a more real-world set of obser-

vations for the purpose of HAR. As with the MSR Action3D dataset, the RGB and
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Figure 45: Example images for TUM Kitchen dataset - RGB, skeleton, alternate view RGB

depth map sequences are provided alongside the tracked 20-joint skeletons. No stan-

dard training/testing splits are provided either within the description paper [41] or the1275

web location [112]. MSR Daily Activities 3D has provided evaluation for numerous

methods in activity recognition via pose features, [29, 242, 243]

POETICON. The POETICON corpus [120] is a collection of scripted scenarios in

which two individuals perform a daily living task such as cleaning the kitchen. The

subjects are tracked using motion capture suits and recorded using 5 RGB camcorders.1280

Certain tools and objects within the environment were also identified using marker

based tracking. 4 pairs of actors learnt the associated script with 6 different high level

scenarios, performing each activity in 3 repetitions per pair. [121] applies the dataset

to identifying actions at differing levels of abstraction and granularity.

TUM Kitchen. The Technische Universität München (TUM) Kitchen dataset [128,1285

129], Figure 45, provides a daily living set that describes the preparation of a table set-

ting within a smart kitchen. The set makes use of video, marker-less skeletal tracking,

RFID tagged objects and magnetic sensors to provide detailed information on the hu-

man action in the kitchen. The subjects collect items from cupboards and use them to

set a place on the table. Actions were performed in one of two styles; natural or robotic,1290

in which subjects could only carry one object at a time. There are also recordings of

certain actions being repeatedly executed in order to train a classifier for recognition.

The TUM Kitchen is designed to facilitate the learning of action events are differing

levels of abstraction; recognizing not only the low level gestures and actions, but also

the overall tasks completed. The TUM Kitchen has often been used for recognition of1295
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activities at various abstraction levels [129], and also for the detection, localization and

segmentation problem [244, 245].

4. Proposed Dataset

In the following section we draw upon the findings from the survey to present our

own novel dataset for the recognition of complex conversational interactions between1300

two individuals. We outline the necessity for the production of the set, the structure of

the dataset and report on several previous publications that have utilized the dataset.

4.1. Requirement for the Dataset

As can be seen from the previous sections, datasets that are able to capture hu-

man action using appearance based modalities, such as RGB videos, have developed1305

from representing non-realistic emphasized actions to considering more complex inter-

actions between individuals and their surrounding environment. The field has moved

from actions which are easily distinguishable in the visual domain, e.g. ‘waving’ and

‘jumping’, to those of interactions, although still recognizable, e.g. ‘hug’ and ‘kiss’

[23, 246]. Due to the availability of these datasets many methods have been produced1310

and evaluated for the purpose of action recognition and detection, including the use of

SIFT [247], temporal Harris corner features [248] or STIPs [89].

Meanwhile the depth based methodology which has risen to prominence over the

past decade has far fewer publicly available datasets which consider the problem of

person-person interactions, with most considering either emphasized actions or inter-1315

actions. As such we believe that the publication of a dataset that represents highly

complex person-person interactions is timely. We have chosen to capture conversa-

tional interactions between two individuals using the Kinect depth sensor, posing the

challenge of recognizing subtle interaction classes.

The primitive action provided by many of the available datasets can be decomposed1320

into a series of definable gestures and atomic poses. However we argue that real-world

social interactions contain more complex and subtle class partitioning, being a product

of multiple actions, semantics and the interplay between those involved. We therefore
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propose the problem of recognizing interactions in which the distinguishing features

are containing within the temporal dynamics of the total event, such as that of a verbal1325

interaction. We provide a dataset in which the interaction is labeled as a whole, rather

than describing the event based on the primitive gestures within the scene. By providing

such a dataset we hope to move the field towards the recognition of scenarios in which

the defining descriptors are highly complex and context specific.

4.2. Apparatus Setup1330

In this work, we choose seven conversational action categories and use a two-

Kinect setup to capture 3D human pose during the interaction between two individuals.

The collection environment consisted of a cleared space within a boardroom (Figure

46); in order to keep the dataset complex, no effort was made to homogenize the envi-

ronment by use of any backdrops. Two Kinect sensors were located at opposite ends of1335

the room, approximately two meters away from a marker on which a subject would be

loosely located. Each person was recorded using a single Kinect Sensor at 30fps. The

Kinect was offset to the front right of the subject in order to avoid occlusion from the

opposing subject, which could occur if taking a frontal recording of the subject. Sub-

jects were placed approximately one meter apart but not limited in their movement.1340

Two PAL cameras (B cameras in Figure 46) were located to capture the full body of

a single participant, with a third camera (M in Figure 46) located to capture the en-

tire recording scene. These recordings are purely for the monitoring of the experiment

and synchronization, thus are not provided within the dataset published in [1]. Cam-

eras were also located to capture the face of each participant (F cameras in Figure 46),1345

these provide the RGB recordings used to generate the gaze estimation provided. The

recording devices were not located in the same place, and as such there is orientation

variance between the depth maps and the RGB recordings.

4.3. Action Descriptions

Participants were required to complete 7 different conversational tasks, outlined in1350

Table 10. There was no time limitation on the execution of each task, and some tasks
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Figure 46: Layout of the CONVERSE data capture environment. a) Plan view of the capture environment b)
Photo showing subjects within the cluttered environment.

took naturally longer than others. Several tasks were given revealed to the partici-

pants before collection, to allow preparation; the actions that required preparation were

describing work, story telling, debate, discussion and jokes. If the participants were

given the problem or subjective question before the study then there may have been a1355

reduction in interaction between the individuals.

Each task was performed and then there was a small break while the participants

were reminded of the next task to carry out. The first task was to discuss an area of their

current work. The second task was to prepare an interesting story to tell their partner,

such as a holiday experience. The third task was to jointly find the answer to a problem.1360

The fourth task was a debate, where the participants were asked to prepare arguments

from opposing view points on an issue we gave to them. In the fifth task they were

asked to discuss the issues surrounding a particular statement and come to agreement

whether they believe the statement is true or not. The participants were asked to reach

an agreement through discussion; hence, it is different to the debate task, which was1365

based on conflicting views. The sixth task was to answer a subjective question, and the

seventh task was to take it in turn telling jokes to one another.

4.4. Participants

16 subjects responded to a call for participants to take part in dataset collection

and provided their consent for the collection. Participants were then organized into 81370
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Table 10: Description of each of the tasks given to the participants to perform. The rightmost column
describes whether the participants were told about the task and asked to prepare before attending.

Task Name Description Prepared in advance

Describing Work Each participant describes their current work or project to
partner. The partner then repeats the description back, to con-
firm they had understood.

Yes

Story Telling Participant were asked to think of an interesting story they
could tell their partner.

Yes

Problem Solving Participants were given the problem “Do candles burn in
space and if so what shape and direction?”, and asked to think
of the solution of together.

No

Debate Participants prepared arguments for a given point of view, pro
or con, on the topic “Should University education be free?”,
and then debated this between them.

Yes

Discussion Participants were asked to jointly discuss issues surrounding
the statement “Social Networks have made the world a bet-
ter place”, and come to agreement whether they believe the
statement is true or not.

No

Subjective Question Participants responded to the subjective question “If you
could be any animal, what animal and why?”

No

Telling jokes Participants were asked to take it in turn telling three separate
jokes.

Yes

pairs to record the person-person interaction during the following series of conversa-

tional styles. Interested individuals were asked to prepare for tasks ‘Describing Work’,

‘Story Telling’, ‘Debate’ and ‘Joke’ in advance, while the topics for ‘Problem Solving’,

‘Discussion’ and ‘Subjective Question’ were provided during collection. Participants

were not subjected to time limitations or any execution styles.1375

4.5. Data Provided

The main data in the collection is the skeletons extracted using the Microsoft Kinect

SDK, providing the 20 tracked joints and the confidence of the tracking at each frame

in the sequence. The raw depth and RGB recordings from the Kinect are also available

alongside the RGB recordings from the separate camcorder. We also provide facial1380

tracking features used for the tracking of gaze and facial dynamics which have been

used for feature fusion in [249]. Despite the benefit that audio provides to action clas-

sification [30, 250–252], the audio has been stripped from all recordings due to the

private natures of the conversations that occurred during the interactions. This allows

the conversations to be natural, providing a more realistic representation of the scenar-1385

ios than if each subject was given a script. Although this may be disappointing to those
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Figure 47: Example recordings from each of the 7 action classes, sampled at 2 second intervals and omitting
the lower half of the body.
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Figure 48: Example recordings and skeleton poses from each of the 7 action classes, sampled at 2 second
intervals and omitting the lower half of the body.
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wishing to carry out audio-visual feature fusion, we believe that CONVERSE provides

a more complex challenge to be solved when occluding the audio cues of conversation.

4.6. Results Obtained on CONVERSE

To provide insight into the use of CONVERSE for interaction recognition we pro-1390

vide baseline results achieved using various state of the art methods for subject-specific

classification, with results reported in Tables 11 and 12. To achieve this level of accu-

racy we followed the methods outlined in [249]; utilizing pose, face and head ori-

entation features to provide a visual vocabulary of words and topics. Discriminative

classifiers, SVM and Random Forest (RF), were trained to classify each CONVERSE1395

task based on the discriminative power of the features. K-Nearest Neighbor (KNN) was

selected as a baseline classification technique for comparison. First a Gaussian Mix-

ture Model (GMM) was fitted to low level features (joint-joint/joint-plane distances

and joint velocity) in order to obtain a vocabulary of 740 visual words consisting of the

Gaussian components taken from 5 second clips, 370 words from facial features and1400

370 from pose features. Sequences were also sub-sampled into 20 second segments and

Latent Dirichlet Allocation performed to obtain the 25 visual topics that made up each

document. Both visual words and topics were used as temporal feature descriptors for

each class. All sequences from the CONVERSE set were utilized, with 10 fold cross

validation used to evaluate the performance. The RF classifier was produced using 1001405

trees with random sampling with replacement. The SVM was trained using a radial

basis function kernel on the same training set.

It was found that visual topics provide a generalization of the classes which benefit

SVM and RF performance (Table 12), while KNN produced more accurate classifica-

tion on data at the visual words level (Table 11). The importance of each feature was1410

identified via novel use of particle swarm optimization (PSO) to generate a Ranked

Feature SVM (SVM-R) classifier, reducing the dimensionality of the feature space and

simultaneously performing optimal SVM model selection. The PSO method locates the

optimal hyper-parameters that are used to subsequently train the SVM-R classifier by

selecting towards correct identification of training samples, removal of redundant fea-1415

tures, and the selection of compact feature vectors. This method significantly improved
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Table 11: Classification results using visual words (%).
Face&Pose

KNN RF SVM SVM-R
Describing Work 81.2 90.6 88.4 100.0
Story Telling 59.7 51.0 70.6 80.2
Problem Solving 41.4 12.8 35.1 80.7
Debate 55.3 51.6 67.7 91.8
Discussion 50.0 62.7 69.5 61.1
Subjective Question 30.8 5.2 35.8 91.7
Jokes 36.3 14.2 47.7 80.0

Average 50.7 41.2 59.3 89.1

over the previous methods due to the selection of key partitioning features, increasing

the accuracy on both visual word and topic feature sets. SVM-R optimization achieved

89.1% and 87.3% accuracy for word and topic respective levels of generalization due to

its optimized feature set pruning. More detail regarding the use of the SVM-R classifier1420

can be found in [249, 253].

Although these accuracy rates are relatively high, the results have been obtained on

subject specific classification utilizing features extracted from long temporal segments

of the observation. The main challenge we propose with CONVERSE is for the role of

global recognition across multiple subjects for these complex interaction classes.1425

Table 12: Classification results using visual topics (%).
Face&Pose

KNN RF SVM SVM-R
Describing Work 63.5 91.7 76.4 100.0
Story Telling 35.1 73.2 68.3 80.2
Problem Solving 37.1 73.6 74.3 80.7
Debate 48.6 73.6 67.1 81.97
Discussion 38.4 78.7 63.5 61.11
Subjective Question 22.5 63.3 63.5 91.74
Jokes 27.5 70.3 66.3 80.0

Average 38.9 74.9 68.5 87.3

5. Conclussion

This paper presents the current state of the art in regards to the datasets that are

available to the HAR community, highlighting the need for a dataset that presents sub-
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tle interactions between two individuals. The field has progressed over the previous

decades, moving from the simplistic single action sequences towards a more natural1430

representation of daily actions and interactions. We also provide clear definitions re-

garding the level of abstraction within the observations that are commonly encountered

in the field, placing our proposed dataset within that of complex conversation interac-

tion rich activities. By using pose based techniques we have shown that the recognition

of top level action classes within the CONVERSE dataset is possible from using pose1435

estimation output obtained from the Kinect sensor, [75–77, 249]. We have utilized

current techniques, such as the Bag of Key Words, to describe the higher level event

in terms of the composition of lower level action primitives. The full dataset is made

publicly available for further research into the understanding of highly complex inter-

actions at [1].1440

References

[1] Swansea University Computer Vision and Medical Image Analysis Group,

“CONVERSE dataset,” date accessed: 29/07/2015. [Online]. Available:

http://csvision.swan.ac.uk/converse

[2] G. Johansson, “Visual perception of biological motion and a model for its anal-1445

ysis,” Perception & Psychophysics, vol. 14, no. 2, pp. 201–211, 1973.

[3] ——, “Visual motion perception,” Scientific American, vol. 232, pp. 76–88,

1975.

[4] D. Marr and H. K. Nishihara, “Representation and recognition of the spatial

organization of three-dimensional shapes,” in Proc. of the Royal Society of Lon-1450

don. Series B, Containing papers of a Biological character., vol. 200, no. 1140,

1978, pp. 269–94.

[5] R. Rashid, “Towards a system for the interpretation of moving light displays,”

IEEE Trans. Pat. Ana. & Mach. Int., vol. 2, no. 6, pp. 574–581, 1980.

[6] D. Hogg, “Model-based vision: a program to see a walking person,” Image and1455

Vis. Computing, vol. 1, pp. 5–20, 1983.

72



[7] H. Lee and Z. Chen, “Determination of 3D human body postures from a single

view,” Comp. Vis., Graphics and Image Process., vol. 30, no. 2, pp. 148–168,

1984.

[8] Z. Chen and H. Lee, “Knowledge-guided visual perception of 3-D human gait1460

from a single image sequence,” IEEE Trans. Syst., Man, and Cybern., vol. 22,

no. 2, pp. 263–267, 1992.

[9] K. Rohr, “Towards model-based recognition of human movement in image se-

quences,” CVGIP: Image Understanding, vol. 59, pp. 94–115, 1994.

[10] J. Aggarwal, Q. Cai, W. Liao, and B. Sabata, “Articulated and elastic non-rigid1465

motion: A review,” in Proc. IEEE Workshop on Motion of Non-Rigid and Artic-

ulated Objects, 1994, pp. 2–14.

[11] L. Campbell and A. Bobick, “Recognition of human body motion using phase

space constraints,” in Proc. Int. Conf. on Comp. Vis., 1995, pp. 624–630.

[12] J. Aggarwal and Q. Cai, “Human motion analysis: A review,” Comp. Vis. Image1470

Underst., vol. 73, no. 3, pp. 428–440, 1999.

[13] R. Polana and R. Nelson, “Low level recognition of human motion (or how to

get your man without finding his body parts),” Proc. IEEE Workshop on Motion

of Non-Rigid and Articulated Objects, 1994.

[14] S. Osaka, “Recognition of human body motions by robots,” in Intelligent Robots1475

and Syst., 1992, pp. 2139–2146.

[15] M. Rossi and A. Bozzoli, “Tracking and counting moving people,” IEEE Trans.

Image Process., vol. 3, pp. 212–216, 1994.

[16] A. Azarbayejani and A. Pentland, “Real-time self-calibrating stereo person

tracking using 3-D shape estimation from blob features,” in Proc. Int. Conf. Pat.1480

Rec., vol. 3, 1996, pp. 627–632.

73



[17] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: Real-time

tracking of the human body,” IEEE Trans. Pat. Ana. & Mach. Int., vol. 19, no. 7,

pp. 780–785, 1997.

[18] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time-sequential1485

images using hidden markov model,” in Proc. IEEE Conf. on Comp. Vis. and

Pat. Rec., 1992.

[19] O. Chomat and J. Crowley, “Probabilistic recognition of activity using local ap-

pearance,” in Proc. IEEE Conf. on Comp. Vis. and Pat. Rec., 1999, pp. 0–5.

[20] A. Bobick and J. Davis, “The recognition of human movement using temporal1490

templates,” IEEE Trans. Pat. Ana. & Mach. Int., vol. 23, no. 3, pp. 257–267,

2001.

[21] I. Laptev and T. Lindeberg, “Space-time interest points,” in Proc. Int. Conf. on

Comp. Vis., 2003, pp. 432–439 vol.1.

[22] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions : A local1495

SVM approach,” in Pat. Rec., 2004, pp. 3–7.

[23] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recognition via

sparse spatio-temporal features,” in IEEE Int. Workshop on Visual Surveillance

and Performance Evaluation of Tracking and Surveillance, 2005, pp. 65–72.

[24] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Actions as space-1500

time shapes,” IEEE Trans. Pat. Ana. & Mach. Int., vol. 29, no. 12, pp. 2247–53,

2007.

[25] W. Choi, S. Savarese, and S. Khuram, “What are they doing? : Collective Ac-

tivity Classification Using Spatio-Temporal Relationship Among People,” Proc.

Int. Conf. on Comp. Vis. Workshops, vol. 24, no. October 2005, p. 2008, 2008.1505

[26] J. M. Chaquet, E. J. Carmona, and A. Fernández-Caballero, “A survey of video

datasets for human action and activity recognition,” Comp. Vis. Image Underst.,

vol. 117, no. 6, pp. 633–659, 2013.

74



[27] A. Yao, J. Gall, G. Fanelli, and L. V. Gool, “Does human action recognition

benefit from pose estimation?” in Proc. British Conf. on Mach. Vis., 2011, pp.1510

67.1–67.11.

[28] L. Xia, C. Chen, and J. Aggarwal, “View Invariant Human Action Recognition

Using Histograms of 3D Joints,” in Proc. IEEE Conf. on Comp. Vis. and Pat.

Rec., 2012, pp. 20–27.

[29] O. Oreifej and Z. Liu, “Hon4d: Histogram of oriented 4d normals for activity1515

recognition from depth sequences,” in Proc. IEEE Conf. on Comp. Vis. and Pat.

Rec., 2013, pp. 716–723.

[30] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, “Berkeley MHAD:

A comprehensive Multimodal Human Action Database,” Workshop on Applica-

tions of Computer Vision, pp. 53–60, 2013.1520

[31] Q. Wu, Z. Wang, F. Deng, Z. Chi, and D. D. Feng, “Realistic Human Action

Recognition With Multimodal Feature Selection and Fusion,” IEEE Trans. Syst.,

Man, and Cybern., Part A: Syst. and Humans, vol. 43, no. 4, pp. 875–885, 2013.

[32] I. Lefter, G. J. Burghouts, and L. J. M. Rothkrantz, “An audio-visual dataset of

human-human interactions in stressful situations,” Journal on Multimodal User1525

Interfaces, vol. 8, no. 1, pp. 29–41, 2014.

[33] D. Weinland, R. Ronfard, and E. Boyer, “A survey of vision-based methods

for action representation, segmentation and recognition,” Comp. Vis. Image Un-

derst., vol. 115, no. 2, pp. 224–241, 2011.

[34] M. Andersen, T. Jensen, P. Lisouski, A. Mortensen, M. Hansen, T. Gregersen,1530

and P. Ahrendt, “Kinect depth sensor evaluation for computer vision applica-

tions,” Aarhus University, Department of Engineering, Tech. Rep., 2012.

[35] K. Berger, S. Meister, R. Nair, and D. Kondermann, “A state of the art report on

kinect sensor setups in computer vision,” in Time-of-Flight and Depth Imaging.

Sensors, Algorithms, and Applications, ser. Lecture Notes in Computer Science,1535

75



M. Grzegorzek, C. Theobalt, R. Koch, and A. Kolb, Eds. Springer Berlin

Heidelberg, 2013, vol. 8200, pp. 257–272.

[36] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision with Mi-

crosoft Kinect sensor: A review,” IEEE Transactions on Cybern., vol. 43, no. 5,

pp. 1318–1334, 2013.1540

[37] K. Yun, J. Honorio, D. Chattopadhyay, T. L. Berg, D. Samaras, and S. Brook,

“Two-person interaction detection using body-pose features and multiple in-

stance learning,” in Proc. IEEE Conf. on Comp. Vis. and Pat. Rec. Workshops,

2012, pp. 28–35.

[38] L. Huynh, T. Ho, Q. Tran, T. B. Dinh, and T. Dinh, “Robust classification of1545

human actions from 3D data,” in IEEE Int. Symp. on Signal Process. and Infor-

mation Technology, 2012, pp. 263–268.

[39] Y. Zhu, W. Chen, and G. Guo, “Fusing Spatiotemporal Features and Joints for

3D Action Recognition,” in Proc. IEEE Conf. on Comp. Vis. and Pat. Rec. Work-

shops, 2013, pp. 486–491.1550

[40] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag of 3D points,”

in IEEE Int. Workshop on CVPR for Human Communicative Behavior Analysis,

2010.

[41] J. Wang, Z. Liu, Y. Wu, and J. Yuan, “Mining actionlet ensemble for action

recognition with depth cameras,” in Proc. IEEE Conf. on Comp. Vis. and Pat.1555

Rec., 2012, pp. 1290–1297.

[42] F. Zhou, F. D. Torre, and J. K. Hodgins, “Aligned cluster analysis for temporal

segmentation of human motion,” Carnegie Mellon University, Tech. Rep., 2008.

[43] C. Wang, Y. Wang, and A. L. Yuille, “An approach to pose-based action recog-

nition,” in Proc. IEEE Conf. on Comp. Vis. and Pat. Rec., 2013, pp. 915–922.1560

[44] F. Zhou, F. De la Torre, J. K. Hodgins, and F. D. la Torre, “Hierarchical aligned

cluster analysis for temporal clustering of human motion,” IEEE Trans. Pat. Ana.

& Mach. Int., vol. 35, no. 3, pp. 582–596, 2013.

76
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