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Highlights 

 The rotation of a solid sphere in an non-Newtonian elastic liquid is considered. 

 

 Under some conditions a secondary flow is predicted with the Giesekus model. 

 

 Moving away from the restriction of slow flow, the inertial vortex flow can be also 

predicted by the PTT model.  
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Abstract 

 

Modern Computational Rheology techniques are used to interpret an experimental 

observation, which has remained unresolved for over four decades. The simple flow in 

question involved the rotation of a solid sphere in an infinite expanse of non-Newtonian 

elastic liquid. Under some conditions, Giesekus observed an interesting secondary flow. This 

added an ‘inertial’ secondary flow near the rotating sphere to the well-understood ‘slow-flow’ 

features observed and predicted by others in the 1960s. By employing a Phan-Thien/Tanner 

(PTT) constitutive model and moving away from the restriction of ‘slow-flow’, we show that 

it is possible to predict numerically the inertial vortex observed by Giesekus. 

 

Keywords: rotating sphere, secondary flow field, Giesekus inertial vortex, hybrid finite 

element/finite volume scheme, PTT model 

 

1. Introduction 

 

The flow we wish to understand and interpret is discussed in the “Rheological Phenomena in 

Focus” book written by Boger and Walters [1]. Briefly, when a solid sphere is rotated in an 

infinite expanse of elastic liquid, interesting secondary-flow patterns are generated depending 

on the relative strengths of fluid inertia and viscoelasticity. In Figure 1 (upper-row), we show 

a typical schematic representation of the secondary flow initially provided by Thomas and 

Walters [2]. In the first instance, the flow in Type 1 is dominated by inertia, whilst in Type 3 

viscoelasticity dominates. Finally, Type 2 shows an intermediate state, where fluid inertia and 

viscoelasticity are both prominent. 

 

The 1960s literature contains examples where experimental data were able to confirm the 

theoretical predictions (see, for example, [3]). However, Giesekus [4], in an experimental 

paper written somewhat later in 1970, demonstrated that other flow fields were possible, 

depending on the fluids under study and the rotational speed of the sphere.  

 

The flow of interest in the present work is shown in Figure 2 (see [1, 4]). This was obtained 

for a 1.3% solution of polyisobutylene in decalin. Here, there is an outer inertial zone (not 

highlighted by the dye-injection technique) and also an inner inertial zone, separated by a 

viscoelastic zone. Boger and Walters [1] emphasize that the inner inertial zone is an elusive 

                                                           

†
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phenomenon to capture! It is this feature, which we wish to study and predict in the present 

work. In the process, we shall alight (without comment) on other secondary-flow features that 

are not included in the slow-flow second-order theory. Interestingly, as we have already 

suggested, the 1970s experimental study of Giesekus [4] also includes a range of other 

phenomena not predicted by the second-order theory. 

 

2. Previous work 

 

Consider a steady simple shear flow with Cartesian velocity components given by  

 

        (1) 

 

where 
 
v

i
 is the velocity component and  is the constant shear rate. The associated stress 

field is usually written in the form: 

 

 

        (2) 

 

Here,   is the shear-stress,   is the shear viscosity and 
  
N

1
 and 

  
N

2
 are the first and second 

normal stress-differences, respectively. In a uniaxial extensional flow, one may define the 

extensional viscosity e , with dependency on the constant extensional strain rate : 

 

       (3) 

 

       (4) 

 

For the sufficiently slow flow of relevance in the theoretical work of Thomas, Walters and 

Waters [2, 5],  and 1  and 2  are material constants. We note that on 

theoretical grounds 
  
N

1
 must be positive and 

  
N

2
 is usually found to be relatively small and 

negative from experiments. The viscoelastic parameter m, in the work of Thomas, Walters 

and Waters [2, 5], is given by 

 

.     (5) 

 

We would anticipate m to be positive for most, if not all, elastic non-Newtonian liquids. The 

material parameter m can be reinterpreted through non-dimensional numbers as 

  1m Wi Re    where the Weissenberg number is 1 sphere/Wi U L , the Reynolds 

number is defined as 0Re aU  , and   is the solvent ratio (defined below). Additionally, 

1  is defined as the relaxation time,  U  is the characteristic velocity, 
  
L

sphere
 the characteristic 

length,   is the fluid density,  a  is the sphere-radius and 0  is the zero-shear total viscosity. 
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We shall now consider the flow generated by the slow rotation of a solid sphere of radius a in 

an infinite expanse of elastic liquid. Using the obvious spherical polar coordinate system and 

introducing an appropriate stream function 1  and couple C, it is possible to derive general 

formulae for sufficiently slow-flow in terms of parameter m : 

 

 
2

21
1 13

1

( 1)
(1 4 ) 8 sin cos ,

8

r
m r m

r
  


         (6) 

 

where 
1 /r r a , and the couple C on the sphere is given by  

 
2

3

0

121 2
8 1

120 140 15 5

cm m
C a L




  
       

  
.      (7) 

 

The parameter c  can be expressed in the form 2 4

0 2c a    . The formulae involve a 

non-dimensional parameter L (related to the Reynolds number):  

 

   
2 22

2
2

sphere material[ ] / [ ] .
a a

L a U U Re
 

    
        

   
    (8) 

 

Here, 0 /    is the kinetic viscosity,  is the base-reference rotational speed of the sphere 

( sphere ), so that sphere sphereU a , and material U a  is a counterpart base-reference viscous 

material velocity scale. In particular, one notes that the ratio of the two independent velocity 

scales equates to the Reynolds number. 

 

In the present paper, we shall concentrate on the stream function 1 , which for slow flow, as 

we have indicated, has the amazingly simple form given by eq. (6) (see, for example, [5]). 

Referring to Figure 1 and eq. (6), it is a simple matter to associate Type 1 behaviour with 

0 1 12m  , Type 2 behaviour with 
  1 12 < m <1 4, and Type 3 behaviour with 1 4m   

(see, for example, [2, 5]). We emphasize again that the simple stream function (equation 6) is 

valid for all elastic liquids, provided the flow is slow enough for second-order terms in L to 

be neglected. We see that Type 2 flow can be split into two regions separated by a spherical 

interface. The theory provided in [2] defines the radius of the interface as 

 

*

1

8

1 4

m
r

m



.          (9) 

 

Equation (9) provides a simple relationship between the rheological properties of the fluid 

medium and the radius of the secondary flow cell. In [2], the theory also presented a 

functional relationship for the distance between a nodal point and the centre of the sphere, 

which is related to m, via 

 

r1
n( ) = 12m,          (10) 
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 

1

2
1 2

sin 54º 44 '
3

n
 

 
      
 

.        (11) 

 

In the 1960s, significant attention was paid to the flow under discussion (see, for example, [2, 

3, 5]). It is probably true to say that some of the theoretical work could have been avoided, if 

it had been realized at the time that, for slow-flow, the ‘order’ equations of Coleman and Noll 

[6] provide complete generality for the simulation of the secondary-flow fields shown in 

Figure 1 (see, for example, [5]). However, as we have already implied, the experimental work 

of Giesekus [4] in 1970 opened up a new chapter, which required a shift away from the 

relative simplicity of the earlier second-order slow-flow theory. Theoretical attempts to move 

away from the second-order slow-flow analyses of the 1960s were made by Fosdick and Kao 

[7] and Williams [8]. However, the relevant analyses did not address the particular problem 

highlighted in the present paper. So, in the present work, we choose to employ a popular 

constitutive model to address the problem. There is a degree of choice here, but we have 

chosen to employ the popular Phan-Thien/Tanner (PTT) model [9], named after the two 

authors of the original paper (Nhan Phan-Thien and Roger Tanner). Our basic aim is simply 

to show that modern computational techniques, used in conjunction with a popular 

constitutive equation (which is not restricted to ‘slow-flow’), can predict one of the main 

unresolved features of the Giesekus experiments. 

 

3. Flow problem specification and the PTT model 

 

For incompressible viscoelastic flow under isothermal conditions, the governing equations 

are those for mass balance (continuity), linear momentum transfer, together with an 

appropriate constitutive model. 

 

The mass balance equation is expressed as 

 

  Ñ×u = 0,          (12) 

 

and the linear momentum transfer equation as 

 

T,
u

Re u u p
t

 
     

 
       (13) 

 

coupled with an equation of state for the stress (T). Here, the notation implies that u is the 

fluid velocity (vector field), p the isotropic fluid pressure, Ñ is a spatial differential operator 

(over spatial variable x) and t represents the independent variable time. We decompose the 

appropriate extra-stress tensor (T) into two, viscous and polymeric, parts viz. 

 
(1) (2)T T T .            (14) 

 

with the solvent (Newtonian) stress  contribution  T
1( )  defined as 

 1
T 2 d . 

 

The constitutive equation for the Phan-Thien/Tanner (PTT) [9] model we have employed 

provides the following expression for the polymeric extra-stress T
(2)

: 
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        (15) 

 

where  represents a linear (Gordon-Schowalter) combination of the 

upper-convected (contravariant) and lower-convected (covariant) time derivatives, defined 

as: 

 
2

2 2 2 2†
( )

( ) ( ) ( ) ( )T
T u T u T T u,

t

 
      


 

2

2 2 2 2†
and

( )

( ) ( ) ( ) ( )T
T u T u T T u.

t

 
      


     (16) 

 

Here, the rate of deformation tensor, †d ( ) / 2u u   , and the viscosity solvent-fraction 

parameter  is defined as  solv solv poly= +    , where one identifies 0solv    and 

 0 1poly     as solvent and polymeric solute viscosity components, respectively.  

 

In the present context, a truncated Linearized PTT version (the so-called LPTT model) is 

used, where the f functional is represented through a linear function of the trace (T
(2)

): 

 

  2
1 T

1

Wi
f Tr




 


.        (17) 

 

Then, the corresponding rheometrical functions for the LPTT model are given by: 

 

 0

0

1
,s

f

 
 


   

 

 

      (18) 

 

As we see in Figure 3, such an LPPT model manifests a weakening on 
  
N

1
 and a finite 

extensional viscosity, which is effectively controlled by the material parameter ( ). A second 

material parameter ( ) modifies the shear-viscosity and the second normal stress-difference 

coefficient. As such, these two model parameters   and  , may be employed to control, as 

desired, the prescribed extensional and shear response of the model. In steady shear flow, the 

ratio between the normal stress-differences is 2 1 2N N   . Hence, the non-zero material 

parameter   may be associated with stronger second normal stress-difference effects, see 

Figure 3. Typically, Phan-Thien and Tanner [9] suggested using 0 2.   for LDPE. However, 

the material parameter is mathematically defined and is valid for 0 2  . Note that, the 
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value of m we shall use in the PTT model is given by the ‘slow-flow’ formula provided by 

eq. (5) (see Garduño et al. [19]). 

 

Additionally to avoid ambiguity and to complete the problem formulation, the rotation of the 

sphere is achieved through a constant angular velocity sphere , about an axis of rotation into 

the vertical plane. The coordinate system is chosen in such a way that its origin is located at 

the centre of the sphere. 

 

In the original 1960 – 1970 rotating-sphere experiments, a thin vertical rod was used to rotate 

the sphere (see, for example, Figure 8.3 in [24]). The resulting experiments indicated that 

there was effectively symmetry about the obvious horizontal plane, intersecting the horizontal 

central plane through the sphere, showing clearly that the rotating rod had little influence on 

the overall flow patterns. This provided a justification for ignoring the rotating rod in the 

early theoretical analyses, as likewise in the bulk of the present numerical simulation work.  

 

The symmetric nature of the problem allows representation in a single quadrant of the 

( ,  r  )-polar plane. The boundary conditions are established over the four different 

boundaries. First, no-slip is established over the sphere surface; here, only rotational velocity 

( sphere sina  ) is non-zero, imposed as anti-clockwise into the plane (viewed from above); 

whilst symmetry conditions are applied on the polar-equatorial axes (with vanishing shear 

stress). Additionally, it is assumed that the containing vessel has infinite outer dimensions, 

implying that at larger distance away from the sphere, the fluid is to all intent and purposes at 

rest. 

 

The quadrant boundary conditions for this problem are defined through the velocities on the 

sphere itself, the two axes, polar and equatorial, and the far-field boundary. These are given 

as standard (see Thomas and Walters [2]) in the spherical quadrant of interest. Corresponding 

velocity components (U  ,V  ,W  ), must satisfy the stream function (eq. 6) and the boundary 

conditions at the sphere surface, so that with 
  
r
1
= r a : 

 

 
 1

2 15

1

1
12 sin cos .

4

r
V u r

a a
m

r

  





 


       (19) 

 

And on the sphere, 

 

sphere 3 sphere sin ,W au a           (20) 

 

from which appropriate non-dimensional velocity components ( 1u 
, 2u

, 3u
) may be extracted. 

These expressions are linked to a specific value of the parameter m, which implies that the 

initial conditions proceed from these computations. Then, sphere  is defined as a base-

reference angular velocity of the sphere, and base refU a   as a base-reference viscous 

material velocity-scale. In addition,   is the angle measured from the vertical axis of 

rotation, with orientation taken on the vertical polar-axis as ( 0º  ) and on the equatorial-

axis ( 90º  ). Note in particular, the use of the dual scales on velocity components of 

Thomas and Walters [2], who used ( sphere sphereU a ) for (u ) as a sphere rotational velocity-
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scale, and material )( base refaU    for ( u ,u ) as a viscous material velocity-scale. These dual 

velocity-scales imply that two independent controlling influences apply in this problem, 

where the )( base refa  -scale has bearing over the in-plane velocity (viscoelastic), and the 

other ( spherea )-scale exerts control over the out-of-plane velocity (inertial). 

 

In the present work, the hybrid finite element/finite volume scheme used is an extension of 

that previously cited in references Belblidia et al. [10, 11]; Wapperom and Webster [12, 13]; 

Webster et al. [14]. In essence, the numerical solution procedure adopts a time-stepping 

fractional-staged approach to steady-state, specifically developed and advanced for 

viscoelastic flow problems. It assumes a Taylor series time expansion and a time-incremental 

pressure-correction method to derive a semi-implicit scheme implemented over three sub-

staged equations per time-step. Spatial discretisation is accomplished via: first, velocity-

pressure finite element approximation, on the parent-level quadratic-linear interpolation over 

the meshed-domain triangulation. This is followed by a cell-vertex stress finite volume 

approximation on each one of four triangular sub-cells of an individual parent-triangular cell. 

Thus, the momentum-continuity equations are discretized and solved through this hybrid 

combination of: semi-implicit Taylor-Galerkin/incremental pressure-correction algorithm 

(see, for example, Donea [15]; Zienkiewicz et al. [16]; Matallah et al. [17]), together with that 

of a cell-vertex finite volume sub-cell technique for stress (see, for example, Wapperom and 

Webster [12, 13]). Over the sub-staged equations per time-step - the first and third are solved 

through Jacobi iteration, whilst the second invokes a direct Choleski decomposition method. 

Time-stepping convergence to a steady-state is ensured, from appropriate initial and 

boundary conditions, through selection of a suitable time-step (here chosen as 10
-4

) and time-

stepping termination criteria. The former must satisfy standard semi-implicit stability criteria, 

whilst the latter is taken with respect to a relative temporal increment norm over the evolving 

solution (with a threshold value of 10
-6

). Fuller detail on these procedures is provided in the 

references cited above, together with Aboubacar and Webster [18] and Garduño et al. [19]. 

 

On mesh convergence Numerical solutions for this complex rotating-sphere problem have 

been validated through a series of three meshes (Figure 4), displaying relatively gradual 

refinement, employed to test and quantify solution quality and mesh convergence. The 

respective meshes are similar in their construction, shape and spatial distribution of elements, 

only differing in element refinement density over the ( ,  r  ) plane, as detailed in Table 1. 

The meshes are characterised by two regions, divided and mirrored about the central, 45º-

line. As desired, such a procedure captures the detailed flow features, particularly in 

emerging vortices, whilst achieving sufficient mesh resolution. In this manner, improved 

definition of vortices has been extracted, specifically for those appearing in regimes beyond 

second-order. Hence, mesh-convergence is corroborated through these three meshes, 

confirming consistent trends in vortex evolution. Specifically, the persistent presence of the 

inertial vortex confirms that this is not a spurious feature, or a consequence of numerical 

artefacts. 

 

4. Theoretical predictions using the PTT model 

 

First, we note that for slow-flow the numerical solutions for the PTT model (Figure 1-bottom 

row) predict the expected behaviour from the 1960s analytic solutions (see Figure 1-top row). 

In the case of m=0, the characteristic parabolic Newtonian flow pattern (strictly, Stokesian in 

the limit of Re0) is recovered, corresponding to the first type of flow (Type 1). This is 

shown in the left-hand side of Figure 1, where inertia is dominant throughout the entire flow 
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domain. Central Figure 1 illustrates Type 2 flow structure, which is strongly influenced by 

elasticity. This pattern contains a secondary flow cell confined near the sphere, and an outer 

region dominated by inertia. Such a pattern is denoted as intermediate. As the value of the m-

parameter is increased still further, eventually a third flow pattern emerges (Type 3), 

dominated by viscoelasticity. This third pattern is illustrated in Figure 1, right-hand side. It is 

important to remark that in Type 1 and Type 2 flows, the streamlines emerge from the poles 

and gradually migrate towards the equator. Alternatively, in Type 3 flow, the streamlines 

arise from the equator and shift towards the poles, as can be seen on the right-hand side in 

Figure 1. 

 

We now move away from the restriction of slow-flow and show that various new flow fields 

are possible, which do not necessarily match any of the experimental pictures in the Giesekus 

paper [4]. The simulations simply illustrate that there is a plethora of possibilities depending 

on the flow conditions and the material constants. A similar and related conclusion can of 

course be drawn from the experiments in the Giesekus paper. 

 

So, we show in Figure 5 numerical predictions for one possible set of variables and two 

values of the viscosity solvent-fraction parameter , corresponding to highly-polymeric and 

high-solvent conditions. The adjustments in polar and equatorial vortices are plain to see. We 

can of course provide others (see Figures 6-9, for example), but the main object of the present 

work is to predict the specific appearance of the inertial vortex near the rotating sphere, 

shown in Figure 2. As such, the PTT model solutions with ( 0.0210042,  0.04,  =0.0Wi    , 

m=0.14) in Figures 6 and 7 cover Type 2 flow patterns at ever increasing up-scaling of 

velocity {( sphere , 2.5 sphere , 5 sphere ); {(3  Umaterial
, 10  Umaterial

, 100  Umaterial
)}, for high-solvent 

(β=0.9) and high-solute fluids (β=1/9), respectively. These solutions indicate the influence of 

increase in speed. (Please refer back to eq. (8) for the non-dimensional parameter L, and the 

definition of rotational sphere-speed ( sphere ) and viscous material velocity scale 

( material U a ); then, speed increases are implemented through up-scaling in the boundary 

conditions). This is amplified somewhat further in Figures 8 and 9a for the high-solvent case 

alone, where the development of the equatorial vortices is isolated in Figure 9a. In addition, 

the transition in vortex patterns is highlighted in Figure 9b, covering three different values of 

rotational speeds. This figure is a clear indication of how the flow structure is strongly 

dependent on minor changes in sphere rotational-speed. 

 

So, we search for a set of constitutive equation parameters, which will enable us to show that 

the (elusive) Giesekus inertial vortex can be predicted numerically. This exercise has led to a 

lengthy search and we show in Figure 10 the nearest we have come to providing the much 

sought-for numerical solution. As a general observation, the appearance of the elusive 

equatorial-inertial vortex has only been possible by significant up-scaling of the velocities, 

specifically via increases in the sphere rotational-speed. One notes the sought-for 

correspondence to the Giesekus experimental patterns, in both overall flow pattern and 

structure. The additional shear-thinning characteristics of the PTT model have enabled this 

solution capture at earlier speed increases than would have been realised with a constant 

viscosity model, such as the Oldroyd-B model.  
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5. Conclusions 

 

The general conclusion to be drawn from the work we have undertaken is that many of the 

experimental pictures in the Giesekus paper are matched in a similar fashion to the numerical 

predictions. Yet, having said that, we are happy to conclude that, by a suitable choice of the 

material parameters and flow conditions, it is possible to predict numerically the fascinating 

appearance of the Giesekus inertial vortex, which has remained a challenge for some workers 

in the field for over 40 years! Indeed, one of the present authors (KW) specified the 

prediction of the Giesekus inertial vortex as an unresolved rheological problem in his 2002 

Weissenberg Award address. 
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Appendix I: Contrasting solvent ratios (  ) with experimental fluids 

 

Figure AI.1 presents the shear viscosity experimental data for PIB/Decalin, contrasted against 

the theoretical shear viscosity for LPTT and different solvent ratios (  ). Comparing the 

experimental data from Liang [20] and Hudson [21], it is evident that there is good agreement 

here. The best match is found for a concentration of 3%. Any departure in agreement, 

especially for lower concentration (1% - 2%), is probably due to the difference in the 

temperature used for the measurements taken. This effect is corroborated upon contrasting 

the close matching between the slope, in the shear-thinning region, for the experimental data 

from Barnes et al. [22] and the 2% data from Liang et al. [20]; where both measurements 

were obtained at 25ºC. Regarding the data obtained from Giesekus [23], it may be observed 

that they lie closer to the 1% PIB/Decalin from Liang et al. [20]. This provides surety that the 

solutions from simulation, for the rotating sphere flow, conducted at 0.9   are well 

justified. One notes, there is a clear concentration effect in this data, taken from two different 

sources and at two different temperature levels. Here, as concentration increases from 1% to 

5%, gradually the viscosity at 25ºC approaches from below that at 20ºC. At 3% concentration 

these is almost matching and at 5% there is a flip over of dominance. 

 

 
Figure AI.1. Shear viscosity for LPTT ( [0.01,  0.1,  0.2,  0.3,  0.5,  0.9]  ) compared against 

experimental data for PIB/Decalin: [1%, 2%, 3%, 5%] PIB/Decalin Liang et al. [20], [1%, 

2%, 3%, 5%] PIB/Decalin Hudson et al. [21], 2% PIB/Decalin Barnes et al. [22], 1.25% 

PIB/Decalin Giesekus [23]. 
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Appendix II: Residuals of the momentum equation 

 

The comparison and contrast through each contribution, made to the momentum equation 

across the different regimes, is relevant to corroborate satisfaction of the incompressibility 

condition. The high-solvent viscous-diffusion contributions constitute the largest portion of 

the total momentum equation temporal-residue, as can be seen in Table II.1. It is seen that the 

levels for the residues, in the second-order regime, are close to 10
-7

, whilst in general flow 

these are about 10
-6

. As such, these residues can be considered sufficiently small to 

adequately fulfil the incompressibility condition.  

 

Table II.1. Temporal L2-norm residues, momentum equation various component 

contributions; LPTT, across flow regimes, 0.9   

 

  
Outside second-

order regime 

Component Second order General flow 

T  70.282 10  40.148 10  

  80.325 10  50.737 10  

2 sd  70.271 10  40.158 10  

 
u ×Ñu

 
90.939 10  50.534 10  

p  100.724 10  40.137 10  

all comp  70.267 10  60.384 10  
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Mesh M1 M2 M3 

Total nodes 2501 4941 7381 

Total elements 1200 2400 3600 

Total boundary nodes 200 280 360 

Degrees of freedom 15657 30917 46177 

Aspect ratio (Sphere radius: ext. radius) 1:20 1:20 1:20 

 

 

 

 
 

Figure 1. Second-order slow-flow regime: types of flow patterns. Upper-row, 

theoretical results from Thomas and Walters [2]. Bottom-row, PTT model numerical 

solutions. 
 

Table 1. Mesh characteristics: coarse (M1), medium (M2), refined (M3) meshes 
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Figure 2. Giesekus [4] experimental picture for 1.3% solution of polyisobutylene in decalin, 
1

sphere 150 min  . 
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Figure 3. Material functions for PTT model ( 0.04,  =0.0, 0.2  ), β=0.9, 0.1; 

a) shear viscosity, b) extensional viscosity, c) first normal stress-difference,  

d) second normal stress-difference. 
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Figure 4. Upper-row, finite element meshes: a) M1 - coarse b) M2 - medium c) M3 - refined; Bottom-

row numerical solutions for respective meshes; PTT model ( 0.021,  0.04,  =0.0Wi    ). 
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Figure 5. Flow patterns for a PTT model ( 0.021,  0.04,  =0.0Wi    ): solvent ratio (β) effects, high 

solute (β=1/9) and high solvent (β=0.9); base case {m=0.14}. 
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Figure 6. Flow patterns, high-solvent: increasing sphere-velocity scaling and decreasing viscous-

velocity scaling, with PTT model constants: 0.021,  0.04,  =0.0Wi    , m=0.14, β=0.9. 
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Figure 7. Flow patterns, low-solvent: increasing sphere-velocity scaling and decreasing viscous-

velocity scaling, with PTT model constants: 0.021,  0.04,  =0.0Wi    , m=0.14, β=1/9. 
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Figure 8. Possible alternative classes of solutions with increasing sphere speed, 1000 Umaterial
; 

with PTT model constants: 0.021,  0.04,  =0.0Wi    . 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 23 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

Figure 9b. Vortex evolution {m=0.14, β=0.9, 1000 Umaterial
}, various rotational speeds, with PTT 

model constants: 0.021,  0.04,  =0.0Wi    . 

 

Figure 9a. Development of equatorial vortices, for PTT model constants:  

0.021,  0.04,  =0.0Wi    , m=0.14, β=0.9; 1000 Umaterial
, high-solvent solutions.  
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Figure 10. Best matching solution: Top: rhs PTT model constants {m=0.14, β=0.9, sphere7.6  , 

1000 Umaterial
, 0.021,  0.04,  =0.0Wi    }; lhs Giesekus [4] experimental findings for 1.3% PIB in 

Decalin. Bottom: Superimposing numerical results with the Giesekus [4] experimental picture. 

Superimposed 


