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Abstract: The Zamolodchikov c-theorem has led to important new insights in our

understanding of the renormalisation group and the geometry of the space of QFTs.

Here, we review the parallel developments of the search for a higher-dimensional gen-

eralisation of the c-theorem and of the Local Renormalisation Group.

The idea of renormalisation with position-dependent couplings, running under local

Weyl scaling, is traced from its early realisations to the elegant modern formalism

of the local renormalisation group. The key rôle of the associated Weyl consistency

conditions in establishing RG flow equations for the coefficients of the trace anomaly in

curved spacetime, and their relation to the c-theorem and four-dimensional a-theorem,

is explained in detail.

A number of different derivations of the c-theorem in two dimensions are presented

– using spectral functions, RG analysis of Green functions of the energy-momentum

tensor Tµν , and dispersion relations – and are generalised to four dimensions. The ob-

struction to establishing monotonic C-functions related to the βc and βb trace anomaly

coefficients in four dimensions is discussed. The possibility of deriving an a-theorem,

involving the coefficient βa of the Euler-Gauss-Bonnet density in the trace anomaly, is

explored initially by formulating the QFT on maximally symmetric spaces. Then the

formulation of the weak a-theorem using a dispersion relation for four-point functions

of T µµ is presented.

Finally, we describe the application of the local renormalisation group to the issue

of limit cycles in theories with a global symmetry and it is shown how this sheds new

light on the geometry of the space of couplings in QFT.
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1 Introduction

The Zamolodchikov c-theorem [1, 2], originally formulated in 1986, has proved to be

one of the most influential results in the recent development of the renormalisation

group in quantum field theory, and has led to important new insights in our modern

perspective on the geometry and topology of the space of QFTs.

The theorem identifies a C-function constructed from the two-point Green functions

of the energy-momentum tensor in two-dimensional QFTs, which satisfies a RG flow

equation of the form

βI
∂

∂gI
C = 3

2
GIJβ

IβJ , (1.1)

where βI are the beta functions corresponding to the marginal operators OI charac-

terising the theory. At a fixed point, C(g∗) reduces to the central charge c of the

associated conformal field theory. This can also be identified as the coefficient of the

Ricci scalar in the conformaly anomaly for the trace of the energy-momentum tensor

in curved spacetime, i.e.

T µµ = 1
2
βcR , (1.2)
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where βc = c/12π. As the function GIJ , similarly defined from the Green functions

〈OI OJ〉, is positive definite, it may be interpreted as a metric on the space of couplings

{gI}. The relation (1.1) then implies that the RG flow of C(g) is monotonic. This is

the ‘c-theorem’ and is a powerful constraint on the nature of RG flows, apparently

ruling out, for example, the existence of limit cycles. It immediately follows that for a

RG flow from a UV to an IR fixed point, the ‘weak c-theorem’ holds, viz.

cUV − cIR ≥ 0 , (1.3)

and since c = ns + 1
2
nf , this relation gives information on the spectrum of the CFTs

related by the RG flow. Moreover, since all the key ingredients of the proof of the c-

theorem – the existence of a conserved energy-momentum tensor, the trace anomaly and

unitarity – are very general properties of QFTs, it seems natural that a generalisation

of the c-theorem beyond two dimensions should exist.

The search for a higher-dimensional version of the c-theorem has been a catalyst

in the development of the second main topic of this paper, the Local Renormalisation

Group. The essential idea underlying the local RGE is to promote the elementary

couplings of the QFT to position-dependent functions gI(x) so that they act as sources

for the operators OI appearing in the Lagrangian. The RG flow of these local couplings,

generated by the corresponding beta functions β
(
gI(x)

)
, is then related to local Weyl

rescalings of the metric, gµν → Ω(x)2gµν . Since the metric is the source for the energy-

momentum tensor, the resulting local RGE [3, 4],(
Ω(x)

δ

δΩ(x)
− βI δ

δgI(x)
− . . .

)
W = A , (1.4)

immediately describes the RG properties of Green functions involving the energy-

moemntum tensor. The rhs of (1.5) is the curvature-dependent conformal anomaly,

where

T µµ = βIOI + A . (1.5)

The introduction of local couplings has, however, important implications for the renor-

malisation of the theory and, as shown by Osborn in a series of key papers [5–9], in

order to achieve a complete, finite renormalisation it is necessary to introduce a new

type of counterterm, depending entirely on the local couplings gI(x) and their deriva-

tives. As we shall see, these new counterterms and their corresponding RG functions

add vital new contributions to the anomaly A in (1.4) and play a very powerful rôle in

uncovering the full implications of anomalous Weyl symmetry in quantum field theory.
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In four dimensions, there are more anomalous curvature contributions to the anomaly

A and we have [10] (see also [11] for a classification in arbitrary dimensions)

T µµ = βIOI + βcF − βaG− βbH + . . . (1.6)

where F , G and H are curvature-squared terms determined respectively by the Weyl

tensor, the Euler-Gauss-Bonnet density and the square of the Ricci scalar. At first sight,

it therefore appears there are three candidates for a four-dimensional Zamolodchikov-

like theorem. Indeed, noting the relation between the central charge and the anomaly

(1.2), and that in two dimensions the Ricci scalar is the Euler density, Cardy[12]

conjectured that the analogue of the c-theorem in four dimensions should involve

the coefficient βa of the Euler-Gauss-Bonnet density G. For free theories, we have

βa = 1
(4π)2

1
360

(ns + 11nf + 62nv).

The local renormalisation group places important and highly non-trivial constraints

on the evolution of the coefficients βa and βb under Weyl scalings. These are special

cases of an intricate web of identities which are elegantly determined by Weyl consis-

tency conditions. Most important is the remarkable result [7, 8] discovered by Osborn

on the RG flow of βa:

βI∂I β̃a = 1
8
χgIJβ

IβJ , (1.7)

where β̃a = βa+O(βI) and χgIJ is the RG function corresponding to a new counterterm

propertional to Gµν∂µg
I∂νg

J (Gµν is the Einstein tensor). A very similar relation holds

in two dimensions for the RG flow of βc in (1.2). However, unlike the case in two

dimensions where the equivalent metric function χIJ is directly related to the two-

point function 〈OI OJ〉, the corresponding identification of χgIJ is more subtle and it

is not similarly guaranteed to be positive definite. Nevertheless, it can be shown to be

positive in the neighbourhood of fixed points where the beta functions βI are sufficiently

small and it has been found to be positive in all known perturbative calculations. The

relation (1.7) is of course tantalisingly close to realising the anticipated a-theorem in

four dimensions.

A direct approach to looking for a four-dimensional theorem may be made by

following the original Zamolodchikov construction to find the analogues of the two-

dimensional C-function in terms of two-point functions of the energy-momentum tensor

and relating them to the RG coefficients in the anomaly (1.6). This was carried out in

[13, 14] following the spectral function method first applied to the c-theorem in [15, 16].

The result is two RG flow equations for functions C(s),

βI∂IC
(s) = 24G(s) − 2C(s) , (1.8)
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where the index s = 0, 2 indicates the contribution from spin 0 and spin 2 intermediate

states in 〈Tµν Tρσ〉. For spin 0, up to normalisations, we find C(0) = βb at a fixed

point, while G(0) = 1
9
GIJβ

IβJ can be written in terms of a positive definite metric as

in the original theorem. However, the presence of the extra term on the rhs of (1.8)

(in n dimensions, the coefficient is n− 2) means that the flow of C(0) is not monotonic.

Moreover, the Weyl consistency conditions confirm that βb is itself of O(βI) and so

vanishes at a fixed point. For spin 2, the C(2) function reduces to βc at a fixed point.

However, although G(2) is positive definite it cannot be written entirely in terms of the

metric GIJ and again the extra term proportional to C(2) in (1.8) means its RG flow is

not necessarily monotonic.

The remaining, and most interesting, anomaly coefficient does not however enter

into the local RGEs for the two-point functions of the energy-momentum tensor, and

so to find the corresponding a-theorem we need to look further. One possibility is to

consider QFT on a spacetime of constant curvature, where the Euler index is non-

vanishing and the the local RGEs for the two-point functions of Tµν involve βa. This

approach was pursued in depth in [17] (see also [18]) and summarised here in section

7. While this essentially reproduces the consistency condition (1.7) it turns out that

this method is not able to establish the existence of an exact, monotonic a-theorem,

for reasons discussed briefly in sections 7 and 10.

Eventually, a major breakthrough was made comparatively recently with the reali-

sation by Komargodski and Schwimmer [19] (see also [20, 21]) that βa can be isolated in

the local RGEs for the four-point Green function of the trace of the energy-momentum

tensor T µµ and, crucially, that these four-point functions do exhibit a positivity prop-

erty through the optical theorem. A dispersion relation argument then yields the weak

a-theorem,

βUVa − βIRa =
1

π

∫ ∞
0

ds

s3
ImA(s) ≥ 0 , (1.9)

where A(s) is the four-point function written as a forward amplitude in terms of the

Mandelstam variable s. Even so, a complete a-theorem establishing monotonicity of a

well-defined C-function along an entire RG trajectory not only in the vicinity of fixed

points, and connecting to the Weyl consistency relation (1.7), remains to be found.

In this paper, we review and trace the common threads running through this line

of research in the development of the local RGE and the search for a four-dimensional

Zamolodchikov-like theorem constraining RG flows. It should be emphasised that this

is not in any way intended as a comprehensive review of the whole subject. Rather,

the presentation is focused simply on the chain of ideas and technical advances out-
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lined above.1 Many fascinating topics and important work in the field, especially on

supersymmetric theories, are therefore not touched on here, including explicit model

calculations, a-maximisation, holography, applications to entanglement entropy, and

many more.

The paper is organised as follows. The remainder of this section sets the scene with

a brief review of the essentials of scale, conformal and Weyl invariance, a first look at

the derivation of the c-theorem as originally presented by Zamolodchikov, and a brief

account of the early development of the local renormalisation group. Our approach is

then to start with two dimensions and give an in-depth explanation of how the local RG

is applied in this comparatively simple context. Then, having established the general

principles, we describe the key points in the four-dimensional theory in a relatively

condensed form, without over-burdening the presentation with excessive detail.

We therefore begin in section 2 with a discussion of the theory of renormalisa-

tion with local couplings and how the divergent contact terms appearing in the Green

functions of composite operators, specifically the energy-momentum tensor, are renor-

malised. Some of these derivations are worked through in different ways to illustrate

the self-consistency of the formalism and to build experience in the general theory, with

the more intricate details relegated to appendices A and B.

In section 3, the more elegant methods of the modern local RG and anomalous Ward

identities are introduced, together with the all-important Weyl consistency conditions.

Then, in section 4 we present a number of different derivations of the c-theorem in

two dimensions, with the aim of gaining insight into which may be generalised to four

dimensions, and where features specific to the dimension arise.

The analysis is then repeated for four-dimensional QFTs, with section 5 describing

the local RG and Weyl consistency conditions while section 6 discusses the generali-

sation of the various derivations of the c-theorem described in section 4 – the spectral

function approach yielding flow equations related to βc and βb, a direct RG analysis of

the two-point functions in momentum and position space and the potential role of the

Weyl consistency condition for βa.

Section 7 considers the anomalous Ward identities and local RG on spacetimes of

constant curvature, where a Weyl consistency condition involving both βb and βa may

1For the same reason, the reference list here is not intended to reflect the extensive literature on

this subject, but is limited for the most part to those papers that were used more or less directly in

preparing this review. For a more general review, see, for example, [22] and references therein.
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be derived directly from two-point Green functions. The possibility of deriving the c

or a-theorems on homogeneous spaces is explored.

Then, in section 8, we describe the recent dispersion relation derivation of the

weak a-theorem from four-point Green functions of the energy-momentum tensorin

flat spacetime, comparing with the equivalent dispersion relation derivation of the c-

theorem in two dimensions given in section 4 and emphasising the assumptions inherent

in the proof.

Finally, in section 9, we describe a beautiful result due to Fortin, Grinstein and

Stergiou [23] which uses the local RG in QFTs with a global internal symmetry to

resolve an apparent paradox concerning RG flows which end on a limit cycle, and sheds

new light on the true nature of the space of couplings on which the renormalisation

group acts. Section 10 contains a summary and some additional reflections.

1.1 Scale, conformal and Weyl invariance

The maximal extension of the Lorentz group for massless particles in four dimensions

is the SO(2, 4) conformal group. This has 15 generators: Jµν (Lorentz transforma-

tions and rotations), Pµ (translations), Kµ (special conformal transformations) and

D (dilatations). The commutation relations for the generators of the Poincaré group

ISO(1, 3) are

[Jµν , Jρσ] = i (ηµρJνσ − ηµσJνρ − ηνρJµσ + ηνσJµρ)

[Jµν , Pρ] = i (ηµρPν − ηνρPµ)

[Pµ, Pν ] = 0 . (1.10)

where ηµν is the Minkowski metric. For a global scale-invariant theory, we have also

have the dilatations,

[Jµν , D] = 0

[Pρ, D] = iPρ . (1.11)

while including special conformal transformations extends the symmetry group to

SO(2, 4),

[Jµν , Kσ] = i (ηµσKν − ηνσKµ)

[Pρ, Kσ] = 2i (ηρσD + Jρσ)

[D,Kσ] = iKσ

[Kρ, Kσ] = 0 . (1.12)

– 6 –



Note that the algebra comprising only Jµν , Pρ and D closes, to the semi-direct product

ISO(1, 3)oR, so in principle a theory can be scale invariant without also being invariant

under the full conformal group SO(2, 4).

Translation invariance implies the existence of a conserved, symmetric energy-

momentum tensor Tµν , that is

∂µTµν = 0 . (1.13)

Global scale transformations are defined by xµ → λxµ, with λ constant. If the

trace of the energy-momentum tensor is a total derivative,

T µµ = ∂µVµ , (1.14)

for some ‘virial current’ Vµ, then there exists a conserved scale current, ∂µDµ = 0,

given in terms of the energy-momentum tensor by Dµ = xνTµν − Vµ. This is related to

the dilatation generator by D =
∫
d3xD0.

Special conformal transformations are defined by xµ → xµ+aµx2

1+2a.x+a2x2
. In this case, if

T µµ = ∂µ∂νLµν , (1.15)

which follows if Vµ = ∂νLνµ, then there exists a conserved special conformal cur-

rent, ∂µKµρ = 0, with the corresponding generator Kρ =
∫
d3xK0ρ, given by Kµρ =

(x2ηρν − 2xρxν)T
ν
µ − 2xρVµ + 2Lµρ. A suitable redefinition of Tµν then gives a con-

served, symmetric and traceless operator. These properties of the trace of the energy-

momentum tensor therefore provide a criterion to determine whether a theory is fully

conformal invariant or simply scale invariant.2 This will be important when we discuss

scale and conformal invariance in the context of limit cycles in section 7.

In curved spacetime, we define the energy-momentum tensor as

Tµν(x) =
2√−g

δS

δgµν(x)
. (1.16)

Diffeomorphism invariance of the action S implies the conservation of Tµν ,

DµTµν = 0 . (1.17)

Weyl transformations are defined as a scaling of the metric, gµν → Ω2gµν , and we write

Ω(x) = eσ(x). Global Weyl transformations (with σ constant) are a symmetry if the

2The issue of whether a quantum field theory can be globally scale invariant without being special

conformal invariant has a substantial and still active literature. For recent developments and a review,

see for example [22–25]
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action is invariant, i.e. if the Lagrangian transforms as δL = −σDµVµ for some current

Vµ. Then,

T µµ =
2√−gg

µν δS

δgµν
= DµVµ . (1.18)

Local Weyl invariance under gµν → e2σ(x)gµν implies the energy-momentum tensor is

strictly traceless,

T µµ = 0 . (1.19)

However, Weyl invariance is broken in the quantum theory in curved spacetime,

even for free field theories, and there is a Weyl anomaly proportional to the curvature.

In two dimensions,

T µµ =
c

24π
R , (1.20)

where c is the central charge of the infinite-dimensional Virasoro algebra which extends

the conformal group in two dimensions. For free theories with nf fermions and ns
scalars, c = ns + 1

2
nf .

In four dimensions,

T µµ =
1

(4π)2

(
cF4 − aE4 + 1

9
bR2 + b̂�R

)
, (1.21)

where F4 is the square of the Weyl tensor Cµνρσ and E4 is the Euler-Gauss-Bonnet

density. The �R term can always be removed by adding a finite local counterterm to

the action and will be neglected from now on. Explicitly,

F4 = RµνρσRµνρσ − 2RµνRµν +
1

3
R2 = CµνρσCµνρσ ,

E4 = RµνρσRµνρσ + 4RµνRµν +R2 = 1
4
εµνρσεαβγδR

αβ
µνR

γδ
ρσ . (1.22)

For free theories, a = 1
360

(ns + 11nf + 62nv) and c = 1
120

(ns + 6nf + 12nv).

In addition, for interacting theories in flat or curved spacetime, the energy-momentum

tensor has the usual conformal anomaly proportional to the renormalisation group beta

functions. With marginal couplings L ∼ gIOI in the Lagrangian, this is

T µµ = βIOI , (1.23)

where OI denotes the corresponding renormalised composite operator. Also note that,

as we see later, the coefficient b ∼ O(βI) in (1.21) and so vanishes at a fixed point.

– 8 –



1.2 Renormalisation group flows and the Zamolodchikov c-theorem

Our key motivation is to determine topological properties of the manifold of quantum

field theories by studying the flow of couplings under the renormalisation group (RG),

i.e. flows generated by the beta functions βI which may be regarded as vector fields

on the space of couplings. In particular, we are looking for information on the possible

UV and IR behaviour of theories, the existence of fixed points and limit cycles and the

RG flow in their vicinity, constraints on phase transitions, and so on.

The question of whether RG flows must end on a fixed point, or whether limit

cycles or more intricate, even chaotic, behaviour is possible, is especially interesting. In

particular, we would like to know whether the theory at a fixed point or on a limit cycle

is necessarily conformal, or whether it could be scale invariant but not fully conformal.

An important constraint on RG flows for two-dimensional QFTs was given in 1986

by Zamolodchikov [1, 2], who found a function C(g) whose RG flow is monotonically

decreasing. This appears to rule out limit cycles in two dimensions. Moreover, this ‘c-

theorem’ has a clear physical interpretation, since at a fixed point, C(g∗) = c, the central

charge of the corresponding Virasoro algebra, which counts the (weighted) degrees of

freedom. The theorem shows that under a flow from UV to IR fixed points, cIR < cUV ,

which we refer to as the ‘weak c-theorem’. In this paper, we present a variety of different

proofs of the c-theorem in two dimensions, each of which illustrates a different aspect of

the underlying physics. This also points the way towards our ultimate goal, a possible

proof of the analogue of the theorem in four dimensions.

We begin with a sketch of the original proof of the c-theorem presented by Zamolod-

chikov [1]. We work in 2-dim Euclidean space, and introduce complex spacetime coor-

dinates z, z̄ where z = x1 +ix2. The independent components of the energy-momentum

tensor Tµν are then Tzz, Tz̄z̄ and Tzz̄ = T µµ, and the conservation equation becomes

∂z̄Tzz + 4∂zTzz̄ = 0 . (1.24)

Zamolodchikov now defines a set of dimensionless functions from the two-point corre-

lation functions of the energy-momentum tensor:

F = (2π)2 z4 〈Tzz(x) Tz̄z̄(0)〉
H = (2π)2 z3z̄ 〈Tzz̄(x) Tz̄z̄(0)〉
G = (2π)2 z2z̄2 〈Tzz̄(x) Tzz̄(0)〉 , (1.25)
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where F = F (µ|z|), etc. The pre-factors of O(z4) remove any short distance singulari-

ties in the two-point functions. The C function is then constructed as the combination,

C = 2
(
F − 1

2
H − 3

16
G
)
. (1.26)

This has the following crucial property, which follows from the conservation equation

(1.24):
∂C

∂(log |z|) = −3
2
G , (1.27)

and using dimensional analysis and the renormalisation group equation, we find

βI
∂

∂gI
C = 3

2
G . (1.28)

If we now use the trace anomaly equation (1.23), viz. Tzz̄ = βIOI , and define the

function GIJ as

GIJ = (2π)2z2z̄2 〈OI(x) OJ(0)〉 , (1.29)

we can rewrite (1.28) in the form

βI
∂

∂gI
C = 3

2
GIJβ

IβJ ≤ 0 . (1.30)

This is the Zamolodchikov c-theorem. The final inequality in (1.30) follows from the

fact that the function GIJ defines a positive-definite ‘metric’ on the space of couplings.

This shows that the function C(g) is monotonically decreasing under a renormalisation

group flow to the IR.

At a fixed point, βI(g∗) = 0 and so H(g∗) = G(g∗) = 0, and C(g∗) is deter-

mined purely by the correlator z4〈Tzz(x) Tz̄z̄(0)〉. Since these correlators are determined

uniquely by the central charge, we can deduce C(g∗) = c.

1.3 Local renormalisation group

The main methodology for analysing Green functions of the energy-momentum tensor

and the associated Zamolodchikov-like theorems constraining RG flows is the local

renormalisation group.

The key idea of promoting the coupling constants of the original QFT to be func-

tions of position and relating their RG flow to local Weyl transformations was intro-

duced by Drummond and Shore [3] in their study of trace anomalies for interacting
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QFTs in curved spacetime. The term ‘local renormalisation group’ itself was initially

used in [4] where a RGE involving a position-dependent scale µ(x) was proposed in

the context of establishing diffeomeorphism invariant conditions for conformal invari-

ance in string-related sigma models. Since then, largely through the seminal work of

Osborn [5–9], the idea of a local RGE has been perfected and developed into what is

now a mature and comprehensive formalism for analysing anomalous Weyl, scale and

conformal invariance and the associated RG flows.

From the definition (1.16), it follows that the expectation value of the trace of the

energy-momentum tensor is determined by the response of the generating functional

W to a Weyl scaling of the metric, where W is given by the sum of vacuum Feynman

diagrams. The essential observation of [3] was that in evaluating the dependence of

these diagrams on the Weyl scaling gµν → Ω(x)2gµν , under which the propagator

transforms as ∆F (x, y)→ Ω(x)n/2−1∆F (x, y)Ω(y)n/2−1, the Weyl factor Ω(x) enters at

the vertices in exactly the same way as the RG scale associated with the anomaly.

Since in φ4 theory, for example, the bare and renormalised couplings are related by

gB = µ4−n (g + L(g)), where L(g) is a series of pole terms in dimensional regularisation,

we see that Ω(x) may be absorbed into a position-dependent RG scale µ(x) = µΩ(x)−1.

Introducing the corresponding local renormalised coupling g(x) and associated beta

function following the usual RG prescription3 with µ(x), it was concluded in [3] that

Ω(x)
δW

δΩ(x)
= β(g(x))

δW

δg(x)
+ A , (1.31)

where the first term on the rhs defines the renormalised normal product [φ4(x)] while

A denotes the purely curvature contributions to the trace anomaly (1.21).

This appproach was subsequently formalised in [4] and compared in detail with

the complete renormalisation of the trace anomaly in φ4 in terms of normal products

presented in [26]. Here, the local RGE was expressed in terms of a position-dependent

RG scale µ(x) in the form[
µ(x)

δ

δµ(x)
+ βI

δ

δgI(x)
+ βaη

δ

δηa(x)
+ βc

δ

δc(x)
+ βa

δ

δa(x)
+ βb

δ

δb(x)
+ . . .

]
W = 0 ,

(1.32)

where we have used the notation OI for the dimension 4 operators, Oa for dimension 2

operators such as [φ2], and a coupling ηa for the operators of the form ROa. (Note that

3See section 2.1. In the original discussion [3, 4], the bare coupling gB was considered to be

constant, with the entire position-dependence of the running coupling g(x) depending implicitly on

the Weyl scaling Ω(x). This can of course be relaxed, with the couplings regarded completely as

position-dependent sources.
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terms explicitly dependent on ηa itself have been omitted in (1.32), together with the

contributions from the renormalisation of the dimension 2 operators.) This may then

be converted to an equation for the local Weyl variation using the dimensional relation

Ω(x)
δW

δΩ(x)
= µ(x)

δW

δµ(x)
+ ∂µWµ + . . . , (1.33)

where the total divergence ∂µWµ contains divergent terms such as cB∂
2R and ηaB∂

2Oa

arising from the local variation of the curvature, which is not wholly reflected in the

dependence on the RG scale µ(x). (Recall that with Ω2(x) = e2σ(x), R → 2σ(x)R +

6∂2σ(x) in four dimensions.)

In [4], this form of local RGE was used together with the Ward identity for diffeo-

morphisms to establish that in string-related sigma models, the condition for conformal

invariance is actually the vanishing of generalised, diffeomorphism invariant, beta func-

tions rather than those occurring in the standard RGE. We will return to related issues

in section 9. However, it was already noted in that paper that with this renormali-

sation of the Lagrangian parameters, the functional derivatives δW/δgI only defined

finite normal products [OI ] up to total divergences. Moreover, since the Weyl variation

on the lhs of (1.33) is manifestly finite, it follows that the local RG scale variation

µ(x)δW/δµ(x), is itself only finite up to total derivatives.

These problems were resolved by Osborn [5–7], and Jack and Osborn [8], who made

the crucial step of recognising that a complete renormalisation of the QFT requires the

addition of further counterterms depending on derivatives of the position-dependent

couplings. Examples include eI∂µR∂
µgI , gIJGµν∂

µgI∂νgJ , aIJD
2gID2gJ , etc. The

first provides a necessary extra counterterm to ensure finiteness of the normal product

[OI ] = δW/δgI(x) in a general background (compare with appendix B of [4]), while

the latter two renormalise the contact terms arising in the two-point Green functions

〈OI OJ〉. In addition, the local RGE should be formulated directly as an equation for

the Weyl variation Ω(x)δW/δΩ(x), bypassing the introduction of the local RG scale and

defining running couplings directly in terms of their Weyl scaling, as shown explicitly

in [4].

In this review, we will build all this up in stages, beginning with the renormalisation

of two-dimensional QFTs with running couplings in section 2 and finally progressing to

four-dimensional theories with global symmetries in section 9. In anticipation, however,

it will be useful to outline the form of the local RGE in its modern presentation [9]

immediately. Since the full RGE comprising dimension 4 and 2 operators and symmetry

currents is extremely complicated and contains a plethora of terms, we refer the reader
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to the comprehensive recent papers by Jack and Osborn [27] and by Baume, Keren-Zur,

Rattazzi and Vitale [28].

The local RGE is written in terms of the Weyl variation operators, which take the

most general form constrained by power counting and symmetries. For a transformation

gµν → 2σ(x)gµν , we define

∆W
σ = 2

∫
d4x σ gµν

δ

δgµν

∆β
σ =

∫
d4x

[
σβI

δ

δgI
+
(
σρAI Dµg

I − ∂µσSA
) δ

δAAµ
+
(
σ (γab − 2δab )m

b + ηaR + . . .
) δ

δma

]
(1.34)

where as before the couplings gI are sources for OI , and we have defined ma (which

have dim 2) as sources for Oa and AAµ as sources for GF global symmetry currents JAµ .

Dµg
I denotes a GF covariant derivative. The local RGE can then be presented as(

∆W
σ −∆β

σ

)
W =

∫
d4x
√−gA , (1.35)

where the anomaly is∫
d4x
√−gA

=

∫
d4x
√−g

[
σ
(
βc F − βaG− βbH − 1

3
χeI∂

µRDµg
I − 1

2
χaIJD

2gID2gJ + . . .
)
− ∂µσ Zµ

]
(1.36)

where the nature of the total derivative term Zµ is discussed below. The local RGE

in its conventional form follows from differentiation w.r.t. the position-dependent scale

parameter σ(x), giving(
Ω(x)

δ

δΩ(x)
− βI δ

δgI(x)
− . . .

)
W = βc F − βaG− βbH + . . .+DµZ

µ . (1.37)

The standard RGE is recovered from (1.35) by considering a global Weyl scaling

with σ = constant, in which case the novel total derivative terms do not contribute.

The dimensional relation is simply(∫
d4x

[
Ω(x)

δ

δΩ(x)
+ 2ma(x)

δ

δma(x)

]
+ µ

∂

∂µ

)
W = 0 , (1.38)

and the RGE follows (see section 3.4).
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With this overview, we are ready to build up our picture of the local renormalisation

group in two and then four dimensions, and apply the results to obtain a deeper un-

derstanding of the Zamolodchikov c-theorem and its possible generalisations in higher

dimensions.

2 Renormalisation and the Conformal Anomaly

In order to study the conformal anomaly and related Green functions of the energy-

momentum tensor, we need to renormalise the quantum field theory in curved spacetime

including sources for all the operators of interest. In this section, which follows [7], we

restrict to two dimensions and consider an interaction Lagrangian of the form L = gIOI ,

where the OI are a complete set of dimension 2 operators. The corresponding sources

are simply the position-dependent couplings gI(x). In addition to the conventional

renormalisation of the bare parameters, there are then further counterterms depending

on the spacetime curvature and on derivatives of the couplings. The latter provide the

extra counterterms required to define renormalised Green functions of the composite

operators OI , removing the contact-term divergences which arise even in flat spacetime.

2.1 Renormalisation and local couplings

In dimensional regularisation, the action is therefore

S = S0 +

∫
dnx
√−g

(
gIBOI + 1

2(n−1)
cBR− ΛB

)
, (2.1)

where the free action S0 is invariant under Weyl transformations. The bare couplings

are defined as 4

gIB = µkIε(gI + LI(g))

cB = µ−ε(c+ Lc(g))

ΛB = µ−ε(Λ + LΛ(g)) , (2.2)

4The power µkIε in gIB fixes the dimension of the bare operator OBI away from n = 2. This allows

for composite operators with different combinations of the elementary fields, whose dimension is set by

the dimensionality/Weyl invariance of the free action. The renormalised couplings are dimensionless,

while with the definition in (2.17) the renormalised operators OI all have dimension n before the

physical limit n→ 2 is taken. Note that no sum over the index on kI is implied here or in subsequent

equations.
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where

LΛ = 1
2
AIJ(g)∂µg

I∂µgJ . (2.3)

Here, ε = 2−n and LI , Lc, AIJ denote series of poles in 1/ε as usual. The renormalised

couplings c and Λ will normally be taken as zero.

Beta functions βc and βΛ are defined from these couplings in the same way as the

standard beta function βi. Explicitly,

β̂I ≡ µ
d

dµ
gI = −kIεgI + βI , (2.4)

with

βI = −kIεLI − µ
d

dµ
LI . (2.5)

Note that this is a mass-independent renormalisation scheme so the counterterms have

no explicit µ-dependence, i.e. µ ∂LI/∂µ = 0. In the same way,

β̂c ≡ µ
d

dµ
c = εc+ βc , (2.6)

with

βc = εLc − µ
d

dµ
Lc , (2.7)

and

β̂Λ = εΛ + βΛ , (2.8)

with

βΛ = εLΛ − µ
d

dµ
LΛ . (2.9)

To evaluate the final term, we use

µ
d

dµ
= µ

∂

∂µ
+

∫
dnx

(
β̂I

δ

δgI(x)
+ β̂c

δ

δc(x)
+ β̂Λ

δ

δΛ(x)

)
, (2.10)

and all couplings are ultimately set to their constant physical values. In what follows,

we frequently simply write β̂I ∂
∂gI

as shorthand for
∫
dnxβ̂I δ

δgI(x)
and also abbreviate

∂
∂gI
≡ ∂I . It then follows that

βΛ = 1
2
χIJ∂µg

I∂µgJ (2.11)

with

χIJ = εAIJ − Lβ̂AIJ , (2.12)

where the Lie derivative is given by

Lβ̂AIJ = β̂K∂KAIJ + ∂I β̂
KAKJ + ∂J β̂

KAIK . (2.13)
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2.2 Trace anomaly

Recall that the energy-momentum tensor is derived as the variation of the curved-

spacetime action with respect to the metric:

Tµν(x) =
2√−g

δS

δgµν(x)
. (2.14)

Since the metric is itself a finite parameter, this defines a renormalised operator. To

evaluate this, we need the variation of the curvature counterterms, especially

δ

δgµν(x)
R(y) =

√−g (Rµν + ∆µν) δ(x, y) , (2.15)

where we define ∆µν = gµνD
2−DµDν . After contracting with the metric, this gives the

following expression in terms of bare quantities for the trace of the energy-momentum

tensor:

T µµ = ε
(
−kIgIBOBI + 1

2(n−1)
cBR− ΛB

)
+D2cB + 2µ−εΛ . (2.16)

The renormalised operators OI are defined as the functional derivatives of the

action with respect to the couplings, viz.

Oi =
1√−g

δS

δgI
. (2.17)

The curvature and derivative counterterms therefore contribute:

Oi =
1√−g

δ

δgI

∫
dnx
√−g

(
gJBOBJ + 1

2(n−1)
cBR− ΛB

)
= ZI

JOBJ + µ−ε
(

1
2(n−1)

∂iLcR−
1

2
∂IAJK∂g

J∂gK +Dµ(AIJ∂
µgJ)

)
. (2.18)

with

ZIJ = µkIε(δIJ + ∂ILJ) . (2.19)

This can be re-expressed, after a short but intricate calculation (see appendix A), in

terms of the beta functions:

T µµ = β̂IOI + µ−ε
(

1
2(n−1)

β̂cR− β̂Λ

)
+ µ−ε(D2c+ 2Λ) + µ−εDµZ

µ , (2.20)

with

Zµ = ∂µLc − β̂IAIJ∂µgJ . (2.21)
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Finally, we define the key function wi [7] through

Zµ = wI∂µg
I (2.22)

and reducing to n = 2 and setting the couplings c = Λ = 0, we find our final result for

the energy-momentum tensor trace:

T µµ = βIOI + 1
2
βcR− βΛ +DµZ

µ . (2.23)

The rhs is the conformal, or trace, anomaly. As well as the familiar operator and

curvature contributions, this expression includes the dependence on derivatives of the

position-dependent couplings. These are crucial in renormalising higher-point Green

functions involving T µµ. Evaluating with the couplings set to constants, we recover the

familiar expression for the conformal anomaly:

〈T µµ〉 − 〈Θ〉 =
1

2
βcR , (2.24)

where Θ ≡ βIOI is the usual operator anomaly and 1
2
βcR is the curvature contribution.

Since all the other terms in (2.23) are finite, it follows that Zµ itself must also be

finite. This gives rise to a consistency condition which plays an important role in the

analysis of the c-theorem. Indeed, as we see later, this is equivalent to the Wess-Zumino

consistency condition which follow from the abelian nature of the Weyl anomaly. To

derive this, we start from the definition (2.21) of Zµ and apply the operator ε− β̂K∂K
to both sides, or equivalently act with µ d

dµ
on µ−εZµ. We have(

ε− β̂K∂K
)(

∂µLc − β̂IAIJ∂µgJ
)

=
(
∂Iβc − χIJ β̂J

)
∂µg

I (2.25)

and (
ε− β̂K∂K

) (
wI∂µg

I
)

= −
(
εgJ∂JwI + βJ∂JωI + ∂Iβ

JwJ
)
∂µg

I . (2.26)

Equating the terms of O(1), we isolate the crucial identity

∂Iβc = χIJβ
J − LβwI . (2.27)

If we now define

β̃c = βc + βIwI (2.28)

we can rewrite (2.27) in the form

∂I β̃c = χIJβ
J + (∂IwJ − ∂JwI) βJ . (2.29)
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Notice the crucial role played here by the function wI , introduced by Osborn [7] in his

analysis of renormalisation in the presence of position-dependent couplings.

Finally, contracting with the beta function, we derive the Weyl consistency con-

dition for the RG flow of the modified coefficient β̃c of the Euler density in the trace

anomaly:5

βI∂I β̃c = χIJβ
IβJ . (2.30)

Clearly, this condition has a close resemblance to the form of the c-theorem in two

dimensions [7]. We will explore this connection further in what follows.

2.3 Renormalisation of two-point Green functions

As noted above, the position-dependent couplings gI(x) act as sources for the composite

operators OI , while the counterterms proportional to ∂µg
I(x) provide the contact terms

required to renormalise their higher-point Green functions.

We first define the renormalised two-point functions of the energy-momentum ten-

sor in curved spacetime so as to be symmetric, i.e.6

i〈Tµν(x) Tρσ(y)〉 =
2√
−g(x)

2√
−g(y)

δ

δgµν(x)

δ

δgρσ(y)
W (2.31)

5Notice that there is an arbitrariness in the choice of RG scheme defining the various functions

involved here. This can be parametrised by the following changes:

δβc = Lβb ≡ βI∂Ib , δχIJ = LβaIJ ,

which implies

δβ̃c = aIJβ
IβJ , δwI = −∂Ib+ aIJβ

J .

This leaves the form of the consistency relation (2.30) invariant.
6We further define the two-point functions of the trace Tµµ(x) so that

i〈Tµµ(x) T ρρ(y)〉 ≡ gµνgρσi〈Tµν(x) Tρσ(y)〉

=
2√−g g

µν δ

δgµν(x)

(
2√−g g

ρσ δW

δgρσ(y)

)
− (n+ 2)〈Tµµ(x)〉δ(x, y) ,

where the ambiguity in the definition of the renormalised Green function is reflected in the presence

of the VEV of Tµµ(x), itself defined by

〈Tµµ(x)〉 ≡ gµν〈Tµν(x)〉 .

With Minkowski signature, these two-point functions are the usual time-ordered products. Note that

throughout this paper δ(x, y) is the delta function density, where δ(x− y) =
√−gδ(x, y), and here we

have left the dimension n general for future convenience.
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and similarly

i〈OI(x) OJ(y)〉 =
1√
−g(x)

1√
−g(y)

δ

δgI(x)

δ

δgJ(y)
W . (2.32)

With these definitions, we readily find the following relations between the bare and

renormalised two-point functions:

i〈T µµ(x) T ρρ(y)〉 − i〈T µµ(x) T ρρ(y)〉B + 2〈T µµ(x)〉δ(x, y)

=
1√
−g(x)

1√
−g(y)

〈 δ2S

δσ(x)δσ(y)

〉
(2.33)

and similarly

i〈T µµ(x) OI(y)〉 − i〈T µµ(x) OI(y)〉B =
1√
−g(x)

1√
−g(y)

〈 δ2S

δσ(x)δgJ(y)

〉
(2.34)

i〈OI(x) OJ(y)〉 − i〈OI(x) OJ(y)〉B =
1√
−g(x)

1√
−g(y)

〈 δ2S

δgI(x)δgI(y)

〉
(2.35)

The evaluation of the counterterms on the rhs of (2.33) - (2.35) by differentiation of the

action (2.1) is again very intricate and details are given in appendix A. For the Green

functions of interest here, we eventually find:

i〈T µµ(x) T ρρ(y)〉 − i〈T µµ(x) T ρρ(y)〉B + (2− ε)〈T µµ(x)〉 δ(x, y)

= εµ−ε LcD
2δ(x, y) (2.36)

i〈T µµ(x) OI(y)〉 − i〈T µµ(x) OI(y)〉B = µ−ε ∂ILcD
2δ(x, y) (2.37)

i〈Θ̂(x) OI(y)〉 − i〈Θ̂(x) OI(y)〉B + ∂I β̂
J 〈OJ(x)〉 δ(x, y)

= − µ−ε
[

1
2(n−1)

∂IβcRδ(x, y) − AIJ β̂J D
2δ(x, y)

]
(2.38)

where Θ̂ = β̂IOI and as usual we have set c = Λ = 0 and omitted terms of O(∂µg
I).

Similarly, letting Θ = βIOI as the operator part of the trace anomaly, we define

i〈Θ(x) Θ(y)〉 ≡ βIβJ i〈OI(x) OJ(y)〉

=
1√−gβ

I δ

δgI(x)

(
1√−gβ

J δW

δgJ(y)

)
− βI∂IβJ〈OJ(x)〉δ(x, y) .
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We can derive important identities amongst the renormalised connected Green

functions by using the operator relation T µµ ∼ βIOI inside the bare Green functions.

This immediately gives, for n = 2,

i〈T µµ(x) T ρρ(y)〉 − i〈T µµ(x) Θ(y)〉 + 2〈T µµ(x)〉 δ(x, y) = βcD
2δ(x, y)

(2.39)

i〈T µµ(x) OI(y)〉 − i〈Θ(x) OI(y)〉 − ∂Iβ
J 〈OJ(x)〉 δ(x, y)

= 1
2
∂IβcRδ(x, y) + ωI D

2δ(x, y) (2.40)

where we have used the identities βc = εLc − β̂I∂ILc and ωI = ∂ILc − AIJ β̂J . Notice

the appearance here of γI
J = ∂Iβ

J , which is the anomalous dimension matrix for the

operators OI .

Combining these, we find an identitiy which will play an important role in our

analysis of the c-theorem, viz.

i〈T µµ(x) T ρρ(y)〉 − i〈Θ(x) Θ(y)〉 + 2〈T µµ(x)〉 δ(x, y) − βI∂Iβ
J 〈OJ(x)〉 δ(x, y)

= 1
2
βI∂IβcRδ(x, y) + β̃cD

2δ(x, y) (2.41)

where β̃c = βc + βIωI as defined in (2.28). Notice that requiring finiteness of this

identity between renormalised Green functions implies the same consistency condition

previously derived in (2.29) from finiteness of the VEV 〈T µµ〉 itself.

Finally, it is important for what follows to see how the β̃c terms have arisen here

as a result of the Weyl variation of the Ricci scalar (see appendix A). This is despite

the fact that the integral of R over the whole spacetime is a topological invariant in

two dimensions, which implies that its Weyl variation vanishes. To see this explicitly,

note that under the Weyl rescaling δgµν = 2σgµν , the Ricci scalar transforms in n

dimensions as δR = 2σR + 2(n− 1)D2σ. Then, using (2.15),

δ

δgµν

∫
dnx
√−g R =

√−g Gµν , (2.42)

where Gµν is the Einstein tensor, and so

δ

δσ

∫
dnx
√−g R =

(
1− n

2

)√−g R . (2.43)

which indeed vanishes when n = 2.
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3 The Local Renormalisation Group and Weyl Consistency

Conditions

We now come to the renormalisation group itself and derive the RGEs for the two-point

Green functions which play a central role in the analysis of the c-theorem. We also

develop the more algebraic approach to the local RGE and anomalous Ward identities

for Weyl symmetry anticipated in section 1.3. In this section, we present these results

specialised to two dimensions, though the same principles, and many of the general

formulae, apply equally to the four-dimensional generalisation.

3.1 Diffeomeorphism and anomalous Weyl Ward identities

We now consider the relations amongst two-point Green functions which follow from

the (anomalous) symmetries of the theory. First, consider invariance under diffeo-

morphisms. From the transformations of the metric tensor gµν and the scalar local

couplings gI(x), we have the diffeomorphism Ward identity (see [4, 17]),

∆vW =

∫
d2x

(
− (Dµvν +Dνvµ)

δ

δgµν
+ vµ∂µg

I δ

δgI

)
W = 0. (3.1)

This gives the Green function identities which express the conservation of the energy-

momentum tensor. We find the natural result,

Dµ〈Tµν〉 = 0 , (3.2)

while, less trivially, for the two-point functions we also determine the contact terms

implied by our definitions in section 2.3 [17]:

Dµi〈Tµν(x) Tρσ(y)〉 = − (〈Tρσ〉Dνδ(x, y) +Dρ (〈Tνσ〉δ(x, y)) +Dσ (〈Tρν〉δ(x, y)) ) ,

Dµi〈Tµν(x) OI(y)〉 = − (〈OI(x)〉Dνδ(x, y) ) . (3.3)

For future use, note that on an n-dim homogeneous space (including flat space)

where 〈Tµν〉 = (1/n)〈T λλ〉gµν with 〈T λλ〉 constant, we can define a “conserved” two-

point function by

i〈Tµν(x) Tρσ(y)〉c = i〈Tµν(x) Tρσ(y)〉+ 1

n
〈T λλ〉 (gµνgρσ + gµρgνσ + gµσgνρ) δ(x, y) , (3.4)

such that7

Dµi〈Tµν(x) Tρσ(y)〉c = 0 . (3.5)

7Also note the relation for the traces,

i〈Tµµ(x) T ρρ(y)〉c = i〈Tµµ(x) T ρρ(y)〉+ (n+ 2)〈Tλλ〉
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The anomalous scale Ward identities for the renormalised Green functions in sec-

tion 2.3 may be derived more directly by differentiation of the corresponding anomaly

equation for the VEV 〈T µµ〉 with respect to the metric and the position-dependent

couplings, which in the local RG approach act as sources for the dimension 2 operators

OI(x). To see this, start from the trace anomaly (2.23), (2.24) for 〈T µµ〉, but keeping

the terms of O(∂µg
I) which are essential for the renormalisation of the higher-point

Green functions, viz.

〈T µµ〉 − 〈Θ〉 = A , (3.6)

where in two dimensions,

A = 1
2
βcR− βΛ +Dµ

(
ωI∂

µgI
)
. (3.7)

This reflects the anomalous variation of the generating functional under a Weyl rescal-

ing δgµν = 2σgµν , for which (in 2 dimensions; see appendix A for the n-dimensional

formulae)

δR = 2σR + 2D2σ , δD2 = 2σD2 , (3.8)

along with the scaling transformation δOI = 2σOI on the fundamental fields in the

path integral.

The anomaly equation (3.6) is equivalent to

δW

δσ(y)
− βJ

δW

δgJ(y)
=
√
−g(y)A(y) . (3.9)

A functional derivative w.r.t. gµν(x) now gives

2
δ2W

δgµν(x)δσ(y)
− 2βI

δ2W

δgµν(x)δgI(y)
=
√
−g(x)

√
−g(y)Aµν(x, y) , (3.10)

that is,

i〈Tµν(x) T ρρ(y)〉 − i〈Tµν(x) Θ(y)〉 + 2〈Tµν(x)〉 δ(x, y) = Aµν(x, y) , (3.11)

with8

Aµν(x, y) =
1√
−g(x)

1√
−g(y)

2
δ

δgµν(x)

(√
−g(y)A(y)

)
. (3.12)

8The notation here follows that of [17], except that here since we are using Minkowski signature we

have changed the signs in the definitions of Aµν , BI and H, and also E , F and G in the renormalisation

group equations below. Cµν and CI remain the same as in [17].
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Similarly, differentiating w.r.t. gI(x), we find

δ2W

δgI(x)δσ(y)
− βJ

δ2W

δgI(x)δgJ(y)
− ∂Iβ

J δW

δgJ(y)

√
−g(y) δ(x, y) =

√
−g(y)

δA(y)

δgI(x)
(3.13)

that is,

i〈OI(x) T µµ(y)〉 − i〈OI(x) Θ(y)〉 − ∂IβJ〈OJ(x)〉 δ(x, y) = BI(x, y) , (3.14)

where

BI(x, y) =
1√
−g(x)

δA(y)

δgI(x)
. (3.15)

Contracting (3.11) with gµν(x) and (3.14) with βI , we therefore recover the anoma-

lous Ward identity for the two-point Green function of T µµ, viz.

i〈T µµ(x) T ρρ(y)〉 − i〈Θ(x) Θ(y)〉 + 2〈T µµ(x)〉 δ(x, y)

− βI∂Iβ
J 〈OJ(x)〉 δ(x, y) = H(x, y) (3.16)

where

H(x, y) = gµνAµν(x, y) + βIBI(x, y) (3.17)

=
1√
−g(x)

1√
−g(y)

(
δ

δσ(x)
+ βI

δ

δgI(x)

) (√
−g(y)A(y)

)
(3.18)

Evaluating the anomalous terms Aαβ and BI from (3.7), taking the renormalised

couplings c = Λ = 0 and gI = const., we find

Aµν(x, y) = βc (Gµν + ∆µν) δ(x, y) = βc ∆µνδ(x, y)

BI(x, y) = 1
2
∂IβcRδ(x, y) + ωI D

2δ(x, y) (3.19)

where we have used the fact that the Einstein tensor vanishes in two dimensions. Here,

∆µν = gµνD
2 −DµDν . It follows that

H(x, y) = 1
2
βI∂IβcRδ(x, y) + β̃cD

2δ(x, y) (3.20)

with β̃c = βc + βIωI as before. This recovers (2.41).
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3.2 Renormalisation group and Green functions

The renormalisation group equations follow from the µ independence of the generating

functional, i.e. µ dW/dµ = 0. From (2.10), we then have the fundamental RGE,[
µ
∂

∂µ
+

∫
d2x

(
βI

δ

δgI(x)
+ βc

δ

δc(x)
+ βΛ

δ

δΛ(x)

)]
W = 0 . (3.21)

If we now define the reduced RG operator

D = µ
∂

∂µ
+ βI

∂

∂gI
, (3.22)

using the same shorthand notation explained after (2.10), the fundamental RGE may

be written as

DW = −
∫
d2x
√−gA = −

∫
d2x
√−g

(
1
2
βcR− βΛ

)
, (3.23)

in two dimensions. This is the standard RGE for local sources, with the couplings

themselves generalised to be local functions acting as sources for the corresponding

operators.

We derive the RGEs for the various one and two-point Green functions of interest

by successive differentiation of (3.23) with respect to the relevant sources, in this case

the materic gµν and position-dependent couplings gI . We need the commutators,[
δ

δgµν
,D
]

= 0,

[
δ

δgI
,D
]

= ∂Iβ
J δ

δgJ
, (3.24)

and recall that the anomalous dimension matrix is γ̂I
J = ∂Iβ

J ∂
∂gJ

.

For the one-point functions, or VEVs, we therefore have

D 2√−g
δW

δgµν(x)
= − 2√−g

δ

δgµν(x)

∫
d2y
√−gA , (3.25)

that is,

D〈Tµν〉 = Cµν , (3.26)

with

Cµν(x) = −
∫
d2y
√−gAµν(x, y) = 0 , (3.27)

from (3.19), evaluating in flat spacetime. In the same way,

D 1√−g
δW

δgI(x)
= −∂IβJ

1√−g
δW

δgJ(x)
− 1√−g

δ

δgI(x)

∫
d2y
√−gA (3.28)
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so

D〈OI〉+ γI
J〈OJ〉 = CI , (3.29)

where, again using (3.19), we find,

CI(x) = −
∫
d2y
√−g BI(x, y) = −1

2
∂IβcR . (3.30)

Iterating this procedure, we can deduce the RGEs for the two-point functions.

These will include contributions arising from the counterterms introduced in the pre-

vious section to remove the new divergences which arise at coincident points.

Differentiating twice with respect to the metric, we have

D i〈Tµν(x) Tρσ(y)〉 = Eµν,ρσ(x, y) , (3.31)

where

Eµν,ρσ(x, y) = − 2√
−g(x)

2√
−g(y)

δ

δgµν(x)

δ

gρσ(y)

∫
d2z
√−gA(z) . (3.32)

Evaluating in two dimensions, with the local couplings set to constants, we have

Eµν,ρσ = 0 . (3.33)

Next, we find

D i〈Tµν(x) OI(y)〉+ γI
J i〈Tµν(x) OJ(y)〉 = Fµν,I(x, y) , (3.34)

where we define

Fµν,I(x, y) = − 2√
−g(x)

1√
−g(y)

δ

δgµν(x)

δ

δgI(y)

∫
d2z
√−gA(z) . (3.35)

Then, using

δ

δgµν(x)

δ

δgI(y)

∫
d2x
√−g

(
1
2
βcR− βΛ

)
=
√
−g(x)

√
−g(y)1

2
∂Iβc (Gµν + ∆µν) δ(x, y) ,

(3.36)

and setting Gµν = 0, we have

Fµν,I(x, y) = −∂Iβc ∆µνδ(x, y) . (3.37)
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Finally, for the two-point functions of the operators OI we find, iterating the commu-

tator (3.24),

D i〈OI(x) OJ(y)〉+ γI
Ki〈OK(x) OJ(y)〉+ γJ

Ki〈OI(x) OK(y)〉+ ∂I∂Jβ
K〈OK〉δ(x, y)

= GIJ(x, y) , (3.38)

with

GIJ(x, y) = − 1√
−g(x)

1√
−g(y)

δ

δgI(x)

δ

δgJ(y)

∫
d2z
√−gA(z) . (3.39)

Here, using

δ

dgI(x)

δ

δgJ(y)

∫
d2x
√−g

(
1

2
βcR− βΛ

)
=
√
−g(x)

√
−g(y)

(
1
2
∂I∂Jβc R + χIJD

2
)
δ(x, y) ,

(3.40)

we find

GIJ(x, y) = −1
2
∂I∂JβcRδ(x, y)− χIJD2δ(x, y) . (3.41)

3.3 Weyl consistency conditions

Combining these RGEs for the two-point Green functions with the anomalous Ward

identities (3.11) and (3.14) gives rise to important consistency relations amongst the

renormalisation group functions introduced in section 2.

First, from (3.11) we have

Di〈Tµν(x) T ρρ(y)〉 − Di〈Tµν(x) Θ(y)〉+ 2D〈Tµν(x)〉 δ(x, y) = DAµν(x, y) . (3.42)

Noting that Aµν has no explicit µ dependence, and applying the RG equations (3.26),

(3.31) and (3.34), we readily find

LβAµν(x, y) = Eµν,ρσ(x, y)gρσ(y)−Fµν,I(x, y)βI + 2Cµν(x)δ(x, y) . (3.43)

In the same way, from (3.14) we have

Di〈OI(x) T µµ(y)〉−Di〈OI(x) Θ(y)〉−D
(
∂Iβ

J〈OJ(x)〉
)
δ(x, y) = DBI(x, y) , (3.44)

from which, using (3.29), (3.34) and (3.38), we derive

LβBI(x, y) = gµν(y)Fµν,I(y, x)− GIJ(x, y)βJ − ∂IβJCJ(x)δ(x, y) , (3.45)

where LβBI ≡ βJ∂JBI + ∂Iβ
JBJ .
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Finally, although since it is simply obtained by appropriate contractions with gµν
and βI from (3.11) and (3.14), for completeness we can apply the RG operator directly

to the Ward identity (3.16)),

Di〈T µµ(x) T ρρ(y)〉 − Di〈Θ(x) Θ(y)〉+ 2D〈T µµ(x)〉 δ(x, y)

− D
(
βI∂Iβ

J 〈OJ(x)〉
)
δ(x, y) = DH(x, y) (3.46)

to find

LβH(x, y) = gµν(x)Eµν,ρσ(x, y)gρσ(y)− GIJ(x, y)βIβJ

+ 2gµν(x)Cµν(x)δ(x, y)− βI∂IβJCJ(x)δ(x, y) . (3.47)

This of course follows from the two identities above, given the definition (3.18) of H in

terms of Aµν and BI .

The identities (3.43) and (3.45) are quite general, and not in an essential way

restricted to two dimensions as considered in this section. They provide the key Weyl

consistency conditions which as we shall see are intimately related to the c-theorem

and its potential generalisations.

To identify these conditions in two dimensions, we now substitute the explicit

expressions given in sections 3.1 and 3.2 for the functions appearing in (3.43), (3.45).

In this case, we see immediately that (3.43) is merely an identity, with no information.

From (3.45), we have

Lβ
(

1
2
∂IβcRδ(x, y) + ωID

2δ(x, y)
)

= −gµν (∂Iβc∆µνδ(x, y))

+
(

1
2
∂I∂JβcRδ(x, y) + χIJD

2δ(x, y)
)
βJ + ∂Iβ

J
(

1
2
∂JβcRδ(x, y)

)
. (3.48)

Collecting terms, we see that the coefficient of the curvature R vanishes identically.

From the coefficient of D2δ(x, y), however, we find the crucial relation for the RG flow

of the anomaly coefficient βc,

∂Iβc − χIJβJ + LβωI = 0 , (3.49)

as already encountered in (2.27). As for the contracted form,

βI∂I β̃c = χIJβ
IβJ , (3.50)

previously derived in (2.30), this evidently arises directly from the RG relation (3.47)

for H(x, y).
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3.4 Local RGE and Weyl consistency conditions

An elegant way to summarise the essential results of this section [9] is to introduce the

following variation operators for Weyl transformations and RG flows:

∆W
σ = 2

∫
d2x σ(x)gµν

δ

δgµν(x)

∆β
σ =

∫
d2x σ(x)βI

δ

δgI(x)
. (3.51)

where recall a Weyl transformation is gµν → Ω2gµν with Ω = eσ. Then,(
∆W
σ −∆β

σ

)
W =

∫
d2x
√−g

[
σ(x)

(
1
2
βcR− 1

2
χIJ∂µg

I∂µgJ
)
− ∂µσ(x)

(
wI∂

µgI
)]

.

(3.52)

First, consider the restricted case where the parameter σ is constant, when the final

total derivative term DµZ
µ = Dµ

(
wI∂

µgI
)

does not contribute. In this case, (3.52) is

equivalent to the standard renormalisation group equation (3.21) with local sources,[
µ
∂

∂µ
+

∫
d2x

(
βI

δ

δgI(x)
+ βc

δ

δc(x)
+ βΛ

δ

δΛ(x)

)]
W = 0 . (3.53)

together with the dimensional equation (for theories with only marginal operators),[
µ
∂

∂µ
+ Ω

∂

∂Ω

]
W = 0 . (3.54)

Recall that for Weyl transformations,

Ω
∂

∂Ω
= 2

∫
d2x gµν

δ

δgµν
. (3.55)

For local Weyl transformations, corresponding to spacetime-dependent σ(x), the

identity (3.52) carries the full content of the local renormalisation group. Taking the

functional derivative δ/δσ(x) of (3.52), we find the local generalisation of (3.53) and

(3.54): [
Ω(x)

δ

δΩ(x)
− βI δ

δgI(x)
− βc

δ

δc(x)
− βΛ

δ

δΛ(x)

]
W = DµZ

µ , (3.56)

Evaluating, we recover the now familiar expression for the trace of the energy-

momentum tensor:

T µµ = βIOI + 1
2
βcR− 1

2
χIJ∂µg

I∂µgJ +Dµ

(
wI∂

µgI
)
, (3.57)
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that is, the anomaly equation (3.9) of the previous section. It is therefore clear that

subsequent derivatives wrt gµν and gI generate the identities amongst two-point Green

functions involving the energy-momentum tensor trace found there. With (3.54), all

the RGEs for these Green functions can also be deduced from (3.52).

One of the most powerful applications of this formalism, however, is in deriving the

Weyl consistency conditions, which appear to be intimately related to the existence of

the c and a-theorems. In two dimensions, this means determining (2.27), which we first

encountered in the context of a particular renormalisation scheme. In fact, a deeper

understanding reveals these consistency conditions to be fundamentally a consequence

of the abelian nature of Weyl transformations. This method is especially direct and

useful in four dimensions, where the situation is considerably more complicated and

there are many conditions.

Since Weyl transformations are abelian, the commutator of two variation operators

vanishes, that is [
∆W
σ −∆β

σ,∆
W
σ′ −∆b

σ′

]
W = 0 . (3.58)

Evaluating the lhs, we find∫
d2x
√−g (σ′∂µσ − σ∂µσ′)

(
∂µβc − χIJβJ∂µgI + βI∂I

(
wJ∂µg

J
))

, (3.59)

and therefore determine the Weyl consistency condition:

∂Iβc − χIJβJ + LβwI = 0 . (3.60)

Then as before, if we define β̃c = βc + βIwI , we have

∂I β̃c − χIJβJ + (∂IwJ − ∂JwI) βJ = 0 , (3.61)

and so

βI∂I β̃c = χIJβ
IβJ . (3.62)

4 c-Theorem in Two Dimensions

With this understanding of the renormalisation group and anomalous Weyl symmetry

applied to Green functions of the energy-momentum tensor, we are ready to discuss the

derivation of the c-theorem in two dimensions. We present several derivations, each of

which brings some fresh insight and suggests possible ways forward in looking for an

equivalent theorem in four-dimensional QFTs.
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In two dimensional flat space, conservation of the energy-momentum tensor implies

that the two-point Green function takes the form

i〈Tµν(x) Tρσ(0)〉c = ∆µν∆ρσ Ω(t) , (4.1)

where ∆µν = ∂2ηµν − ∂µ∂ν and for spacelike separations, t = 1
2

log(−µ2x2). Note

that Π
(0)
µνρσ = ∆µν∆ρσ is a projection operator onto spin 0 intermediate states. In two

dimensions, this is the only possible Lorentz structure. In contrast, in four dimensions

there is a second projection projector Π
(2)
µνρσ onto spin 2 states. Also notice that,

strictly speaking, we are using the conserved two-point function defined in (3.4) to

justify writing the Green function in terms of the projection operator ∆µν∆ρσ. In fact

the distinction is unimportant here, since the difference only involves contact terms

proportional to delta functions, which do not contribute at the point where we use the

anomalous Ward identities in (4.15) below.

4.1 c-theorem and the spectral function

A very clear way to understand the physical meaning of the c-theorem is to use a spec-

tral function representation of the two-point functions [13–16]. Recall that in general

the spectral function, or Källen-Lehmann, representation of a two-point function of

fields Φ in n dimensions (note that our normalisation of ρ(λ2) differs from the standard

convention by a factor of 2π) is,9

〈0|T Φ(x) Φ(0)|0〉 =

∫ ∞
0

dλ2 ρ(λ2)DF (x;λ2) , (4.2)

where the (positive-definite) spectral function ρ(λ2) is

ρ(λ2) =
∑
n

δ(λ2 −m2
n)|〈0|Φ(0)|n〉|2 , (4.3)

9In n dimensions, the position-space Feynman propagator is

DF (x;m2) =

∫
dnk

(2π)n
e−ik.x

i

k2 −m2 + iε

= θ(x2)
(−i)n−1
(2π)n/2

π

2

m
n
2−1

(
√
x2 − iε)n

2−1
H

(2)
n
2−1

(m
√
x2 − iε)

+ θ(−x2)
1

(2π)n/2
m

n
2−1

(
√
x2 + iε)

n
2−1

Kn
2−1(m

√
−x2 + iε) .
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and DF (x;m2) is the Feynman propagator for a spin 0 field of mass m. In two dimen-

sions, for spacelike separation (x2 < 0), we simply have

DF (x;m2) =
1

2π
K0(m|x|) . (4.4)

where we have used the notation |x| =
√
−x2. We now follow the derivation described

in [13, 14]. The required spectral function representation for the energy-momentum

tensor two-point function can be written in the form

i〈Tµν(x) Tρσ(0)〉c = ∆µν∆ρσ Ω(t)

= ∆µν∆ρσ
i

2π

∫ ∞
0

dλ2 ρ(λ2)K0(λ|x|) , (4.5)

where in two dimensions the dimension of ρ(λ2) is −2.

Carrying out the differentiations we have

〈Tµν(x) Tρσ(0)〉c =
1

2π

∫ ∞
0

dλ2 λ4 ρ(λ2)

[
A(λ|x|)ηµνηρσ + . . .+ E(λ|x|) 1

x4
xµxνxρxσ

]
〈Tµν(x) T ρρ(0)〉c = − 1

2π

∫ ∞
0

dλ2 λ4 ρ(λ2)

[
P (λ|x|)ηµν + Q(λ|x|) 1

x2
xµxν

]
〈T µµ(x) T ρρ(0)〉c =

1

2π

∫ ∞
0

dλ2 λ4 ρ(λ2)R(λ|x|) , (4.6)

where, using the standard Bessel function recursion relations,

z
d

dz
Kν(z)− νKν(z) = −zKν+1(z)

zKν−1(z) + 2νKν(z) = zKν+1 , (4.7)

the important coefficient functions are seen to be remarkably simple:

E(λ|x|) = K4(λ|x|)
Q(λ|x|) = K2(λ|x|)
R(λ|x|) = K0(λ|x|) . (4.8)

The next step is to identify the dimensionless Zamolodchikov F , H and G functions

introduced in section 1.2. It can be shown that up to normalisations these are simply

F =
1

2π

∫ ∞
0

dλ2 ρ(λ2) (λ|x|)4E(λ|x|)

H =
1

2π

∫ ∞
0

dλ2 ρ(λ2) (λ|x|)4Q(λ|x|)

G =
1

2π

∫ ∞
0

dλ2 ρ(λ2) (λ|x|)4R(λ|x|) . (4.9)
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To derive the c-theorem, we now look for a combination C = F + αH + βG with the

property |x|∂C/∂|x| ∼ G. In fact, we can show using the relations (4.7) for the Bessel

functions that

C = F + 2H − 3G (4.10)

satisfies

|x| ∂C
∂|x| = −12G . (4.11)

Dimensional analysis and the non-renormalisation of the energy-momentum tensor

Green functions then implies

|x| ∂C
∂|x| = µ

∂C

∂µ
= −βI ∂C

∂gI
. (4.12)

A similar spectral representation can be written for the two-point Green function

for the operators OI :

i〈OI(x) OI(0)〉 = ∂4ΩIJ(t)

= ∂4 i

2π

∫ ∞
0

dλ2 ρIJ(λ2)K0(λ|x|) , (4.13)

and we define

GIJ =
1

2π
x4

∫ ∞
0

dλ2 ρIJ(λ2) (λ|x|)4K0(λ|x|) . (4.14)

Then from the Ward identity (3.16), noting that the delta function contributions vanish

for the Green functions rescaled by x4, we have

G = GIJβ
IβJ . (4.15)

To summarise, we have proved the c-theorem:

βI∂IC = 12GIJβ
IβJ , (4.16)

where

C =
1

2π

∫ ∞
0

dλ2 ρ(λ2) (λ|x|)4 [K4(λ|x|) + 2K2(λ|x| − 3K0(λ|x|)]

GIJ =
1

2π

∫ ∞
0

dλ2 ρIJ(λ2) (λ|x|)4K0(λ|x|) . (4.17)

The function GIJ is positive and is interpreted as a metric on the space of couplings.

Also note that, because of the hierarchy Kν+4 > Kν+2 > Kν of the (positive definite)

Bessel functions Kν(λ|x|), the C-function itself is also positive.
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This allows a very clear physical interpretation of the c-theorem [13, 14]. First,

write

C =
1

2π

∫ ∞
0

dλ2 ρ(λ2) f(λ|x|) , (4.18)

and

GIJ =
1

2π

∫ ∞
0

dλ2 ρIJ(λ2)h(λ|x|) , (4.19)

where the ‘sampling functions’ f(λ|x|) and h(λ|x|) are given by

f(λ|x|) = (λ|x|)4 (K4(λ|x|) + 2K2(λ|x|)− 3K0(λ|x|)) , (4.20)

and

h(λ|x|) = (λ|x|)4K0(λ|x|) . (4.21)

These are plotted in figure 1. Notice especially how the profile of f(λ|x|), which has the

shape of a smoothed step-function, moves to smaller values of λ as |x| is increased.10

Λ

f HΛxL

ΡIΛ2M

Λ

hHΛxL

Figure 1. The LH figure shows the sampling function f(λ|x|) defining the Zamolodchikov C

function for three values of the scale |x|, superimposed on a sketch of the spectral function

ρ(λ2). As |x| is increased, the sampling function moves towards smaller λ values, progressively

sampling the IR sector of the spectrum. The RH plot shows the corresponding manifestly

positive sampling function h(λ|x|) defining the metric function GIJ .

Now, the spectral function ρ(λ2) measures the density of states at the mass scale λ,

with a typical sketched form superimposed on the sampling function F (λ|x|) in figure

1. So, as |x| is increased, the sampling function f(λ|x|) measures less and less of the

10Note the normalisation of these sampling functions:∫ ∞
0

dλ2 f(λ|x|) = 28 3x−2 ,

∫ ∞
0

dλ2 h(λ|x|) = 27 x−2 .
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high-energy, UV part of the spectrum. We therefore understand why the C function

decreases as we flow into the IR, i.e.

|x| ∂C
∂|x| < 0 (4.22)

We conclude therefore that with the definition (4.18), C(g(|x|) is a measure of the

degrees of freedom in the spectrum at scales & |x|. Evidently, this is a monotonically

decreasing function as we flow into the infra-red.

This construction, with its natural physical interpretation, looks as if it should

generalise straightforwardly to four dimensions. We shall see in section 5 to what extent

this is borne out. First though, we give an alternative, closely related, derivation which

relates C(g) to the RG functions associated with the Weyl anomaly.

4.2 c-theorem and renormalisation group flow

Once again, we start from the general form (4.1) for the two-point function of the

energy-momentum tensor. Taking the Fourier transform, we define

i〈T µµ(x) T ρρ(0)〉c = ∂4Ω(x)

= −
∫

d2k

(2π)2
e−ik.x k2Ω̃TT (t) , (4.23)

where here t = 1
2

log(k2/µ2). Similarly, we define Ω̃IJ by

i〈OI(x) OJ(0)〉 = −
∫

d2k

(2π)2
e−ik.x k2Ω̃IJ(t) . (4.24)

Next, we introduce the Ward identities and renormalisation group equations from

section 3. From the fundamental Ward identity (3.16)

i〈T µµ(x) T ρρ(0)〉 − i〈Θ(x) Θ(0)〉 + . . . = β̃c∂
2δ(x) , (4.25)

where we have omitted the terms involving the VEVs and δ(x, y) with no derivatives,

we deduce the key identity

Ω̃TT − βIβJΩ̃IJ = β̃c . (4.26)

The RGEs (3.31) and (3.38) imply

DΩ̃TT = 0

DΩ̃IJ + ∂Iβ
KΩ̃KJ + ∂Jβ

KΩ̃IK = −χIJ , (4.27)
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that is

∂

∂t
Ω̃TT = LβΩ̃TT ≡ βI∂IΩ̃TT

∂

∂t
Ω̃IJ = χIJ + LβΩ̃IJ (4.28)

These can be solved as usual to express Ω̃TT (t) and Ω̃IJ(t) in terms of the running

couplings gI(t) and anomalous dimensions γI
J(t) = ∂Iβ

J :

Ω̃TT (t) = FTT (g(t))

Ω̃IJ(t) = e
∫ t
0 dt

′ γ(g(t′)

[
F (g(t)) +

∫ t

0

dt′χ(g(t′))e−
∫ t
0 dt” γ(g(t”)

]
, (4.29)

suppressing indices. Expanding to first order around an arbitrary point on the RG

trajectory, we find (as is also obvious from (4.28) directly)

Ω̃TT (t) = FTT (g) + tβI∂IFTT (g) +O(t2)

Ω̃IJ(t) = FIJ(g) + t (χIJ(g) + LβFIJ(g)) +O(t2) , (4.30)

where g is the running coupling at t = 0, i.e. at k2 = µ2.

The anomalous Ward identity (4.26) then gives [13], equating terms of O(1) and

O(t),

FTT − βIβJFIJ = β̃c

βI∂IFTT − βIβJLβFIJ = χIJβ
IβJ , (4.31)

where all functions are evaluated at g(0). The second of these can be rewritten as [13],

βK∂K
(
FTT − βIβJFIJ

)
= χIJβ

IβJ , (4.32)

that is

βI∂I β̃c = χIJβ
IβJ . (4.33)

This is of course the familiar Weyl consistency condition.

The Zamolodchikov F , H and G functions, and then C and GIJ , are defined in

terms of the two-point Green functions through (4.6) and (4.9). Writing in terms of

Ω̃TT and Ω̃IJ and inserting the small t expansions (4.30) under the Fourier integral, we

find [13, 14] after some calculation that

C = 96π
[
FTT + βI∂IFTT

(
−1

2
log(−µ2x2) + const

)
+ . . .

]
GIJ = 8π [χIJ + LβFIJ + . . . ] (4.34)
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Using (4.31), we can write this as

C = 96π
[
β̃c + βIβJFIJ + . . .

]
. (4.35)

This shows that at a fixed point of the renormalisation group, where the βI = 0,

the C function is simply given by βc, i.e.

C(g∗) = 96πβc(g
∗) , (4.36)

while the RG flow of C(g) itself is given by the c-theorem identity

βI∂IC = 12GIJβ
IβJ . (4.37)

Moreover, this construction also shows the role of the Weyl consistency condition, which

by (4.31) describes the flow in a small neighbourhood of an arbitrary point on the RG

trajectory. Precisely, (4.37) reads at lowest order in this expansion,

βK∂K

(
β̃c + βIβJFIJ

)
= βIβJ (χIJ + LβFIJ) , (4.38)

which is just the consistency condition with the intrinsic renormalisation scheme ar-

bitrariness (see footnote 5). Equivalently, notice that the terms proportional to FIJ
cancel, since Lβ

(
βIβJFIJ

)
= βIβJLβFIJ . The Weyl consistency condition therefore

appears as a local approximation to the full c-theorem at an arbitrary point on the RG

trajectory away from the fixed point.

4.3 c-theorem in position space

The derivation of the c-theorem above used a momentum space representation for

the Green functions. Although giving less insight into the physical meaning of the c-

theorem and its relation to the renormalisation group and Weyl consistency conditions,

we can also give a similar construction directly in position space [9].

The key ingredients are, as before, the anomalous Ward identity (4.25) and the

RGEs (3.31) and (3.38) for the Green functions

i〈T µµ(x) T ρρ(0)〉c = ∂4Ω(t)

i〈OI(x) OJ(0)〉 = ∂4ΩIJ(t) , (4.39)
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where t = 1
2

log(−µ2x2). Since in two dimensions, ∂2t = 2πδ(x), we can rewrite these

as

Ω− βIβJΩIJ = −2π β̃c t

DΩ = 0

DΩIJ + ∂Iβ
KΩKJ + ∂jβ

KΩIK = 2π χIJ t . (4.40)

With the usual definition of the C function, some unilluminating algebra using

(4.40), with Ω′ = dΩ/dt, now shows that

C = 96π
(
−1

2
Ω′ + 1

2
Ω′′ − 1

8
Ω′′′
)

= 96π
(
β̃c + aIJβ

IβJ
)
, (4.41)

with aIJ = −1
2
Ω′IJ + 1

2
Ω′′IJ − 1

8
Ω′′′IJ . The metric GIJ is similarly found to be

GIJ = 8π
(

1
2
Ω′′IJ − 1

2
Ω′′′IJ + 1

8
Ω′′′′IJ
)

= 8π (χIJ + LβaIJ) , (4.42)

in clear correspondence with (4.34). The c-theorem follows:

βI∂IC = 12GIJβ
IβJ . (4.43)

Just as in the previous derivation, we see that away from a fixed point the c-theorem

differs from the Weyl consistency condition itself, but with the RG functions β̃c and χ

modified by terms of the form corresponding to the addirion of a finite local counterterm

in the action.

4.4 c-theorem and dispersion relations

We now present a further derivation of the c-theorem using a dispersion relation for the

two-point Green function of T µµ, which will be of particular interest when we discuss

the generalisation to four dimensions. Note that this only proves the ‘weak’ c-theorem,

βUVc − βIRc > 0 , (4.44)

which shows that for an RG flow from a UV to an IR fixed point, βc is less in the

IR. Unlike the previous derivations, however, this does not identify a monotonically

decreasing C function along the flow.
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The central idea is to write a dispersion relation for Π(ω), defined as

i

∫
d2x eik.x 〈T µµ(x) T ρρ(0)〉 = k2Π(ω) , (4.45)

where, to emphasise the analogy with the Kramers-Krönig dispersion relation familiar

from QED, we have written the momentum as kµ = ωk̂µ, where k̂µ is a unit vector. A

similar definition can be given for ΠIJ(ω) in terms of 〈OI OJ〉.

It is important to note that nothing in the following derivation requires there to

be a dynamical ‘dilaton’ field τ(x) coupling to T µµ (or indeed a ‘graviton’ coupling to

Tµν if we considered more general Green functions of the energy-momentum tensor)

in analogy with the photon Aµ(x) coupling to the current Jµ in the QED relation.11

We also present the derivation in full detail making explicit where all the necessary

assumptions on Π(ω) are used, so that we may make a critical assessment of the later

generalisation to four dimensions.

We now make some (standard) assumptions about Π(ω):

1. Π(ω) is analytic in the upper-half complex w-plane, but may have cuts along the

real ω axis. This is a requirement of causality.

2. Π(ω) is bounded at infinity.

3. Π(ω) = Π(−ω). This is a consequence of translation invariance since the two-

point function 〈T µµ(x) T µµ(y)〉 depends only on the magnitude of the separation

|x− y|.
11In the QED case, we consider the vacuum polarisation tensor, i.e. the two-point function of the

conserved electromagnetic current Jµ,

Πµν =
(
k2ηµν − kµkν

)
Π(ω) = 〈Jµ(x) Jν(0)〉

∣∣
F.T.

.

The refractive index n(ω) for photons with frequency ω is identified as

n(ω)− 1 = Π(ω) ,

and satifies the Kramers-Kronig dispersion relation

n(∞)− n(0) = − 2

π

∫ ∞
0

dω

ω
Imn(ω) < 0 ,

which relates the refractive index in the UV and IR limits. The analogy with (4.45) is even closer if

we think of the trace operator Tµµ ∼ ∂µDµ, where Dµ is the dilatation current.
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4. Π(ω∗) = Π(ω)∗, i.e. hermitian analyticity. This is a basic axiom of S-matrix

theory for scattering amplitudes (section 1.3 of [30]), but see [31] for a critique in

curved spacetime.

5. Im Π(ω) > 0, which is a consequence of unitarity and the key element of the

optical theorem (but again see [32] for subtleties, especially in curved spacetime).

T T

C0

C∞
ω

Figure 2. The LH figure shows the two-point function 〈Tµµ T ρρ〉 with the cut giving rise

to Im Π(ω) in (4.53). The RH figure shows the contour in the complex ω-plane used in the

dispersion relation.

Now consider the integral of Π(ω)/ω around the contour shown in figure 2. This

gives ∫
C∞

dω

ω
Π(ω) +

∫
C0

dω

ω
Π(ω) + P

∫ ∞
−∞

dω

ω
Π(ω) = 0 , (4.46)

which implies

Π(∞)− Π(0) = − 1

iπ
P
∫ ∞
−∞

dω

ω
Π(ω) , (4.47)

where the principal part integral is

P
∫ ∞
−∞

dω

ω
Π(ω) =

∫ 0

−∞

dω

ω
Π(ω + iε) +

∫ ∞
0

dω

ω
Π(ω + iε)

=

∫ ∞
0

dω

ω
[Π(ω + iε)− Π(−ω + iε)] . (4.48)

If we now use assumption (3), we have

[ . . . ] = Π(ω + iε)− Π(ω − iε) = disc Π(ω) , (4.49)

with the discontinuity across the cut on the positive real axis. Then using assumption

(4), gives

[ . . . ] = Π(ω + iε)− Π(ω + iε)∗ = 2iIm Π(ω) , (4.50)
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and we find the required dispersion relation,

Π(∞)− Π(0) = − 2

π

∫ ∞
0

dω

ω
Im Π(ω) < 0 . (4.51)

where the final inequality is a consequence of assumption (5).

Finally, from the anomalous Ward identity (2.41) or (3.16), we have

k2Π(ω) = k2
(
βIβJΠIJ(ω)− β̃c

)
− 2βI〈OI〉+ βI∂Iβ

J〈OJ〉 . (4.52)

Evaluating at the UV and IR fixed points at the ends of a RG trajectory (where βI = 0),

we find our final result

βUVc − βIRc =
2

π

∫ ∞
0

dω

ω
Im Π(ω) > 0 . (4.53)

This is the weak c-theorem.

5 Local RGE and Weyl Consistency Conditions in Four Di-

mensions

We now turn to four dimensions and consider the generalisation of the anomalous

Ward identities and renormalisation group equations which underpinned the derivation

of the c-theorem in two dimensions. We begin with the renormalisation of the energy-

momentum tensor and the Weyl consistency conditions.

5.1 Local RGE, trace anomaly and Weyl consistency conditions

In four dimensions, exactly the same principles used in the renormalisation of the

two-dimensional theory in section 2.1 apply but now there are many more possible

counterterms. The action (2.1) generalises to12

S = S0 +

∫
dnx
√−g

(
gIBOI + cBF − aBG− bBH − ΛB

)
(5.1)

12For simplicity, we only display dimension 4 operators OI here, although a full treatment should

also include the dimension 2 operators Oa and global symmetry currents JAµ as discussed in sections

1.3 and 9. For full details, see [8, 9, 27, 28].
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where F , G and H are the curvature terms, which in dimensional regularisation are

taken to be

F = RµνρσRµνρσ −
4

n− 2
RµνRµν +

2

(n− 1)(n− 2)
R2

G =
2

(n− 2)(n− 3)

(
RµνρσRµνρσ − 4RµνRµν +R2

)
H =

1

(n− 1)2
R2 . (5.2)

In four dimensions, F = F4 = CµνρσCµνρσ is the square of the Weyl tensor and G = E4

is the Euler-Gauss-Bonnet density.

The counterterms depending on derivatives of the local couplings have dimension

4 and so may now also contain curvature-dependent terms. A complete independent

set is

ΛB = µ−ε(ΛR + 1
3
eI∂µR∂

µgI + 1
6
fIJR∂µg

I∂µgJ + 1
2
gIJG

µν ∂µg
I∂νg

J

+ 1
2
aIJD

2gID2gJ + 1
2
bIJK∂µg

I∂µgJD2gK + 1
2
cIJKL∂µg

I∂µgJ∂νg
K∂νgL) . (5.3)

It follows that these contribute to contact term divergences in Green functions up

to the four-point 〈OI OJ OK OL〉. We define RG functions corresponding to these

counterterms as described in section 2.1.

The next step is to repeat the calculation of the trace anomaly T µµ following the

method of section 2.2. First, we need the variations of the curvature terms:13

1√−gg
µν δ

δgµν(x)
F (y) = 2F δ(x, y)

1√−gg
µν δ

δgµν(x)
G(y) = 2Gδ(x, y)− 8

(n− 2)
GµνDµDνδ(x, y)

1√−gg
µν δ

δgµν(x)
H(y) = 2Hδ(x, y) +

2

(n− 1)
RD2δ(x, y) , (5.4)

13 More generally, we have the following metric variations of the curvature squared terms, which

will be used in section 7:

1√−g
δ

δgµν(x)

(
RκλρσRκλρσ

)
(y) = 2RµλρσRν

λρσδ(x, y) + 4RµρνσD
ρDσδ(x, y)

1√−g
δ

δgµν(x)
(RρσRρσ) (y) = 2RµρRν

ρδ(x, y) +
(
RµνD

2 − 2RµρD
ρDν + gµνR

ρσDρDσ

)
δ(x, y)

1√−g
δ

δgµν(x)
R2(y) = 2R (Rµν + ∆µν) δ(x, y) .
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and

1√−gg
µν δ

δgµν(x)
Gρσ(y) = −

(n
2
− 1
) (
D2gρσ −DρDσ

)
δ(x, y)

1√−gg
µν δ

δgµν(x)
D2f(y) = D2fδ(x, y)−

(n
2
− 1
)
DµfDµδ(x, y) . (5.5)

for some scalar function f(y). Eventually we find the analogue of (2.23) for the trace

anomaly:

T µµ = βIOI + βcF − βaG− βbH − βΛ +DµZ
µ , (5.6)

with

βΛ = 1
3
χeI ∂

µR∂µg
I + 1

6
χfIJ R∂µg

I∂µgJ + 1
2
χgIJ Gµν ∂

µgI∂νgJ + 1
2
χaIJ D

2gID2gJ + . . . ,

(5.7)

and

Zµ = wI Gµν ∂
νgI + 1

3
∂µ(dR) + ∂µ

(
UID

2gI
)

+ 1
3
YIR∂µg

I + SIJ∂µg
ID2gJ + . . . (5.8)

We have only quoted here the terms which play a role in our discussion of potential

generalisations of the c-theorem. For the full set, including a discussion of which of the

RG functions may be set to zero using the freedom to add finite local counterterms to

the action, see [8, 9].

As before, we define operators ∆W
σ and ∆β

σ corresponding to Weyl and RG varia-

tions. Consistent with the trace anomaly (5.6), these satisfy(
∆W
σ −∆β

σ

)
W =

∫
d4x
√−g [σ(x) (βcF − βaG− βbH − βΛ)− ∂µσ(x)Zµ] , (5.9)

generalising (3.52) to four dimensions. Differentiating wrt sources gµν(x) and gI(x)

then gives anomalous Ward identities for Green functions involving T µµ.

First, we derive the Weyl consistency conditions from the fact that the commutator

of ∆W
σ −∆β

σ vanishes as in (3.58) due to the abelian property of the Weyl transforma-

tions. This gives

8∂Iβa − χgIJβJ = −LβwI
8βb − χaIJβIβJ = Lβ

(
2d+ βIUI

)
≡ Lβ

(
2d̃
)

2χeI + χaIJβ
J = −LβUI

4∂Iβb +
(
χfIJ + χaIJ

)
βJ = Lβ (∂Id+ YI − UI)

χgIJ + 2χaIJ + 2∂Iβ
KχaKJ + βKχbKIJ = LβSIJ

. . . (5.10)
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where we have only quoted those relevant to the two-point Green functions discussed

below. Again, the complete set may be found in [8, 9].

Clearly the first condition involving the coefficient βa of the Euler-Gauss-Bonnet

density in the trace anomaly is a precise analogue of the two-dimensional condition

(3.60) which is implicitly related to the c-theorem. We will investigate in the next sec-

tion whether a similar relation also applies in four dimensions, where it would constitute

an ‘a-theorem’.

We can also look at the possibility of theorems related to the RG flow of the

coefficients βc and βb of the Weyl and Ricci curvatures in the trace anomaly. At first

sight, this does not look promising. The second condition in (5.10) implies βb = O(βI)

so this function vanishes at a fixed point so clearly cannot have a monotonic behaviour.

Notice also that the Weyl consistency conditions do not involve βc. Technically, this

is because the Weyl variation of F vanishes when evaluated in flat space, i.e. there

are no derivative terms in the variation (5.4). This implies that studying two-point

Green functions involving the trace T µµ will not give information on the RG flow of

βa. However, as we shall see, we can still find information on the RG flow of βc from

two-point functions involving Tµν itself rather than its trace.

5.2 Renormalisation group and anomalous Ward identities for Green func-

tions

We now consider the two-point Green functions involving the energy-momentum tensor

and discuss the corresponding Ward identities for anomalous Weyl symmetry and the

renormalisation group equations. The analysis follows that of sections 3.1 and 3.2,

generalising to four dimensions. This will allow us to recover the Weyl consistency

conditions (5.10) directly from the Green functions, which is important in relating

them to potential a, b and c-theorems in four dimensions.

Throughout this section, unlike section 3, we restrict to flat spacetime and all the

expressions quoted for the Green functions and RG functions are to be understood as

evaluated in flat spacetime and with physical couplings set to constants.

First, diffeomorphism invariance, through the conservation equation ∂µTµν = 0,

constrains the form of the two-point function:

i〈Tµν(x) Tρσ(0)〉c = Π(0)
µνρσ Ω(0)(x) + Π(2)

µνρσ Ω(2)(x) , (5.11)

where Π
(0)
µνρσ and Π

(2)
µνρσ are projection operators onto the spin 0 and spin 2 intermediate
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states [13, 14, 16]. In n dimensions,

Π(0)
µνρσ =

1

n− 1
∆µν∆ρσ

Π(2)
µνρσ =

1

2(n− 1)
[−2∆µν∆ρσ + (n− 1) (∆µρ∆νσ + ∆µσ∆νρ)] . (5.12)

Note that in four dimensions, Π
(2)
µνρσ is transverse and traceless, while it vanishes iden-

tically in two dimensions.

Contracting indices, in four dimensions we have

i〈T µµ(x) T ρρ(0)〉c = 3 ∂4 Ω(0)(x) , (5.13)

which involves only the spin 0 factor. To identify the spin 2 contribution, we need

to take a different contraction [14], which will therefore not be determined by the

anomalous Ward identities. In fact, we can show

i〈T µν(x) Tµν(0)〉c − 1
3
i〈T µµ(x) T ρρ(0)〉c = 5 ∂4 Ω(2)(x) . (5.14)

The anomalous Ward identities may be derived exactly as in section 3 by differ-

entiating the Weyl variation equation (5.9) for
(
∆W
σ −∆β

σ

)
W . In this case, see (5.6),

(5.7) and (5.8), the anomaly is

A = βcF − βaG− βbH − βΛ +DµZ
µ , (5.15)

and the derived RG functions Aµν(x, y), BI(x, y), . . .H(x, y) are all defined exactly as

in section 3. We find, with the familiar notation Θ = βIOI and recalling the identities

in section 5.1 and (2.15) for the variation of the curvature terms,

i〈Tµν(x) T ρρ(y)〉 − i〈Tµν(x) Θ(y)〉 + 2〈Tµν(x)〉 δ(x, y) = Aµν(x, y) , (5.16)

where now14

Aµν = 2
3
d∆µν∂

2δ(x, y) . (5.17)

Similarly,

i〈OI(x) T ρρ(y)〉 − i〈OI(x) Θ(y)〉 − ∂IβJ〈OJ(x)〉 δ(x, y) = BI(x, y) , (5.18)

14Notice that there is no ambiguity in this section in taking all the derivatives with respect to x,

since in the flat spacetime limit they are always acting on functions of (x−y). Later, when we consider

curved backgrounds, we need to be careful to act with covariant derivatives appropriate to the points

x or y.
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with

BI(x, y) = UI ∂
4δ(x, y) . (5.19)

Notice that these delta-function contributions to the anomalous Ward identities all

arise here from the total divergence DµZ
µ term in the trace anomaly A. In contrast,

as evident from (5.22) below, such terms do not appear in the RGEs themselves.

As before, we can contract and combine these to find the identity for the two-point

function of the energy -momentum tensor trace,

i〈T µµ(x) T ρρ(y)〉 − βIβJ i〈OI(x) OJ(y)〉 + 2〈T µµ(x)〉 δ(x, y) − βI∂IβJ 〈OJ(x)〉 δ(x, y)

= H(x, y) , (5.20)

with

H(x, y) = 2d̃ ∂4δ(x, y) ≡ 2
(
d+ 1

2
βIUI

)
∂4δ(x, y) . (5.21)

The corresponding relation involving the conserved two-point function i〈T µµ(x) T ρρ(y)〉c
follows immediately from the footnote following its definition in (3.4).

Now consider the renormalisation group equations. In four dimensions, the funda-

mental RGE generalising (3.23) is

DW = −
∫
d4x
√−g (βcF − βaG− βbH − βΛ) . (5.22)

The RGEs for the VEVs are therefore,

D〈Tµν〉 = Cµν = 0 , (5.23)

and

D〈OI〉+ γI
J〈Oj〉 = CI = 0 , (5.24)

evaluating in flat spacetime with constant couplings.

To derive the RGE for 〈Tµν Tρσ〉, we need the following crucial identities for the

metric variations of the curvature terms [13, 14]. Evaluating in the flat-spacetime limit,

in four dimensions, we find

δ

δgµν(x)

δ

δgρσ(y)

∫
d4x
√−gF = Π(2)

µνρσδ(x, y)

δ

δgµν(x)

δ

δgρσ(y)

∫
d4x
√−gG = 0

δ

δgµν(x)

δ

δgρσ(y)

∫
d4x
√−gH = 2

3
Π(0)
µνρσδ(x, y) . (5.25)
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It follows immediately that

D i〈Tµν(x) Tρσ(y)〉 = Eµν,ρσ(x, y) , (5.26)

with

Eµν,ρσ(x, y) = 8
3
βb Π(0)

µνρσδ(x, y) − 4βc Π(2)
µνρσδ(x, y) , (5.27)

and so,

DΩ(0) = −8
3
βbδ(x) , DΩ(2) = −4βcδ(x) . (5.28)

For the remaining Green functions of interest, we find

D i〈Tµν(x) OI(y)〉+ γI
J i〈Tµν(x) OJ(y)〉 = Fµν,I(x, y) , (5.29)

with

Fµν,I(x, y) = −2
3
χeI ∆µν∂

2δ(x, y) , (5.30)

and

D i〈OI(x) OJ(y)〉+ γI
Ki〈OK(x) OJ(y)〉+ γJ

Ki〈OI(x) OK(y)〉+ ∂I∂Jβ
K〈OK〉δ(x, y)

= GIJ(x, y) , (5.31)

with

GIJ(x, y) = χaIJ ∂
4δ(x, y) . (5.32)

5.3 Weyl consistency conditions

With these results in hand, we can now establish the consistency conditions implied by

the RGEs for the anomalous Ward identities (5.16) and (5.18). These follow exactly as

in section 3.4 where we have the two crucial relations,

LβAµν(x, y) = Eµν,ρσ(x, y)gρσ(y)−Fµν,I(x, y)βI + 2Cµν(x)δ(x, y) , (5.33)

and

LβBI(x, y) = gµν(y)Fµν,I(y, x)− GIJ(x, y)βJ − ∂IβJCJ(x)δ(x, y) . (5.34)

Substituting the explicit forms above for the RG functions, we find from (5.33),

equating coefficients of ∂2∆µνδ(x, y),

Lβd = 4βb + χeIβ
I . (5.35)

– 46 –



Similarly, from (5.34), equating coefficients of ∂4δ(x, y), we find

LβUI = −χaIJβJ − 2χeI . (5.36)

Combining these and eliminating χeI leaves

8βb = χaIJβ
IβJ + Lβ

(
2d+ UIβ

I
)
, (5.37)

and together (5.36) and (5.37) reproduce two of the Weyl consistency conditions listed

above in (5.10).

As a final consistency check, we can verify the contracted identity (3.47), viz.

LβH(x, y) = gµν(x)Eµν,ρσ(x, y)gρσ(y)− GIJ(x, y)βIβJ

+ 2gµν(x)Cµν(x)δ(x, y)− βI∂IβJCJ(x)δ(x, y) . (5.38)

With (5.21) for H(x, y), we find directly the relation

Lβd̃ ≡ βi∂I d̃ = 8βb − χaIJβIβJ . (5.39)

We have therefore reproduced some of the Weyl consistency conditions directly

from properties of the two-point Green functions of the energy-momentum tensor in

flat spacetime, opening the way for their use in searching for possible four-dimensional

generalisations of the c-theorem. As noted above, however, these relations involve

only the coefficient of the R2 term in the four-dimensional trace anomaly. The Weyl

consistency condition for the flow of the Euler coefficient βa, which would be of most

interest in the search for a four-dimensional a-theorem, is not accessible to the RGEs

for two-point Green functions in flat spacetime. We return to this issue in section 6.3

below.

6 c, b and a-Theorems in Four Dimensions

We now generalise the various methods that led to the two-dimensional c-theorem to

four dimensions. Here, because of the three curvature terms in the trace anomaly, we

may look for identities for the renormalisation group flow of quantities related to the

coefficients βa, βc and βb of the curvature terms G, F and H respectively, i.e. the

Euler density and squares of the Weyl tensor and Ricci scalar.

However, as we have seen above, there are important differences between two and

four dimensions. It is clear from the decomposition of the Green function 〈Tµν(x) Tρσ(0)〉
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into spin 0 and spin 2 parts that two-point functions in flat spacetime will only give

information on βb and βc.

On the other hand, the Weyl consistency conditions give no constraint on the Weyl

coefficient βc, while the Ricci coefficient βb is O(βI) and so vanishes at a fixed point.

There is, however, a potential a-theorem condition [7, 8],

βI∂I β̃a = 1
8
χgIJβ

IβJ , (6.1)

with β̃a = βa + 1
8
βIwI , but in this case there is no direct positivity constraint from the

two-point functions.

6.1 Spectral functions and the c and b ‘theorems’

The spin 0 and spin 2 projections of the energy-momentum tensor Green function are

defined in (5.11). As in section 4.1, we can write a spectral representation,

Ω(s)(x) =
i

(2π)2

∫ ∞
0

dλ2 λ2 ρ(s)(λ2) (λ|x|)−1K1(λ|x|) , (6.2)

for s = 0, 2 using the four-dimensional Feynman propagator (for spacelike x). The

spectral function ρ(λ2) has dimension 0.

The Green functions x8〈Tµν(x) Tρσ(0)〉 and the contractions which isolate the func-

tions Ω(0) and Ω(2) can be used as before to construct analogues of the Zamolodchikov

F , G and H functions. This construction [13, 14], which is a straightforward generali-

sation of that in section 4.1, is described in detail in appendix C.

We then look for a combination C = F + αH + βG which satisfies |x| ∂C
∂|x| ∼ G

for some constants α and β. However, it turns out that this is only possible in two

dimensions. In fact, the best we can do in general is to define (in n dimensions)

C = F +
(n

2
+ 1
)
H −

(n
2

+ 2
)
G , (6.3)

for which

|x| ∂C
∂|x| = (n− 2)C − 1

2
(n+ 2)(n+ 4)G . (6.4)

This clearly shows the preferred rôle of n = 2.

In four dimensions, therefore, we define the two C(s) functions for s = 0 and s = 2

(related to the βb and βc RG functions respectively) as

C(s) =
1

(2π)2

∫ ∞
0

dλ2

λ2
ρ(s)(λ2)

[
(λ|x|)7 (K5(λ|x|) + 3K3(λ|x|)− 4K1(λ|x|))

]
, (6.5)
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together with

G(s) =
1

(2π)2

∫ ∞
0

dλ2

λ2
ρ(s)(λ2)

[
(λ|x|)7K1(λ|x|)

]
. (6.6)

Similarly, defining the corresponding spectral function ρIJ(λ2) from the Green function

x8〈OI(x) OJ(0)〉, we define

GIJ =
1

(2π)2

∫ ∞
0

dλ2

λ2
ρIJ(λ2)

[
(λx)7K1(λx)

]
. (6.7)

but note that it is only for the spin 0 function that we have the relation

G(0) = 1
9
GIJβ

IβJ . (6.8)

We then have the b and c ‘theorems’ [13, 14] for the spin 0 and spin 2 projections,

βI∂IC
(s) = −2C(s) + 24G(s) , (6.9)

where G(s), but not necessarily the combination 12G(s) − C(s), is positive definite.

Although (6.9) determines the RG flow of the functions C(0) and C(2), we cannot

therefore infer that this flow is monotonic.

Λ

Λ-2 f HΛxL

ΡIΛ2M

Λ

Λ
-2

hHΛxL

Figure 3. The LH figure shows the sampling function f(λ|x|) defining the four-dimensional

Zamolodchikov-like C(s) functions for three values of the scale |x|, superimposed on a sketch

of the spectral function ρ(λ2). As |x| is increased, the sampling function moves towards

smaller λ values, though monotonicity of C(s) is no longer evident. The RH plot shows the

corresponding sampling function h(λ|x|) defining the functions G(s).

To understand the physical content of (6.9), rewrite the C(s) functions in terms of

the integral of the corresponding spin 0 or spin 2 spectral functions with a sampling

function f(λ|x|) as in (4.18) and (4.20), i.e.

C(s) =
1

(2π)2

∫ ∞
0

dλ2

λ2
ρ(s)(λ2) f(λ|x|) , (6.10)
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with

f(λ|x|) = (λ|x|)7 [K5(λ|x|) + 3K3( |x|)− 4K1(λ|x|)] . (6.11)

Notice that because of the dimensional dependence, the power of the prefactor (λ|x|)7 is

greater in this case than the highest order Bessel function K5(λ|x|) (in two dimensions

they were the same). As a result, in four dimensions f(λ|x|) itself has a Gaussian shape

which moves to smaller λ as |x| is increased (similar to the function h(λ|x|) shown in

figure 1), while the full integrand λ−2f(λ|x|) is plotted in figure 3. This shows a

clear difference from the corresponding function in the two-dimensional Zamolodchikov

theorem, and in particular monotonicity as |x| increases is no longer evident.15

We can also define the sampling function h(λ|x|) characterising the rhs of (6.9).

Here,

12G(s) − C(s) =
1

(2π)2

∫ ∞
0

dλ2

λ2
ρ(s)(λ2)h(λ|x|) , (6.12)

where h(λ|x|) is plotted in figure 3. Evidently, this lacks the positivity that would

allow an interpretation (at least for the spin 0 function) as a metric on coupling space.

Nevertheless, although we do not have monotonicity, the relation (6.9) for the RG flow

of the Zamolodchikov-like functions C(s) does in principle provide a detailed probe of

the spectral functions ρ(s)(λ2). The next step is to show how they are related to the βc
and βb anomaly coefficients at fixed points.

Before moving on, we should comment briefly that the construction described here

may be straightforwardly applied to other operators, particularly (anomalous) symme-

try currents Jµ, which do not necessarily appear in the original Lagrangian. The RG

formalism with local sources goes through exactly as we have described here for the

local couplings gI sourcing the operators OI (see [29] for a formal discussion, including

applications to the operator product expansion). Moreover, we can follow the method

described above to define C and G functions from the corresponding spectral func-

tions characterising the two-point functions 〈Jµ Jν〉, and derive an equation analogous

to (6.9) (including in general an anomalous dimension term if Jµ is not conserved)

for the RG flow. These relations would again in principle provide interesting spectral

15The integrals of the sampling functions f(λ|x|) and h(λ|x|) are given here by∫ ∞
0

dλ

λ2
f(λ|x|) = 210 32 ,

∫ ∞
0

dλ

λ2
h(λ|x|) = 0 .

It is a curious feature, whose physical significance is not immediately apparent, that for the particular

combination of C(s) and G(s) appearing on the rhs of the flow equation (6.9), the integral over all

λ2 of h(λ|x|) vanishes, showing that it gives equal and opposite weight to the UV and IR regions as

defined by the scale |x|.
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information on the theory. Of course, such results lack the universality of the energy-

momentum tensor, whose correlation functions probe the entire spectrum of the QFT

and are therefore singularly important in constraining RG flow.

6.2 Renormalisation group flow for the c and b ‘theorems’

The renormalisation group analysis of the C(s) functions follows the same pattern de-

scribed for the two-dimensional case in section 4.2, starting from the RGEs

DΩ(0) = 8
3
βbδ(x) , DΩ(2) = −4βcδ(x) . (6.13)

Full details of the analysis may be found in [13, 14] (see also appendix C). We find, for

the spin 2 function, and with the same notation as section 4.2,

C(2) =
29 32

5

1

(2π)2

[
−20βc − βI∂IF

(2)
TT + O(βI , t)

]
, (6.14)

so this function does indeed reduce to βc at a fixed point. Recall that for free theories,

βc = 1
(4π2)

1
120

(ns + 6nf + 12nv).

However, although we have the relation (6.9) controlling the RG flow of C(2) , and

the result that C(2) is proportional to βc at a fixed point, we cannot infer whether βUVc
is bigger or smaller than βIRc . In fact, examples with both βUVc > βIRc and βUVc < βIRc
are known.16

The results (6.9) and (6.14) may also be obtained using the position space repre-

sentation described in section 4.3. For details of this derivation of the βc-theorem, see

the discussion around eq. (3.22) of [9].

For the C0) function, we can show

C(0) =
29

(2π)2

(
8βb − βI∂IF (0)

TT + O(βI , t)
)

G
(0)
IJ =

27 3

(2π)2

(
χaIJ − LβFIJ + O(βI , t)

)
. (6.15)

16For example, SUSY QCD with Nc = nf breaks the chiral symmetry SU(nf )L × SU(nf )R ×
U(1)V × U(1)X to SU(nf −m)× SU(m)V × U(1)X with (for any m) n2f chiral multiplets. Since the

quarks and squarks form Ncnf chiral multiplets, it is clear that βUVc > βIRc .

SUSY QCD with 3
2Nc ≤ nf ≤ 3Nc is in the conformal window and, exploiting the fact that the

conformal anomaly lies in a supermultiplet with the R symmetry current, supersymmetry allows the

calculation of exact results for βc and also βa in the UV and IR. These show that while βUVa ≥ βIRa
always, ∆βc can change sign, in accordance with our ‘theorem’.

– 51 –



So at this order, before we reach the O(t) term in the expansion of C0), the RG flow

equation

− x∂C
(0)

∂x
= βI∂IC

(0) =
8

3
GIJβ

IβJ − 2C(0) , (6.16)

is satisfied by the vanishing of the rhs, that is

βI∂IF
(0)
TT − βIβJLβFIJ = −χaIJβIβJ + 8βb , (6.17)

or equivalently [13]

βI∂I

(
F

(0)
TT − FIJβIβJ

)
= −χaIJβIβJ + 8βb . (6.18)

Compare this with the Weyl consistency condition (5.39)

βI∂I(2d̃) ≡ Lβ(2d̃) = −χaIJβIβJ + 8βb . (6.19)

The compatibility of (6.18) and (6.19) is assured by the anomalous Ward identity (5.20)

relating the two-point functions 〈T µµ T ρρ〉 and βIβJ〈OI OJ〉.

The ‘βb-theorem’ is therefore linked to a Weyl consistency condition and the two-

point Green functions. However, once again the C(0) function is not monotonic but

exhibits the RG flow determined by (6.9). Moreover, since the Weyl consistency con-

ditions imply βb = O(βI), the function C(0) vanishes at a fixed point. Its usefulness

therefore appears to be limited although, as for the βc-theorem, its RG flow gives

dynamical information on the structure of the spin 0 spectrum.

6.3 Weyl consistency conditions and the a-theorem

The remaining potential generalisation of the Zamolodchikov theorem to four dimen-

sions involves the coefficient βa of the Euler-Gauss-Bonnet density in the trace anomaly.

As we have seen, unlike βc and βb, this cannot be accessed from the two-point Green

functions of the energy-momentum tensor in flat spacetime. This means that the most

obvious source of positivity, and therefore monotonicity of the RG flow, is lost. An

extensive attempt to use two-point functions in curved spacetime where the Euler

characteristic does not vanish, especially on spaces of constant curvature, was made in

[17] and is summarised in the following section.

However, βa does enter the Weyl consistency conditions, where it satisfies a con-

straint which is essentially identical to that for the coefficient of the Euler density in

two dimensions. This is, see (5.10),

8∂Iβa − χgIJβJ = −LβwI , (6.20)
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and so, defining

β̃a = βa + 1
8
βIwI , (6.21)

we have the key RG flow equation [7, 8],

βI∂I β̃a = 1
8
χgIJβ

IβJ . (6.22)

The analogy with the two-dimensional c-theorem is clear. In order to establish

(6.22) as a genuine, monotonic a-theorem, however, we need to show that the RG

function χgIJ is positive definite, as required for it to represent a metric on coupling

space.

Now, although χg itself is not related to a two-point function, a further Weyl

consistency condition from (5.10) relates it to χaIJ , which is related to the Green function

〈OI OJ〉 and is positive. This identity reads,

χgIJ + 2χaIJ + 2∂Iβ
KχaKJ + βKχbKIJ = LβSIJ . (6.23)

Unfortunately, this identity involves also χbIJK , which is related to the three-point

functions 〈OI OJ OK〉 for which there is no obvious positivity constraint. However, as

emphasised recently in [28], these are of O(βI) so if they are sufficiently small, as may

be expected in the vicinity of a fixed point, χgIJ coud still inherit the positivity property

of χaIJ in this limited region. A general proof of positivity for χgIJ nevertheless appears

to be out of reach, although it has been calculated to high order in numerous examples

and no counter-example has been found.17 It therefore remains a valid conjecture that

χgIJ is positive and (6.22) is indeed a monotonic a-theorem.

17The importance of the definition β̃a including the wI contribution term is evident in pure Yang-

Mills theory. In perturbation theory, we have [8, 23],

βa(g) = βa(0) + 1
8

β1
(4π)6

nvg
4 +O(g6) ,

where β0, β1 are the usual beta functions coefficients, and βa(g) increases as we flow away from the

UV fixed point. However, β̃(g) decreases, since including the wI correction,

β̃a(g) = βa(0)− 1
4

β0
(4π)6

nvg
2 +O(g4) .
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7 Local RGE and Maximally Symmetric Spaces

As we have seen, the two-point Green functions of the energy-momentum tensor in flat

spacetime does not yield information about the coefficient βa of the Euler-Gauss-Bonnet

density in the trace anomaly and so does not allow the derivation of a conjectured a-

theorem in four dimensions. Since two-point Green functions are the most obvious

source of the positivity conditions which are necessary to prove monotonicity of the

corresponding RG flow, this line of investigation has clearly reached an impasse. A

natural way forward, which was pursued in great detail in [17], is to generalise the

background to a curved spacetime where the Euler characteristic is non-vanishing.

In this section, we consider the Green functions of the energy-momentum tensor

on four-dimensional, maximally symmetric spaces of constant curvature. Here, the

Riemann tensor takes the form Rµνρσ = 1
12
R (gµρgνσ − gµσgνρ), where the Ricci scalar

R is constant. The Ricci tensor is Rµν = 1
4
Rgµν . These spaces are conformally flat, so

F = 0, while the Euler-Gauss-Bonnet curvature G = 1
6
R2 is non-vanishing. Studying

Green functions in this background should therefore yield information on potential

C-functions related to the anomaly coefficient βa.

7.1 Renormalisation group, Weyl consistency conditions and the a-theorem

We begin by revisiting the analysis of the anomalous Ward identities and renormali-

sation group equations for two-point Green functions presented for flat spacetime in

sections 5.2 and 5.3, this time evaluating the necessary RG functions in a constant

curvature background. In particular, we derive the Weyl consistency conditions which

follow from the two-point Green functions in this case. Naturally, these will involve the

coefficient βa, though since G is proportional to R2 it is immediately clear that these

identities will mix the coefficients βa and βb.

The anomalous Ward identities and the RGEs take exactly the form already quoted

in sections 3.1, 3.2 and section 5.2, only the contact term contributionsAµν ,BI , . . . ,GIJ
being different since they depend on the anomaly A and spacetime background. In or-

der to make this section as self-contained as possible, we repeat the essential identities

here, quoting the contact terms evaluated on a maximally symmetric spacetime. To

determine these, we need the following metric variations, which follow from (5.4) and
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the associated footnote, specialised to the case of non-vanishing, constant curvature:

1√−g
δ

δgµν(x)
F = 0

1√−g
δ

δgµν(x)
G = 1

3
R
(

1
4
Rgµν + ∆µν

)
δ(x, y)

1√−g
δ

δgµν(x)
H = 2

9
R
(

1
4
Rgµν + ∆µν

)
δ(x, y) , (7.1)

where as usual ∆µν = gµνD
2 −DµDν . The trace anomaly is

A = βcF − βaG− βbH − βΛ +DµZ
µ , (7.2)

with βΛ and Zµ defined in (5.7) and (5.8).

Beginning with the anomalous Ward identities, we have as usual

i〈Tµν(x) T ρρ(y)〉 − i〈Tµν(x) Θ(y)〉 + 2〈Tµν(x)〉 δ(x, y) = Aµν(x, y) , (7.3)

and with the definition of Aµν (and subsequent contact terms) taken from sections 3.1

and 3.2, we find

Aµν = −2
3
β̄aR∆µνδ(x, y) + 2

3
d
(

1
4
Rgµν + ∆µν

)
δ(x, y)

←−
D 2 , (7.4)

where for brevity we have introduced the temporary notation β̄a = βa + 2
3
βb since, as

noted above, they always appear in this combination in the identities for a maximally

symmetric background. Note that in curved spacetime, we have to be careful in general

to match the connections defining the covariant derivatives to the appropriate spacetime

point. This is implicit in the above notation, where e.g. ∆µν is understood as involving

the covariant derivatives with respect to x. Next, we have

i〈OI(x) T ρρ(y)〉 − i〈OI(x) Θ(y)〉 − ∂IβJ〈OJ(x)〉 δ(x, y) = BI(x, y) , (7.5)

with

BI(x, y) = −1
6
∂I β̄aR

2δ(x, y)−
(

1
4
ωI − 1

3
(∂Id+ YI)

)
RD2δ(x, y) + UID

2δ(x, y)
←−
D 2 .

(7.6)

The contracted identity of course carries no further information, but because of its

relation to the key RG flow equations it is convenient to state directly:

i〈T µµ(x) T ρρ(y)〉 − βIβJ i〈OI(x) OJ(y)〉 + 2〈T µµ(x)〉 δ(x, y) − βI∂IβJ 〈OJ(x)〉 δ(x, y)

= H(x, y) , (7.7)
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with

H(x, y) = −1
6
βI∂I β̄

aR2δ(x, y)−
(
2β̄a − 2

3
d+ βI

(
1
4
ωI − 1

3
(∂Id+ YI)

))
RD2δ(x, y)

+
(
2d+ βIUI

)
D2δ(x, y)

←−
D 2 . (7.8)

Now we come to the renormalisation group equations. For the VEVs, evaluating

on a constant curvature spacetime, we find

D〈Tµν〉 = Cµν = 0 , (7.9)

and

D〈OI〉+ γI
J〈Oj〉 = CI = 1

6
∂I β̄aR

2 . (7.10)

The RGE for the two-point Green function of the full energy-momentum tensor is

D i〈Tµν(x) Tρσ(y)〉 = Eµν,ρσ(x, y) . (7.11)

Here, the full expression for Eµν,ρσ(x, y) is quite complicated [17]. However, for the

application to the Weyl consistency conditions, we only need the contracted expression,

which is more simply obtained from the metric variations in (5.4) and (7.1). In this

case, we find

Eµν,ρσ(x, y)gρσ(y) = 8
3
βb
(
∆µν + 1

4
Rgµν

)
δ(x, y)

←−
D 2 . (7.12)

Note that βa cancels from this expression, the contribution arising solely from the

second term on the r.h.s. of the contracted variation equation for H in (5.4). The

RGEs for the remaining Green functions are straightforwardly derived and we find

D i〈Tµν(x) OI(y)〉+ γI
J i〈Tµν(x) OJ(y)〉 = Fµν,I(x, y) , (7.13)

with

Fµν,I(x, y) = 2
3
∂I β̄aR∆µνδ(x, y)− 2

3
χeI
(

1
4
Rgµν + ∆µν

)
δ(x, y)

←−
D 2 , (7.14)

and

D i〈OI(x) OJ(y)〉+ γI
Ki〈OK(x) OJ(y)〉+ γJ

Ki〈OI(x) OK(y)〉+ ∂I∂Jβ
K〈OK〉δ(x, y)

= GIJ(x, y) , (7.15)

with

GIJ(x, y) = 1
6
∂I∂J β̄aR

2δ(x, y)−
(

1
3
χfIJ − 1

4
χgIJ

)
RD2δ(x, y) +χaIJD

2δ(x, y)
←−
D 2 . (7.16)
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We now have everything we need to analyse the Weyl consistency conditions on a

maximally symmetric spacetime. Recall from sections 3.3 and 5.3 the general identities:

LβAµν(x, y) = Eµν,ρσ(x, y)gρσ(y)−Fµν,I(x, y)βI + 2Cµν(x)δ(x, y) , (7.17)

and

LβBI(x, y) = gµν(y)Fµν,I(y, x)− GIJ(x, y)βJ − ∂IβJCJ(x)δ(x, y) . (7.18)

From (7.17), we can separately equate the coefficients of the independent terms

involving R∆µνδ(x, y), Rgµνδ(x, y)
←−
D 2 and ∆µνδ(x, y)

←−
D 2. The first is simply an identity

involving β̄a with no non-trivial content. The second two give the same identity,

4βb = −χeIβI + Lβd . (7.19)

Unsurprisingly, since this arises from the terms involving only derivatives, this repro-

duces one of the consistency relations already found in flat spacetime.

Then, from (7.18), equating coefficients of R2δ(x, y), RD2δ(x, y) and D2δ(x, y)
←−
D 2,

we again find the first is merely an identity involving β̄a, while the second and third

conditions are respectively

Lβ
(

1
4
ωI − 1

3
(∂Id+ YI)

)
= 2

3
χeI − 2∂I β̄a +

(
1
4
χgIJ − 1

3
χaIJ
)
βJ , (7.20)

and

LβUI = −2χeI − χaIJβJ . (7.21)

Again, the final relation arising from the purely derivative terms reproduces a flat space

identity.

The new relation arising from working in curved spacetime can be simplified by

combining (7.20) and (7.21) to eliminate χeI . Rearranging, this gives

∂I
(
8βa + 4

3
βb
)

+ Lβ
(
ωI − 4

3
(∂Id+ YI − UI)

)
=
(
χgIJ − 4

3

(
χfIJ + χaIJ

))
βJ . (7.22)

We recognise this as a linear combination of the two Weyl consistency conditions in

(5.10) for ∂Iβa and ∂Iβb. As anticipated, because G = 1
6
R2 for a maximally symmetric

spacetime, this construction is unable to distinguish the Weyl consistency conditions

involving βa and βb.

Contracting with βI , or equivalently using directly the consistency relation

LβH(x, y) = gµν(x)Eµν,ρσ(x, y)gρσ(y)− GIJ(x, y)βIβJ

+ 2gµν(x)Cµν(x)δ(x, y)− βI∂IβJCJ(x)δ(x, y) , (7.23)
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we can write the following identity:

βI∂IB̃a = G̃IJβ
IβJ , (7.24)

where we define B̃a = β̃a + 2
3
β̃b with

β̃a = βa + 1
8
βIωI

β̃b = βb − 1
4
βI (∂Id+ YI − UI) , (7.25)

and

G̃IJ = 1
8
χgIJ − 1

6
χfIJ − 1

6
χaIJ . (7.26)

The identity (7.24) is the main result of this section. It shows clearly how the Weyl

consistency relation for βa is obtained from two-point Green functions on a maximally

symmetric spacetime, which would be a key step in deriving a four-dimensional a-

theorem on such backgrounds. On the lhs, notice that although the identity necessarily

involves both β̃a and β̃b, we see from (7.19) that βb is itself O(βI), so at a fixed point B̃a

reduces simply to βa, as we would wish for an a-theorem. On the rhs, G̃IJ is given by

the three terms of O(∂gI∂gJ) in the contribution βΛ to the trace anomaly, which in turn

determine the renormalisation group equation (7.16) for the two-point Green function

〈OI(x) OJ(y)〉. This would of course be the natural origin of the metric on the space

of couplings required for the a-theorem although, as usual for the Weyl consistency

conditions, at this stage there is no direct proof of positivity of G̃IJ itself.

7.2 RG flow of 〈T µµ〉 on maximally symmetric spaces

An alternative approach to finding a four-dimensional generalisation of Zamolodchikov’s

c-theorem is to follow the original suggestion by Cardy [12], developed further by Forte

and Latorre in [18], and define a conjectured C-function as the trace of the energy-

momentum tensor on a background Euclidean space of constant curvature, either the

sphere Sn or hyperboloid Hn in n-dimensions. Since on such maximally symmetric

spaces,

〈Tµν(x)〉 = − 1
n
C(g)ρngµν(x) , (7.27)

where ρ is an inverse length scale characterising the curvature R = ±n(n − 1)ρ2, we

can identify the constant, dimensionless C-function as C(g) = −(1/ρn)〈T µµ〉.

Notice also that integrating the trace anomaly on the sphere and evaluating at

an RG fixed point βI = 0, the coefficient βa of the Euler-Gauss-Bonnet density G is
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isolated and we have, in four dimensions:

C(g)
∣∣∣
βI=0

= − 3

8π2

∫
S4
d4x
√
g 〈T µµ〉

∣∣∣
βI=0

= 12βaχ(S4) , (7.28)

where χ(Sn) is the Euler characteristic of Sn.

We now use the anomalous Ward identities and RG equations derived in sections

3.1 and 3.2 to derive the RG flow of this function C(g). First, we can consider the

response of C(g) to a change in the curvature scale ρ or equivalently, since

ρ
∂

∂ρ
= 2

∫
dny gρσ

δ

δgρσ(y)
, (7.29)

to a Weyl transformation of the metric. Now, according to (2.31), the metric derivative

of Tµν(x) produces the renormalised two-point function 〈Tµν(x)Tρσ(y)〉, we find

ρ
∂C

∂ρ
=

1

ρn

∫
dny
√
g 〈T µµ(x) T ρρ(y)〉+ 2C

=
1

ρn

∫
dny
√
g (〈Θ(x) Θ(y)〉 − H(x, y))− 1

ρn
βI∂Iβ

J〈OJ〉 , (7.30)

where we have used the identity (3.16) in the second step (remembering that here we

are working in Euclidean space). Recall from (3.20) that H(x, y) = gµνAµν + βIBI .

Now, since no other scale is present in the VEV itself, unlike the two-point Green

functions which depend on the geodesic distance between the two points, we have

C = C(g;µ/ρ), where µ is the renormalisation scale. Dimensional analysis then implies(
µ
∂

∂µ
+ ρ

∂

∂ρ

)
C(g;µ/ρ) = 0 . (7.31)

The RGE (3.26) for the VEV 〈T µµ〉 gives

DC ≡
(
µ
∂

∂µ
+ βI

∂

∂gI

)
C = −gµνCµν , (7.32)

where Cµν = −
∫
dny
√
gAµν(x, y). Combining (7.31) and (7.32) we find

βI
∂C

∂gI
= ρ

∂C

∂ρ
− gµνCµν . (7.33)

Finally, using (7.30) and noting the cancellation of the factors involving the contact

term Aµν , we find the following key identity [17] for the RG flow of C(g):

βI
∂C

∂gI
=

1

ρn

∫
dny
√
g 〈Θ(x) Θ(y)〉− 1

ρn

∫
dny
√
g βIBI(x, y)− 1

ρn
βI∂Iβ

J〈OJ〉 . (7.34)
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Notice that the derivative terms in BI(x, y) vanish under the integral, so from (3.19)

and (7.6) we simply have in two dimensions∫
dny
√
g βIBI(x, y) = 1

2
βI∂IβcR , (7.35)

and in four-dimensional maximally symmetric spaces,∫
dny
√
g βIBI(x, y) = −1

6
βI∂I β̄aR

2 . (7.36)

There are of course many ways of deriving (7.34)18 and many equivalent expressions

for the r.h.s. which can be obtained using the identities in section 3. For example, in

terms of the conserved two-point function 〈Tµν(x) Tρσ(y)〉 defined in (3.4), we have

βI
∂C

∂gI
=

1

ρn

∫
dny
√
g 〈Tµν(x) Tρσ(y)〉c − nC −

1

ρn
gµνCµν , (7.37)

where, as we have seen in (3.19) and (7.9), Cµν = 0 in two and four dimensions.

The idea behind interpreting (7.34) as a C-theorem is based on attempting to

exploit the positivity of the two-point Green function 〈Θ(x) Θ(y)〉 for x 6= y to prove

monotonicity of the RG flow of C(g) [18]. However, the contact terms necessarily

present in (7.34) prevent this conclusion.

It is of course true that the form of the extra terms involving BI and 〈OJ〉 in (7.34)

depends on the definition (2.32) of the renormalised two-point function. The key point,

however, is that whatever prescription is chosen to redistribute contact terms between

the renormalised Green function and the remainder, the r.h.s. as a whole does contain

18For example, as a consistency check on (7.34), writing C(g) as the sum of its two components,

C(g) = −(1/ρn)
(
βI〈OI〉+A

)
, and recalling that βI∂I =

∫
dny βIδ/δgI(y) acting on the VEV 〈OI〉

produces the two-point function, we see that (7.34) is actually just the sum of two obvious identities:

βI∂I
(
βJ〈OJ〉

)
= −

∫
dny
√
g βIβJ〈OI(x) OJ(y)〉+ βI∂Iβ

J〈OJ〉 ,

βI∂IA =

∫
dny
√
g βIBI(x, y) .

The second is just the definition of BI(x, y) and has no dynamical content, while the first is simply

the definition of the two-point Green function 〈OI(x) OJ(y)〉.
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contact terms proportional to δ(x, y) appearing under the integral, which necessarily

contribute to the RG flow equation for C(g). 19

Another difficulty in attempting to establish monotonicity of the flow of C(g) arises

if we write a spectral expansion of 〈Θ(x) Θ(y)〉 on the sphere or hyperboloid. (For a

detailed account see [17], following [16], [18].) The UV behaviour of the Green function

requires that its dispersion relation requires a subtraction term, whose sign is not

constrained by unitarity as is the case for the spectral function itself.

Further discussion of the problems with this approach may be found in [17] and here

in section 10. Ultimately though, we see that even working on a maximally symmetric

space where the VEV of the energy-momentum tensor is sensitive to the coefficient

βa of the Euler-Gauss-Bonnet term in the anomaly, the original Cardy suggestion of

identifying a higher-dimensional C-function with the trace of the energy-momentum

tensor is not realised. The corresponding RG flow equation (7.34) for C(g) does not

exhibit the required monotonicity.

7.3 Zamolodchikov functions and the search for a C-theorem on the sphere

The natural next step is therefore to attempt to repeat the Zamolodchikov construction

of a C-function from the two-point Green functions of the energy-momentum tensor,

along the lines of sections 4 and 6, this time evaluated on a maximally symmetric

curved space background.

7.3.1 Geometry of constant curvature spaces

First we need some geometrical preliminaries. (For further details, see [17], especially

section 5.) Since we are interested in two-point Green functions, a basic rôle is played

by the geodesic interval σ(x, y) = 1
2

∫ 1

0
dτgµν ẋ

µẋν along the geodesic xµ(τ) joining

xµ(0) = xµ and xµ(1) = yµ. This is a bi-scalar (i.e. a scalar at both x and y) and

19To make this explicit, if we refer to (2.38) where we relate the renormalised and bare two-point

Green functions in two dimensions, we see that (7.34) can be rewritten as

βI∂IC = lim
ε→0

∫
d2y
√
g 〈Θ̂(x) Θ̂(y)〉B ,

with Θ̂ = β̂IOI . The r.h.s. is manifestly independent of any renormalisation prescription for the two-

point function, but clearly the bare Green function has contact terms which give a finite, non-singular

contribution under the integral.
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satisfies

gµν∂
µσ∂νσ = 2σ . (7.38)

In flat space, σ(x, y) = 1
2
(x − y)2. We also need the bi-vector Iµρ(x, y) which parallel

transports vectors from y to x along the geodesic xµ(τ). This is defined by

σνDνI
µ
ρ(x, y) = 0 , Iµρ(x, x) = δµρ , (7.39)

and satisfies notably

∂µσ(x, y)Iµρ(x, y) = −σ(x, y)
←−
∂ρ . (7.40)

Now, for spaces of constant curvature we may write σ(x, y) = 1
2ρ2
θ2(x, y), so that

on the sphere,20 θ(x, y) (0 ≤ θ ≤ π) is the angular separation of the points x and y

while ρ is the inverse radius. A convenient basis in which to expand bi-tensors, such

as the two-point Green function of the energy-momentum tensor, is then given by the

unit vectors x̂µ and ŷρ at x and y respectively, together with the parallel transport

bi-vector Iµρ(x, y), where

x̂µ =
1√
2σ
∂µσ =

1

ρ
∂µθ , ŷρ =

1√
2σ
σ
←−
∂ρ =

1

ρ
θ
←−
∂ρ , (7.41)

with

x̂µIµρ(x, y) = −ŷρ , Iµ
ρ(x, y)ŷρ = −x̂µ . (7.42)

We also need their derivatives [17], which for the sphere are

Dµx̂µ = ρ cot θ (gµν − x̂µx̂ν) , ∂µŷρ = −ρ csc θ (Iµρ + x̂µŷρ)

DµIνρ = ρ tan 1
2
θ (gµν ŷρ + x̂νIµρ) . (7.43)

7.3.2 Two-point Green functions and conservation identities

In this basis, we can expand the two-point Green functions of the energy-momentum

tensor in the following form:

〈Tµν(x) Tρσ(y)〉c = R(θ)x̂µx̂ν ŷρŷσ + S(θ) (Iµρx̂ν ŷσ + µ↔ ν, ρ↔ σ)

+ T (θ) (IµρIνσ + IµσIνρ) + U(θ) (x̂µx̂νgρσ + ŷρŷσgµν) + V (θ)gµνgρσ , (7.44)

20For the corresponding results throughout this section for a hyperbolic space, see [17]. The only

essential change is the substitution of hyperbolic for trigonometric functions of θ in all the formulae

for the two-point Green functions.
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where R, S, . . . V are independent functions of θ. The contracted Green functions are

〈Tµν(x) T ρρ(y)〉c = P (θ)x̂µx̂ν +Q(θ)gµν , (7.45)

where, using the results above in n dimensions, we find

P = R− 4S + nU , Q = 2T + U + nV , (7.46)

and

〈T µµ(x) T ρρ(y)〉c = N(θ) , (7.47)

with

N = P + nQ . (7.48)

Comparing with the flat space expansions (4.6) in section 4.1, we see that the Zamolod-

chikov functions F , H and G are to be identified, up to dimension dependent rescalings

involving factors of (n− 1), with the coefficients R, P and N respectively.

The next step in the Zamolodchikov programme is to apply the conservation equa-

tion,

Dµ〈Tµν(x) Tρσ(y)〉c = 0 . (7.49)

Taking the covariant derivatives using the identities (7.43), and setting the coefficients

of the terms x̂νgρσ, Iνρŷσ + Iνσŷρ and x̂ν ŷρŷσ to zero, gives three identities:

(R− 2S + U)′ = −(n− 1)
(
cot θ R + 2 tan 1

2
θ S
)
− 2 cot 1

2
θ S + 2 csc θ U

(S − T )′ = −n
(
cot θ S + tan 1

2
θ T
)

+ csc θ U

(U + V )′ = 2 csc θ S − 2 tan 1
2
θ T − (n− 1) cot θ U , (7.50)

where R′(θ) = dR/dθ, etc. The flat space limit (σ fixed with ρ → 0) corresponds to

θ → 0, and in this limit it is readily checked that these combinations are precisely those

found from the conservation identities in the original Zamolodchikov construction.

In two dimensions, these identities can be rearranged giving two equations which

involve R, P and N only, viz.

(R + P )′ = −2 cot 1
2
θ R +

(
cot 1

2
θ + tan 1

2
θ
)
P

(P +N)′ = −
(
cot 1

2
θ − tan 1

2
θ
)
P

(S − T )′ = −1
2

csc θ (R− P ) + 2 tan 1
2
θ (S − T ) , (7.51)

the second of which can also be obtained directly from the conservation equation applied

to the once-traced Green function (7.45).
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7.3.3 The Zamolodchikov C-function on the sphere

We now focus on two dimensions and look for an extension of the flat spacetime c-

theorem to spaces of constant curvature.

The first step is to define rescaled Zamolodchikov functions. As we shall see, it

is natural to use the chord distance
√
s = 2

ρ
sin 1

2
θ rather than the geodesic distance√

2σ = 1
ρ
θ, and in two dimensions we define

F = s2R , H = −s2 P , G = s2N , (7.52)

and make the ansatz

C = F + 2H − 3G , (7.53)

for the C-function, as in flat space.

From the conservation identities (7.51), we readily find

C ′ = −6 cot 1
2
θ G+ 2 tan 1

2
θ H , (7.54)

and

(G−H)′ = 2 cot 1
2
θ G−

(
cot 1

2
θ + tan 1

2
θ
)
H . (7.55)

Now, in the flat space limit, only the term involving the manifestly positive definite

function G would appear on the r.h.s. of (7.54). In curved space, however, this term,

which appears with coefficient cot 1
2
θ, is necessarily accompanied by another term with

coefficient tan 1
2
θ which does not have the required positivity. This in fact turns out

to be quite generic and is the first indication of problems in attempting to establish a

C-theorem in curved space.

To see this directly, note that d/dθ = 1
2

cot 1
2
θ
√
s d/d

√
s, so in terms of the chord

distance √
s
dC

d
√
s

= −12G+ ρ2sH . (7.56)

This is to be compared with the corresponding flat space formula (4.11). The key

difference, of course, is the additional contribution proportional to H on the r.h.s.,

which vanishes in the flat space limit ρ → 0. This means that away from flat space,

the flow of C as the separation scale θ or
√
s is increased is no longer guaranteed to be

monotonic, since there is no general theorem constraining the sign of H. Even in two

dimensions, therefore, the Zamolodchikov proof of the C-theorem fails in curved space.
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Similar results may be proved in n dimensions, and in particular n = 4. The

analysis here is further complicated because the conservation identities do not close on

the functions R, P and N alone. In fact, with the Zamolodchikov combination

C = R− (n+ 2)

2(n− 1)
P − (n+ 4)

2(n− 1)2
N , (7.57)

(see appendix C), we can show

C ′(θ) = − cot 1
2
θ
(

(n+ 2)C + (n+2)(n+4)
2(n−1)2

N
)

+ tan 1
2
θ
(

(n2−10n+8)
4(n−1)

P − n(n−2)
2

U
)
.

(7.58)

However, this derivation also requires the use of an extra relation,

S ′ = − csc θ R− cot
2
θ S + 4 csc θ S , (7.59)

which can be shown to be be a consequence of the explicit representation [17] for the

two-point Green function restricted to spin 0 intermediate states only. Note that in

the flat space limit, the term with coefficient tan 1
2
θ vanishes, while the coefficient of C

becomes (n − 2) for the dimensionless C function rescaled with a factor s2 or sin4 1
2
θ.

This limit may be compared directly with the flat space formulae (6.3), (6.4) and

appendix 6).

Returning to two dimensions, one way to try to retrieve the theorem would be to

redefine C(θ), allowing it to be a linear combination of F , H and G with θ-dependent

coefficients, chosen in such a way as to cancel the unwanted tan 1
2
θ H term on the

r.h.s. of (7.54). This can be done using (7.55), though this also means the coefficient

of G on the r.h.s. becomes θ-dependent. A straightforward calculation shows that

redefining

C = F + 2H − 3G+ f(θ) (G−H) , (7.60)

with

f(θ) = 2
[
1− cot2 1

2
θ log(1 + tan2 1

2
θ)
]
, (7.61)

this new C-function satisfies

C ′ = −6 cot 1
2
θ (1 + g(θ)) G , (7.62)

with

g(θ) = −1

3

[
1 + (1− cot2 1

2
θ) log(1 + tan2 1

2
θ)
]
, (7.63)

which is of O(θ2).

– 65 –



Alternatively, in terms of the chord distance,

√
s
dC

d
√
s

= −12
(
1 + g(

√
s
)
G , (7.64)

where

C = F + 2H − 3G+ f(
√
s) (G−H) , (7.65)

with

f(
√
s) = 2

[
1 +

4

ρ2s

(
1− ρ2s

4

)
log

(
1− ρ2s

4

)]
, (7.66)

and

g(
√
s) = −1

3

[
1 +

4

ρ2s

(
1− ρ2s

2

)
log

(
1− ρ2s

4

)]
, (7.67)

where both f and g are O(ρ2s) and so vanish in the flat space limit.

Now even if this modification of the C-function may be accommodated, (7.64)

could only be the basis of a monotonic C-theorem if the coefficient (1 + g(
√
s)) of G

is always positive. This function is plotted in figure 4. While this is indeed true for

Figure 4. The coefficient function 1 + g(θ) governing the scale dependence of C(θ) in (7.62)

or (7.64). Note that this is not positive as required over the full range 0 ≤ θ ≤ π.

small θ (or ρ2s), i.e. in the near flat space limit, unfortunately it is not true over the

whole required range 0 ≤ θ ≤ π (or 0 ≤ ρ
√
s ≤ 2), but changes sign for θ & 2.5 (or

ρ
√
s & 1.8). So even with this redefinition of C, we do not find a monotonic C-function

away from flat space.

In fact, there is yet another critical obstruction to establishing a C-theorem with

monotonic RG flow in curved space. We address this below, after first making a final

check that we have considered the most general potential C-theorem on the sphere.
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To do this, we now return to the full set of conservation identities (7.51) and look

for the most general θ-dependent linear combination

C = a(θ) (R + P ) + b(θ) (P +N) + c(θ) (S − T ) , (7.68)

for which C ′ is proportional to N alone. In fact we immediately see that this requires

C ′ = b′(θ)N . (7.69)

Using the conservation identities applied to (7.68) and imposing that the coefficients

of R, P and (S − T ) vanish yields the following general solution:

a(θ) = α sin4 1
2
θ − γ cos4 1

2
θ

b(θ) = α
(
− sin4 1

2
θ + sin2 θ log cos 1

2
θ
)

+ β sin2 θ + γ
(
cos4 1

2
θ − sin2 θ log sin 1

2
θ
)

c(θ) = γ cos4 1
2
θ , (7.70)

with

b′(θ) = α
(
sin θ(cos θ − 1) + sin 2θ log cos 1

2
θ
)

+ β sin 2θ

+ γ
(
− sin θ(cos θ + 1)− sin 2θ log sin 1

2
θ
)
, (7.71)

where α, β and γ are arbitrary constants.

Inspection of the coefficients (7.70) shows that only the solution with β = γ = 0

reduces to the Zamolodchikov solution in the flat space limit θ → 0. Normalising with

α = 1, we then recognise the overall sin4 1
2
θ factor in C as the familiar scaling factor s2

involving the chord distance already used in defining the Zamolodchikov F , H and G

functions. Keeping only this solution, we can rewrite (7.68) as

C = sin4 1
2
θ (R− 2P − 3N + f(θ)(P +N)) , (7.72)

with

f(θ) = 2
[
1 + 2 cot2 1

2
θ log cos 1

2
θ
]
, (7.73)

which we recognise as the same function found above in (7.60) and (7.61). This shows

directly that it is indeed the chord distance which gives the natural rescaling for the

Zamolodchikov functions and reassures us that we have exploited the full potential of

the conservation identities in looking for a curved space extension of the C-function.
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7.3.4 Dimensional analysis and RG flow of the C-function

Even if (7.64) had yielded the desired result
√
s dC/d

√
s < 0 for all

√
s, we would

still not have been able to show that the RG flow of the C-function is monotonic. The

reason is straightforward. In order to relate the RG flow βI∂C/∂gI to |x| ∂C/∂|x| in flat

space, we require the intermediate step (4.12) which is simply dimensional analysis. The

dimensionless function C can only depend on the combination µ|x|, i.e. C = C(g;µ|x|).

In a constant curvature space, however, there is a further scale ρ. The dimensional

analysis identity is now (
µ
∂

∂µ
+ ρ

∂

∂ρ
−√s ∂

∂
√
s

)
C = 0 . (7.74)

(We could of course use σ = 1
2ρ2
θ2 instead of s = 4

ρ2
sin2 1

2
θ here.) The direct relation

between
√
s ∂C/∂

√
s and µ ∂C/∂µ is therefore lost in curved space. Equivalently, C

is now a function of two dimensionless variables, so here we may write for example

C = C(g; θ, µ/ρ). Only in the flat space limit, where C → C(g;µθ/ρ) as ρ → 0, does

(7.64) imply a relation for the flow βI ∂C/∂gI through the RGE.

In the end, therefore, we see that this approach to finding a C-theorem by working

on spaces of constant curvature is not successful, despite the promising results of section

7.1 on the Weyl consistency conditions. It is probable that this is not simply a technical

obstruction, but that the C-theorem does not in fact hold in curved space. We discuss

further evidence in support of this conjecture in section 10.

8 The Weak a-theorem and 4-point Green Functions

Since βa does not occur in the anomalous Ward identities or renormalisation group

equations for the two-point Green functions of Tµν in flat spacetime and, as we have

just seen, a C-theorem related to βa cannot be proved from one and two-point functions

of Tµν on maximally symmetric, curved spaces, we have to look further to try to relate

the Weyl consistency condition (6.22) to Green functions and find the long sought

non-perturbative, monotonic a-theorem.

The crucial breakthrough made in [19–21] comes from the realisation that in fact βa
does contribute to the four-point Green functions of the energy-momentum tensor trace

T µµ. Moreover, four-point functions also have an implicit positive property related to

the optical theorem, itself a consequence of unitarity. These properties are then used
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in a dispersion relation derivation of the weak βa theorem, analogous to the proof of

the two-dimensional c-theorem given in section 4.4.

The four-point function of T µµ is found by taking four derivatives wrt σ(x) of the

local renormalisation group identity (5.9),(
∆W
σ −∆β

σ

)
W =

∫
d4x
√−g

[
σ(x) (βcF − βaG− βbH − βΛ)− ∂µσ(x)Zµ

]
. (8.1)

The first derivative gives the trace anomaly,

T µµ = βIOI + βcF − βaG− βbH − βΛ +DµZ
µ . (8.2)

Taking further derivatives, and evaluating in flat space with ∂µg
I = 0, the only con-

tributions to survive are either O(βI), and so vanish at a fixed point, or come from

the curvature squared terms. We therefore need the variations of F , G and H for

gµν → e2σ(x)gµν up to O(σ3). This extends the formulae (5.4) and (5.25) for the first

and second variations in section 5. These follow from the expansions (in four dimen-

sions)
√−gF = 0
√−gG = 8

(
∂2σ
)2 − σ,µνσ,µν + 16σ,µσ,µσ

,µν + 8σ,µσ
,µ∂2σ +O(σ4)

√−gH = 4
(
∂2σ
)2 − 8σ,µσ

,µ∂2σ +O(σ4) , (8.3)

with notation σ, µ = ∂µσ. The second is crucial, showing that unlike the case of two-

point functions considered previously, three and higher-point Green functions of the

energy-momentum tensor trace are sensitive to the RG function βa.

The four-point is then given by (abbreviating T µµ(x) = T (x) for simplicity),

i〈T (x1) T (x2) T (x3) T (x4)〉

=
δ4

δσ(x1)δσ(x2)δσ(x3)δσ(x4)

∫
d4x
√−g σ(x) (βaG + βbH)

∣∣∣
σ=0

+O(βI) , (8.4)

with G and H expanded in σ(x) as above.

The next step is to take the Fourier transform with momenta p1, . . . p4, then write

the Green function in terms of Mandelstam variables s = −(p1 + p2)2, t = −(p1 − p3)2

and u = −(p1 − p4)2. This gives

A(s, t, u) = f.t. i〈T (x1) T (x2) T (x3) T (x4)〉

= f.t.
δ

δσ δσ δσ δσ

∫
d4x
√−g

[
βa
(
−1

2
σ,µσ,νσ

,µσ,ν
)

+ βb
(
−1

2
σσ,µσ

,µ∂2σ
)]

+O(βI) .

(8.5)
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To isolate the contribution from βa, we choose the sources σ(xi) to be null, i.e. ∂2σ = 0.

Equivalently, we set the external momenta p2
i = 0, which implies s+ t+ u = 0. Then,

A(s, t, u) = −4βa (p1.p2 p3.p4 + perms) +O(βI)

= −βa
(
s2 + t2 + u2

)
+O(βI) . (8.6)

T T

T T C0

C∞
s

Figure 5. The LH figure shows the four-point function 〈T T T T 〉 with the cut giving rise

to ImA(s) in (8.9). The RH figure shows the contour in the complex s-plane used in the

dispersion relation, showing the cuts on the real s-axis. The figure illustrates the case in

which these may run to the origin.

We now write a dispersion relation for A(s, t, u) in the ‘forward scattering’ limit

t = 0, for which

A(s, t, u)
∣∣∣
t=0
→ A(s) = −2βas

2 . (8.7)

Including a factor s−3 to ensure convergence, we integrate A)s)/s3 over the familiar

contour shown in figure 5. Notice that if the theory does not have a mass gap, the cuts

on the positive and negative real s-axis will extend all the way to s = 0. This is the

situation illustrated in the figure. As in section 4.4, the derivation of the dispersion

depends on a number of critical assumptions:

1. A(s) is analytic in the upper-half complex s plane.

2. A(−s) = A(s). This follows from crossing symmetry, which implies A(s, t, u) =

A(u, t, s), where u = −s for t = 0.

3. A(s∗) = A(s)∗, i.e. hermitian analyticity.

4. A(s)/s3 is bounded for large s.

5. ImA(s) ≥ 0, motivated by unitarity and the optical theorem for 2→ 2 scattering.
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We then have,∫
C0

ds

s3
A(s) +

∫
C∞

ds

s3
A(s) +

∫ 0

−∞

ds

s3
A(s+ iε) +

∫ ∞
0

ds

s3
A(s+ iε) = 0 . (8.8)

Following the same steps detailed in (4.46) to (4.53), with A(s) = −2βas
2 at the UV

and IR fixed points, we find

βUVa − βIRa =
1

π

∫ ∞
0

ds

s3
ImA(s) ≥ 0 . (8.9)

This is the weak βa-theorem in four dimensions.

Clearly, the proof depends on the validity of the assumptions above, of which the

most questionable is the assumption of hermitian analyticity, A(s∗) = A(s). Normally

in S-matrix theory, there is a mass gap between the cuts on the real s-axis, allowing

A(s) to be defined as a single analytic function over the whole complex plane. The

assumption of real analyticity is then assured. However, with the cuts preventing the

natural identification of A+(s) and A−(s) defined on the upper and lower-half planes

respectively, assumption (3) above is not guaranteed to hold. Indeed, this resembles the

situation recently found in studies of the Kramers-Krönig dispersion relation in curved

spacetime [31], where a novel geometric-induced analytic structure also produces cuts

to the origin in the complex ω plane, and the dispersion relation fails in its usual form.

With this proviso, however, this appears to establish the weak βa theorem, showing

that as expected the RG function associated with the Euler-Gauss-Bonnet density in

the trace anomaly is less at an IR fixed point than at the UV fixed point at the origin

of the flow. It does not, however, establish the full desired a-theorem analogous to

the two-dimensional c-theorem, which of course requires a monotonically decreasing

function all along the RG trajectory.

We can attempt to push this further by studying the origin of the ImA(s) contribu-

tion to the relation (8.9). Just as for the two-point functions, successive differentiations

of (8.1) yield the anomalous Ward identities relating the four-point functions of T µµ
to Green functions of the operators OI (and the dimension 2 operators Oa, which we

are neglecting here). This is the generalisation of the Ward identity (5.20) and involves

four, three and two-point functions of the OI , all terms of course being O(βI). In [28],

it is shown how by taking suitable cuts of these Green functions we can define a positive

definite metric GIJ such that

ImA(s) = GIJβ
IβJ , (8.10)
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and where for small βI , GIJ is determined by the two-point function 〈OI OJ〉, bringing

(8.9) closer to the Zamolodchikov form.

9 Global Symmetries and Limit Cycles

In this final section, we consider the application of these ideas to theories exhibiting

limit cycles. This requires an extension of the formalism of Weyl consistency condi-

tions and the local renormalisation group to theories with global symmetries. It leads

to important consequences for both the issue of whether scale invariant theories are

necessarily conformal and for the nature of the space of couplings.

9.1 Global symmetries and Weyl consistency conditions

In a theory with several fundamental fields, there may be a global symmetry GF of the

free part of the action. (For example, a theory with N real scalar fields may have an

O(N) global, or flavour, symmetry.) This modifies the Weyl consistency conditions.

In brief (for a full discussion, see [8, 9, 23] and the more recent discussions in

[27, 28]), if the symmetry transformation acting on fields φ takes the form δφ = −ωφ,

where ω is an element of the Lie algebra of GF , then the couplings gI(x) of operators

OI , viewed as sources, inherit a compensating transformation δgI = −(ωg)I so the

combination gIOI is invariant.21 Associated with this global symmetry there is a current

Jµ(x). Introducing the corresponding source Aµ(x), itself an element of GF , so that

Jµ = −δS/δAµ, we may write the Ward identity∫
d4x
√−g

(
Dµω

δ

δAµ
− (ωg)I

δ

δgI

)
W = 0 . (9.1)

The consistency conditions follow from considering the extended variation operator

∆W
σ + ∆β

σ + ∆A
σ , where

∆A
σ =

∫
d4x
√−g

(
σβAµ

δ

δAµ
− ∂µσS

δ

δAµ

)
, (9.2)

with the notation βAµ = ρIDµg
I , where Dµg

I = ∂µg
I + (Aµg)I .

21It is understood here that ω is always taken in the appropriate representation, without explicit

notation. Similarly for other elements of GF , in particular Aµ.
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The anomaly then has additional contributions. The curvature terms are aug-

mented by
1
4
FµνκF

µν + 1
2
F µνζIJDµg

IDνg
J , (9.3)

while Zµ may include

F µνηIDνg
I , (9.4)

where Fµν is the field strength associated with Aµ, which can be viewed as a background

gauge field.

We can eliminate the S contribution to Zµ using the GF Ward identity by defining

BI = βI − (Sg)I , PI = ρI + ∂IS , BA
µ = βAµ +DµS . (9.5)

so that

BA
µ = ρIDµg

I +DµS = PIDµg
I . (9.6)

Then, the trace anomaly is written as

T µµ = BIOI + βcF − βaG− βbH − 1
4
FµνκF

µν +BA
µ J

µ +DµZ
µ . (9.7)

The analysis of the consistency conditions then goes through as before. We find in

particular,

8∂Iβa = χgIJB
J − LBωI − (PIg)J ωJ

BIPI = 0 . (9.8)

Now consider the consequences of these conditions for renormalisation group flows.

Consider first a general flow defined by a vector field fI = dgI/dt, where t is a parameter

along the flow. The first consistency (9.8) is

8
dB̃a

dt
= χgIJf

IBJ + f IBJ (∂IωJ − ∂JωI)−
(
P Ig

)J
fIωJ , (9.9)

where

B̃a = βa + 1
8
BIωI . (9.10)

Two special cases of of key interest. First, for the RG flow itself with fI = BI , and

using BIPI = 0, we have

BI∂IB̃a = 1
8
χgIJB

IBJ , (9.11)

generalising (6.22). If χgIJ is indeed positive, this shows that B̃a is monotonically

decreasing along an IR-directed RG flow generated by the generalised beta function

BI . Second, we can consider the flow fI = −(ωg)I generated by the action of GF on

the couplings. In this case, it can be shown that B̃a is GF invariant, so is constant

along this flow. This is also true of β̃a.
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9.2 Limit Cycles

Four-dimensional quantum field theories exhibiting limit cycles have been found in

gauge theories with scalar fields exhibiting a global GF symmetry in their free action

in [24]. They have the important feature that along the limit cycle, the RG flow (with

βI) is generated by an element Q of GF . That is, along the cycle, βI = (Qg)I .

Although βI is non-zero along the limit cycle, the theory is scale invariant, with

T µµ = ∂µJµ. We need to resolve the question whether it is also conformal invariant,

i.e. whether T µµ = 0.

We now prove the following assertions using the formalism above [23]:

1. S = Q on a limit cycle.

2. S = 0 at a fixed point.

3. the theory is conformal invariant on its limit cycles.

Consider a flow generated by BI(g) where the coupling g lies on the limit cycle. Then,

BI = βI − (Sg)I = ((Q− S)g)I . (9.12)

Since (Q− S) ∈ GF , the flow is of the second type considered above, generated by the

action of the symmetry group GF on the couplings. Then, since B̃a is constant, and

assuming χgIJ is positive definite, we find from (9.11) that BI = 0. It then follows from

(9.12) that S = Q.

At a fixed point, where βI = 0, we have BI = −(Sg)I from (9.5), so the BI flow is

generated by a GF transformation. Since this means B̃a is constant, the same argument

as above using (9.11) and positivity of χgIJ shows (Sg)I = 0. So we conclude that S = 0

at a fixed point.

The essential idea here is that a potential contribution to T µµ involving a current Jµ
associated to a GF element P can be absorbed into a redefinition of the BI function (see

the definition (9.5)). But since BI = −(Pg)I is a GF flow, by the familiar argument,

B̃a is constant and (Pg)I = 0. This shows that the current may be removed, leaving

T µµ = 0 on the limit cycle.

The picture that emerges is as follows:
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Limit cycles exist, with βI = (Qg)I 6= 0, where Q ∈ GF . Along the cycle, β̃a is constant,

since it is GF invariant. So β̃a is not monotonically decreasing – there is no β̃a theorem

in these theories with global symmetries and limit cycles.

However, BI = 0 on the cycle and B̃a is constant, consistent with the B̃a theorem

(9.11) with χgIJ positive definite. On the cycle, the trace anomaly vanishes, T µµ = 0,

and so the theory is not simply scale-invariant but truly conformal.

In view of this, we should regard the true theory space asM = {gI} /GF , i.e. iden-

tifying couplings related by GF transformations. The relevant flow is then that gener-

ated by the generalised beta functions BI . Such RG flows end at fixed points on the

space M, where the theory is conformal.22

10 Summary and Outlook

In this paper, we have reviewed the development of the local renormalisation group

from the initial ideas linking renormalisation with local couplings and anomalous Weyl

symmetry to its elegant modern algebraic formulation. We have presented a detailed

account of the renormalisation of Green functions of the energy-momentum tensor

within the local RG approach, showing how the RG functions characterising these Green

functions are related to the coefficients of the trace anomaly in curved spacetime. The

key rôle of the Weyl consistency conditions was explained, highlighting the remarkable

relations they imply for the RG flow of the trace anomaly coefficients.

A key stimulus in the development of the local RGE has been the long-standing

search for a four-dimensional version of the c-theorem which incorporates all the prop-

erties of the original. As we have seen, while this goal is tantalisingly close, it cannot

yet be considered to be fully achieved. Our approach here has been first to review and

investigate many different approaches to proving the two-dimensional Zamolodchikov

theorem in order to identify which route offers the best chance of being successfully

extended to higher dimensions. We have especially tried to emphasise the physical

understanding of the theorem, particularly through a detailed analysis of the spectral

function approach. In particular, this allowed us to formulate the Zamolodchikov-like

22This is reminiscent of the conditions for conformal invariance in 2-dim string-related non-linear

sigma models. It was shown in [4, 33] that in these models, the condition for the absence of a conformal

anomaly involves not the usual beta functions, but generalisations which are invariant under spacetime

diffeomorphism invariance, which appears as a ‘flavour’ symmetry of the target space for the sigma

model fields defined over the 2-dim worldsheet.
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‘theorems’ involving the coefficients βc and βb of the Weyl and Ricci terms in the

four-dimensional trace anomaly. Neither of these, however, has the key monotonicity

property of the two-dimensional theorem and so although they encode detailed infor-

mation about the structure of the spectral functions characterising the two-point Green

functions of the energy-momentum tensor, their usefulness in constraining the nature

of RG flows appears limited.

This leaves the coefficient of the Euler-Gauss-Bonnet densityE4 in the trace anomaly

as the remaining candidate – the would-be a-theorem originally conjectured by Cardy

[12]. As we have seen, the difficulty here is that the second derivative of the integral of

E4 with respect to the metric vanishes when evaluated on flat space, so the correspond-

ing RG coefficient βa does not enter into the two-point Green functions of Tµν . This

is despite the remarkable observation of Osborn [7] that βa satisfies a flow equation of

precisely the Zamolodchikov form as a consequence of the Weyl consistency conditions.

One option, of studying higher-point Green functions and exploiting the fact that the

higher derivatives of the integral of E4 do not vanish, so that βa is then involved, ap-

pears at first sight to lose any chance of establishing the necessary positivity property

to constrain its RG flow.

The alternative, of sticking to two-point Green functions but working on a constant-

curvature background where the Euler density is non-vanishing, was explored in depth

in [17], following earlier work by [18], and summarised here in section 7. The relation

of the Weyl consistency conditions to the two-point Green functions was derived and

the generalisation to curved spacetimes of the analysis leading to the c-theorem was

pursued in detail. The conclusion, however, is that it is not possible to establish the βa
theorem this way, essentially because the theory then contains two scales, the RG scale

µ and the curvature R, which changes the relation between the scale dependence and

RG flow (see section 14 of [17] for a further discussion of the issues involved). Similar

physical considerations obstruct the existence of a Zamolodchikov-type theorem in finite

temperature QFTs or theories with a non-vanishing chemical potential.

At this point, it is interesting to consider the potential implications of even a weak

a-theorem for symmetry breaking and the spectrum of QFTs (see, for example, [34] .

Given the strong dependence of βa ∼ (ns + 11nf + 62nv) on nv, the clear implication

is that as we flow into the IR, the theory will try to minimise the number of massless

vectors in the spectrum in favour of scalar particles. Note that we have shown that

βc ∼ (ns + 6nf + 12nv), with its weaker nv-dependence, need not reduce in the IR.

This accords with the situation in QCD, for example, where the gluons and quarks

in the asymptotically free UV spectrum are traded for Goldstone bosons in the IR
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as a consequence of chiral symmetry breaking. This illustrates how four-dimensional

Zamolodchikov-type theorems can in principle give important constraints on phase

transitions. However, we should note that there exist examples of theories where gauge

symmetries are broken at high temperature and restored at low temperature [35] in

contrast to the more familiar situation in QCD and electroweak theories. This of

course accords with our observation that we would not expect an a-theorem in theories

at finite temperature.

A similar argument can be made for QFTs in curved spacetime. It was first shown

in [36] that in spontaneously broken gauge theories in spacetimes in spacetimes of con-

stant curvature, the symmetry is restored when the curvature R exceeds a critical value.

This is the normal situation. However, it is possible to contrive models, analogous to

[35], in curved spacetime where gauge symmetries are instead broken for large R and

restored for small curvature [37], contradicting a would-be a-theorem. This supports

the conclusion of [17] that the a-theorem cannot be established by consideration of the

two-point Green functions of Tµν in curved spacetime.

Returning now to flat space QFTs, the breakthrough in establishing the weak a-

theorem

βUVa − βIRa =
1

π

∫ ∞
0

ds

s3
ImA(s) ≥ 0 , (10.1)

in [19–21] came from the recognition of two key points: first, that the RG coefficient

βa does enter the four-point Green functions of the energy-momentum tensor trace

T µµ, as determined by the local RGE; and second, that there is indeed a positivity

principle associated with four-point functions arising from the optical theorem con-

straint ImA(s) ≥ 0. Finally, the recognition that the dependence on βa can be isolated

by choosing a particular kinematical configuration (null external momenta) allows the

two-dimensional dispersion relation derivation of the weak c-theorem presented here

in section 4.4 to be extended to the a-theorem in four dimensions. This remarkable

advance seems to be convincingly established, though we have been careful to highlight

the assumptions made in the derivation in section 8 , most notably that of hermitian

analyticity of the amplitude A(s). It still remains, however, to fully establish the strong

a-theorem, which entails identifying a corresponding non-perturbative, monotonic C-

function all along the RG trajectory not just in the vicinity of fixed points, together

with a similarly well-defined positive definite metric GIJ . This should also exhibit the

same close relation to the Osborn identity

βI∂I β̃a = 1
8
χgIJβ

IβJ , (10.2)

as for the two-dimensional c-theorem.
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The analysis of [19–21] makes extensive use of a ‘dilaton’ effective action. In this

approach, the dilaton field τ(x) is introduced as a source for the energy-momentum

tensor trace T µµ, so that its effective action is formally

Γ[τ ] =
∞∑
n=0

1

n!

∫
d4xn . . .

∫
d4x1 τ(xn) . . . τ(x1)

δnW

δτ(x1) . . . δτ(xn)
. (10.3)

See, for example, [28, 38] for a particularly clear description of this formalism. The

dilaton effective action therefore serves essentially as a book-keeping device for the

anomalous Ward identities and local RGEs controlling the n-point Green functions of

T µµ. Note that any further dynamics attributed to the dilatons in Γ[τ ] constitutes

an assumption about the properties of the original theory which is not justified by

anomalous Weyl symmetry or renormalisation group considerations. In particular,

there is no requirement that the dilaton should be a physical particle. This is why we

did not need to introduce dilatons at all in order to derive the weak a-theorem and

related results here. Nevertheless, the dilaton effective action is a very convenient and

elegant way of encoding all this information about the Green functions of T µµ and, as

demonstrated by [19–21, 28] has also proved invaluable in motivating new directions of

investigation.

As a final illustration of the power of the local RGE, we showed how it could be

applied to give a clear understanding into how the existence of limit cycles in QFTs

with a GF global symmetry could be reconciled with monotonicity of the RG flow.

Central to this was the generalisation of (10.2) to read

BI∂IB̃a = 1
8
χgIJ B

IBJ , (10.4)

where the generalised beta functions BI vanish on the limit cycle while the GF -invariant

RG function B̃a = βa + 1
8
BIωI is constant.

The idea of of defining RG functions which are invariant under a symmetry of the

theory, whether it is diffeomorphisms as in the original string-inspired sigma models

[4, 33] or global internal symmetries [8, 23, 27, 28] gives an important insight into the

nature of the space of couplingsM, the ‘theory space’ of QFTs, on which the RG flows

act. Here, we conclude that M = {gI} /GF , showing that the true coupling space

is one where couplings related by GF transformations are identified. This shows very

clearly how in the space {gI}, a RG flow generated by the usual beta functions βI

ending on a limit cycle where βI is non-zero is viewed in the true space M as a flow

ending on a fixed point with BI = 0, where the theory is conformal. This is a beautiful

illustration of the potential of the local RG and anomalous Weyl symmetry to give

important insight into the fundamental structure of QFT.
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A Counterterms for renormalised Green functions

In this appendix, we give a self-contained derivation of the counterterms arising in the

Green functions considered in section 2. To begin, recall the results (2.16), (2.18) for

T µµ and OI , which are determined from the first derivatives of the action, i.e.

T µµ =
1√−g

δS

δσ
= ε

(
−kIgIBOBI + 1

2(n−1)
cBR− ΛB

)
+D2cB + 2µ−εΛ , (A.1)

and

OI =
1√−g

δS

δgI
= ZI

JOBJ +µ−ε
(

1
2(n−1)

∂ILcR− 1
2
∂IAJK∂g

J∂gK +Dµ(AIJ∂
µgJ)

)
.

(A.2)

We also need the formulae for transformations under Weyl rescalings δgµν = 2σgµν ,

viz. δ
√−g = −nσ√−g and

δR = 2σR + 2(n− 1)D2σ , δD2 = 2σD2 − (n− 2)∂µσ∂
µ . (A.3)

First, we recover the expression (2.20) for T µµ written entirely in terms of renormalised

quantities. The definition of the beta functions in section 2 gives

ε
(
−kIgIBOBI + 1

2(n−1)
cBR− ΛB

)
= β̂IZI

JOBJ + µ−ε
(
β̂c + β̂I∂ILc

)
1

2(n−1)
R

− µ−ε
(
β̂Λ + 1

2
Lβ̂AIJ∂µgI∂µgJ

)
. (A.4)
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Substituting into (A.1) and using the definition (A.2) of the renormalised operators OI ,

this gives

T µµ = β̂IOI + µ−ε
(

1
2(n−1)

β̂cR− β̂Λ

)
+ µ−ε(D2c+ 2Λ)

+ µ−εDµ

(
∂µLc − β̂IAIJ∂µgJ

)
+ µ−ε

[
−1

2

(
Lβ̂AIJ

)
∂µg

I∂µgJ + 1
2

(
β̂K∂KAIJ

)
∂µg

I∂µgJ + ∂µβ̂
IAIJ∂

µgJ
]

(A.5)

Using the definition (2.13) of the Lie derivative, and writing ∂µβ̂
I = ∂K β̂

I∂µg
K , we see

that the term in the square bracket vanishes. Then, finally, letting Zµ = wI∂µg
I =

∂µLc − β̂IAIJ∂µgJ , we recover the expression (2.20) for the trace anomaly.

Now consider the renormalisation of the two-point Green functions (2.33) - (2.35).

Here, we need the second variations of the action w.r.t. σ and gI . First, taking a Weyl

variation of (A.1) for T µµ(y) w.r.t. σ(x), we have

1√
−g(x)

1√
−g(y)

δ2S

δσ(x)δσ(y)
= ε〈T µµ〉δ(x, y) + ε

(
cBD

2 + ∂µcB ∂
µ
)
δ(x, y)

+ 2(ε− 2)µ−εΛ δ(x, y)

→ µ−εε LcD
2δ(x, y) , (A.6)

evaluating at the physical couplings c = Λ = ∂µg
I = 0 and taking the ε→ 0 limit.

Next, varying (A.2) for OI(y) w.r.t. σ(x), and noting that the bare operator OBI

transforms as δOBI = (2− (p+ 1)ε)σOBI , we find

1√
−g(x)

1√
−g(y)

δ2S

δσ(x)δgI(y)
= (ε− 2)OIδ(x, y) + (2− (p+ 1)ε)ZI

JOBJδ(x, y)

+ µ−ε
[

1
2(n−1)

∂ILc
(
2R + 2(n− 1)D2

)
δ(x, y) + O(∂µg

I)
]

→ µ−ε ∂ILcD
2δ(x, y) . (A.7)

The counterterm for the two-point function of the operator OI is a little more subtle.

Here, we need

1√
−g(x)

1√
−g(y)

δ2S

δgI(x)δgJ(y)
=
(
∂IZJ

K
)
OBKδ(x, y)

+ µ−ε
[

1
2(n−1)

∂I∂JLcRδ(x, y) + AIJ D
2δ(x, y)

]
,

(A.8)
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where ∂IZJ
K = µkIε∂I∂JL

K , but there is no further obvious simplification. In fact,

however, we only need this relation contracted with β̂J for the applications here. In

that case, we may use the relation

β̂J∂IZJ
K = ∂I

(
β̂J∂Jg

K
B

)
−
(
∂I β̂

J
)
ZJ

K

=
(
−kIεδIJ − ∂I β̂

J
)
ZJ

K

= −
(
∂Iβ

J
)
Zj

K , (A.9)

to show

1√
−g(x)

1√
−g(y)

β̂J
δ2S

δgI(x)δgJ(y)
= − ∂I β̂J OJ δ(x, y) + µ−εAIJ β̂J D

2δ(x, y)

+ µ−ε
[

1
2(n−1)

R
(
∂Iβ

J∂JLc + β̂J∂J∂ILc

)
δ(x, y)

]
.

(A.10)

A final simplification then gives

1√
−g(x)

1√
−g(y)

β̂J
δ2S

δgI(x)δgJ(y)
= − ∂I β̂J OJ δ(x, y)

+ µ−ε
[
− 1

2(n−1)
R∂Iβc δ(x, y) + AIJ β̂

J D2δ(x, y)
]
,

(A.11)

as shown in (2.38). Notice the appearance here of γ̂I
J = ∂I β̂

J as the anomalous

dimension matrix for the operators OI . This follows immediately from its definition

γ̂I
J = −µ d

dµ
ZI

K (Z−1)K
J using (2.4) and (2.19).

We can make one final consistency check of this whole formalism by evaluating the

relation (A.7) taking the derivatives in reverse order. From (A.1), this gives

1√
−g(x)

1√
−g(y)

[
δ2S

δgI(x)δσ(y)
− β̂J

δ2S

δgI(x)δgJ(y)

]
= ∂I β̂

JOJ δ(x, y)

+ µ−ε
[

1
2(n−1)

R∂Iβcδ(x, y) + ωID
2δ(x, y)

]
+ O(c,Λ, ∂µg

I) . (A.12)

Substituting with (A.11), we then find

1√
−g(x)

1√
−g(y)

δ2S

δgI(x)δσ(y)
= µ−ε

[
ωI + AIJ β̂

J
]
D2δ(x, y)

= µ−ε ∂ILcD
2δ(x, y) , (A.13)

recovering the identity (A.7) as required.

– 81 –



B RGEs for two-point Green functions

In section 3.2 we found the renormalisation group equations for two-point Green func-

tions by successive differentiation of the fundamental RGE (3.21) for the generating

functional W . As an exercise in renormalisation theory, and a consistency check, we

should be able to reproduce these results from the expressions in section 2.3 giving the

renormalised two-point functions in terms of the bare functions. Note though that the

operators in these bare two-point functions are themselves the renormalised ones, so

will contribute to the full RGEs. This exercise turns out to be remarkably intricate

compared with the simplicity of section 2.3, but is nevertheless instructive.

First, note that since here we are acting on bare functions, we need to use the RG

operator including terms of O(ε), i.e.

D̂ = µ
∂

∂µ
+ β̂I

∂

∂gI
. (B.1)

Now recall the relation (2.36) for the renormalised two-point function of energy-momentum

tensor traces:

i〈T µµ(x) T ρρ(y)〉 − i〈T µµ(x) T ρρ(y)〉B + (2− ε)〈T µµ(x)〉 δ(x, y)

= εµ−ε LcD
2δ(x, y) (B.2)

Given that T µµ is RG invariant, the bare two-point function does not contribute and

we have

D̂ i〈T µµ(x) T ρρ(y)〉 = εD̂
(
µ−εLc

)
D2δ(x, y) = εµ−ε

(
−εLc + β̂I∂ILc

)
D2δ(x, y)

= −εµ−εβcD2δ(x, y) . (B.3)

Since βc is finite, the rhs vanishes at n = 2 and so we recover

D i〈T µµ(x) T ρρ(y)〉 = 0 . (B.4)

Next, consider (2.37),

i〈T µµ(x) OI(y)〉 − i〈T µµ(x) OI(y)〉B = µ−ε ∂ILcD
2δ(x, y) . (B.5)

Using the RG equation for OI from (3.29), and discarding disconnected terms, we find

D̂ i〈T µµ(x) OI(y)〉+ iγ̂I
J〈T µµ(x) OJ(y)〉B = D̂

(
µ−ε∂ILc

)
D2δ(x, y) , (B.6)
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and substituting for the bare function from (B.5),

D i〈T µµ(x) OI(y)〉+ iγI
J〈T µµ(x) OJ(y)〉

= µ−εγ̂I
J∂JLc D

2δ(x, y) + µ−ε
(
−∂Iβc − γ̂IJ∂JLc

)
D2δ(x, y) , (B.7)

where we have used (3.24) and (B.3). The divergent terms involving ∂JLc cancel,

leaving finally

D i〈T µµ(x) OI(y)〉+ iγI
J〈T µµ(x) OJ(y)〉 = −∂IβcD2δ(x, y) , (B.8)

in agreement with (3.34).

The remaining two-point function 〈OI OJ〉 is considerably more complicated. From

(2.35) and (A.8), we have

i〈OI(x) OJ(y)〉 − i〈OI(x) OJ(y)〉B = KIJ
KOKδ(x, y)

+ µ−ε
(
−KIJ

K∂KLc + ∂I∂JLc
)

1
2(n−1)

Rδ(x, y) + µ−εAIJD
2δ(x, y) + O(∂gI) , (B.9)

where we have definedKIJ
K =

(
∂IZJ

L
)

(Z−1)L
K . Note that since ∂IZJ

K = µkIε∂I∂JL
K ,

we can readily show β̂IKIJ
K = −γJK (compare (A.9). Now, after some calculation, we

can show from (B.9) that

D i〈OI(x) OJ(y)〉+ γI
Ki〈OK(x) OJ(y)〉+ γJ

Ki〈OI(x) OK(y)〉
=
[
DKIJ

K −KIJ
Lγ̂L

K + γ̂I
LKLJ

K + γ̂J
LKIL

K
]
〈OL〉δ(x, y)

+ µ−ε
[
DFIJ + γ̂I

KFKJ + γ̂J
KFIK −KIJ

K∂K β̂c

]
1

2(n−1)
Rδ(x, y)

+ µ−ε
[
DAIJ + γ̂I

LALJ + γ̂J
LAIL

]
D2δ(x, y) , (B.10)

where here FIJ = −KIJ
K∂KLc + ∂I∂JLc. The expressions in square brackets are

evaluated by noting that the combinations of D and the γ functions can be written

(see section 2.2) in terms of the Lie derivative as the operator −ε + Lβ̂. A tricky

calculation using the definitions in section 2.1 then shows that these expressions are

finite and are respectively −∂I∂JβK , −∂I∂Jβc and −χIJ . Finally therefore, we find the

RGE:

D i〈OI(x) OJ(y)〉+ γI
Ki〈OK(x) OJ(y)〉+ γJ

Ki〈OI(x) OK(y)〉+ ∂I∂Jβ
K〈OK〉δ(x, y)

= −1
2
∂I∂Jβc Rδ(x, y)− χIJD2δ(x, y) , (B.11)

reproducing the result previously found in (3.38).
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C Zamolodchikov functions in n dimensions

Here, we give the details of the generalisation to four dimensions of the construction of

the Zamolodchikov functions F , G, H and C in terms of spectral functions and Bessel

functions described for two dimensions in section 4.1. We also give further details of the

identification with RG functions. This augments the discussion of the four-dimensional

βc and βb theorems in section 6. For completeness, we quote formulae for general n

dimensions where appropriate. The presentation here follows [13, 14].

The starting point is (5.11) for the two-point function of Tµν , that is

i〈Tµν(x) Tρσ(0)〉 = Π(0)
µνρσ Ω(0) + Π(2)

µνρσ Ω(2) , (C.1)

where the projection operators are given in (5.12). The spectral function representation,

given for four dimensions in (6.2), is

Ω(s) =
i

(2π)n/2

∫
dλ2 λn−2 ρ(s)(λ2) (λ|x|)1−n/2Kn/2−1(λ|x|) , (C.2)

where we have used the n-dimensional expression for the Feynman propagator given in

section 4.1 and taken the points in the Green function to be spacelike separated.

Carrying out the differentiation in (C.1) we find

〈Tµν(x) Tρσ(0)〉

=
1

(n− 1)

1

(2π)n/2

∫ ∞
0

dλ2 λn+2 ρ(0)(λ2)

[
A(0)(λ|x|)ηµνηρσ + . . .+ E(0)(λ|x|) 1

x4
xµxνxρxσ

]
+

(n− 2)

(n− 1)

1

(2π)n/2

∫ ∞
0

dλ2 λn+2 ρ(2)(λ2)

[
A(2)(λ|x|)ηµνηρσ + . . .+ E(2)(λ|x|) 1

x4
xµxνxρxσ

]
(C.3)

Contracting indices in the different ways indicated in section 5.2, we can isolate

the spin 0 and spin 2 contributions. For the spin 0 spectral function,

〈Tµν(x) T ρρ(0)〉 = − 1

(2π)n/2

∫ ∞
0

dλ2 λn+2 ρ(0)(λ2)

[
P (0)(λ|x|)ηµν +Q(0)(λ|x|) 1

x2
xµxν

]
,

(C.4)

and

〈T µµ(x) T ρρ(0)〉 = (n− 1)
1

(2π)n/2

∫ ∞
0

dλ2 λn+2 ρ(0)(λ2)R(0)(λ|x|) , (C.5)
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while for the spin 2 spectral function,

〈Tµρ(x) Tνρ〉 −
1

(n− 1)
i〈Tµν(x) T ρρ(0)〉

= −1

2

(n+ 1)(n− 2)

(n− 1)

1

(2π)n/2

∫ ∞
0

dλ2 λn+2 ρ(2)(λ2)

[
P (2)(λ|x|)ηµν +Q(2)(λ|x|) 1

x2
xµxν

]
,

(C.6)

and

〈T µν(x) Tµν(0)〉 − 1

(n− 1)
i〈T µµ(x) T ρρ(0)〉

=
1

2
(n+ 1)(n− 2)

1

(2π)n/2

∫ ∞
0

dλ2 λn+2 ρ(2)(λ2)R(2)(λ|x|) . (C.7)

The coefficient functions are evaluated using the Bessel function recursion relations

(4.7) and we find for both s = 0 and 2,

E(s)(λ|x|) = (λ|x|)1−n/2Kn/2+3(λ|x|)
Q(s)(λ|x|) = (λ|x|)1−n/2Kn/2+1(λ|x|)
R(s)(λ|x|) = (λ|x|)1−n/2Kn/2−1(λ|x|) . (C.8)

which can be compared with (4.8) in two dimensions.

The generalised Zamolodchikov functions are then defined from these Green func-

tions, rescaled by a factor x2n to produce dimensionless functions and remove contact

terms, and we find

F s) =
1

(2π)n/2

∫
dλ2 λ2−nρ(s)(λ2) (λ|x|)2nE(s)(λ|x|)

Hs) =
1

(2π)n/2

∫
dλ2 λ2−nρ(s)(λ2) (λ|x|)2nQ(s)(λ|x|)

Gs) =
1

(2π)n/2

∫
dλ2 λ2−nρ(s)(λ2) (λ|x|)2nR(s)(λ|x|) . (C.9)

As explained in section 6.1, we now search for a combination C(s) of these functions

which reproduces as closely as possible the properties of the Zamolodchikov C function

(4.10) in two dimensions. With

C(s) = F (s) +
(n

2
+ 1
)
H(s) −

(n
2

+ 2
)
G(s) , (C.10)

we have

|x|∂C
(s)

∂|x| = (n− 2)C(s) − 1
2
(n+ 2)(n+ 4)G(s) , (C.11)
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as quoted in (6.3) and (6.4). Explicitly,

C(s) =
1

(2π)n/2

∫
dλ2 λ2−n ρ(s)(λ2) (λ|x|)3n/2+1

×
[
Kn/2+3(λ|x|) +

(n
2

+ 1
)
Kn/2+1(λ|x|)−

(n
2

+ 2
)
Kn/2−1(λ|x|)

]
, (C.12)

and

G(s) =
1

(2π)n/2

∫
dλ2 λ2−n ρ(s)(λ2) (λ|x|)3n/2+1Kn/2−1(λ|x|) . (C.13)

As discussed in sections 4.2 and 6.2 (see [13, 14]), we can also express the Zamolod-

chikov functions in terms of the Fourier transforms Ω̃
(s)
TT and Ω̃IJ defined by

Ω(s) = a(s)

∫
dnk

(2π)n
eik.x kn−4 Ω̃

(s)
TT (t) , (C.14)

and

ΩIJ =

∫
dnk

(2π)n
eik.x kn−4 Ω̃IJ , (C.15)

where t = 1
2

log(−µ2x2) and we have scaled so that Ω̃
(s)
TT (t) and Ω̃IJ are dimensionless.

The numerical coefficients are a(0) = 1
n−1

and a(2) = 2
(n+1)(n−2)

.

The RGEs for Ω̃
(s)
TT and Ω̃IJ follow from (6.13). From the definition (C.14), in four

dimensions we find

DΩ̃
(0)
TT = 8βb , DΩ̃

(2)
TT = −20βc , (C.16)

while

DΩ̃IJ + γI
KΩ̃KJ + γj

KΩ̃IK = −χaIJ . (C.17)

We can then solve the RGEs for C(s), G(s) and GIJ in exactly the way described in

detail in section 4.2, with the results discussed in section 6.2.
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