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Understanding the Magnetic Polarizability Tensor
Paul D. Ledger1 and W. R. Bill Lionheart2

1College of Engineering, Swansea University Bay Campus, Swansea SA1 8EN, U.K.
2School of Mathematics, The University of Manchester, Manchester M13 9PL, U.K.

The aim of this paper is to provide new insights into the properties of the rank 2 polarizability tensor ��M proposed by
Ledger and Lionheart for describing the perturbation in the magnetic field caused by the presence of a conducting object in the
eddy-current regime. In particular, we explore its connection with the magnetic polarizability tensor and the Pólya–Szegö tensor

and how, by introducing new splittings of ��M, they form a family of rank 2 tensors for describing the response from different
categories of conducting (permeable) objects. We include new bounds on the invariants of the Pólya–Szegö tensor and expressions

for the low-frequency and high-conductivity limiting coefficients of ��M. We show, for the high-conductivity case (and for frequencies
at the limit of the quasi-static approximation), that it is important to consider whether the object is simply or multiply connected
but, for the low-frequency case, the coefficients are independent of the connectedness of the object. Furthermore, we explore the

frequency response of the coefficients of ��M for a range of simply and multiply connected objects.

Index Terms— Eddy currents, land mine detection, magnetic induction, metal detectors, polarizability tensors.

I. INTRODUCTION

THE NEED to detect and characterize the conducting
targets from magnetic induction measurements arises in

a wide range of applications, most notably in metal detec-
tion. Here, one wishes to be able to locate and identify a
highly conducting object in a low-conducting background.
Applications include ensuring safety at airports and at public
events, maintaining quality in the mechanized production of
food as well as in the detection of unexploded ordnance and
land mines and in archeological surveys. Furthermore, there
is interest in producing conductivity images from multiple
magnetic induction measurements, most notably in magnetic
induction tomography for medical applications [18], [46] and
industrial applications [16], [42]. Eddy currents also have
important applications in non-destructive testing, such as
investigating the integrity of reinforced concrete structures and
bridges [41].

In the engineering literature [14], [31], [35], [37], the signal
induced by an alternating low-frequency magnetic field, due
to the presence of a conducting (permeable) object, located at
position z, is often postulated as

V ind � Hm
0 �
�
AHe

0

�
(1)

where only Hm
0 and He

0 depend on position, He
0 :� H0�z� is

the background magnetic field generated by passing a current
though an excitor coil placed away from the object, evaluated
at the position of the center of the object, and Hm

0 is the
corresponding field that would be evaluated by passing a
unit current through the measurement coil, evaluated at the
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same location. The object

A �
3�

i�1

3�
j�1

Ai j êi � ê j (2)

has been proposed to be a (complex) symmetric rank 2
magnetic polarizability tensor described by six independent
empirically fitted complex coefficients Ai j containing infor-
mation about the shape, material properties, and frequency
response of an object. The coefficients are independent of its
position, and êi , i � 1, 2, 3 are the unit basis vectors for the
chosen coordinate system.

In the applied mathematics literature [2], [4]–[6], [24],
[25], [28], asymptotic formulas are available that describe the
perturbation in the magnetic field due to the presence of a
magnetic (conducting) object Bα using Einstein’s summation
convention in the form

��Hα � H0��x��i �
�

D2
x G�x, z��i jA j k�H0�z��k � �R�x��i

(3)

as some suitable limit is taken. In the above, Bα � αB � z,
which means that the physical object can be expressed in terms
of a unit object B placed at the origin, scaled by the object size
α and translated by the vector z, R�x� is a residual vector, and
G�x, z� :� 1	�4π 
x � z
� is the free space Laplace Green’s
function and�

D2
x G�x, z��i j �

�
D2

x G�z, x��i j

� 1

4πr3 �3r̂ i r̂ j � δi j � (4)

with r :� x � z, r � 
r
, r̂ � r	r and δi j are the
coefficients of the unit tensor. For these asymptotic formulas,
the form of A j k is explicitly known and is computable by
solving a transmission problem. It is easily established that
this is exactly of the form Hm

0 � �AHe
0� given in (1). This

is done by idealizing the background magnetic field as that
produced by a magnetic dipole and then taking the component
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of (3) in the direction of the magnetic moment associated
with the background magnetic field that would result from
the measurement coil being treated as an excitor.

In this paper, we will explore the connection between
the empirically fitted engineering polarizability tensor and
the asymptotic expansions combined with the different
expressions for polarization tensor that appear in the applied
mathematics literature. In particular, we advocate that an
asymptotic formula for the perturbed magnetic field provides
greater insight than (1) for the following reasons. If the empir-
ical approach is followed, the coefficients of the polarizability
tensor are obtained by taking measurements (or performing
simulated measurements using a computational techniques,
such as finite elements) in order to determine the voltage at
different positions for different excitor combinations and then
use a least squares approach to approximately determine the
coefficients Ai j [14], [31], [35], [37]. It is important to ensure
that the measurements are taken in different planes and at
distances from the object in order to capture the correct asymp-
totic behavior; however, the presence of measurement noise
can make this challenging to achieve in practice. Furthermore,
the number of measurements should greatly exceed the number
of coefficients to be determined in order to minimize any mea-
surement errors. For each new object, i.e., a different shape,
frequency, or material property, this measurement procedure
must be repeated in order to determine the polarizability
tensor. An asymptotic formula, on the other hand, provides
an explicit expression that allows the tensor to be computed
without the need for performing (or simulating) measurements.
Indeed, perhaps a contributing factor as to why this approach
has not been persued among engineers so far is that the term
polarization tensor is preferred in the applied mathematics
literature for A, while, in the engineering community, the
term polarizability tensor is more commonly adopted. Another
benefit is that rather than knowing that the voltage is only
approximately given (1), without knowing its accuracy, we
have, through (3), not only the leading term but also a way of
rigorously describing the remainder.

The availability of explicit expressions for different classes
of polarization/polarizability tensors makes it possible to
investigate their properties, such as the reduction in the num-
ber of independent coefficients for rotational and reflectional
symmetries of the object, which we considered in [28]. In this
paper, we provide the following novel contributions, which
further enhance the understanding of their properties. First, we
review the different forms that the tensors can take for mag-
netic and conducting (permeable) objects as part of asymptotic
expansions of the perturbed magnetic field when either the
object size or the frequency tends to zero. Second, we present
new bounds on the invariants of some classes of the tensors
and provide bounds on the spherical and deviatoric parts of the
tensor for a magnetic object. Third, we present new results that
describe the low-frequency and high-conductivity limits of the
coefficients of the tensor for a conducting (permeable) object
in an alternating background magnetic field. We consider the
response from magnetic and conducting ellipsoids and, finally,
the response from a conducting Remington rifle cartridge as
a practical application of the aforementioned theory.

The presentation of the material is organized as follows.
In Section II, we summarize the low-frequency and eddy-
current models and then, in Section III, we consider explicit
expressions for the polarization/polarizability tensors for mag-
netic and conducting (permeable) objects and, in the latter
case, present a new splitting of the tensor. In Section IV, we
present bounds on the properties of the tensors and then, in
Section V, we consider the limiting case of low frequency and
high conductivity for the coefficients of the tensor. Section VI
describes the response from magnetic and conducting ellip-
soids, and in Section VIII, the response from a conducting
Remington rifle cartridge is described as a practical application
of the aforementioned theory. We conclude the presentation
with some concluding remarks in Section IX.

II. MATHEMATICAL MODELS

Following [2], we let R
3 denote the Euclidean space and

introduce the position-dependent material parameters as:

εα �
�
ε�

ε0,
μα �

�
μ�

μ0,
σα �

�
σ� in Bα
0 in R

3�Bα
(5)

where ε, μ, and σ are the permittivity, permeability and
conductivity, respectively, and the subscript 0 refers in the
former cases to the free space values. We remark that the
background medium is assumed to be non-conducting free
space, which is a reasonable approximation to make for buried
objects in dry ground provided that the contrast between the
object and the surrounding material is sufficiently high.

Low-frequency electromagnetic scattering problems are
described in terms of the (total) time harmonic Eα and Hα for
angular frequency ω, which result from the interaction between
the background (incident) fields E0 and H0 and the object Bα.
These fields satisfy the equations

∇ � Eα � iωμαHα in R
3 (6a)

∇ � Hα � σαEα � iωεαEα in R
3 (6b)

and suitable radiation conditions as 
x
 
 � where i :� ��1.
The background fields E0 and H0 satisfy the free space
version of the above equations (i.e., replacing the subscript
α with 0).

In the eddy-current model, the geometry, frequency, and
material parameters are such that the displacement currents in
the Maxwell system can be neglected. This is often justified
on the basis that �ε�μ��1�2αω � 1 or ε�ω	σ� � 1. A more
rigorous justification of the eddy-current model appears in [1].
In [39], the effect of the shape of the conductor on the
validity of the eddy-current model is discussed. The depth
of penetration of the magnetic field in a conducting object
is described by its skin depth, s :� �2	�ωμ0σ���1�2, and
by introducing a parameter ν :� 2α2	s2, the mathematical
model of interest in this case refers to when ν � O�1�1
and μ�	μ0 � O�1� as α 
 0 [2]. When considering the
eddy-current model, the time-harmonic fields Eα and Hα are

1Where f �x� � O�g�x�� if and only if there is a positive constant M,
such that � f �x�� � M�g�x�� for all sufficiently large x , i.e., x � x0. This is
known as Landau big O notation.
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those that result from a time varying current source located
away from Bα , with volume current density J0 and ∇ � J0 � 0
in R

3, and their interaction with the object Bα , and satisfy the
equations

∇ � Eα � iωμαHα in R
3 (7a)

∇ � Hα � σαEα � J0 in R
3 (7b)

together with a suitable static decay rate of the fields as

x
 
 � [1]. In this case, in the absence of an object,
the background magnetic field, H0, is that generated by the
current source.

III. ASYMPTOTIC FORMULAS AND EXPLICIT

EXPRESSIONS FOR POLARIZATION TENSORS

In Section III-A, we discuss as asymptotic expressions for
the perturbed magnetic field �Hα � H0��x� for the mathe-
matical model described by (6). Then, in Section III-B, we
present the expansions for the mathematical model described
by (7). In Section III-C, we consider the connection between
these results.

A. Asymptotic Expansions for Equation System (6)

For dielectric, magnetic and perfectly conducting objects
whose dimensions are small compared with the wavelength,
i.e., κα small, where κ :� ω

�
ε0μ0 is the free space wave

number and α is the object size, it is well known that
the scattering caused by the presence of the inclusion in a
background field can be approximated by a dipole expansion,
and in the case of a sphere, explicit expressions for the
induced dipole moments are available [20, pp. 413–415].
These induced dipole moments can be expressed as the product
of a diagonal rank 2 tensor and the background field, eval-
uated at the position of the object. Similar results are also
available for dielectric and magnetic spheres in uniform static
fields [20, p. 151]. The ability to describe the induced
dipole moments in terms of rank 2 (polarization/polarizability)
tensors for other shapes has also been reported [27, p. 54],
[34, p. 1886],2 where it is proposed that the tensors are
symmetric and a function of both the object’s shape and its
material properties, but without an explicit expression for the
general case. A further difficulty, with describing the scattered
fields by dipole expansions, is how small κα needs to be for
a good approximation, and an asymptotic expansion, on the
other hand, quantifies the remainder term.

For fixed α, the asymptotic expansions of
Kleinman [24], [25] present the leading-order terms for
the perturbed in terms of the dipole moments for the case
when κ 
 0 and r 
 �, where r is the distance from
the object to the point of observation. By considering
the leading-order terms, he is able to express the electric
and magnetic dipole moments as linear combinations
of the background field through dielectric and magnetic
polarization/polarizability tensors, with explicit expressions
for the tensor coefficients [15], [22], [26]. Our recent
work [29] includes not only the terms as r 
 �, but also

2For a discussion on the polarizability of molecules [27], however, this
outside the scope of this paper.

includes those at distances that are large compared with the
size of the object. In particular, by considering the case of
fixed r and α, this reduces to

��Hα � H0��x��i �
�

D2
x G�x, z��i jT �μr � j k�H0�z��k

��R�x��i (8)

where R�x� � O�κ� as κ 
 0 for a simply connected
smooth inclusion with permeability contrast μr :� μ�	μ0
at points away from the object, which describes the mag-
netostatic response as the limiting case of a low-frequency
scattering problem. If we do not fix r and α, [29, Th. 4.2]
can also describe the scattering from dielectric objects at
distances that are large compared with the object size, but
not the response from conducting objects. The real symmetric
rank 2 tensor T �μr � can be expressed in range of different
forms [15], [22], [26] and can, in fact, be identified with
the Pólya–Szegö tensor [4], whose coefficients are explicitly
given by

T �μr �i j � α3
�
�μr � 1�
B
δi j � �μr � 1�2

�



n̂	

� �∇ξφi �ξ j dξ

�
(9)

where ξ j � �ξ� j with ξ measured from the center of B . In the
above, φi , i � 1, 2, 3, satisfies the transmission problem

∇2φi � 0 in B � Bc (10a)

�φi �
 � 0 on 
 (10b)

n̂ � ∇φi 

 � n̂ � ∇μrφi 
	 � n̂ � ∇ξi on 
 (10c)

φi 
 0 as 
ξ 
 
 � (10d)

where 
 is the interface between B and Bc and ���
 denotes the
jump across 
. Here, and in the sequel, we have dropped the
subscript ξ on ∇ and x on D unless confusion may arise. Note
that other forms of T �μr �i j are possible, and in [29], we show
the equivalence of some common arrangements. By taking
appropriate limiting values of μr , the far field perturbation
caused by the presence of a perfectly conducting object can
also be described [15], [26].

By contrast, the asymptotic behavior of scattering by a
small smooth simply connected object has been obtained on
bounded [5], [45] and unbounded domains [6], [29] and, for
the limiting magnetostatic response given by κ � 0, has a
similar form to (8) with R�x� � O�α3� as α 
 0. When
κ � 0, these results also include additional terms, which also
describe the scattering from a conducting dielectric object in
terms of T �εc

r �, where εc
r :� �ε� � iσ�	ω�	ε0.

B. Asymptotic Expansions for Equation System (7)

In the above, we have described a series of different
asymptotic expansions, which although having a similar form
to (3), and describing the perturbed fields for smooth sim-
ply connected magnetic objects in the magnetostatic regime
(as the limiting cases of electromagnetic scattering problems),
do not describe the response from conducting objects
in the quasi-static regime, i.e., the eddy-current problem.
The existence of a relationship of the form (1) for the case
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of a conducting sphere in the eddy-current regime was first
shown by Wait [44]. For this case, A is diagonal, and he
claimed that such a relationship could potentially be used
for identifying the conductivity and the radius of a sphere.
Landau and Lifshitz [27, p. 192] proposed that the magnetic
moment acquired by the conductor in a magnetic field can be
expressed in terms of the product of a symmetric magnetic
polarizability tensor and the background field.3 Subsequently,
Järvi [21] and, independently, Baum [9], [10] have proposed
that (1) holds for general-shaped conducting objects.4 More-
over, to the best of our knowledge, with the exception of the
sphere, an explicit expression for computing the coefficients
of the magnetic polarizability for a conducting object is not
available and this has led to the common engineering approach
of empirically fitting their coefficients [14], [31], [35], [37].

Ammari et al. [2] have recently obtained an asymptotic
expansion, which, for the first time, correctly describes the
perturbed magnetic field as α 
 0 for a conducting (possibly
also permeable and multiply connected) object in the presence
of a low-frequency background magnetic field, generated
by a coil with an alternating current. In [3], further useful
calculations and a dictionary-based classification algorithm for
identifying conducting objects are presented. We quote the
result of [2, Th. 3.2] in the alternative manner, as first stated
in [28]

�Hα � H0��x�i � �D2G�x, z��
mM
mi j �H0�z�� j �O�α4�
(11)

as α 
 0. At first glance, this appears similar to the result
stated in (3); however, note that the result is expressed in
terms of a rank 4 tensor, which appears as an inner prod-
uct with D2G�x, z� over the first two indices. Moreover, a
rank 4 tensor can have as many as 64 independent complex
coefficients M
mj i , whereas for a symmetric rank 2 tensor,
this can have at most six independent complex coefficients.
In [28], we show that for a right-handed orthonormal coor-
dinate system, described by the unit vectors ê j , j � 1, 2, 3,
which are chosen as the Cartesian coordinate directions, then
it is possible to reduce this result to

�Hα � H0��x�i � �D2G�x, z��i j
��M j k�H0�z��k � O�α4�

(12)

as α 
 0, where
��M is a complex symmetric rank 2 tensor,

which we, henceforth, denote as the magnetic polarizability
tensor.5 For consistency with [28], we use a single check to
denote the reduction in a tensor’s rank by 1 and a single hat
to denote its extension in rank by 1. The coefficients

3They justify that the term magnetic polarizability tensor being applicable
to this case as it is associated with a magnetic dipole and is a generalized
susceptibility.

4Although the connection is not explicit, these authors appear to combine
the proposition of [27] and a dipole expansion of the field to recover this
result.

5A more precise definition would be to say that
�

�M is the leading-order
approximation to the magnetic polarizability tensor for small objects. In [28],
we include examples to demonstrate numerically that the prerturbed field and,

hence, the coefficients of
�

�M behave asymptotically as predicated by (12).

of
��M are defined as

��Mi j :� Ni j � 	Ci j , where

	Ci j :� � iνα3

4
êi �

�
B
ξ � �θ j � ê j � ξ�dξ (13a)

Ni j :� α3
�

1� μ0

μ�

��
B

�
êi � ê j � 1

2
êi � ∇� θ j

�
dξ (13b)

and θ i solves the vector valued transmission problem

∇ � μ	1∇ � θ i � iωσα2θ i

� iωσα2 êi � ξ in B � Bc (14a)

∇ � θ i � 0 in Bc (14b)

�θ i � n̂�
 � 0, on 
 (14c)

�μ	1∇ � θ i � n̂�
 � �2�μ	1�
 êi � n̂ on 
 (14d)

θ i �ξ� � O�
ξ 
	1� as 
ξ 
 
 �. (14e)

We emphasize that (11) and (12) provide a rigorous math-
ematical framework for the perturbed magnetic field for the
eddy-current case, and (13) together with the solution of the
transmission problem (14) now provides explicit expressions

for the computation of the coefficients of the tensor
��M.

In [28], we present the numerical results for the computation
of the tensor coefficients of different objects and describe how
mirror and rotational symmetries of an object can be applied

to reduce the number of independent coefficients of
��M.

C. Unified Description for Small Objects

From Sections III-A and III-B, we observe that for small
objects, �Hα � H0��x� has the form of (3) with R�x� �
O�α4� and A � T �μr � for the magnetostatic response and

A ���M for the eddy-current case as α 
 0. We now state a
series of lemmas, which unifies their treatment and shows that
the former is, in fact, a simplification of the latter. We start

with an alternative form of
��M.

Lemma 1: The coefficents of
��M can be expressed as��Mi j � N σ�

i j �N 0
i j � 	Cσ�i j , where

	Cσ�i j :� � iνα3

4
êi �

�
B
ξ � �θ �0�j � θ �1�j

�
dξ (15a)

N σ�
i j :� α3

2

�
1� μ0

μ�

��
B

�
êi � ∇ � θ �1�j

�
dξ (15b)

N 0
i j :� α3

2

�
1� μ0

μ�

��
B

�
êi � ∇ � θ �0�j

�
dξ (15c)

and N σ� � 	Cσ� is a complex symmetric rank 2 tensor and
N 0 is a real symmetric rank 2 tensor. The coefficients of these
tensors depend on the solutions θ

�0�
i and θ

�1�
i , i � 1, 2, 3, to

the transmission problems

∇ � μ	1∇ � θ�0�i � 0 in B � Bc (16a)

∇ � θ�0�i � 0 in B � Bc (16b)

θ
�0�
i � n̂

�


� 0 on 
 (16c)


μ	1∇ � θ �0�i � n̂
�


� 0 on 
 (16d)

θ
�0�
i �ξ � � êi � ξ � O�
ξ 
	1� as 
ξ 
 
 � (16e)
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Fig. 1. Torus-shaped object B showing (a) typical non-bounding cycle γ1�B�
and associated cutting surface �1�B� for B and (b) similar for Bc.

and

∇ � μ	1∇ � θ �1�i � iωσα2�θ �1�i � θ �0�i

�
� 0 in B � Bc (17a)

∇ � θ�1�i � 0 in Bc (17b)

θ
�1�
i � n̂

�


� 0 on 
 (17c)


μ	1∇ � θ �1�i � n̂
�


� 0 on 
 (17d)

θ
�1�
i �ξ� � O�
ξ 
	1� as 
ξ 
 
 �. (17e)

Proof: The result immediately follows from the ansatz

θ i � θ �0�i � θ�1�i � êi � ξ . The symmetries of N σ� � 	Cσ� and
N 0 follow similar arguments to [28, Proof of Lemma 4.4].

To understand the role played by the topology of an object
and its complement, we recall the definition of Betti numbers
(see [11], [30], and references therein). The zeroth Betti
number, β0���, is the number of connected parts of �, which
for a bounded connected region in R

3 is always 1. The
first Betti number, β1���, is the genus, i.e., the number of
handles, and the second Betti number β2��� is one less than
the connected parts of the boundary ��, i.e., the number of
cavities. If we consider a situation where� has β1��� handles,
then a non-bounding orientated path, γi���, known as a loop,
can be associated with each handle i . For β1��� loops, one
can associate β1��� cuts of � that can be represented by
Seifert surfaces as shown for the situation, where B is a
solid torus in Fig. 1. If (�1 � � � � � �N ) where N :� β1���
stands for the complete set of cuts, we recall that a curl free
field can only be represented by the gradient of a scalar field
in ����1 � � � ��N �. Furthermore, we recall that a simply
connected region has β0��� � 1 and β1��� � β2��� � 0,
and a multiply connected region is one that is not simply
connected.

Remark 2: In fact, in order to ensure the uniqueness of (14),
the additional condition�


i

n � θ i 

 dξ � 0 (18)

where 
i , i � 1, � � � ,m and m denotes the number of closed
surfaces making up 
, should be added. Analogous conditions
should be added for systems (16) and (17).

Lemma 3: The tensor N 0 reduces to T �μr � independently
of the geometric configuration of B , and in particular, inde-
pendently of the first Betti number of B and Bc.

Proof: We introduce vi :� ∇ � θ�0�i and set ui � μ̃	1
r vi

with μ̃r :�
�
μr in B
1 in Bc . In doing so, we can establish, using

the decay conditions of ∇ � θ i � O�
ξ 
	3� as 
ξ 
 
 � [2],
that ui satisfies the transmission problem

∇ � ui � 0 in B � Bc (19a)

∇ � �μ̃r ui � � 0 in B � Bc (19b)

�n̂� ui �
 � 0 on 
 (19c)

�n̂ � �μ̃r ui��
 � 0 on 
 (19d)

ui �ξ� � 2êi � O�
ξ 
	3� as 
ξ 
 
 � (19e)

which is equivalent to (16). We set the harmonic fields as
ui � ∇ϑi � hi in B and Bc, where hi represents the curl free
fields that are not gradients with dim�hi � � β1�B� in B and
dim�hi� � β1�Bc� in Bc. But, due to the fact that ui is curl
free for all of R

3 in (19), we have, independent of the choice
of loops γi�B�, γ j �Bc�, that


γi �B�
τ̂ � ui dξ �



γ j �Bc�

τ̂ � ui dξ � 0

i � 1, � � � , β1�B�, j � 1, � � � , β1�Bc�, where τ̂ denotes the
unit tangent, and thus, by [11, Proposition 3 and Remark 3],
hi � 0 in R

3. Furthermore, by choosing ϑi :� 2�μr � 1�φi �
2ξi then (19) reduces to (10) and

N 0
i j � α3�μr � 1�

�
B
�êi � ��μr � 1�∇φ j � ê j ��dξ

� α3
�
�μr � 1�
B
δi j � �μr � 1�2

�
B

êi � ∇φ j dξ

�
� α3

�
�μr � 1�
B
δi j � �μr � 1�2

�



n̂	 � ∇φ jξi dξ

�
where the last step follows by integration points. Finally, we
get N 0 � T �μr � by the symmetry of the coefficients of the
tensor [13].

Remark 4: By using the alternative splitting
��M � N σ� �	Cσ� � N 0 and Lemma 3, we can now write
��M � N σ� �	Cσ� � T �μr �, whereas the original splitting would requires

σ� � 0 for
��M � N � T �μr �. Thus, the alternative

splitting of
��M is useful as it allows us to separate the complex

symmetric conducting part N σ�� 	Cσ� from the real symmetric
magnetic part N 0 � T �μr � and associate the latter with
the Pólya–Szegö tensor. We summarize the interrelationships
between the different rank 2 tensors in Fig. 2 and emphasize
that (12) provides a unified description of �Hα � H0��x�
for eddy current and magnetostatic problems as the object
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Fig. 2. Family of rank 2 polarization tensors for describing magnetic and
conducting, simply and multiply connected, objects.

size tends to zero for both simply connected and multiply
connected objects.

Corollary 5: If the background magnetic field H0�z� is
assumed to be that produced by a magnetic dipole, such as
is appropriate for its evaluation at points away from a current
source of small diameter centered at y, then it follows that, at
the center of the object:

�He
0�i :� �H0�z��i � �D2G�y, z�me�i

where me is the magnetic dipole moment of exciting current
source. Taking the component of (12) in the direction mm for
this background field gives

mm � �Hα � H0��x� � Hm
0 � ���MHe

0� � O�α4� (20)

as α 
 0, where Hm
0 :� D2G�x, z�mm is the background

magnetic field, evaluated at the center of the object, that would
result from considering the measurement coil centered at x to
be an excitor with dipole moment mm . We observe that the
leading-order term is exactly of the form quoted in (1), and
moreover, by applying the Lorentz reciprocity theorem, it is
possible to show that this is the leading term in the induced
voltage (see the Appendix).

IV. BOUNDS ON THE TENSOR COEFFICIENTS AND

ASSOCIATED PROPERTIES

A. Preliminaries

Following the restriction to orthonormal coordinates, we
will, henceforth, arrange the coefficients of the rank 2 tensors

T �μr � and
��M [and its components N 0 � T �μr�, N σ� ,

and 	Cσ�] in the form of 3 � 3 matrices. As standard, we
shall compute their eigenvalues and eigenvectors of the tensors
by computing the corresponding quantities for their matrix
arrangements.

For some real contrast k, we recall that the Pólya–Szegö
tensor T �k� is real symmetric with real eigenvalues and
its eigenvectors are mutually perpendicular [4]. It can be
diagonalized as

�RT �T R��i j � RkiTk
R
j � �i j (21a)

Ti j � Rik�k
R j
 � �R��RT ��i j (21b)

where R is the real and orthogonal �R	1 � RT � and whose
columns are the tensor’s eigenvectors. Furthermore, � is
diagonal with its enteries λ1, λ2, and λ3 being the eigenvalues
of T (being positive definite for 1 � k � � and negative
definite for 0 � k � 1).

On the otherhand, as
��M is complex symmetric then, in

general, it is not diagonalizable by a real rotation matrix
apart for the specific case, where the real and imaginary

parts
��M commute, such that

��M � ��Mr � i
��Mr and in this

case

�RT ���MR��i j � Rki ���Mr � i
��Mr �k
R
j � �i j � i�i j

(22a)��Mi j � Rik ��k
 � i�k
�R j


� �R��� � i��RT ��i j (22b)

where the columns of R are the eigenvectors of
��Mr and � is

the diagonal with enteries λ1, λ2, and λ3 being the eigenvalues
of Mr . The symmetric singular value decomposition [43]
can be applied to achieve the diagonalization of a complex
symmetric matrix using a unitary matrix, although it remains
to be shown whether this decomposition provides any practical
insights.

We recall the Cayley–Hamilton theorem, which states that
for a symmetric rank 2 tensor A that

A3 � I1A2 � I2A� I3I � 0 (23)

where its invariants are I1 � tr �A�, I2 � 1
2 �I 2

1 � tr �AA��,
and I3 � detA and Ii j � δi j .

B. Some Properties of the Pólya–Szegö Tensor T (k)

We first list some known properties of the Pólya–Szegö
tensor T �k� for 0 � k � 1 � �, which by Lemma 3, also
carry over to N 0.

1) Kleinman and Senior [26] show that the coefficients of
the tensor satisfy�
Ti j � k � 1

k � 1

B
δi jα

3
�2

�
�
Tii � k � 1

k � 1

B
α3

��
T j j � k � 1

k � 1

B
α3

�
(24)

which is trivially satisfied for the diagonal entries.
An alternative proof can be found in [4].

2) Kleinman and Senior [26] also show that the diagonal
coefficients of the tensor satisfy

k � 1

k
� Tii

α3
B
 � k � 1. (25)

Again, an alternative proof can be found in [4], which
also states that the eigenvalues of T satisfy the same
inequality

k � 1

k
� λi �T �
α3
B
 � k � 1. (26)
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3) The bound on the trace of T , which follows from (25), is
not optimum and instead [4] proves the improved result,
which we state for three dimensions:

1

k � 1
tr�T � �

�
2� 1

k

�
α3
B
 (27)

�k � 1�tr�T 	1� � 2� k


B
α3 (28)

and has previously been proved in [12].

Using these results, we establish the following.
Lemma 6: For a contrast 1 � k � �, the invariants I1, I2,

and I3 of the Pólya–Szegö tensor T �k� satisfy

0 � I1 �
�

2� 1

k

�
�k � 1�α3
B
 (29)

0 � 
I2
 � 1

2

�
7� 4

k
� 1

k2

�
�k � 1�2α6
B
2 (30)

0 � α9
B
3
�

1� 1

k

�3

� I3 � �k � 1�3α9
B
3 (31)

in three dimensions. On the other hand, if 0 � k � 1, then
the following inequalities hold:

0 � I1 �
�

2� 1

k

�
�k � 1�α3
B
 (32)

0 � 
I2
 � 1

2

�
7� 4

k
� 1

k2

�
�k � 1�2α6
B
2

(33)

α9
B
3
�

1� 1

k

�3

� I3 � �k � 1�3α9
B
3 � 0. (34)

Proof: The results (29) and (32) immediately follow
from (27).

From (29), I 2
1 � �tr�T ��2 � �

2� 1
k

�2 �k � 1�2α6
B
2
for 0 � k � 1 � � and recalling (21b), then tr�T T � �
tr�R��RT � � λ2

1 � λ2
2 � λ2

3. Thus, since 
I2
 � 1
2 
I 2

1 �
�tr�T ��2
 � 1

2 �I 2
1 ��tr�T ��2� and using (26), the results stated

in (30) and (33) immediately follow.
Recalling I3 � det�T � � λ1λ2λ3 and that T is positive

definite for 1 � k � � and negative definitive for 0 � k � 1,
then (31) and (34) follow immediately from the substitution
of (26).

Corollary 7: It immediately follows from Lemma 6 that the
volumetric (spherical) part of T can be bounded as:

3
B
2α6
�

k � 1

k

�2

� �diag�T ��F � 3
B
2α6�k � 1�2 (35)

where �A�F :� ��3
i�1

�3
j�1 
Ai j 
2�1�2 denotes the Forbenius

matrix norm.
Lemma 8: The deviatoric part of T �k� can be bounded as����T � 1

3
tr�T �

����2

F
� α6
B
2�k � 1�2

�
�

3� 1

3

�
2� 1

k

�2

� 6

�
1� 1

k � 1

�2
�

if 1 � k � � (36a)

and as����T � 1

3
tr�T �

����2

F
� α6
B
2�k � 1�2

�
�

3

k2 �
1

3

�
2� 1

k

�2

� 6

�
1

k
� 1

k � 1

�2
�

if 0 � k � 1. (36b)
Proof: We consider the case of 1 � k � �, the proof for

0 � k � 1 is analogous. To show this, we first fix i � j then,
by the triangular inequality, (25), and (27), it follows that:�

Tii � 1

3
tr�T �

�2

� T 2
ii �

1

9
tr�T �2

� α6
B
2�k � 1�2
�

1� 1

9

�
2� 1

k

�2
�
.

(37)

On the other hand, for i � j , (24) implies that

T 2
i j �

�
Ti j � 1

3
tr�T �δi j

�2

�
�
Tii � α3
B


�
k � 1

k � 1

��
�
�
T j j � α3
B


�
k � 1

k � 1

��
� α6
B
2�k � 1�2

�
1� 1

k � 1

�2

(38)

by the application of (25). Summing (37) over the diagonal
entries and (38) over the off-diagonal entries completes the
proof.

V. LIMITING LOW-FREQUENCY AND

HIGH-CONDUCTIVITY RESPONSES

In this section, we consider the low-frequency and high-

conductivity limiting cases of
��M. We also discuss the cases

of high frequency and low conductivity. From the results
presented in this section, we cannot necessarily deduce the
behavior of �Hα�H0��x� from (12), since it is not permitted
to substitute one asymptotic expansion, where α 
 0 (and ω
and σ� are fixed through ν), into another, where α is fixed and
different limits on ω and σ� are taken. Still further, the eddy-
current model represents a quasi-static approximation to the
Maxwell system, and in order that the modeling error is small,
ω and σ� should be chosen according to shape-dependent
constants [39]. Nonetheless, our theoretical results do have
great practical relevence as the examples in Sections VI–VIII
illustrate. We first consider the low-frequency response
followed by the high-conductivity case.

Theorem 9: The low-frequency limit for the coefficients of��M can be described as��Mi j � N 0
i j �μr� � O�ω� � Ti j �μr � � O�ω� (39)

as ω 
 0 for an object B with fixed conductivity σ� and
relative permeability μr .

Proof: We recall the splittiing θ i � θ �0�i �θ�1�i � êi�ξ and

that θ
�0�
i and θ

�1�
i solve (16) and (17), respectively. The weak
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form of the transmission problem for θ
�1�
i is: find θ

�1�
i � X ,

such that�
�

∇ � θ�1�i � ∇ �w � iωσμα2θ
�1�
i � wdξ

� iωσ�μ�α2
�

B
θ
�0�
i �wdξ �w � X (40)

where X :� �u � H�curl���� : ∇ � u � 0 in �� and
� � Bc � B . Note that we have extended the requirement
that θ

�1�
i be divergence free from Bc to �, but this is an

immediate consequence of (17a). Choosing w � �θ �1�i ��
in (40), where � denotes the complex conjugate, it follows
for fixed α, μ�, and σ� that:��∇ � θ �1�i

��2
L2��� �

�
�

��∇ � θ �1�i

��2dξ

�
�����
�

��∇ � θ �1�i

��2 � iωσμα2
��θ�1�i

��2dξ

����
� ωσ�μ�α

2
�����

B
θ
�0�
i � �θ �1�i

��
dξ

����
� Cω

��θ �0�i

��
L2�B�

��θ �1�i

��
L2�B�

� Cω
��θ �1�i

��
L2���

where C is a generic constant independent of ω and θ
�1�
i

and the Cauchy–Schwartz inequality has been applied in the
second to last step. Then, by using [33, p. 72, Corollary 3.51]

and the far field decay of θ
�1�
i , we have �θ�1�i �L2��� �

C�∇ � θ �1�i �L2���, so that��∇ � θ �1�i

��
L2�B� �

��∇ � θ �1�i

��
L2��� � Cω. (41)

We use this result and the Cauchy–Schwartz inequality to
establish the following:�� 	Cσ�i j

�� � να3

4

����êi �
�

B
ξ � �θ�0�j � θ �1�j

�
dξ

����
� Cω

������
B
θ
�0�
j � ξ � êi dξ

����� �����
B
θ
�1�
j � ξ � êi dξ

���� �
� Cω

���θ �0�j

��
L2�B� �

��θ �1�j

��
L2�B�

�
� Cω

�
1� ��θ �1�j

��
L2�B�

�
(42)��N σ�

i j

�� � ����α3

2

�
1� μ0

μ�

��
B

�
êi � ∇ � θ �1�j

�
dξ

����
� C

��∇ � θ�1�j

��
L2�B� � Cω (43)��N 0

i j

�� � ����α3

2

�
1� μ0

μ�

��
B

�
êi � ∇ � θ �0�j

�
dξ

����
� C

��∇ � θ�0�j

��
L2�B� � C. (44)

Combining (42)–(44) and using the decomposition
��Mi j �

�	Cσ�i j � N σ�
i j � N 0

i j , the desired result immediately follows.

The reduction to Ti j follows immediately from Lemma 3.
Remark 10: By following analogous steps, one can also

establish that
��Mi j � T �μr � � O�σ�� as σ� 
 0 for an

object B with fixed relative permeability μr and frequency ω.

However, further to the comments at the beginning of this
section, one needs to be careful with the applicability of such
a result.

Theorem 11: The high conductivity limit of the coefficients

of
��M can be described as��Mi j � Ti j �0� � O

�
1�
σ�

�
(45)

as σ� 
 � for a object B , with β1�B� � β1�Bc� � 0, fixed
frequency ω, and relative permeability μr . Specifically

Ti j �0� � α3
�

B
δi j �

�



n̂	 � êiψ j dξ

�
(46)

and ψ j solves

∇2ψ j � 0 in Bc (47a)

n̂ � ∇ψ j � n̂ � ∇ξ j on 
 (47b)

ψ j 
 0 as 
ξ 
 
 �. (47c)
Before proving this result, we first consider the following

intermediate lemma.
Lemma 12: The coefficients of

��M can be expressed as

��Mi j � α3

2

�



êi � θ j � n̂


dξ

� α
3

4

�



êi � ξ � n̂
 � ∇ � θ j 

dξ . (48)

Proof: We begin by expressing 	Ci j in an alternative form

	Ci j � � iνα3

4
êi �

�
B
ξ � �θ j � ê j � ξ�dξ

� � α3

4μr

�
B

∇ � ∇ � θ j � êi � ξdξ

� �α
3

4

�



êi � ξ � n̂	 � μ	1
r ∇ � θ j 
	dξ

� α3

2μr

�



êi � θ j � n̂	
	dξ

which follows from using θ j � ê j � ξ � �1	iνμr�∇ �∇ � θ j

in B and performing integration by parts. Then, by using the
transmission conditions for θ j

	Ci j � �α
3

4

�



êi � ξ �
�
n̂	 � ∇ � θ j 

 � 2

�
1� μ	1

r

�
n̂	

� ê j
�
dξ � α3

2μr

�



êi � θ j � n̂


dξ .

On the other hand

Ni j � α3�1� μ	1
r

� �
B

�
δi j � 1

2
êi � ∇ � θ j

�
dξ

� α3�1� μ	1
r

��
B
δi j � 1

2

�
êi � θ j � n̂


dξ

�
by integration by parts and application of a transmission
condition. By realizing that

α3

2

�
1� μ	1

r

� �



êi � ξ � n̂	 � ê j dξ � �α3
B
�1� μ	1
r

�
δi j
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it follows:��Mi j � �	Ci j �Ni j � α3

2

�



êi � θ j � n̂


dξ

� α
3

4

�



êi � ξ � n̂	 � ∇ � θ j 

dξ

from which immediately follows the desired result.
Proof of Theorem 11: Consider the decomposition

θ i � �i �
�
χ i in Bc

ψ i in B , where

∇ � μ	1
0 ∇ � χ i � 0 in Bc (49a)

∇ � χ i � 0 in Bc (49b)

∇ � χ i � n̂ � �2êi � n̂ on 
 (49c)

χ i�ξ� � O�
ξ 
	1� as 
ξ 
 
 � (49d)

and

∇ � μ	1
� ∇ � ψ i � iωσ�α2ψ i � iωσ�α2ei � ξ in B (50a)

∇ � ψ i � 0 in B (50b)

∇ � ψ i � n̂ � �2êi � n̂ � μ�

νμ0
∇

�χ i � n̂

 on 
 (50c)

such that the problems inside and outside the object completely
decouple in the case of high conductivity, since ν � α2ωσ�μ0.
The transmission problem for �i is

∇ � μ	1∇ ��i � iωσα2�i � 0 in B � Bc (51a)

∇ ��i � 0 in B � Bc (51b)

��i � n̂�
 � 0 on 
 (51c)

�μ	1∇ ��i � n̂�
 �
1

νμ0
∇ � χ i � n̂ on 


(51d)

�i �ξ� � O�
ξ 
	1� as 
ξ 
 
 �.
(51e)

In a similar manner to the proof of Lemma 3, we introduce
ui :� ∇ � χ i but, in this case, we have only ui � 2�s � 1�
∇ϑi � hi in Bc rather than R

3, for some parameter s where
dim�hi� � β1�Bc�, and thus, we can no longer establish that
hi � 0 independent of the topology of B and Bc. Therefore,
we restrict ourselves to the situation of an object, such that
β1�B� � β1�Bc� � 0, and in this case, ui � 2�s � 1�∇ϑi ,
where ϑi is the solution to

∇2ϑi � 0 in Bc (52a)

�s � 1�n̂ � ∇ϑi � �n̂ � ∇ξi on 
 (52b)

ϑi 
 0 as 
ξ 
 
 �. (52c)

We use the form of
��Mi j established in Lemma 12 and first

write
��Mi j ���Mχ

i j �
��M�

i j , where

��Mχ
i j �

α3

2

�



êi � χ j � n̂


dξ

� α
3

4

�



êi � ξ � n̂
 � ∇ � χ j 

dξ (53)

��M�
i j �

α3

2

�



êi �� j � n̂


dξ

� α
3

4

�



êi � ξ � n̂
 � ∇ �� j 

dξ . (54)

Considering integration by parts on the first term in (53), we
establish that
α3

2

�



êi � χ j � n̂


dξ

� �α
3

2

�
Bc

êi � ∇ � χ j dξ

� �α3�s � 1�
�

Bc
êi � ∇ϑ j dξ

� �α3�s � 1�
��

Bc
êi � ∇θ j dξ �

�
Bc
ϑ j∇2ξi dξ

�
� �α3�s � 1�

�



n̂
 � ∇ξiϑ j dξ (55)

and for the second term, by substituting ∇�χ i � 2�s�1�∇ϑi

and using the condition �s � 1�n̂ � ∇ϑi � �n̂ � ∇ξi on 


�α
3

4

�



êi � ξ � n̂
 � ∇ � χ j 

dξ

� �α
3

2
�s � 1�

�



n̂
 � �∇ϑ j � �êi � ξ��dξ

� α3�s � 1�
�

Bc
∇ϑ j � ∇ξi dξ

� α3�s � 1�
�



n̂
 � ∇ϑ jξi dξ

� �α3
�



n̂
 � ∇ξ jξi dξ � α3
B
δi j .

Adding (55) and (56) for s � 0 gives��Mχ
i j � α3
B
δi j � α3

�



n̂
 � ∇ξiϑ j dξ

� α3
B
δi j � α3
�



n̂	 � ∇ξiϑ j dξ � Ti j �0� (56)

where Ti j �0� is as defined in (46) and the problem for ϑi

becomes that for ψi stated in (47). To bound
��M�

i j , we consider
the weak form of the transmission problem for �i : Find
�i � X , such that�
�
μ̃	1

r ∇ ��i � ∇ �w � iωσμ0α
2�i � wdξ

� �1

ν

�



n̂ � ∇ � χ i �wdξ �w � X . (57)

If we choose w � ��i ��, then it follows for fixed α, μ�,
and ω that:
�∇ ��i�2L2��� � C

�����
�
μ̃	1

r 
∇ ��i 
2 � iωσμ0α
2
�i 
2dξ

����
� C

σ�

�����



n̂
 � ∇ � χ i � ��i ��dξ

����
� C

σ�

�����
Bc

∇ � χ i � �∇ ��i ��dξ

����
� C

σ�
�∇ � χ i�L2�Bc��∇ ��i�L2�Bc�

� C

σ�
�∇ ��i�L2��� (58)
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Fig. 3. Limiting cases of low frequency and high conductivity for simply
and multiply connected objects.

where integration by parts and then the Cauchy–Schwartz
inequality has been applied and C is independent of σ�. It then
follows that:

�∇ ��i�L2�B� �
C

σ�
and �∇ ��i�L2�Bc� �

C

σ�
.

In a similar way, we establish that ��i�2L2�B�
� �C	σ���∇ �

�i�L2���, so that

��i�L2�B� �
C

σ
3�2
�

. (59)

We then write (54) as��M�
i j � �

α3

2

�
Bc

êi � ∇ �� j dξ

� α3

4νμr

�



êi � ξ � n̂
 � ∇ � χ j 

dξ

� α3

4μr

�



êi � ξ � n̂
 � ∇ �� j 
	dξ

� �α
3

2

�
Bc

êi � ∇ �� j dξ � α3

2νμr

�
Bc

êi � ∇ � χ j dξ

� α
3

4

�
B
�iν� j � êi � ξ � 2∇ �� j � êi� dξ .

Thus, by the Cauchy–Schwartz inequality, it follows that:����Mχ
i j

�� � C � C�∇ψ j �L2�Bc� � C����M�
i j

�� � C�∇ �� j�L2�Bc� �
C

σ�
�∇ � χ j�L2�Bc�

�Cσ��� j �L2�B� � C�∇ �� j�L2�B�

� C

σ�
� Cσ��� j�L2�B� �

C

σ�
� C�

σ�
� C�

σ�

where C does not depend on σ� and, consequently,
��Mi j ���Mχ

i j �
��M�

i j �
��Mχ

i j � O�1	�σ�� as σ� 
 �, and conse-
quently, the result stated in (45) directly follows. �

We summarize our results for the limiting cases of low
frequencies and high conductivities in Fig. 3.

Remark 13: We could apply similar arguments and estab-

lish that
��Mi j � T �0�i j � O�1	�ω� as ω 
 � for an object

with β1�B� � β1�Bc� � 0 and fixed relative permeability μr

and conductivity σ�. However, similar to Remark 10, we need
to be careful with the applicability of such a result. We will
return to this point in Section VI.

Remark 14: Noting that the coefficients of the tensors
T �μr �i j and T �0�i j are real valued, then the behavior obtained

at low frequencies,
��Mi j � T �μr �i j � O�ω� as ω
 0, and at

high frequencies,
��Mi j � T �0�i j � O�1	�ω� as ω
�, ties

in with the explanation of Landau and Lipshitz [27, pp. 192],
who predict that the imaginary component of the magnetic
polarizability tensor is proportional to ω as ω 
 0 and
is proportional 1	�ω as ω 
 � for a simply connected
object. Furthermore, they argue that, as ω
�, the magnetic
polarizability tensor becomes that of a super conductor. The
coefficients T �0�i j are those of the Póyla–Szegö tensor and are
already known to be associated with the magnetic response of
a simply connected perfect conductor [29]. A super conductor
is the case of a perfect conductor with zero magnetic field in
the bulk of the conductor.

VI. ELLIPTICAL OBJECTS

For an ellipsoidal object Bα defined as

x2
1

a2 �
x2

2

b2 �
x3

3

c2 � 1, 0 � c � b � a

and whose principal axes are chosen to coincide with the
Cartesian coordinates axes, then an analytical solution is
known for the Pólya–Szegö tensor [4]

T �k� � 4πabc

3

�

��������

�k � 1�
�1� A1� � k A1

0 0

0
�k � 1�

�1� A2� � k A2
0

0 0
�k � 1�

�1� A3� � k A3

�ÆÆÆÆÆÆ�
where in the above, the constants A1, A2, and A3 are defined as

A1 � bc

a2

� 
�
1

1

t2
�

t2 � 1� � b
a

�2
�

t2 � 1� � c
a

�2
dt

A2 � bc

a2

� 
�
1

1

t2
�

t2 � 1� � b
a

�2
�3�2�

t2 � 1� � c
a

�2
dt

A3 � bc

a2

� 
�
1

1

t2
�

t2 � 1� � b
a

�2
�

t2 � 1� � c
a

�2
�3�2

dt

or by the manipulation of the integrals, A1, A2, and A3 can
be expressed as

A1 � abc

2
d1, A2 � abc

2
d2, A3 � abc

2
d3 (60)

where d j , j � 1, 2, 3 are the depolarizing/demagnetizing
factors as defined in [32, pp. 128]. Alternatively, A j , j �
1, 2, 3 can also be expressed in terms of elliptic integrals [36].
By considering the case where k � μr 
 0, the Pólya–Szegö
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Fig. 4. Frequency response of a conducting spheroid with a � 0.02 m, b � c � 0.01 m with σ� � 1.5 � 107 S/m, μ� � μ0 showing the diagonal

coefficients of
�

�M based on the analytical solution in [7], the numerically computed coefficients using the approach of [28] with an unstructured grid
of 14 579 tetrahedra and uniform p � 3 elements, and the limiting T �0� coefficients.

tensor T �0� describes the (magnetic) response for a perfectly
conducting object

T �0� � �4

3
πabc

�������
1

1� A1
0 0

0
1

1� A2
0

0 0
1

1� A3

�ÆÆÆÆÆ�.
Furthermore, on consideration of the diagonalization prop-
erty of T �μr � in (21b), and the well known result that
�x�i�i j �x� j � 1 defines an ellipsoid aligned with the coordi-
nate axes with semiprincipal axes lengths 1	�λ1, 1	�λ2, and
1	�λ3, Khairuddin and Lionheart [23] proposed a strategy
for determining an equivalent ellipsoid, which has the
same Pólya–Szegö polarization tensor as the object under
consideration.

Less is known for the case of the conducting (permeable)
ellipsoid in the eddy-current regime. An analytical solution for
conducting (permeable) prolate (and oblate) spheroids is avail-
able [7], but, for numerical calculation, they require truncation
of an, otherwise, infinitely sized linear system. An approximate
solution approach for the conducting permeable spheroids [8]
and ellipsoids [17] has been proposed, but is limited to the
case where the objects have small skin depths. To the best of
our knowledge, an analytical solution for the general ellipsoid
is not available. Thus, an extension of the approach of [23] to
conducting ellipsoids is not immediate.

In Fig. 4, we show an illustration of the dependence of

the diagonal coefficients of
��M with frequency for a prolate

spheroid defined as a � 0.02 m, b � c � 0.01 m,
σ� � 1.5 � 107 S/m, and μ� � μ0. We include the
comparisons between the analytical solution of [7],6 the con-
verged numerical solution obtained by performing a frequency
sweep using the approach [28], based on an unstructured

6The analytical solution for the magnetic polarizability tensor, in this case,
is not a closed-form expression, but instead requires computational truncation
of an, otherwise, infinite system.

grid of 14 579 tetrahedra and uniform p � 3 elements, and
T �0� as the limit of the quasi-static approximation. For the
purpose of numerical calculation, we truncate the compu-
tational domain at 100
B
 and employ the NETGEN mesh
generator for this and other meshes used generated in this
paper [40]. Following Remark 13, we compute the shape-
dependent constants according to [39], and establish that the
quasi-static model remains valid for this spheroid provided
that f � ω	�2π� � 5.4 MHz.

The real part of the diagonal coefficients of
��M resembles

a sigmoid function, whereas the imaginary part of the coef-
ficients has a peak value  2 kHz and vanishes for low and

high frequencies. The coefficients for the real part of
��M tend

to zero at low frequencies and tend to those of T �0� at high
frequencies. Thus, agreeing with the theoretical predictions in
Section V. The agreement between the numerical prediction
and the analytical solution is excellent.

Fig. 5 shows the corresponding dependence of the diagonal

coefficients of
��M with frequency for the same-sized spheroid

considered in Fig. 4, but now with σ� � 1.5� 107 S/m and
μ� � 1.5 μ0. Applying the results of [39], we establish that
the quasi-static model remains valid for this case provided that
f � ω	�2π� � 3.6 MHz.

The imaginary parts of
��M vanish for low-and high-

frequency limits and the coefficients of the real part tend to
the coefficients of T �μr � and T �0�, respectively, as expected.
As with the case shown in Fig. 4, the agreement between
the numerically computed tensor coefficients using a mesh of
14 579 unstructured tetrahedra and uniform p � 3 elements
and the analytical solution is excellent.

VII. RESULTS FOR MULTIPLY CONNECTED OBJECTS

We first consider a solid torus with major and minor
radii, 0.02 and 0.01 m, respectively, and material properties
σ� � 5.96 � 107 S/m and μ� � 1.5 μ0. In order to
investigate the frequency response, we perform a frequency
sweep, using the approach of [28], and consider the converged
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Fig. 5. Frequency response of a conducting permeable spheroid with a � 0.02 m, b � c � 0.01 m with σ� � 1.5 � 107 S/m, μ� � 1.5 μ0 showing the

diagonal coefficients of
�

�M based on the analytical solution in [7], the numerically computed coefficients using the approach of [28] with an unstructured grid
of 14 579 tetrahedra and uniform p � 3 elements, and the limiting T �μr � and T �0� coefficients.

Fig. 6. Frequency response of a conducting permeable torus with major and minor radii, 0.02 and 0.01 m, respectively, and material properties σ� �

5.96 � 107 S/m and μ� � 1.5 μ0 showing the coefficients of
�

�M obtained using the approach of [28] with an unstructured grid of 29 882 tetrahedra and
uniform p � 2 elements, and the limiting T �μr �, and T �0� coefficients.

non-zero coefficients of
��M obtained with p � 2 on a mesh of

29 882 unstructured tetrahedra, which is generated in order to
discretize the (unit sized) object and the region between the
object and a spherical outer boundary with radius 100
B
. The
results of the frequency sweep are shown in Fig. 6, where we
include, as a comparison, the non-zero coefficients of T �μr �
and T �0�, which have also been computed numerically. Note
that by computing the shape-dependent constants according
to [39], we establish that the quasi-static model remains valid
for this object provided that f � ω	�2π� � 12.2 MHz.

Despite the fact that this object is multiply connected, with
β0�B� � β1�B� � 1 and β2�B� � 0, the low-frequency

coefficients of
��M still tend to those of T �μr �, as expected

by Theorem 9. However, we do not expect the coefficients

of
��M to tend to T �0� as the high limit of quasi-static

model is approach, as discussed in Remark 13, and our
numerical experiments confirm that this is indeed a sufficient

condition, since
��M11 ! T �0�11, although, interestingly,

��M22 ���M33 
 T �0�22 � T �0�33 indicating a deeper result
not covered by the earlier theory.

Second, we consider a sphere of radius 0.01 m with a
spherical void of 0.005 m located centrally and the same
material parameters as the above torus. We employ an unstruc-
tured mesh of 6873 tetrahedra with higher order geometry
representation and present the converged results obtained for
the frequency sweep of the non-zero diagonal coefficients

of
��M obtained with p � 2 elements. As in the case of

the torus, a spherical outer boundary with radius 100
B
 is
used to truncate the computational domain. The results of the
frequency sweep are shown in Fig. 7, where we include, as
a comparison, the non-zero coefficients of T �μr � and T �0�,
which have also been computed numerically. For this object,
β0�B� � β2�B� � 1 and β1�B� � 0, so that Theorem 9 holds

in the low-frequency case and by Remark 13,
��M tends to

T �0� at the high frequency, as shown in Fig. 7. Note that the
quasi-static model remains valid for this object provided that
f � ω	�2π� � 12.8 MHz.
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Fig. 7. Frequency response of a conducting permeable sphere of raduis 0.01 m with a centrally placed void of raduis 0.005 m, respectively, and material

properties σ� � 5.96 � 107 S/m and μ� � 1.5 μ0 showing the coefficents of
�

�M obtained using the approach of [28] with an unstructured grid of 6873
tetrahedra and uniform p � 2 elements, and the limiting T �μr � and T �0� coefficients.

Fig. 8. Frequency response of a conducting Remington rifle cartridge as defined in [38] showing the diagonal coefficients of
�

�M computed numerically using
the approach of [28] with an unstructured grid of 23 551 tetrahedra and uniform p � 0, 1, 2, 3 elements.

VIII. RESULTS FOR THE REMINGTON RIFLE CARTRIDGE

Adopting the simplified geometry and the material parame-
ters according to the description of the Remington rifle car-
tridge given in [38], a mesh of 23 551 unstructured tetrahedra
is generated in order to discretize the (unit sized) conducting
object B and the region between the object and a rectangular
outer bounding box ��1000, 1000�3. The Remington rifle
cartridge is positioned so that its length is aligned with the
ê3 axis and the cylindrical cross section lies in the ê1 and ê2
plane, thus, due to the objects rotational and reflectional

symmetries,
��M is diagonal [28] with independent coefficients��M11 ���M22 and

��M33. The convergence of the independent
coefficients of the tensor obtained by employing uniform
p � 0, 1, 2 and p � 3 elements in turn for a frequency
sweep is shown in Fig. 8. We observe that increasing p yields

convergence of the real and imaginary coefficients of
��M with

the frequency response for p � 2 and p � 3 being practically
indistinguishable from each other. The curves bear consider-
able similar to the frequency response from a non-permeable
conducting spheroid shown previously in Fig. 4. Note that by

computing the shape-dependent constants according to [39],
we establish that the quasi-static model remains valid for this
object provided that f � ω	�2π� � 3 MHz.

If the Remington rifle cartridge is rotated about an

axis, then the coefficients of
��M transform according

to [28] ��M

i j � RikR j


��Mk
 (61)

where R is the rotation matrix of the transformation. In par-
ticular, for a rotation θ about the ê2 axis, the components of
the transformed tensor are given in (62), shown at the bottom
of the next page.

The frequency response for 4π
��M


33 with rotation through
360° and for frequencies ranging from 1 to 100 kHz is shown
in Fig. 9. The corresponding rotation response for the same
set of frequencies is shown in Fig. 10. We remark that the

magnitude of the real part of the coefficients of
��M increases

with increasing frequency, while the imaginary part of the
coefficients peaks at  10 kHz and decays away from smaller
and larger frequencies.



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMAG.2015.2507169, IEEE
Transactions on Magnetics

XXX IEEE TRANSACTIONS ON MAGNETICS

Fig. 9. Frequency response of a conducting Remington rifle cartridge as defined in [38] under rotation showing the transformed 4π
�

�M�

33 for frequencies
ranging from 1 to 100 kHz computed numerically using the approach of [28] with an unstructured grid of 23 551 tetrahedra and uniform p � 3 elements.

Fig. 10. Rotational response of a conducting Remington rifle cartridge as defined in [38] for different frequencies showing the transformed 4π
�

�M�

33 for
rotations ranging from 0° to 360° computed numerically using the approach of [28] with an unstructured grid of 23 551 tetrahedra and uniform p � 3 elements.

The results presented in Figs. 9 and 10 closely match the

response of the measurements of the coefficients of
��M to the

changes in rotation and the changes in frequency presented
in [31] for the same object.

IX. CONCLUSION

The properties of the rank 2 tensor
��M and its connection

with the Póyla–Szegö and the magnetic polarizability tensors
have been investigated. We have described how our results
in [28] provide a framework for the explicit computation of
its coefficients. We have shown, by introducing a splitting

of
��M, that a family of rank 2 tensors can be established,

which describe the response from a range of magnetic and
conducting objects. Furthermore, the bounds on the invariants
of the Pólya–Szegö tensor have been established, and the

low-frequency and high-conductivity limiting cases for the

coefficients of
��M have been obtained. We have also obtained

the behavior of the coefficients for low conductivity and high
frequencies at the limit of applicability of the quasi-static
model, which are in agreement with the predictions in [27].
Interestingly, the connectedness of the object does not play a
role in either the low-frequency or the low-conductivity case,
but does in the high-frequency and high-conductivity cases.
The results have been applied to ellipsoidal objects, multiply
connected objects as well as the frequency and rotational
responses from a Remington rifle cartridge.

APPENDIX
ENGINEERING CONNECTION

In this Appendix, we provide a connection between the
engineering prediction of (1) and an asymptotic formula of

��M
 �

�����
��M11 cos2 θ ���M33 sin2 θ 0

��M11 cos θ sin θ ���M33 cos θ sin θ

0
��M11 0��M11 cos θ sin θ ���M33 cos θ sin θ 0

��M11 cos2 θ ���M33 sin2 θ

�ÆÆÆ� (62)



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMAG.2015.2507169, IEEE
Transactions on Magnetics

LEDGER AND LIONHEART: UNDERSTANDING THE MAGNETIC POLARIZABILITY TENSOR XXX

the form (20). Recall the Lorentz reciprocity principal, which
is usually formulated for the time-harmonic equations, in the
form [19], [27]

∇ � �Em � He � Ee � Hm� � Jm
0 � Ee � J e

0 � Em (63)

or by integrating over R
3 and using the far field behavior of

the fields, as�
R3

Jm
0 � Eed x �

�
R3

J e
0 � Emd x. (64)

It follows from this result that the response is unchanged when
the transmitter and the receiver are interchanged. Furthermore,
if the derivation is repeated for the eddy-current model, the
result (64) is again obtained. Then, if we follow [27, pp. 300]
and assume the current sources m and e to have a small support
and to be located at x and y, respectively, then the first term
in a Taylor series of expansion of the fields Em and Ee about
the center of the current source7 is

Ee�x� � pm � Em�y� � pe (65)

where pm is the electric dipole moment of the current
source m. It is important to note that this is only the first
term in the Taylor’s series expansion, including the next term
leads to

Ee�x� � pm � 2∇s Ee�x� : Rm � Be�x� � mm

� Em�y� � pe � 2∇s Em�y� : Re � Bm�y� � me (66)

where Rm is a quadrupole moment of the current source m,
mm is the magnetic moment of the same current source [27]
and exact reciprocity is expected if all the terms in the Taylor
series expansion are considered.

For the eddy-current problem described in this paper and
coils located in free space that can be idealized as dipoles
with a magnetic moment, only, reciprocity implies that mm �
He
α�x� � me � Hm

α �y�, i.e., the result is the same if x and w
and mm and me are interchanged. Considering (3), we have
in vector notation

mm � He
α�x� � me � Hm

α �y�
� mm � �D2G�x, z�A�D2G�z, y�me��
�me � �D2G�y, z�A�D2G�z, x�mm��
���mm , Re� ���me, Rm� (67)

where��m, R� :� m�R, and in the case considered, He
0�x� �

D2G�x, y�me and Hm
0 �w� � D2G�y, x�mm , thus, from the

symmetry of D2G�x, y�, we have used mm � He
0�x� � me �

Hm
0 �y�. It follows from (12), [2], and [28] that:

��mm , Re� ���me, Rm�

� 
mm 

Re�x�
 � 
me

Rm�y�

� Cα4�
mm 
��He

0

��
W 2,��Bα�

� 
me
��Hm
0

��
W 2,��Bα�

�
.

Thus, (67) is an asymptotic expansion for mm � He
α�x� �me �

Hm
α �y� as α 
 0 with ��mm, Re� � ��me, Rm� � O�α4�.

Then, upto this residual term

mm � �D2G�x, z�A�D2G�z, y�me��
� me � �D2G�y, z�A�D2G�z, x�mm��. (68)

7As the size of support of the sources relative to the wavelength, the distance
between them tends to zero.

In light of (64), if one constructs a suitable Jm
0 , which has

non-zero support on the measurement coil and is such that the
resulting field Hm

0 can be idealized as a magnetic dipole, the
induced voltage, V ind, as a result of the perturbation caused
by the presence of a general conducting object, is

V ind � Cmm � �D2G�x, z�A�D2G�z, y�me��
� C Hm

0 �z� � �AHe
0�z�� (69)

up to a scaling constant C .
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