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Abstract: 

Experimental findings on electroluminescence or photoluminescence of ZnO nanowires have been 

drawn much attention due to their promising applications in many areas. One of the current challenges 

on this technology is a deeper understanding of this phenomenon in order to adopt it into practical 

device designs. In this work, a theoretical analysis of the stimulated emission of ZnO nanowires 

taking into consideration of the piezotronics effect has been conducted using the quantum mechanics 

theory. It is revealed that extra piezoelectric charges induced by applied mechanical forces increase 

the overall charge density of the nanowire, subsequently enhancing the emission intensity. Electronic 

bandgap varying with the diameter of the nanowire determines the peak value in the electromagnetic 

spectrum. Both wavelength and intensity of the stimulated emission can be tuned by controlling the 

dimension of the nanowires and external applied mechanical forces. 

 

Keywords: ZnO nanowire, quantum mechanics, stimulated emission 

 

 

Introduction: 

The first nanogenerator based on ZnO nanowires was developed to generate electricity from 

mechanical movements [1]. Due to coupling properties of semiconductor and piezoelectric in wurtzite 

semiconductors, such as ZnO, GaN, InN and CdS, emerging nanoelectronic applications have been 

developed based on the basic principle that strain-induced piezoelectric charges can turn/control 

carriers transport in piezoelectric semiconductors. The new emerging fields of piezotronics and 

piezophototronics are coined by Zhong lin Wang, which are potentially applied in many engineering 

areas. Fundamental of the piezotronics effect has been explained in [2] [3] [4]. Transistors made by 

ZnO nanowires were introduced in [5], and recently high performance transistors based on ZnO 

nanowires for driving high power light emitting diodes have been fabricated [6]. Resistive switching 

devices have been realized using ZnO nanowires, both in terms of metal-semiconductor contact [7], 

and electromechanical relocations of nanowires [8] [9]. ZnO nanowire sensors were developed for 

high performance gas sensors and pressure sensors [10] [11] [12] [13] [14]. Optical properties such as 
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photoluminescence and electroluminescence of nanodevices have attracted a great amount of 

attentions, enduing themselves with potential usage in optical imaging, sensors, and smart systems. 

Notable developments in this area include an imaging device made of ZnO nanowires array combined 

with GaN light emitting diodes, whose emitting intensity can be adjusted by the mechanical strains 

applied on the piezoelectric nanowires [15]. Similar approach has been conducted using ZnO 

nanowires and GaN light emitting diodes reported in [16], in which the piezotronic effect wasn’t 

mentioned. Electroluminescence of ZnO with UV LEDs has been reporfted in [17]. An intense 

electroluminescence from ZnO nanowires has been achieved recently using enhanced quality of the 

nanowires and injections of holes from the p-type ZnO [18]. During the research and development of 

the electroluminescence or photoluminescence phenomena, there is a lack of in-depth theoretical 

understanding and explanation from quantum theory point of view.  

In this paper, we will theoretically investigate the impact of the nanowire diameters on the spectrum 

of the stimulated emission (shown schematically in Figure 1), and the enhancement of the emission 

intensity by the piezotronic effect. This work fills the gap by using quantum mechanics theory and 

interesting results as to the relations among piezoelectric charges, energy bandgap, emission intensity 

and peak wavelength are obtained and analyzed in the following sections. The paper is organized as 

follows: optical transmission of the ZnO thin film is reviewed using dispersive refractive index in the 

first part of the paper. It is followed by the quantum mechanics simulation of the stimulated emission. 

The results of the simulation are then presented and discussed.  

 

Optical transmission of ZnO 

Transmission of light through a single ZnO thin film can be calculated using classic optical theory 

taking consideration of wavelength dependent complex refractive index of ZnO, which is expressed as 

)()()( lll iknnr -=        (1) 

Real part of the refractive index )(ln  can be derived from the Sellmeier equation given by 
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E, F and G are Cauchy parameters as 0.0178 nm-1, 7327.1 nm, and 337.87 nm respectively taken from 

the reference [21]. Suppose that the refractive index of air n0 is 1, the transmitted amplitude is given 

by [22] 
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where d is the thickness of the film, j denotes the incident angle of the light. Varying wavelength of 

the light from 300 nm to 1000 nm, transmission coefficient has been obtained shown in the Figure 2. 

It is seen that the T-λ curve is analogy to a high pass filter with 2/1 pass band from 400 nm. It is also 

found that the cut-off frequency for transmission curve shifts to longer wavelength as the film 

thickness increases. Light transmission of ZnO thin films has been experimentally investigated in [23]. 

Analytical analysis of the light transmission through ZnO films or nanowires provides the background 

for the further analysis based on quantum mechanics theory. Light-semiconductor interaction theory is 

utilized to unveil the spectrum of stimulated and spontaneous emissions, two mechanisms that 

elucidate the electroluminescent or photoluminescence properties of ZnO nanowires in presence of 

mechanical pressures in their c-axis. The hypothesis behind the experimental observation described in  

[15] has been made that when the force is exerted on the nanowire, extra charges are generated due to 

piezotronic effect, subsequently increasing the carrier concentration. The increased carrier 

concentration leads to enhanced emissions, therefore reflecting increased brightness. 

 

Quantum mechanical analysis:  

As an incident photon of energy wh  (h is the reduced Planck’s constant, and ω is the frequency of 

light) enters to the semiconductor material, in this case a ZnO nanowire, electron absorbs the photon 

energy transiting from states of valence band to states of conduction band (Figure 1). In the meantime, 

an electron can migrate back to the energy states in valence band from conduction band, emitting 

photons. It is thought the interband transition of electrons that governs the process of the luminescent 

imaging of piezoelectric nanowire LED array. Under incident light energy, transition of electrons 

from the conduction band (higher energy states) to the valence band (lower energy states) creating a 

new photon with identical phase, frequency, polarization, and direction of travel as the photons of the 

incident wave, termed as the stimulated emission. The absorption is ignored in this analysis. There 

exists a very small amount of spontaneous emission due to electrons transiting from conduction band 

to valence band in the absence of incident light. As demonstrated in reference [15], images get 

brighter in the area where a mechanical pressure was applied on the nanowires array, indicating a light 

amplification, which can be explained by mainly the stimulated emission mechanism. If we measure 

energy from the top of the valence band, then the energy of an electron in the conduction band with 
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c

n
q rw
= , nr is the refractive index of the media, 

c is the speed of light and w  is the angular frequency of the plane wave. The transition rate from the 

initial state to a state in the valence band in the presence of electromagnetic radiation is given by 

Fermi’s golden rule. The stimulated emission rate is given by 
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where 1y  and 1y   are the final and initial wave function of the electron respectively, H’ is the 

perturbation Hamiltonian qeA
m
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' . Generally speaking the transition rate depends on the 
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of material per second. The total transition rate is given by  
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The squared momentum matrix element 
2

npcv
))v
× depends on the electron wavevector k and also the 

polarization direction of the electromagnetic wave. In most of III-V and II-IV semiconductors, the 

average value of the momentum matrix element can be treated as constant [24], expressed in terms of 

the Kane energy Ep, as 
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three-dimensions. Density of states (DOS) is defined as the number of states in a conductor per unit 

energy. The DOS for bulk materials with no confinement is expressed as   
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Combining equations (4), (5), and (6), the stimulated emission is expressed as  
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For nanostructures, electrons are likely confined in three dimensions, akin to quantum dots. The DOS 

for electrons confined in 3D is  
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Equation (8) is known as a Lorentzian equation. The width of the Lorentzian at half its peak value 

(full width at half maximum, or FWHM) is t/h . The coupling between the photon and the electron 

within the nanowire can be described by the coupling energy t/h=G . In this work, the G is taken 

to be 20 meV. Stimulated emission using 3-D confined density of states, Est-c is given by 
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In addition to the stimulated emission process, an electron in the conduction band can spontaneously 

emit a photon and migrate to the valence band, named as spontaneous emission. The rate of 

spontaneous emission is comparably much smaller than the stimulated emission for this particular 

material. For the application of LED+ZnO nanowires, only the Est-c will be considered. Re-arrange 

equations (7) and (9), let 
2

npM cv
))v
×= , and substitute q by (ωnr)/c, we get 
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Hence scaled stimulated emissions for both scenarios (
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where wh is the photon energy Ep. It is seen that the stimulated emission is proportional to the photon 

energy, refractive index, DOS and distributions of electrons and holes. Numerical solution to this 

equation is followed in the next section. Please be noted that emitted photon energy is at the same 

frequency as the incoming photon energy. The spontaneous emission Espon is related to the stimulated 

emission based on the Einstein relation, express as 

Stspon E
c

E
32

3

p
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=                                         (12) 

Results and analysis 

According to equation (11), stimulated emissions have been calculated numerically. Dispersion in the 

refractive index ( 0/ =lddnr ) is considered in the quantum mechanics simulation. The chemical 

potential for a number of electrons and holes per unit volume at certain temperatures is required to 

calculate the fe and fh. To calculate the chemical potential for electrons or holes, the following process 

is used. First of all, an initial value of the chemical potential needs to be estimated. The maximum 

possible value of the chemical potential is given by the Fermi energy
m
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A three dimensional electron gas in this high temperature limit has chemical potential  
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Carrier density n can be calculated using an integral over energy 

ò
¥=

=
- +

÷
ø

ö
ç
è

æ=
max

min 0
/)(

2/1

2/3

22 1

12

2

1
E

E

TkE
dE

e
E

m
n

Bmp h
                (15) 

A computer iteration process is used to calculate the chemical potential for both electrons and holes 

respectively ( he mm , ). In the process, an initial chemical potential value taking the average of the 

maximum and minimum chemical potential is used to calculate a carrier density n’ for a given 

temperature by calculating the integral described by the equation (15). If the n’ is less than the actual 

value nc, the new best estimate for 'min mm = . The new estimated μ is given, and the process iterate 

until the value reaches to a desired level of accuracy. The calculated chemical potentials for electrons 

and holes are then used in equation (11) to calculate the stimulated emission rate. The bandgap of 

ZnO nanowire varies with its size and force induced strains [27]. For the strain-free condition, Ep is 

taken as 3.28 eV.  In this simulation, Ep = 3.2 eV is used, as the applied force reduces the value of Ep 

value to 3.17 with 7.3 % strain for 100 nm diameter nanowire according to reference [27]. Other 

parameters and constants used in the simulation are listed in the Table 1. 

Table 1: constants and parameters used in the simulation 

Physical parameter Value  

Electron charge 1.60 x 10-19 C 

Reduced Planck’s constant 1.05 x 10-34 Js 

Speed of light 2.99 x 108 m/s 

Boltzmann constant 8.62 x 10-5 eV/K 

Permittivity of free space 8.85 x 10-12 F/m 

Electron mass, m0 9.11x10-31 Kg 

Effective electron mass [28] 0.2 x m0 

Effective heavy hole mass [28] 0.55 x m0 

Temperature, T 300 K 

Initial carrier concentration 4.0x1023 m-3 

 

Piezoelectricity describes interaction between electrical and mechanical behaviour of the medium, 

expressed as 
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where S, T, E, D are strain, stress, electrical filed strength, and dielectric displacement respectively. s, 

d, ε are mechanical compliance, piezoelectric constant, and dielectric constant, where the superscripts 

to the symbols denotes the quantity kept constant under boundary conditions. For this case, as the 

mechanical-to-electrical conversion and the optical behaviour will be investigated, the electrical 

circuit connecting two ends of the rod is open, assuming there is no external electrical field the 

equation (16) is simplified to dTD = . The force is applied along the c-axis, the induced electrical 

charge Q = d33 F, where F is the force applied, d33 is the piezoelectric constant defined as the induced 

polarization per unit applied stress in direction 3 (z –axis). For the ZnO nanowire, piezoelectric 

constant d33 = 5.43 x 10-12 C/N [29]. It is assumed that the applied force ranges from 0 to 8 μN, 

considering nanowire dimension as 50 nm in diameter, 100 nm in length, the increment of the carrier 

density is calculated up to 1.38 x 1024 m-3.  

Results shown in Figure 3 display Est’ vs. wavelength for the axial forces applied on the ZnO 

nanowires. It is indicated that there is a peak value of emission along the wavelength spectrum. 

Furthermore different energy bandgaps result in various peak frequencies. For small diameter ZnO 

nanowires (<100 nm), the energy bandgap is around 3.3-3.4 eV, where the stimulated emission is 

peaked at around 375 nm according simulated results in Figure 3, this is in line with the measured 

photoluminescence spectra results in reference [16] [30] [18] [31]. The bandgap shifts up or down 

slightly depending on different diameters [27].  As the diameter of ZnO nanowires increases, the 

energy bandgap reduces into smaller values. The physics behind could be attributed to the surface-

shrinking strain along the radial direction and the tensile strain along the c-axis direction. In the 

intrinsic state (under no external stress induced strain), surface effect causes the shrinking effect 

shortening the Zn-O bond parallel to the radial direction in the shell of nanowires. Significant in-plane 

surface Zn-O bond contraction was theoretically modelled appearing in the surface thickness of ~2 nm 

[32]. This surface effect will impact more on the small diameter nanowires than large diameter 

nanowires, as the small diameter wires have increased surface-volume ratios, leading to larger 

bandgap values. Bandgaps of 3.2 eV and 3.1 eV have also been used in the stimulated emission 

analysis, whose results are shown in the Figure 3. The electroluminescence of the thicker wires (800 

nm in diameter) corresponding to smaller bandgap values have been experimentally shown in [15], at 

which the stimulated emission is peaked at around 400 nm, which matches with the theoretical 

observation in this work. In theory the bandgap value corresponding to the experimental results in the 

above reference is around 3.1 eV. It also reveals that as the force increases, the carrier density 

increases leading to higher emissions ascribed to extra induced piezoelectric charges. In the 

simulation, external mechanical strain induced bandgap change is neglected. The assumption is based 
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on that the axial force is mainly affecting the energy of the conduction band minimum state 

concentrated in the core (Ec), and the energy of the valence band minimum state localized on the 

surface is more sensitive to the radial bond length variation. The change in Ec under axial strain is 

much less than Ev [27]. As suggested in the equation (8), spontaneous emission shows similar trend 

but with much lower amplitude due to the absence of the injected photons. Comparing results in 

Figures 3a and 3b, it is seen that using the 3D confined DOS leads to the results much closer to the 

experimental observations. It also suggests that photo luminescence phenomenon exists in both the 

ZnO bulk films and nanostructures. 

Considering the combined effect of the transmission coefficient shown in the Figure 2 and the 

stimulated emission results in the Figure 3, one is able to comment that as the incident wavelength 

increases, the absolute value of the complex refractive index reduces, leading to reduced stimulated 

emission peak. Macroscopically the optical transmission has the cut-off wavelength at around 400 nm. 

The physics behind could be elucidated that a smaller refractive index means that the optical wave has 

a shorter travelling time within the material, where less electro-photon interaction is expected, 

subsequently generating reduced stimulated emissions. Taking consideration of the low transparency 

for optical wavelength less that 400 nm, the thinner wires that more likely have stimulated emission 

peaks at shorter wavelengths will have much higher optical contrast for electroluminescence or 

photoluminescence applications. This will be very attractive for those applications requiring high 

contrast and high imaging resolutions. The theory above has been focused on the stimulated emission 

of the ZnO nanowires, it can also be applied on the ZnO thin films. The advantage of using nanowires 

is that the devices made of nanowires will have much higher imaging resolution than that of devices 

fabricated by thin films.  

Further numerical calculation is performed for the relation between simulated emissions and vertically 

applied force. Results shown in Figure 4 explain that as the force increases, stimulated emission is 

enhanced. Figures 4a and 4b display results for bulk material and nanostructures respectively. As the 

photon energy is related to the wavelength, hence a shorter wavelength reflecting higher photon 

energy leads to reduced stimulated emission as implicated in the left half of the Lorentzian. The ESt vs 

F curves are quasi-linear, as explained from the theory of the basic piezoelectric induced charges. It is 

envisaged that more charges will participate the photon-electron interactions with the presence of 

externally applied forces. It is demonstrated from the results in Figures 4a and 4b that the ZnO 

nanostructures are much more sensitive to the applied forces than devices made in bulk materials such 

as films. Inspired by the reference [33], filter effect due to mechanical strains can be demonstrated 

with ZnO materials. Here in this work, simulation is performed for devices with varied energy 

bandgaps. Bandgaps ranging from 3.30 eV to 3.12 eV are designated in the numerical simulation, and 

results clearly show the filtering effect for both the bulk material and nanowires. In the Figure 5, it 

shows that the wavelength of the stimulated emission varies from about 375 nm to around 398 nm 
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when decreasing the bandgap from 3.30 eV to 3.12 eV. This can be explained that larger bandgap 

requires more photon energy to excite electrons transiting to lower energy states, i.e. shorter 

wavelength of the incident and emitted optical signals. The results qualitatively match with recent 

experiments reported in [34]. Modelling has been performed to mimic the images with adjustable 

intensity by vertically applying a mechanical force to the nanowires. Figure 6 displays simulated 

images with different forces showing enhanced intensity. The simulation shown in the Figure 6 (right) 

elucidates that as the applied force increases, more piezoelectric current will be induced; subsequently 

the emission intensity increases. It is also shown in Figure 6 that the emission spectrum can be tuned 

by the energy bandgap determined by the diameter of the nanowire. It is worth to emphasise that the 

bandgap variation can impact the emission spectrum according to calculation. Mechanical strain can 

also change the bandgap of the wire, which is regarded as a symmetric process, i.e. being independent 

of the direction of the applied force. However the piezoelectric induced charges have polarities 

(negative and positive) depending on the direction of applied force, namely an asymmetric process. 

Opposite applied force will generate charges with inverse polarity, which may influence the 

enhancement of the emission. Since the emission is determined by the distributions of electrons and 

holes. 

 

Conclusion: 

Quantum mechanics theory has been used to elucidate the electroluminescence or photoluminescence 

of ZnO nanowires. The results show that ZnO in the forms of both bulk and nanostructures can have 

stimulated emissions, wherein the bulk ZnO has much smaller quality factors on the wavelength 

spectrum than ZnO nanostructures. The physics behind is that in the nanostructures, electrons are 

confined and the density of states is governed by Lorentzians where the interaction time between 

photons and electrons are usually very short, leading to very sharp wavelength spectrum. For the 

imaging applications, ZnO nanostructures have the clear advantage of high resolution /contrast not 

only because of their small dimensions, but also due to their very high selectivity of incident optical 

wavelengths. According to the analysis, emission intensity can be adjusted by strain induced 

piezoelectric charges and energy bandgaps. More generated piezoelectric charges will result in 

increased charge density, hence increasing emission intensity. Again nanostructures demonstrate 

much superior performance to bulk materials in terms of the increase of emission intensity. The peak 

wavelength is tuneable by the energy bandgap Eg. Larger Eg corresponds to the emission peak at 

lower wavelength (high photon energy), and lower Eg corresponds to the emission peak at higher 

wavelength. This will help construct optical filters or prisms using nanowires array with controlled 

diameters.   
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Figure captions: 

 

Figure 1, Schematic diagram showing: (a), a nanowire being mechanically anchored on the bottom 

plane, and being applied a force F on the top face. Optical light shines on the bottom side, and light 

emits from the top side. (b), Schematic graph showing an electron transition from valence band to 

conduction band subjecting an incident photon of energy wh . The Fermi-Dirac distribution of 

electron states in the conduction band is fe, and in the valence band is fh. 

Figure 2, Calculated transmission coefficient for 100 nm ZnO film. It shows that as the length of the 

nanowires is less than 100 nm, emissions graphs will be riding on the transmission curve. For thicker 

films, due to the cut off frequency shift, the emissions graphs sit in the stop band, meaning a much 

higher imaging contrast. 

Figure 3. Calculated stimulated emissions for difference forces applied to the nanowires. Three sets of 

curves correspond to three energy gaps ranging from 3.1 eV to 3.3 eV. (a), calculation using bulk 

DOS. (b), calculation using 3-D confined DOS. 

Figure 4, calculated stimulated emissions for different photon energies, Ep. (a), calculation using bulk 

DOS. (b), calculation using 3-D confined DOS. 

Figure 5, Stimulated emissions with various energy bandgaps, effectively forming an adjustable 

optical filter. Insert graph schematically shows an incident white light has been filtered to light with a 

narrow pass band, of which the peak can be adjusted by the means of applying mechanical axial 

forces.  (a), calculation using bulk DOS. (b), calculation using 3-D confined DOS. 

Figure 6, simulated emission spectrum tuned by the energy bandgap, and intensity enhancement with 

applied mechanical forces. 
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Highlights of “Piezophototronic effect enhanced luminescence of zinc oxide nanowires” 

  

 

Yan Zhang, Lijie Li 

 

 

 

1. A theoretical analysis of the stimulated emission of ZnO nanowires taking into consideration 
of the piezotronics effect has been conducted using the quantum mechanics theory. 
 

2.  It is revealed that extra piezoelectric charges induced by applied mechanical forces increase 
the overall charge density of the nanowire, subsequently enhancing the emission intensity.  

 

3.  Electronic bandgap varying with the diameter of the nanowire determines the peak value in 
the emitted optical spectrum. 
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