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Summary 18 

The potential of biochar to ameliorate soil water repellency has not been widely studied. 19 

Previous studies have focused on the potential for biochar to induce or exacerbate existing 20 

water repellency rather than alleviate it. This study investigates the effect of adding wettable 21 

biochar to water repellent soil by comparing the water drop penetration times (WDPT) of 22 

control and biochar-amended soil.  23 

The potential of wettable biochar to act as a physical amendment to water repellent soil was 24 

evaluated by mixing coarsely ground biochar (CGB, particle size range 250–2000 µm) or 25 

finely ground biochar (FGB, particle size range < 250 µm) with one strongly and one 26 

severely naturally water repellent soil in various quantities, and measuring the WDPT for 27 

each mixture. When biochar particles did not fall within the range of existing soil particle 28 

diameters, an initial increase in both mean WDPT (WDPTM) and variation in WDPT was 29 

observed with small additions of biochar. These effects possibly resulted from increased 30 

surface roughness and inhibition of infiltration by suspension of drops above the average soil-31 

air interface at a few hydrophobic points. Both CGB and FGB reduced soil water repellency, 32 

FGB more effectively than CGB. Adding 10% w/w FGB reduced soil WDPT by 50%, and 33 

25% FGB eliminated repellency. Direct absorption of water by biochar and an increase in soil 34 

surface area in contact with water are likely the predominant physical mechanisms involved. 35 

This exploratory study suggests biochar has the potential to amend water repellent soil. 36 

 37 

  38 
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Introduction 39 

The use of biochar as a soil amendment has become an important area of research. Until 40 

recently, interests have been mainly in the effects of biochar application on carbon 41 

sequestration and nutrient and water retention to improve agricultural soil (Sohi et al., 2010). 42 

More recently, biochar production and application have been evaluated for the remediation of 43 

contaminated soil. A study by Debela et al. (2011) found that when biochar feedstock and 44 

contaminated soil were pyrolysed together, heavy metals could be encapsulated by the 45 

biochar during pyrolysis and rendered unavailable. Similarly, Beesley & Marmiroli (2011) 46 

found Cd and Zn levels decreased significantly when leachate from a contaminated soil was 47 

filtered through biochar columns.  48 

Soil water repellency (SWR) can have natural or anthropogenic causes. Plant decomposition 49 

can release long-chain fatty acids, alkanes and lipids, which coat soil particles, decrease the 50 

surface tension and restrict water infiltration at the soil surface (Morley et al., 2005; Koch & 51 

Ensikat, 2008). Water repellency can also develop after an oil spill, as hydrocarbons enter 52 

pore spaces and decrease the soil surface tension (Roy & McGill, 2003). SWR occurs in 53 

many parts of the world regardless of climate or soil texture. In Australia, for example, SWR 54 

frequently develops under eucalypt stands and following wildfires. Wildfires mainly enhance 55 

existing water repellency rather than introduce it, and the degree of repellency observed 56 

depends on the severity of the fire, the vegetation community present and soil type (Doerr et 57 

al., 2009; DeBano, 2000).  58 

The reduced wettability of water repellent soil areas not only enhances the risk of overland 59 

flow and associated erosion, but it can also reduce vegetation recovery and prolong the time 60 

burned areas are susceptible to erosion (DeBano, 2000). Mitigation measures to encourage 61 

faster revegetation and decrease erodibility vary depending on the cause and the 62 
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characteristics of the affected site. In some areas, surfactants are used to increase soil surface 63 

tension and allow water infiltration (Barton & Colmer, 2011), whereas in others mechanical 64 

disturbance or tillage are used to disperse hydrophobic soil among more wettable soil, 65 

exposing soil to air for organic compounds to mineralize (Blanco-Canqui, 2011; Harper et al., 66 

2000). Direct addition of a wettable material to the soil has also been successful, such as the 67 

addition of clay to Australian agricultural. Harper & Gilkes (1994) found SWR was reduced 68 

with a 1% increase in clay content, and eliminated with a 5% increase. Kaolin clays have 69 

been found to be most effective in rendering soils wettable (McKissock et al., 1999; Lichner 70 

et al., 2006).  71 

Biochar, like clay, can have very large surface areas and is strongly adsorbent. Therefore, 72 

biochar could potentially amend water repellent soil in a similar way to clay. A report by the 73 

European Commission (Verheijen et al., 2009) identified a research gap on the effect of 74 

biochar on water repellent soil, and several studies since have included the effects of water 75 

repellency in their research on biochar. Abel et al. (2013) investigated the effect of biochar 76 

(produced from maize feedstock and pyrolysed at 750°C) on soil water retention and 77 

repellency through laboratory and field trials of soil columns mixed with 0, 1, 2.5 or 5% w/w 78 

biochar. The five soils they used were all sands or loamy sands taken from the top layer of a 79 

Regosol, a Luvisol or a former sewage farm site. Their organic matter contents ranged from 80 

0.1 to 9.1%, and they were wettable before biochar application. At the end of the six–month 81 

trial, Abel et al. (2013) concluded that biochar had no effect on soil water repellency, as 82 

water drop penetration time (WDPT) tests revealed no increase in the time to infiltration.  83 

Herath et al. (2013) tested whether biochar could improve soil water-holding capacity and 84 

drainage capabilities by studying the effect of two biochars on the bulk density, aggregate 85 

stability, saturated hydraulic conductivity, volumetric water content and water repellency of 86 
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two silt loams from permanent pastures. One soil was slightly repellent (WDPT 5–60 87 

seconds) with 41.7 g C kg-1 soil and the other was strongly repellent (WDPT 1–60 minutes) 88 

with 102 g C kg-1 soil. The biochars were produced from corn stover feedstock and were 89 

pyrolysed at 350°C and 550°C. They were applied to each soil at a rate of 7.18 t C ha-1 and 90 

packed into columns where they were maintained at field capacity for 295 days. In terms of 91 

water repellency alone, at the end of the ~300-day study, the strongly repellent soil had 92 

become slightly repellent and the slightly repellent soil remained the same. This led to the 93 

conclusion that biochar had no significant effect on water repellency.  94 

The properties of biochar depend largely on their feedstock (i.e. type of biomass used) and 95 

pyrolysis conditions. Biochar produced at temperatures < 500°C retains many organic 96 

functional groups from the original feedstock, and is therefore usually water repellent 97 

(Kinney et al., 2012; Antal & Grønli, 2003). Pyrolysis temperatures > 500°C will volatilize 98 

the organic groups linked to hydrophobicity, rendering the biochar hydrophilic. Kinney et al. 99 

(2012) found that biochars from three different feedstocks followed the same trend: pyrolysis 100 

at 300°C produced extremely hydrophobic biochar, but hydrophobicity decreased with 101 

increasing temperature and at temperatures > 500°C the biochar produced was wettable. 102 

To evaluate the potential of biochar as a physical amendment for water repellent soil, three 103 

questions were posed. 104 

1) Does the addition of a wettable biochar have a significant effect on the water drop 105 

penetration time (WDPT) when mixed into a water repellent soil? 106 

2) How does the addition of biochar affect soil WDPT compared to the addition of wettable 107 

soil? 108 

3) If wettable biochar does reduce soil water repellency, is there an optimal application rate? 109 
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A laboratory experiment was designed to explore the effects of various quantities of biochar 110 

on two water repellent soils. Wettable coarsely or finely ground biochars were mixed with 111 

strongly repellent coarse sand (CS) and extremely repellent medium sand (MS) in w/w 112 

proportions of 5, 10, 25 and 40%. These ratios were chosen to gain a fundamental 113 

understanding of the effect biochar might have rather than to mimic the rates of field 114 

applications. Mixtures of wettable and water repellent soil were created as controls, and the 115 

water repellency of each mixture was tested with the WDPT test. The effect of biochar 116 

addition on mean soil WDPT (WDPTM) was then compared to that of wettable soil. 117 

 118 

Materials and methods 119 

Naturally water repellent soil 120 

Two naturally water repellent soils were studied: CS, a coarse, relatively homogenous sand 121 

with low organic carbon content (Arenosol; IUSS Working Group WRB, 2006), taken 122 

beneath grass cover from dunes in Nicholaston, Gower, Wales; and MS, a medium sand with 123 

a similar mean texture to CS but more organic carbon (Anthrosol; IUSS Working Group 124 

WRB, 2006), taken from a Leyland Cypress stand (Cuprocyparis leylandii (A.B. Jacks. & 125 

Dallim.) on the Singleton Campus in Swansea, Wales (Table 1). Previous studies classified 126 

both soils as highly repellent (CS is the ‘Nicholaston sand’ characterised in Doerr et al. 127 

(2005); and MS is the ‘University sand’ characterised by Hallin et al. (2013)).  128 

Both soil samples were taken from the upper 5 cm of the soil profile, and any litter layer was 129 

removed beforehand. The soil was air-dried at approximately 20°C and then sieved to 2 mm 130 

to remove large fragments of organic matter.  131 

Preparation of wettable analogues 132 
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Mixtures of wettable and water repellent soil were created as controls to determine whether 133 

any effects observed in biochar:soil mixtures were due to the addition of a wettable fraction 134 

to a water repellent system, or to biochar-specific properties. Rather than introduce new soils, 135 

wettable analogues were prepared by stripping organic matter from CS and MS. A sample of 136 

soil was washed with 0.1 M NaOH for 30 minutes to remove organic matter and then rinsed 137 

with distilled water until the solution reached a neutral pH. The washed soil was oven-dried 138 

at 105°C for 24 to 48 hours, then allowed to cool to 20°C. This process was repeated until 139 

water drops applied to a small subsample infiltrated consistently within 5 s. The wettable soil 140 

analogues obtained from CS and MS are identified as CSw and MSw, respectively. Their mean 141 

particle diameter, range of particle diameter and total organic carbon content are given in 142 

Table 1. 143 

Biochar 144 

Biochar was provided by the UK Biochar Research Centre in Edinburgh. This was prepared 145 

from a mixed softwood feedstock of pine and spruce pellets (Puffin Pellets, Banff, Scotland), 146 

pyrolysed in a 250-mm diameter rotary kiln at a peak temperature of 700°C with intermediate 147 

mean residence time. Coarsely ground biochar (CGB, particle-size range 250 to 2000 µm) 148 

and finely ground biochar (FGB, particle-size range < 250 µm) were prepared by grinding 149 

these pellets with a pestle and mortar followed by sieving through a 250 µm sieve. 150 

Particle-size distributions for soil and course and fine biochars 151 

Soil particle size was measured by laser diffraction with a Malvern (Malvern, UK) 152 

Mastersizer 2000. Three subsamples of each water repellent soil and its analogue were 153 

analysed for particle size (µm) by volume (%). Particle-size distributions (PSD) for CS and 154 

MS are given in Figure 1a. 155 
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A Beckman Coulter (Brea, USA) LS 230 Dry Powder Module (Model Number DPM) was 156 

used to measure the PSD for CGB and FGB (Figure 1b), and summary statistics are given in 157 

Table 2.  158 

Particle-size distribution for biochar:soil mixtures 159 

Weighted volume fractions were used to calculate the PSD for each component according to 160 

Equation (1).  161 

𝑉Ti =
!Bi×!BT ! (!Si! !ST)

(!BT!!ST)
 ×100,    (1) 162 

where 𝑉Ti is the total volume (%) of particles in the mixture at any given diameter ‘i’, 𝑉Bi and 163 

𝑉Si are the volume fractions of biochar and soil at diameter ‘i’, and 𝑉BT and 𝑉ST are the total 164 

volumes of biochar and soil in the mixture, respectively.  165 

Total volumes of biochar and soil for each 200 g mixture were calculated with Equations (2) 166 

and (3), respectively, where 𝑀 is the mass fraction of biochar or soil in the mixture (e.g. 0.05 167 

biochar and 0.95 soil), 200 refers to the mass of the mixture and 𝜌 is the mean density of each 168 

material (g cm-3). 169 

 𝑉BT = (𝑀B×200)/𝜌B      (2) 170 

𝑉ST = (𝑀S×200)/𝜌S      (3) 171 

Densities were measured by packing each solid loosely into a 10 cm3 volumetric flask, 172 

tapping to settle until the meniscus mark was reached. Flasks were then weighed, and the 173 

entire process was repeated until the difference between two replicates was < 5% of the 174 

sample mass. This gave: 𝜌CS = 1.56 ± 0.01; 𝜌MS = 0.930 ± 0.080; 𝜌CGB = 0.388 ± 0.004; and 175 

𝜌FGB = 0.645 ± 0.003. 176 
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Preparation of biochar:soil mixtures and WDPT tests 177 

Soil samples were coned and quartered (Jackson, 1958) to ensure homogeneity when 178 

obtaining the desired weight for each mixture. Soil and biochar fractions were weighed to ± 179 

0.0001 g, and all materials were then kept in a constant temperature and humidity room for 180 

24 hours prior to and following mixing at 18 ± 0.5°C and 29 ± 3% relative humidity (RH). To 181 

avoid uneven settling, soil and biochar were kept separate until they were mixed in a 22.5 × 182 

31.5-cm tray. First the soil was spread evenly across the tray, then biochar was spread evenly 183 

across the soil surface. The two were incorporated manually until no distinct patches of 184 

biochar or soil were evident and the surface of the mixture appeared homogenous.  185 

Previous research by Hallin et al. (2013) investigated the effect of drop volume in WDPT 186 

classification, and found that in general, larger drops (80, 200 µl) provide more of an average 187 

water repellency class for the soil, whereas smaller drops (15, 20 µl) better reflect surface 188 

heterogeneities. Both 20 and 200 µl drops were used in this study to obtain information on 189 

both surface heterogeneities and overall average water repellency of the biochar:soil 190 

mixtures. Drops of distilled water (20 and 200 µl), equilibrated to 18 ± 0.5°C, were applied 191 

from ≤ 1 cm height to each tray of soil following a grid pattern with a spacing of 3 × 2 cm . In 192 

total, 104 drops of each volume were applied to each tray with an Eppendorf (Hamburg, 193 

Germany) Repeater Plus pipette. The time from placement to complete infiltration was 194 

recorded for each drop as the WDPT.  195 

Descriptive statistics and statistical analyses for WDPT measurements 196 

Descriptive statistics (mean, standard deviation and variance) were calculated with the 197 

equations for normal distributions. Error estimates are quoted as ± 1 standard deviation from 198 

the mean, except when only one sample was available, in which case only the sample value is 199 

reported. 200 
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Any irregular drops, such as those that were dispensed unevenly or those that rolled across 201 

the surface, were removed from the data sets before statistical analysis of WDPT results.  The 202 

results from a one-way analysis of variance (ANOVA) indicated that there were significant 203 

differences between group means for all comparisons (P < 0.05). Therefore, two-tailed t-tests 204 

(α = 0.05) were applied to explore the data further. Comparisons were made between results 205 

from the same mixture and between results from different mixtures made with the same grade 206 

of biochar.  207 

Percentage change in water repellency (ΔWDPT) was calculated for each mixture according 208 

to Equation (4), where 𝑇S is WDPTM for soil and 𝑇M is WDPTM for the biochar:soil mixture. 209 

!!! !!
!!

 ×100% = ∆𝑊𝐷𝑃𝑇    (4) 210 

 211 

Microscope photographs of hydrophobized AWS:biochar mixtures 212 

Acid-washed sand (AWS), hydrophobized with octadecanoic acid according to the method 213 

described in Hallin (2013) and Mainwaring et al. (2013), was mixed with FGB to create a 214 

model system for the biochar:soil mixtures that would photograph well under the microscope.   215 

Photographs were taken with Fuji (Tokyo, Japan) Reala colour film (ASA 100) with an 216 

Olympus (Shinjuku, Japan) BH2 microscope fitted with a DPlan 4PO 4× objective lens and 217 

an NFK 3.3× LD camera lens with an Olympus OM 4 camera. Samples were illuminated 218 

from the side with a Schott (Mainz, Germany) KL1500 fibre optic light through a Wratten 219 

(New York, USA) 80B filter. 220 
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Preliminary studies   221 

For biochar to be considered a potential SWR amendment, the practicalities involved in its 222 

application must be considered in conjunction with its efficacy. Therefore, the wettability of 223 

different grades of biochar (pellets, CGB, FGB) and the suitability of different application 224 

techniques were evaluated before preparation of biochar:soil mixtures. Biochar wettability 225 

was evaluated by applying water drops directly to the surface of biochar pellets and dishes of 226 

CGB and FGB. All drops infiltrated immediately on contact (WDPT < 1 s).  227 

Mixtures of w/w 10% biochar and 90% CS (10:90) were prepared with each grade of biochar 228 

to evaluate the application of biochar to the surface versus thorough mixing of biochar into 229 

the soil.  230 

Pellets were immediately ruled out for further study because their size prevented them being 231 

mixed  effectively with the soil. When applied to the surface, they created a distinct layer on 232 

top of the soil and water infiltrated the pellet before touching the soil. Both CGB and FGB 233 

could be mixed into the soil or applied to the surface, and both grades reduced WDPT when 234 

tested with nine 20 and 200 µl drops. Surface-applied biochar resulted in uneven wetting and 235 

surface puddles, therefore the final biochar:soil mixtures were created by thoroughly mixing 236 

CGB or FGB throughout the soil.  237 

Previous work by Hallin et al. (2013) tested mixtures of 90, 75 and 50% water repellent soil 238 

with 10, 25 and 50% w/w wettable analogue soil. The same ratios were used for biochar:soil 239 

mixtures to enable direct comparisons to wettable soil. The 50:50 biochar:soil mixtures were 240 

unsuccessful, however, as the biochar settled into a separate layer from the soil even after 241 

mixing. A trial 40:60 biochar:soil mixture did not separate, and replaced the 50:50 mixtures. 242 

An additional mixture, 5:95 biochar:soil, was also included to evaluate the effects of smaller 243 

quantities of biochar on SWR. 244 
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Results 245 

Particle-size distributions of biochar:soil and soil:soil mixtures 246 

Addition of either CGB or FGB to CS introduces a new, wide range of particle sizes to the 247 

soil, but for MS the effect of mixing on PSD is negligible (Figure 1). 248 

The mean particle diameters of CSW and MSW are not much different from those of CS and 249 

MS, but the loss of organic matter and very small clay particles through the rinsing process 250 

results in a narrower PSD, especially for MSW (Figure 2). For CS, which had little organic 251 

matter or small clay particles, the effect is negligible, but for MS this narrows the particle-252 

size distribution in the mixture.  253 

Effect of drop volume on WDPT 254 

The WDPT results for biochar:soil mixtures are given in Figures 3 and 4. General trends for 255 

200 µl indicate that WDPTM decreases with increasing biochar addition (Figure 3). This trend 256 

is also observed in the results from 20 µl drops, but not to the same extent (Figure 4). In 257 

accordance with Hallin et al. (2013), 20 µl drops show more variation in WDPT than 200 µl 258 

drops, likely because the smaller footprint of a 20 µl drop encounters greater surface 259 

heterogeneity than the larger footprint of the 200 µl drop. The smaller drops reflect the 260 

greater degree of heterogeneity within the 5 and 10% biochar mixtures, especially those with 261 

CGB, and as a result WDPTM shows no trend. The variation in the results is large for most 262 

mixtures with ≥ 25% biochar;, the trend with 200 µl drops becomes evident at this point, as 263 

WDPTM is lowest for all mixes with 40% biochar.   264 

The results of ANOVA are given in Table 3. Two-tailed t-tests indicate that the difference 265 

between 5 and 10% FGB mixtures is consistently significant, with 10% FGB resulting in 266 

smaller WDPTM values than 5% FGB. In contrast, the difference between 5 and 10% CGB is 267 
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generally not statistically significant, with the exception of CGB:CS measured with 200 µl 268 

drops. There is no statistically significant difference between 25:75 and 40:60 mixes for 269 

either of the biochar:soil combinations or drop volumes; both mixtures have the smallest 270 

WDPTM values. 271 

Effectiveness of biochar versus wettable soil analogue in reducing SWR 272 

Figure 5 shows the percentage reduction in WDPTM with the addition of biochar or wettable 273 

soil analogue for all mixtures.  274 

FGB is the more effective of the two biochars; it reduces soil water repellency by ≥ 60% in 275 

10:90 mixtures compared to an approximate 30% reduction with CGB. FGB is also equally 276 

effective in both soils: ≥ 25% FGB added to either soil eliminates SWR, whereas ≥ 25% 277 

CGB is more effective in CS.  278 

On a % w/w basis, FGB is also more effective at reducing water repellency than the wettable 279 

soil analogues when tested with 200 µl drops (Figure 5a). The FGB:CS mixtures are at least 280 

25% less repellent than the corresponding CSW:CS mixtures, and 25% FGB removes 281 

repellency in both soils, whereas the mixtures with 50% wettable analogue still show signs of 282 

water repellency. Once again CGB is not consistently effective, and results vary between the 283 

two soils. Reductions in water repellency are consistently greater for CSW mixes than for 284 

CGB mixes, sometimes by 30% or more. However, CGB is effective in the medium sand: 285 

40% CGB reduces water repellency by approximately 96% compared to the 90% reduction 286 

achieved with 50% MSW.  287 

When tested with 20 µl drops (Figure 5b), the wettable soil analogues appear to be more 288 

effective than additions of either CGB or FGB;  10% CSW reduces water repellency in CS by 289 

approximately 90%, compared to a 75% reduction by 10% FGB. Furthermore, 200 μl drops 290 
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show no repellency with > 25% biochar  present, whereas 20 μl drops show some repellency 291 

even with 40% CGB, but none with ≥ 25% wettable soil analogue.  292 

Discussion 293 

The following discussion focuses on results from 200 µl drops, which best reflect the average 294 

degree of water repellency. 295 

Effect of particle-size distribution on WDPT 296 

Increased variation in WDPTM is observed in results from both CGB and FGB for 5:95 297 

biochar:CS mixtures (Figure 3), but not for biochar:MS mixtures, suggesting a soil-specific 298 

change was introduced by biochar. This variation might arise from increased surface 299 

roughness: the addition of CGB and FGB to CS introduced a new range of fine particle sizes 300 

to the coarse sand, which changed the topography of the surface by increasing surface 301 

roughness. The changes to surface topography and roughness in CS through biochar addition 302 

might inhibit infiltration by the suspension of drops above the position of the average soil-air 303 

interface at a few hydrophobic points. Soil particles of comparable size to those of biochar in 304 

CGB and FGB are already present in MS, so the addition of biochar to MS does not affect 305 

surface topography in the same way as for CS (Figure 1).  306 

Additional biochar would increase surface roughness further, but would also be likely to 307 

increase the probability of contact between the water drop and biochar. Photomicrographs of 308 

hydrophobized AWS mixed with biochar show that biochar adheres to AWS particles (Figure 309 

6), suggesting that it could cover the hydrophobic compounds adsorbed to a soil particle and 310 

provide a wettable surface. The controlling factor for water infiltration then becomes 311 

wettability of the biochar rather than surface roughness, similar to the mechanism proposed 312 

for clay amendment (Müller & Deurer, 2011).  313 
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The chemical effect of biochar on soil may also be important (Hallin, 2013), but biochar in 314 

contact with a water drop can physically decrease WDPTM in several ways. The high porosity 315 

and wettability of CGB or FGB allows it to act like a sponge and soak up water rapidly. This 316 

is unlikely to make a noticeable difference at 5% levels because there is little biochar at the 317 

surface. Figure 7 shows theoretical contact areas between water drops and CGB:soil 318 

mixtures, and illustrates that drops are unlikely to come into contact with much biochar for 319 

5:95 mixtures. If water drop-biochar contact were made, the wettable biochar would absorb 320 

water from the drop like a sponge.   321 

The wettability and porosity of biochar pellets was estimated by assessing their average water 322 

uptake. Based on the mass difference between dry and saturated biochar and the volume of 323 

water absorbed, pellet porosity was estimated to be approximately 55%. Even assuming that 324 

porosity remained at ~ 55% after grinding, the largest FGB particle would still be able to 325 

absorb only about 0.05% of a 200 µl drop. Similarly, the largest CGB particle could absorb ~ 326 

1.5% of a 200 µl drop. The ‘sponge effect’ is, therefore, more likely to make a noticeable 327 

difference when enough biochar is present so that its particles are in contact with each other 328 

and can form preferential flow paths through the soil (Figure 7, 40:60 mixtures). 329 

A rough, but useful, estimate of potential soil particle cover by biochar can be calculated 330 

from the ratio of mean particle diameters and the proportions of each component within the 331 

mixture if we make the following assumptions: (i) a biochar particle will bind to a soil 332 

particle only along one side, and (ii) soil particles are roughly spherical and biochar particles 333 

are roughly cuboid. Results of these calculations for soil particle cover by biochar are given 334 

in Table 4; even for the largest mixture ratio CGB could cover only a very small fraction of 335 

the soil particle area, whereas FGB could potentially cover a considerable fraction of both CS 336 

and MS particles.  337 
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Biochar might also reduce WDPTM by increasing the effective surface area of soil in contact 338 

with water. A water drop in contact with a water repellent soil surface will be attracted to the 339 

polar functional groups present in the hydrophobic compounds coating the soil (Bachmann & 340 

van der Ploeg, 2002; Roy & McGill, 2002). As water adsorbs to the more wettable parts of 341 

the soil particle surfaces, the surface energy of the soil-water interface decreases and the 342 

initial soil-water contact angle decreases, eventually decreasing sufficiently for the drop to 343 

overcome repellency and spread across the soil surface. According to Leelamanie & Karube 344 

(2009), this process is repeated on contact with each subsequent layer of soil until the drop 345 

has infiltrated completely; the total time required is the WDPT. When biochar absorbs water 346 

from the drop or the surrounding soil, it increases the total area of soil exposed to water. 347 

Absorbed water would come into contact with subsurface soil through biochar surfaces, and 348 

contribute to the overall wetting process and reduction in WDPTM.  349 

Potential for biochar as a soil amendment  350 

Before any recommendations can be made on the potential of biochar as a SWR amendment, 351 

laboratory and field trials with soil of different textures and different degrees of water 352 

repellency are required. A range of water contents relevant to specific applications should be 353 

considered. For example, irrigated soil often shows water repellency most strongly when 354 

almost air dry, so further testing of biochar:soil mixtures at water contents equivalent to air-355 

dry conditions should be done before any application to irrigated soil. Additionally, its 356 

longer-term efficacy needs to be evaluated and biochar needs to be compared to other 357 

amendments to determine its relative effectiveness both physically and economically. 358 

While bearing these caveats in mind, these analyses indicate that both FGB and CGB could 359 

potentially be suitable amendments for water repellent soil. Biochar was generally more 360 

effective at reducing water repellency than the wettable soil analogues, which suggests that 361 
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biochar has an effect in soil beyond that of simply adding a wettable component to a water 362 

repellent system. The effectiveness of biochar, however, varied considerably with soil texture 363 

and biochar particle size. FGB additions ≥ 25% eliminated water repellency in both medium 364 

and sandy soil, and FGB often reduced water repellency more than CGB, which suggests that 365 

a finely ground biochar might be more effective than coarse biochar.  366 

The most comparable soil amendment to FGB currently in use is probably clay (Cann 2000; 367 

Dlapa et al., 2004). Both wettable biochar and clay have similar physical effects on soil, i.e.  368 

they increase the hydrophilic surface area for water infiltration within the soil (Cann, 2000; 369 

Lichner et al. 2006), but biochar has the added benefit of being a carbon source and of storing 370 

nutrients for slow release over time, as well as being a possible route for carbon capture of 371 

atmospheric CO2. Biochar is not inert, however, and it will eventually decompose, which 372 

might affect its ability to act as a long-term remediation strategy for water repellent soil. 373 

Residence times of biochar in soil will vary, but Woolf & Lehmann (2012) estimate a mean 374 

half-life of 1000 years for the recalcitrant portion. Clay amendments are similarly time-375 

dependent; clay will not degrade like biochar, but natural soil development processes over 376 

similar time scales (~1000 years) can translocate clay deeper in the soil profile. Over shorter 377 

time scales clay has been shown to be effective: Van Dam et al. (1990) found that clay was 378 

still present in clay-amended topsoil 30 years after application, and Ward & Oades (1993) 379 

reported anecdotal evidence that claims clay was effective in reducing SWR for at least 20 380 

years after application. The lifetime of biochar within the soil and its long-term effectiveness 381 

within water repellent soil as they weather and change is another area that must be explored. 382 

Rates of biochar application must also be considered. For example, golf courses in the USA, 383 

which are frequently affected by SWR (Kostka, 2000), stipulate a clay content of no more 384 

than 3% for the root zone soil (USGA, 1973). Similar limits would probably be applied here 385 
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to biochar to preserve the textural integrity and playability of greens, making large 386 

application rates, such as 25% FGB, unrealistic.  387 

Like any amendment, the viability of applying biochar to reduce water repellency depends on 388 

its direct cost, the availability of cheaper alternatives, transport costs and on return for the 389 

investment. These factors vary considerably between potential applications, and an in-depth 390 

analysis is beyond the scope of this study. Biochar might be a feasible option for medium 391 

textured soil, such as the medium sand in this research, in areas where clay is not readily 392 

available but pyrolysis facilities can be built, or where less biochar is needed to reduce 393 

repellency, for example, localized problems with water repellency in high value areas such as 394 

in manicured landscapes and gardens. The environmental, social and potentially economic 395 

(through, for example, ‘carbon credits’) value of using biochar, might also become important 396 

considerations depending on the targeted application.  397 

There are many unknowns about the effectiveness of biochar, including (but not limited to) 398 

the long-term effects of biochar addition on SWR and the effects of repeated wetting and 399 

drying cycles and of water repellency-inducing bacteria and fungi on biochar porosity and 400 

sorption capabilities. The results of this preliminary study, however, demonstrate that biochar 401 

has the potential to be used for this purpose. 402 

Conclusions 403 

Wettable biochar substantially increased the wettability of highly water repellent coarse- and 404 

medium-textured soil, more so than was achieved by adding wettable soil analogues. Of the 405 

three amendments tested (FGB, CGB and wettable soil analogue), FGB was most effective: 406 

10% FGB reduced WDPTM more than larger quantities of CGB or wettable soil analogue. 407 

The addition of 10% FGB reduced water repellency by 50%, and 25% FGB eliminated water 408 

repellency in both the medium and coarse textured soils tested. The predominant physical 409 
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mechanisms likely to be involved are: direct absorption of water by biochar; a decreased, or 410 

more rapidly decreasing, soil-water interfacial energy; and an increased surface area of soil in 411 

contact with water. When biochar particles did not fall within the range of existing soil 412 

particle diameters, an initial increase in WDPTM and variation in WDPT was observed, 413 

which might be explained by increased surface roughness and the resulting inhibition of 414 

infiltration by the suspension of drop above the position of the average soil-air interface at a 415 

few hydrophobic points.  416 

The results presented and discussed here suggest that biochar has the potential to act as an 417 

amendment for water repellent soil, however, further laboratory and field trials are necessary. 418 

 419 

 420 

  421 
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Table 1. Source locations and characteristics for naturally water repellent soil used in this study. 524 

Sample Code Coarse Sand (CS) Medium Sand (MS) 

Source location Nicholaston, Wales, UK Swansea University 
Campus, Wales, UK 

Latitude and longitude 51°34'21"N; 4°08'2"W 51°36'34"N; 3°58'50"W 

Textural class Coarse sand Medium sand 

FAO classification Arenosol Anthrosol 

Mean particle diameter/ mm 0.30 
 0.311 

 
0.41 

 0.282 

 

Particle diameter range/ mm 0.21 to 0.42 
 0.22 to 0.421 

 
0.08 to 1.18 

 0.13 to 0.602 

 

Total organic carbon/ % 

 
0.57 ± 0.05 

 0.15 ± 0.011 

 

 
17.25 ± 0.76 
1.33 ± 0.222 

 
	525 
1. Wettable coarse sand analogue (CSW) 526 
2. Wettable medium sand analogue (MSW) 527 

528 
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Table 2. Summary statistics for coarsely ground (CGB) and finely ground (FGB) biochar particle size 529 
analyses. Note that distribution width (standard deviation/mean) is unitless. 530 

    
Median/ mm Mean/ mm Standard 

deviation/ mm 
Distribution 

width 

CGB* Arithmetic 0.75 
0.79 0.63 0.80 

Geometric 0.69 0.02 0.03 

FGB† Arithmetic 0.17 
0.19 0.28 1.43 

Geometric 0.13 0.01 0.07 
Particle size obtained with a Beckman Coulter LS 230 Dry Powder Module with settings as follows.  531 
*auger, 71; vibration, 16; mean obscuration, 4 to 7%; chute tilt, slightly off maximum; hopper, full.  532 
†auger, 21; vibration, 25 to 30; mean obscuration, 5 to 10%; chute tilt, full angle; hopper, 0.5 to 0.75 533 
full. 534 
  535 
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Table 3. The results of ANOVA for coarsely ground (CGB) and finely ground (FGB) biochar mixtures 536 
with medium (MS) and coarse (CS) sand. Each listing under ‘Group Compared’ refers to all mixtures 537 
within that group (for example, CGB:MS 200 µl refers to an ANOVA in which the 5:95, 10:90, 25:75, 538 
and 40:60 mixes of CGB:MS, tested with 200 µl drops, are compared). Degrees of freedom (df) and 539 
the relevant F statistics are provided.  540 

Groups 
Compared dfwithin dfbetween Fcritical Fstatistic P-value 

CGB:MS 200 µl 366 3 2.63 541.4 3.62×10-134 
FGB:MS 200 µl 400 3 2.63       2548.6 3.09×10-260 
CGB:CS 200 µl 403 3 2.63 41.9 1.43×10-23 
FGB:CS 200 µl 391 3 2.63 90.7 1.41×10-44 
CGB:MS  20 µl 412 3 2.63 171.8 3.17×10-72 
FGB:MS  20 µl 410 3 2.63 257.5 6.67×10-94 
CGB:CS   20 µl 412 3 2.63 105.1 1.57×10-50 
FGB:CS   20 µl 408 3 2.63 188.6 1.01×10-76 

 541 

  542 
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Table 4. Ratio of coarsely ground (CGB) and finely ground (FGB) biochar to medium (MS) coarse 543 
(CS) sand soil surface areas, as calculated from the mean particle sizes. 544 

  Ratio of biochar to soil surface area 
Mixture CGB:CS CGB:MS FGB:CS FGB:MS 
  5:95 0.0003 0.0001 0.87 0.31 
10:90 0.0006 0.0002 1.83 0.65 
25:75 0.0017 0.0006 5.50 1.96 
40:60 0.0034 0.0012     11.0 3.92 

 545 

 546 

547 
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 Figure captions 548 

Figure 1 Particle-size distributions for: (a) coarse sand (CS) and medium sand (MS), and (b) 549 
coarsely ground biochar (CGB) and finely ground biochar (FGB). Note the horizontal axis is 550 
a logarithmic scale. 551 

Figure 2 Particle-size distributions for coarse sand (CS), medium sand (MS) and 50:50 552 
mixtures of wettable coarse sand (CSW) with CS, and wettable medium sand (MSW) with MS. 553 
Note the horizontal axis is a logarithmic scale. 554 

Figure 3 Water drop penetration time (WDPT) test results for 200 µl drops on coarsely 555 
ground (CGB) and finely ground (FGB) biochar mixtures with (a) medium sand (MS), and 556 
(b) coarse sand (CS).  557 

Figure 4 Water drop penetration time (WDPT) test results for 20 µl drops on coarsely ground 558 
(CGB) and finely ground (FGB) biochar mixtures with (a) medium sand (MS), and (b) coarse 559 
sand (CS). 560 

Figure 5 Percentage decrease in water repellency (ΔWDPT) of coarse sand (CS) and medium 561 
sand (MS) with increasing quantities of wettable coarse sand (CSW), wettable medium sand 562 
(MSW), coarsely ground biochar (CGB) or finely ground biochar (FGB) as measured by: (a) 563 
200 µl, and (b) 20 µl drops.  564 

Figure 6 Microphotographs of hydrophobized acid-washed sand mixed with: (a) 1% finely 565 
ground biochar (FGB) and (b) 10% FGB. 566 

Figure 7 Model view of: (a) 200 µl and (b) 20 µl drops applied to the surface of coarsely 567 
ground biochar (CGB) mixtures with coarse sand (CS) and medium sand (MS) (SpherePack 568 
1D (Farr, 2011)). In the packing arrangements spheres represent soil particles and cubes 569 
represent biochar.  For both soil and biochar the particle-size distributions used are those 570 
obtained experimentally.   571 

  572 



Accepted manuscript version of: Hallin, I., Douglas, P., Doerr, S.H. & Bryant, R. (2015) The effect 
of addition of a wettable biochar on soil water repellency. European Journal of Soil Science, 66, 
1063-1073. (doi:10.1111/ejss.12300)  

28 
 

 573 

 574 

Figure 1.  575 



Accepted manuscript version of: Hallin, I., Douglas, P., Doerr, S.H. & Bryant, R. (2015) The effect 
of addition of a wettable biochar on soil water repellency. European Journal of Soil Science, 66, 
1063-1073. (doi:10.1111/ejss.12300)  

29 
 

 576 

Figure 2. 577 

  578 



Accepted manuscript version of: Hallin, I., Douglas, P., Doerr, S.H. & Bryant, R. (2015) The effect 
of addition of a wettable biochar on soil water repellency. European Journal of Soil Science, 66, 
1063-1073. (doi:10.1111/ejss.12300)  

30 
 

 579 

 580 

 581 

Figure 3.  582 

  583 



Accepted manuscript version of: Hallin, I., Douglas, P., Doerr, S.H. & Bryant, R. (2015) The effect 
of addition of a wettable biochar on soil water repellency. European Journal of Soil Science, 66, 
1063-1073. (doi:10.1111/ejss.12300)  

31 
 

 584 

 585 

Figure 4.  586 

  587 



Accepted manuscript version of: Hallin, I., Douglas, P., Doerr, S.H. & Bryant, R. (2015) The effect 
of addition of a wettable biochar on soil water repellency. European Journal of Soil Science, 66, 
1063-1073. (doi:10.1111/ejss.12300)  

32 
 

 588 

 589 

Figure 5.  590 



Accepted manuscript version of: Hallin, I., Douglas, P., Doerr, S.H. & Bryant, R. (2015) The effect 
of addition of a wettable biochar on soil water repellency. European Journal of Soil Science, 66, 
1063-1073. (doi:10.1111/ejss.12300)  

33 
 

 591 

 592 
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