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 6	

Abstract  7	

Ash is generated in every wildfire, but its eco-hydro-geomorphic effects remain poorly 8	

understood and quantified, especially at large spatial scales. Here we present a new method 9	

that allows modelling the spatial distribution of ash loads in the post-fire landscape. Based on 10	

a severe wildfire that burnt ~13,600 ha of a forested water supply catchment in October 2013 11	

(2013 Hall Road Fire, 100km south west of Sydney, Australia), Based on an existing spectral 12	

ratio-based index, we developed a new spectral index using Landsat 8 satellite imagery: the 13	

normalized wildfire ash index (NWAI). Before- and after-fire images were normalised and a 14	

differenced wildfire ash image (dNWAI) computed. The relationship between dNWAI and 15	

ash loads (t ha-1) quantified in situ at nine sampling locations burnt under a range of fire 16	

severities was determined using a polynomial regression (R2=0.98). A spatially applied 17	

model was computed within a Geographic Information System (GIS) to illustrate the spatial 18	

distribution of ash across the area burnt and to estimate ash loads in the five subcatchments 19	

affected by the wildfire. Approximately 181,000 tons of ash was produced by the wildfire 20	

with specific loads increasing with fire severity. This new tool to model wildfire ash 21	

distribution can inform decisions about post-fire land management in future wildfires in the 22	

region. It can also be adapted for its application in other fire-prone environments.  23	

 24	

Short summary  25	

We present a new methodology that allowed modelling the amount and spatial distribution of 26	

wildfire ash (t ha-1) in a burnt SE-Australian eucalypt forest. This tool can be applied in the 27	

region, and, if adapted, elsewhere, to inform post-fire land management for mitigating 28	

impacts from ash, such as debris flows or water contamination.   29	
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Additional keywords: fire severity, post-fire erosion, water contamination, eucalypt forest, 30	

wildfire. 31	

Introduction 32	

Wildfires can produce post-fire conditions that can result in serious risk to drinking water 33	

supply (Smith et al. 2011). The main water contamination risk derived from fire is the 34	

enhancement of water erosion leading to sediment transfer to drainage lines and water storage 35	

reservoirs (Shakesby and Doerr 2006; Malvar et al. 2011). Beside eroded soil, wildfire ash is 36	

one of the main components of the post-fire sediment (Smith et al. 2011). Ash can be defined 37	

as the particulate residue remaining, or deposited on the ground, from the burning of wildland 38	

fuels and	consisting of mineral materials and charred organic components (Bodí et al. 2014). 39	

Ash can have high concentrations of potential water pollutants such as nutrients or 40	

carcinogenic organic compounds (Goforth et al. 2005; Santín et al. 2012).  41	

The intrinsic properties of ash have been examined for a range of fire types and ecosystems 42	

(e.g. Liodakis et al. 2005; Bodí et al. 2011; Balfour et al. 2014; Pereira et al. 2014); however 43	

its eco-hydro-geomorphic effects remain poorly quantified (Bodí et al. 2014). A fundamental 44	

step in that direction is to understand ash production and distribution at the landscape-scale. 45	

Knowledge of ash quantity, type and characteristics at large scales (e.g. fire-affected 46	

catchments or entire areas burnt) would not only allow better evaluation of overall wildfire 47	

impacts but also incorporation of ash as a new parameter into post-fire risk models (Moody et 48	

al. 2014). Several studies have examined the spectral properties of wildfire ash using satellite 49	

imagery or aerial and hand-held multispectral and hyperspectral sensors (Landmann 2003; 50	

Kokaly et al. 2007; Lewis et al. 2007; Lugassi et al. 2009; Smith et al. 2010; Lewis et al. 51	

2011; Vincentie 2012). Results from those studies (both field and laboratory-based) indicate 52	

that significant spectral differences occur between the near infra-red (NIR) and short-wave 53	

infra-red (SWIR) parts of the spectrum as ash load increases. Additionally, it has been shown 54	

that the standard fire severity indexes (NBR and dNBR) are ineffective in evaluating ash load 55	

(Smith et al. 2010). Although remote sensing provides a potential to monitor and analyse the 56	

spatial and temporal properties of wildfire ash, few studies have addressed this subject (Smith 57	

and Hudak 2005; Kokaly et al. 2007), and none appear to have investigated the spatial 58	

distribution of post-fire wildfire ash loads (Bodí et al. 2014).  Here we propose a method to 59	
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quantify and illustrate the spatial distribution of wildfire ash loads using satellite imagery, 60	

applied to a eucalypt forest fire in SE Australia.  61	

62	
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 63	

Methods   64	

Study area and site selection 65	

This study focuses on the area affected by the Hall Road wildfire, Balmoral (17 October 66	

2013, SW of Sydney, Australia; Fig. 1). It burnt nearly 16,000 ha including 13,588 ha of 67	

forested drinking water supply catchment managed by Water NSW (Murphy 2014). The 68	

study area had not burnt since a controlled fuel reduction burn in October 1996. The climate 69	

here is humid temperate, with annual rainfall of 900-1000 mm. Soils are sandy to sandy clay 70	

loam-textured Cambisols, developed over quartzitic Hawkesbury Sandstone with shale 71	

outcrops (Doerr et al. 2006; FAO 2014). Deep canyons and gorges with intervening ridges 72	

and gently-sloping plateaus characterise the landscape, with the dominant vegetation being 73	

dry eucalypt forest with a dense shrubby understorey (Keith 2006).  74	

 75	

Sampling sites were selected along seven kilometres of a ridge typical of the region (Fig. 1) 76	

with a relatively homogeneous fuel load of 25-30 t ha-1, estimated as per Chafer et al. (2004), 77	

and comprising ground, shrub, bark and canopy fuels <1 cm diameter. Dominant canopy 78	

vegetation comprised of eucalypts (Eucalyptus sp) with a shrub layer up to 4 m high 79	

dominated by Banksia sp, Leptospernum sp, Acacia sp and Petrophile sp. Despite the terrain 80	

homogeneity, wind-driven differences in fire behaviour (winds greater than 45 km h-1 and 81	

blowing perpendicular to the orientation of the ridge, i.e., westerly winds; Murphy 2014) 82	

resulted in a range of fire severities along the length of the ridge (Fig. 1). This provided an 83	

ideal context to examine ash production in relatively homogenous areas impacted by different 84	

fire severities. Fire severity was determined based on the degree of consumption of 85	

vegetation and ground fuels (see Fire severity subsection).  86	

 87	

Ash was sampled at sites affected by low, high and extreme fire severities, which covered the 88	

whole range of fire severity classes identified in the burnt area (see Fire severity subsection). 89	

All sites were selected in flat areas (slope angles 0-2.5º) to minimise any risk of redistribution 90	

of the ash by water erosion between the fire and sampling (85 days after the fire). Total 91	

rainfall between the wildfire and sampling was 148 mm, with a maximum daily precipitation 92	

of 31 mm (data from the nearby Buxton Station N.068166). No signs of post-fire 93	
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redistribution of ash by water erosion were evident at the study sites. However, some 94	

redistribution of ash via wind and leaching is likely to have occurred during and after the fire 95	

(Santín et al. 2015). 96	

 97	

Field sampling procedure  98	

For each of the three fire severity classes sampled (separated by up to two km each), three 99	

comparable sites were selected as replicates (Fig 1.). At each replicate site, three parallel 100	

transects (18 m long and 6 m apart) were laid out in the direction of the fire propagation (W-101	

E). At each transect, 10 sampling points (every 2 m) resulting in a total of 30 sampling points 102	

per site (i.e. 90 per fire severity class). At each sampling point, the ash layer was collected 103	

with a brush from a square of 400 to 600 cm2 (size depending on ash load). This non-104	

cohesive material consisted of burnt residues from litter, understory and overstorey, together 105	

with burnt surface mineral soil which had lost its structure and became part of the ash itself 106	

(Santín et al. 2015). At the time of sampling, materials >1 cm were removed as well as 107	

unburnt matter that had fallen to the ground after the fire. The weights of air-dried samples  108	

were recorded using a two-figure balance and ash loads determined for each sampling point. 109	

Further details of field sampling procedures and of ash chemical characteristics are given in 110	

Santín et al. (2015). 111	

 112	

Satellite Imagery 113	

Landsat 8 imagery was obtained over the study area immediately before the wildfire (11 114	

October 2013), immediately after the wildfire (05 November 2013) and at the time of field 115	

sampling (02 January 2014) from the U.S. Geological Survey archives using 116	

EarthExplorer. Imagery was radiometrically and atmospherically corrected within ERDAS 117	

Imagine image processing software (Hexagon 2015) using standard top of the atmosphere 118	

processing algorithms (USGS 2015) and a standard Lamberts conformal conic projection in 119	

Geographic Datum of Australia (GDA94) to 25 m2 pixels (cells).  120	

 121	

Fire severity 122	

Wildfire severity was computed across the study area from the October and November 2013 123	

Landsat 8 imagery using the standard differenced Normalized Burn Ratio (dNBR) (Key 2006) 124	

and field-based severity classes defined through the area burnt as per Chafer (2008): 125	
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dNBR = NBRprefire-NBRpostfire      eq. 1. 126	

where NBR = (p0.85-p2.21) / (p0.85+p2.21)    eq. 2. 127	

Where p0.85 is the near-infrared (NIR) band 5 and p2.21 is the shortwave infrared (SWIR-2) 128	

band 7 of the Landsat 8 satellite platform (NASA 2010).  129	

The fire severity range found was divided into the following six fire severity classes using the 130	

criteria of Chafer (2008), dNBR ranged from -115 to 1,126. Cut off values for each class are 131	

provided: 132	

i) Unburnt: area unaffected by the fire. dNBR <140 133	

ii) Low fire severity: ground and understory (<0.5 m high) fuels burnt, down woody 134	

debris scorched. Canopy unaffected. dNBR 140-240 135	

iii) Moderate fire severity: ground and understory (<4 m high) fuels burnt, down woody 136	

debris scorched. Canopy unaffected. dNBR 240-440 137	

iv) High fire severity: ground, down wood and understory (<4 m high) fuels consumed. 138	

Canopy scorched. dNBR 440-610 139	

v) Very high severity: all available fuels consumed, including stems <0.5 cm thick. 140	

dNBR 610-890 141	

vi) Extreme fire severity: all available fuels consumed, including stems <1cm thick. 142	

dNBR >890 143	

 144	

The statistical validity of this classification was examined for normality and the raw dNBR 145	

values tested using a one-factor ANOVA from 500 randomly generated points (Fig 3).. 146	

Tukey’s post-hoc pairwise comparisons were used to test differences between severity 147	

classes. The level of significance used for all tests was 5% (i.e. α = 0.05). 148	

Wildfire-derived ash index 149	

To interpret the spatial distribution of ash load, a new spectral index, the ‘Normalised 150	

Wildfire Ash Index’ (NWAI), was developed using two spectral bands in the 0.84 to 1.66 µm 151	

range. Examination of spectral signatures from the study area suggested that pre- and post-152	

fire differences in NIR and SWIR-1 (Fig. 2) might produce a useful criterion for analysing 153	

the distribution of ash loads across the area burnt. Given that ash absorbs solar energy within 154	

the 0.84-1.66 µm range (Fig. 2), the NWAI was designed to capitalize on spectral properties 155	
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within that wavelength range. As there may have been some ash redistributed through wind 156	

erosion and leaching between the fire and sampling time (see Santín et al. 2015), we used an 157	

October 2013 (pre-fire) and a January 2014 (post-fire, at time of field sampling) images to 158	

develop the proposed ash index (NWAI). 159	

NWAI uses the Normalised Difference Infrared Index (NDII) (Hardisky et al. 1983; Yilmaz 160	

et al. 2008; Datt 2009, Wang et al. 2013), which is derived from Landsat 8 satellite data 161	

using: 162	

NDII = (p0.85-p1.65) / (p0.85+p1.65)   eq. 3. 163	

Where p0.85 is the near infrared (NIR) band 5 and p1.65 is the shortwave infrared (SWIR-1) 164	

band 6 of the Landsat 8 satellite platform (NASA 2010).  165	

NDII fundamentally reports on a combination of vegetation stress, bare soil and moisture 166	

content (Yilmaz et al. 2008; Datt 2009). 167	

NWAI is the NDII standardised to range between 0 and 1 from data only within the boundary 168	

of the area burnt: 169	

NWAI = (NDIIi –NDIImin ) / (NDIImax –NDIImin)   eq. 4. 170	

Where NDIIi is the value of each cell in the image, NDIImin is the minimum value and 171	

NDIImax is the maximum value within the area burnt. 172	

The NWAI is computed only within the area burnt for two satellite images, one captured 173	

before and one after the wildfire. They are then normalised (eq. 4) and differenced:  174	

 dNWAI = 0.05+((NWAIprefire –NWAIpostfire)/(NWAIprefire+NWAIpostfire)) eq. 5. 175	

Ash absorbs solar energy within the 0.84–1.66 µm range. This is illustrated by the index, with 176	

higher values (i.e. approaching 1) in the areas where vegetation has been more intensely 177	

affected by the fire and more ash has been produced. Data is standardised as per eq. 4 to 178	

range between 0 and 1, where 1 approximates the highest total ash load from the area burnt 179	

and 0 is unburnt vegetation.  180	

A paired sample t-test was used to test differences in NWAI from 500 randomly generated 181	

points (Fig 3) for the pre- and post-fire images in the different fire severity classes. 182	
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 183	

Modelling ash loads 184	

To assess the spatial distribution of ash (i.e. ash loads) across the area burnt using the dNWAI 185	

for each of the nine burnt sampling sites, plus two randomly-selected unburnt control sites, 186	

we obtained a statistical regression relationship between the values of dNWAI and the 187	

average ash loads (t ha-1) measured at these sites (Fig. 3 insert). Within ArcGIS we applied 188	

the subsequently derived regression equation to the dNWAI for every 25 m2 pixel (ignoring 189	

unburnt pixels which would have zero ash). In this way, ash loads were computed within the 190	

GIS for all the fire severity classes in the whole area burnt and, thus, the total amount of ash 191	

generated was estimated (Fig. 3). This also allowed calculating ash loads for each severity 192	

class in each of the fire-affected subcatchments (see table in Fig. 3).  193	

 194	

Results and Discussion 195	

Using the raw dNBR from the 500 randomly generated points across the burnt area, there was 196	

a significant difference between the six fire severity class means (Fig 1) (ANOVA F=933.7, 197	

P<0.001) and a Tukey’s post-hoc pairwise comparisons demonstrated all classes had 198	

significantly different means. These class differences demonstrate the usefulness of the 199	

severity classification methodology in south-eastern Australian environments for quantifying 200	

the degree of vegetation destruction (for rationale and validation see Chafer et al. 2004 and 201	

Chafer 2008). From the dNBR image we choose field locations to collect the ash samples. 202	

The total ash loads quantified in the field sampling sites ranged from 6 ±0.7 t ha-1 for low 203	

severity, 15.9 ±0.9 t ha-1 for high severity and 34.2 ±2.1 t ha-1 for extreme severity (arithmetic 204	

mean ±standard error of mean; n = 90). The spectral properties from the sampling sites and 205	

90 random points from unburnt and extreme severity (Fig. 2) suggested that using Landsat 8 206	

NIR and SWIR-1 data might provide useful results for examining ash load. SWIR-1 showed 207	

only minimal change through time in burnt pixels, regardless of severity (Fig. 2c), whereas 208	

SWIR-2 changed significantly after being burnt (Fig. 2d). Thus SWIR-1was used to 209	

normalize against NIR to create dNWAI (using eq. 3,4,5) (see also Smith et al. 2010). The 210	

subsequent analysis of 500 random points distributed throughout the burnt area showed that 211	

NWAI values were not significantly different pre- and post-fire for unburnt areas (n=38, 212	

t=0.894, P=0.377). However, for the areas burnt under the remaining range of fire severities, 213	
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all showed significant differences in the NWAI pre- and post-fire (low severity: n=92, t=10.5, 214	

P=0.001, mod. severity n=147, t=27.9, P<0.001, high severity n=134, t=55.8, P<0.001, very 215	

high severity n=62, t=53.5, P<0.001, extreme severity n=28, t=64.4, P<0.001). This indicates 216	

that using NIR and SWIR-1 and then standardising NWAI values to range between 0 and 1, 217	

is a potentially useful method of comparing ash data from the two dates.  218	

A significant positive relationship was found between the dNWAI values and the average ash 219	

loads measured at the sampling sites (R2=0.988; Fig. 3 insert). The highest values of dNWAI 220	

(i.e. approaching 0.6), and the highest ash loads, were obtained in the areas where vegetation 221	

had been most severely burnt (i.e. extreme fire severity), whereas the control unburnt sites 222	

showed values very close to zero (Fig. 3 insert). 223	

The spatial distribution of the ash loads is shown in Fig. 3. The results infer that the Hall 224	

Road wildfire led to the deposition of ash in the order of 181,000 tons (table insert in Fig 3), 225	

with ash loads increasing with increased fire severity (Fig. 3).  In a separate study 226	

characterizing chemical properties of the ash samples used here, Santín et al. (2015) have 227	

pointed to the increasing contribution of charred top soil to the ash layer with increasing fire 228	

severity as the most feasible explanation for the positive relationship observed here between 229	

ash loads and fire severity. This hypothesis agrees with the positive relationship between 230	

mean soil charring depth and fire severity observed for two small wildfires in the greater 231	

Sydney area (Chafer, 2008).  232	

Previous studies have examined the spatial distribution of wildfire-derived ash (Smith and 233	

Hudak 2005; Goforth et al. 2005; Kokaly et al. 2007), but this study is, to the authors’ 234	

knowledge, the first that quantifies the total amount of ash produced over the entire area burnt 235	

by a wildfire. Once the quantity and spatial distribution of ash is known, it is then possible to 236	

incorporate the data into risk analysis models, potentially incorporating terrain and rainfall 237	

factors to determine which drainage lines may become conduits for suspended material in the 238	

event of a heavy post-wildfire rainfall event. More generally, ash-impacts on soil properties, 239	

water contamination and risk could also be addressed (Smith et al. 2011; Bodí et al. 2014).   240	

The methodology proposed here has proven to be useful in the present case study; however, 241	

more research is required to validate the outcomes reported. Published spectral reflectance 242	

curves from both Landsat and hyperspectral platforms and laboratory results indicate that 243	

wildfire ash from different forested environments around the world have similar reflectance 244	
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properties (Landmann 2003; Lewis et al. 2006; Kokaly et al. 2007; Smith et al. 2010; Lewis 245	

et al. 2011; Brook et al. 2015), which suggests that this method should be applicable 246	

elsewhere. Important requirements are (i) access to the burnt area for sampling soon after fire, 247	

given that ash can soon be redistributed after wildfire (Bodí et al. 2014) and (ii) availability 248	

of suitable cloud-free and smoke-free satellite imagery acquired pre-fire and close to the time 249	

of field sampling. Once robust relationships between fuel, fire parameters and ash loads as 250	

measured in the field have been established for a given region, satellite image analysis could 251	

be used as a stand-alone tool 252	

 253	

Conclusions 254	

This manuscript has shown that by using spectral signatures in the near- and short-wave 255	

infrared bands derived from satellite imagery, the spatial distribution and estimated load of 256	

ash (t ha-1) can be successfully modelled within a GIS framework. The ‘Normalised Wildfire 257	

Ash Index’ (NWAI) introduced here (as a modification of the NDII), had a significant field-258	

based empirical and spatially modelled correlation with post-wildfire ash loads across a range 259	

of fire severities (R2=0.98). It was found that the highest ash loads were found in areas 260	

impacted by the highest wildfire severities as determined using the standard dNBR. This 261	

novel approach has yet to be tested for other wildfires and in other environments; however, 262	

its underlying principles should be widely applicable. The ability to estimate the loads and 263	

spatial distribution of ash present after wildfire is not only of direct relevance to water supply 264	

catchment managers in terms of understanding potential risk to water quality, as is the case 265	

for the study area examined here. The approach developed here could also be the first critical 266	

step in enabling ash load to be introduced as a new parameter into post-fire risk models and 267	

assessments.  268	
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 385	

Figures 386	

 387	

Figure 1. Study area, fire severity classes, location of sampling sites and total area burnt for 388	
each severity class in the five subcatchments affected by the Hall Road wildfire (October 389	
2013, ~100km SW of Sydney, Australia: Lat -34.31, Long 150.68 degrees). Sampling sites 390	
are shown in the upper left (triangles ▲: extreme severity sites; squares ■: high severity sites; 391	
circles ●: low severity sites; diamonds ♦: unburnt site).  The table shows the burnt area (ha) 392	
for each severity class within each of the five subcatchments. 393	

 394	
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 	396	

   397	

Figure 2.  Spectral differences (reflectance +1 standard error of the mean - SEM) from the 398	
sample sites for unburnt and extreme severity data only. Data is for four spectral bands (a) 399	
Red, (b) NIR, (c) SWIR-1 and (d) SWIR-2 respectively from the Landsat 8 satellite images 400	
covering the 0.63-2.30 micron range for three images covering the study area before (October 401	
2013) and after the Hall Road wildfire (November 2013 and January 2014). Thus, for the 402	
NDWI used herein, NIR and SWIR-1 are used. 403	
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 406	

 407	

Figure 3. Spatial distribution of 500 random points and estimated post-wildfire ash loads in 408	
tons ha-1 for each fire severity class in the five drainage units for the Hall Road wildfire 409	
(October 2013, ~100 km SW of Sydney, Australia). Top right: the relationship between the 410	
field-measured ash load (tons ha-1) and dNWAI from the nine sampling sites and two unburnt 411	
control sites(triangles ▲: extreme severity sites; squares ■: high severity sites; circles ●: low 412	
severity sites; diamonds ♦: unburnt sites), (y=62.9x2 + 32.3x,  R2=0.98, n=30 per sample site).  413	
The table shows the estimated ash load (t ha-1) within each fire severity class within the five 414	
subcatchments of the area burnt. 415	
 416	


