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Abstract 

This paper presents the effect of noise on surrogate based stochastic natural frequency analysis of 

composite laminates. Surrogate based uncertainty quantification has gained immense popularity in 

recent years due to its computational efficiency. On the other hand, noise is an inevitable factor in 

every real-life design process and structural response monitoring for any practical system. In this 

study, a novel algorithm is developed to explore the effect of noise in surrogate based uncertainty 

quantification approaches. The representative results have been presented for stochastic frequency 

analysis of spherical composite shallow shells considering Kriging based surrogate model. The 

finite element formulation for laminated composite shells has been developed based on Mindlin’s 

theory considering transverse shear deformation. The proposed approach for quantifying the effect 

of noise is general in nature and therefore, it can be extended to explore other surrogates under the 

influence of noise. 

Keywords: noise; uncertainty; natural frequency; surrogate; Kriging model; composite shell 

1. Introduction 

Composite materials and structures have gained immense attention from the research 

community initiated from industrial needs over the last few decades. Such structures are 

extensively used in aerospace, marine, construction and other industries because of their 

application specific tailorable material properties along with weight sensitivity and cost-

effectiveness. Due to the inherent complexity, laminated composite materials are difficult to 
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manufacture accurately according to its exact design specifications, resulting undesirable uncertain 

responses due to random material and geometric properties, which in turn affect the vibration 

characteristics of the structure. Moreover, due to different forms of damages and defects, effective 

material properties may vary considerably from the specified values. Many researchers have 

studied free vibration characteristics of composite plates and shells following deterministic 

framework [1-10] in last couple of decades. Recent studies on doubly curved composite shells 

include vibration analysis considering elastic restraints and including the effects of shear 

deformation, rotary inertia and initial curvature [6], non-linear free vibration analysis [7] and large 

amplitude in free vibration analysis of thermally post-buckled composite doubly curved panel [8]. 

Tornabene et al. [9] have studied free vibration of laminated composite doubly-curved shells and 

panels by using Radial Basis Function (RBF). Versino et al. [10] have proposed a four-node shell 

element based on the Refined Zigzag Theory for doubly curved multilayered composites. To 

tackle the effect of stochasticity, in recent years researches have concentrated to quantify 

uncertainties associated with different output responses of laminated composites [11-13]. One of 

the most popular approach is Monte Carlo simulation (MCS) based uncertainty quantification [14, 

15]. However the major drawback of the traditional MCS method for uncertainty quantification is 

its computational intensiveness as thousands of finite element simulations are needed to be carried 

out in this approach. To overcome this lacuna, surrogate based uncertainty quantification approach 

has been proposed [16-19], which has gained huge attention in last couple of years. 

 
 

(a) (b) 

Fig. 1 (a, b) Laminated composite doubly curved spherical shallow shell model 
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Fig. 2 surrogate based analysis of stochastic system under the influence of noise 

In surrogate based approach of uncertainty quantification, a virtual mathematical model is 

formed for the response quantity of interest that effectively replaces the actual expensive finite 

element model. The surrogate model is built up on the basis of information acquired regarding the 

behavior of the response quantity throughout the entire design space utilizing few algorithmically 

chosen design points. There remains another inevitable source for second phase of uncertainty 

associated with the information acquired through the design points that needs further attention 

(refer to Figure 2). In the present paper, this second source of uncertainty associated with the 

surrogate model formation has been addressed by developing a novel algorithm to account it in the 

form of random noise. The effect of such simulated noise can be regarded as considering other 

sources of uncertainty besides conventional material and geometric uncertainties, such as error in 

measurement of responses, error in modelling and computer simulation and various other 

epistemic uncertainties involved with the system. Noise effects are found to be accounted in 

several other studies in available literature [20-23] dealing with deterministic analysis. In the 

present article an algorithm has been developed to quantify the effect of noise for Kriging based 

stochastic analysis of doubly curved composite shells (refer to Fig. 1(a)). Kriging model has been 

successfully applied for uncertainty quantification recently and this has been found to be one of the 
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most effective methods for surrogate based uncertainty quantification of laminated composites [16, 

24]. To the best of authors’ knowledge, this work is the first attempt of its kind for assessing any 

surrogate based uncertainty propagation algorithm under the effect of noise. The results presented 

for different levels of noise have been compared by using probability density function to provide a 

comprehensive idea about stochastic structural responses under influence of simulated noise.  

2. Mathematical formulation for laminated composite shell 

In present study, a composite cantilever shallow spherical shells with uniform thickness ‘t’ 

and principal radii of curvature Rx and Ry along x- and y-direction respectively is considered as 

furnished in Figure 1. Based on the first-order shear deformation theory, the displacement field of 

the shells can be described as 

u(x, y, z) = u
0
(x, y) - z θx (x, y) 

v(x, y, z) = v
0
(x, y) - z θy (x, y) 

w(x, y, z) = w
0
(x, y) = w(x, y) 

(1) 

 
where, u

0
, v

0
, and w

0
 are displacements of the reference plane and θx and θy are rotations of the cross 

section relative to x and y axes, respectively. Each of the thin fibre of laminae can be oriented at an 

arbitrary angle ‘θ’ with reference to the x-axis. The constitutive equations [25] for the shell are 

given by  

 {F} = [D(ω )]  {ε} (2) 
 

where Force resultant {F} = {Nx ,    Ny ,    Nxy ,     Mx ,     My ,     Mxy ,     Qx ,     Qy}
T 

T

yzxzxyzyzxzxyy

h

h

x dzF 
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        and    strain {ε} =  { εx ,     ε y ,    εxy ,    kx ,     ky ,     kxy ,     γxz ,     γyz }
T 
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where ω  indicates the stochastic representation and αs is the shear correction factor (=5/6) and 

][ ijQ  are elements of the off-axis elastic constant matrix which is given by 

 T

onijoffij TQTQ −−= )]([][)]([][ 1

1

1 ωω       for i, j = 1,2,6  

T

onijoffij TQTQ −−= )]([][)]([][ 2

1

2 ωω         for i, j = 4,5 
(4) 
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in which )(ωθSinm =  and )(ωθCosn = , wherein )(ωθ  is random fibre orientation angle. 
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 In case of doubly curved shallow shell elements are employed to model the middle-surface 

geometry more accurately. An eight noded isoparametric quadratic element with five degrees of 

freedom at each node (three translations and two rotations) is considered. The mass per unit area 

for composite spherical shell is expressed as 

 

∑ ∫
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−

=
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k

z

z

k

k

dzP
1

1

)()( ωρω  (7) 

The mass matrix can be expressed as 

 ∫=
Vol

voldNPNM )(][)]([][)]([ ωω     (8) 

The stiffness matrix is given by 

∫ ∫
− −

=
1

1

1

1

)]([)]([)]([)]([ χςωωωω ddBDBK
T     (9) 

 

Using Hamilton’s principle [26] and Lagrange’s equation, the dynamic equilibrium equation for 

the equation of motion of free vibration system with n degrees of freedom can be expressed as  

 0}{)]([][)]([ =+ δωδω KM ��  (10) 
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In the above equation, M(ω ) and [K(ω )] are the mass and elastic stiffness matrices, respectively 

while {δ} denotes the vector of generalized coordinates. The governing equations are derived 

based on Mindlin’s theory incorporating transverse shear deformation. For free vibration, the 

random natural frequencies [ωn )(ω ] are determined from the standard eigenvalue problem using 

QR iteration algorithm [27]. 

3. Kriging based surrogate modelling 

A surrogate is a mathematical and statistical approximation of the input-output relationship 

that is implied by the underlying simulation model. Kriging is a Gaussian process based surrogate 

modelling method, which is compact and cost effective for computation. Kriging model [28] for 

simulation of required output is expressed as, 

)()()( 0 xZxyxy +=  (11) 

 

where y(x) is the unknown function of interest, x is an m dimensional vector (m design variables), 

)(0 xy  is the known approximation (usually polynomial) function and Z(x) represents is the 

realization of a stochastic process with mean zero, variance, and nonzero covariance. The 

)(0 xy term is similar to a polynomial response surface, providing global model of the design space 

[29]. In present study, )(0 xy globally approximates the design space, Z(x) creates the localized 

deviations so that the Kriging model interpolates the p-sampled data points for composite shallow 

spherical shells. The covariance matrix of Z(x) is given as 

)],([)](,)([
2 jiji

xxRRxZxZCov σ=  (12) 

 

where R is a (p × p) correlation matrix and R(xi, xj) is the correlation function between any two of 

the p-sampled data points xi and xj. R is an (p x p) symmetric matrix with ones along the diagonal. 

The correlation function R(x
i
, x

j
) is specified by the user, and a variety of correlation functions 

exist. Using Gaussian correlation function  
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where n is the number of design variables, θk is the unknown correlation parameters used to fit the 

model, and i

k
x and j

k
x are the k-th components of the sample points ix  and jx , respectively. The 

predicted estimates, ŷ  of the response )(xy  at random values of x are defined as Kriging predictor  

]ˆ[)(ˆ)(ˆ 1 ββ fyRxrxy T −+= −
 

(14) 

where y is the column vector of length p that contains the sample values of the frequency 

responses and f is a column vector of length p that is filled with ones when )(0 xy is taken as 

constant. Now, )(xr
T  is the correlation vector of length p between the random x and the sample 

data points }......,.........,{ 21 p
xxx       

TpT
xxRxxRxxRxxRxr ]),(.......).........,(),,(),,([)(

321=  (15) 

yRffRf
TT 111 )(ˆ −−−=β  

(16) 

An estimate of the variance between underlying global model β̂  and y is estimated by  

)ˆ()ˆ(
1

ˆ 12 ββσ fyRfy
p

T −−= −
 

(17) 

Now the model fitting is accomplished by maximum likelihood (i.e., best guesses) for θk. The 

maximum likelihood estimates (i.e., “best guesses”) for the θk in Equation (13) used to fit a 

Kriging model are obtained as 

[ ]RpMax k ln)ˆln(
2

1
)(. 2 +−= σθΓ  

(18) 

 

where the variance σ
2
 and |R| are both functions of θk, is solved for positive values of θk as 

optimization variables. For determining the quality of fitted model, maximum mean square error 

(MMSE) and maximum error (ME) are calculated as, 









−= ∑

=

2

1

)(
1

.max i

k

i

i yy
k

MMSE  

(19) 











 −
=

MCSi

KrigingiMCSi

Y

yy
MaxME

,

,,
(%)  

(20) 



  

8 

 

where iy and iy  are the vector of the true values and the vector corresponding to i-th prediction, 

respectively. Latin hypercube sampling [30] has been employed in this study for generating 

random sample points to ensure the well distributed representation throughout the vector space.  

4. Effect of noise on surrogate based uncertainty quantification 

  In this section, the algorithm for quantifying effect of noise in surrogate based stochastic 

analysis of composite laminates is discussed. The finite element formulation for laminated 

composite shells (section-2) has been coupled with Kriging based surrogate modelling approach 

(section-3) for stochastic analysis of the first three natural frequencies including the effect of noise. 

The combined effect of layer wise stochasticity has been considered in material and geometric 

properties of the laminated composite shell as follows:  

12 23 1

1 1 2 1 3 12(1) 12( ) 4 23(1) 23( ) 5 1(1) 1( ) 6 2(1) 2( )

{ ( ), ( ), ( ), ( ), ( )}

{ ( .. ), ( .. ), ( .. ), ( .. ), ( .. ), ( .. )}
l l l l l l

g G G E

G G G G E E E E

θ ω ρ ω ω ω ω

θ θ ρ ρ= Φ Φ Φ Φ Φ Φ
  (21) 

where θi , ρi , G12(i) , G23(i) , E1(i) and E2(i) are the ply orientation angle, mass density, shear modulus 

along longitudinal direction, shear modulus along transverse direction and elastic modulus along 

longitudinal and transverse direction, respectively and ‘l’ denotes the number of layer in the 

laminate. ω  is the stochastic representations for input parameters. It has been assumed that the 

distribution of randomness of input parameters exists within a certain band of tolerance ( ± 10º for 

ply orientation angle and ± 10% for material properties) with their central deterministic mean 

values following a normal distribution.  

A second source of uncertainty has been identified in the surrogate based uncertainty 

propagation approaches besides the conventionally considered uncertainties (g{ω }) as discussed 

in section 1. Focus of the present article is to analyse effect of the same through introducing 

simulated noise in the system. To portray the effect of noise on surrogate based uncertainty 

quantification algorithm, different levels of noise has been introduced in the responses of design 

points while constructing the surrogate models as described in Figure 3.  In the proposed approach, 
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Fig. 3 Flowchart for analyzing the effect of noise on surrogate based uncertainty quantification  

Gaussian white noise with a specific level (p) has been introduced in the set of output responses 

(natural frequencies), which is subsequently used for surrogate model formation: 

fijN = fij + p × 
ij

ξ  (22) 

where, f denotes natural frequency with the subscript i and j as frequency number and sample 

number in the design point set, respectively. ijξ  is a function that generates normally distributed 

random numbers. Subscript N is used here to indicate the noisy frequency.  
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Thus simulated noisy dataset (i.e. the sampling matrix for surrogate model formation) is 

formed by introducing pseudo random noise in the responses, while the input design points are 

kept unaltered. Subsequently for each dataset, surrogate based MCS is carried out to quantify the 

uncertainty of composite laminates following a non-intrusive approach as described in Figure 2. 

From the flowchart it can be understood that quantification of the effect of noise involves carrying 

out 1000 surrogate based MCS requiring formation of such surrogates 1000 times for analyzing 

each noise level. The kind of analysis carried out here will provide a comprehensive idea about the 

robustness of surrogate based uncertainty quantification algorithm under noisy data. 

 

5. Results and discussion 

  A four layered graphite-epoxy symmetric angle-ply (45°/-45°/-45°/45°) laminated 

composite cantilever shallow doubly curved spherical (Rx=Ry=R and Rxy= ∞ ) shell has been 

considered for the analysis. The length, width and thickness of the composite laminate considered 

in the present analysis are 1 m, 1 mm and 5 mm, respectively. Material properties of graphite–

epoxy composite [1] considered with deterministic mean value as E1 = 138.0 GPa, E2 = 8.96 GPa, 

ν12 = 0.3, G12 = 7.1 GPa, G13 = 7.1 GPa, G23 = 2.84 GPa, ρ=3202 kg/m
3
. A typical discretization of 

(6×6) mesh on plan area with 36 elements and 133 nodes with natural coordinates of an 

isoparametric quadratic plate bending element has been considered for the present FEM approach 

and the results for deterministic analysis has been validated with availavle literature (Table 1).  

In the present study, total 28 numbers of stochastic input parameters have been considered 

for combined effect of uncertainty in natural frequencies. The number of samples for constructing 

the Kriging model has been finalised using a convergence study as shown in Figure 4. It has been 

found that 600 samples provide adequate level of accuracy for all three natural frequencies. Figure 

5 shows comprative results for original MCS (10,000 FE simulations) and Kriging based MCS 

(600 FE simulations) without the effect of noise (p = 0) corroborating validity of the Kriging based 

surrogate model. Figure 5 represents the stochastic natural frequencies due to conventionally 
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Table 1: Non-dimensional fundamental frequencies  












 −
=

2

1

2

122 )1(12

tE
an

νρ
ωω  of isotropic, 

corner point-supported shells considering a/b=1, a΄/a=1, a/t = 100, a/R = 0.5, ν12 = 0.3. 

 

Rx/Ry Shell Type Present FEM Leissa and Narita [2] Chakravorty et al. [25] 

1 Spherical 50.74 50.68 50.76 

 

                     

(a) (b) 

Fig. 4 Convergence study of sample size for first three natural frequencies following maximum 

mean square error (MMSE) and maximum error without effect of noise by Kriging and MCS 

considered material and geometric uncertainties. Scatter plot bounds depicting the effect of 

simulated random noise on the prediction of Kriging based surrogates are presented in Figure 6 for 

different levels of noise using 1000 simulations for each case. From the figure 6, it is evident that 

as the level of noise increases, the deviation of the points from diagonal line also becomes more, 

indicating higher influence of noise on surrogate predictions. Figure 7 presents probability density 

function plots for first three natural frequencies showing the effect of noise with different levels. It 

can be noticed from the figures that the response bounds increase with increasing level of noise for 

all three natural frequencies. Normalised standard deviations (with respect to deterministic values 

of respective natural frequencies) for the first three natural are presented in Figure 8. The figure 

shows that the bounds of normalized standard deviation decreases for higher modes of frequencies 

indicating subsequent reduction in sensitivity of noise. 
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(a) 

 
(b)  (c) 

 

Fig. 5 Probability density function obtained by original MCS and Kriging model with respect to 
first three natural frequencies for combined variation of 28 stochastic input parameters for a 

sample size of 600 without considering the effect of noise. 

 

(a) 

 

(e) 

 

(i) 

 

(b) 
(f) 

 

(j) 

 (c) (g) 

 

(k) 

 

(d) 

 

(h) 
(l) 

Fig. 6 Effect of noise on prediction capability of Kriging based surrogate model for first three 
natural frequencies for noise level (p)=0, 0.2, 0.6 and 1.2. 
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Fig. 7 Probability density function plots of first three natural frequencies for different levels of noise 
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Fig. 8 Variation of normalised standard deviation with noise level for natural frequencies. 

6. Conclusion 

    In this article, another prospective source of uncertainty has been identified in the surrogate 

based uncertainty propagation approaches besides the conventionally considered uncertainties and 

the effect of same has been analyzed through introducing simulated noise in the system. A novel 

algorithm for quantifying the effect of noise on surrogate based uncertainty propagation approach 

has been developed. The effect of such simulated noise can be regarded as inclusion of other 

sources of uncertainty beside the conventionally considered stochastic material and geometric 

parameters, such as error in measurement of responses, error in modelling and computer 

simulation and various other epistemic uncertainties involved with the system. The kind of 

analysis presented in this paper provides a thorough insight on the stochastic responses under 

investigation. The representative results have been presented for laminated composite spherical 

shallow shell based on Kriging approach considering different levels of noise, wherein it is evident 

that the simulated noise has considerable effect on stochastic natural frequencies of the system. 

Consideration of the effect of such noise is thus an important criterion for robust and 

comprehensive analysis of stochastic systems. Though we have concentrated on Kriging based 

analysis of spherical composite shells only, the proposed algorithm for quantifying effect of noise 

in stochastic analysis is general in nature. Thus it can be extended to other structures and to 

analyze other surrogates in future. 
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