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Highlights 

- A swanINNFM model reflects epd in axisymmetric contraction-expansion 

flows 

- No counterpart epd is observed in planar configurations  

- Over 200% Boger fluid enhanced pressure drops captured above Newtonian  

- Rothstein & McKinley [1] experimental pressure-drop data is quantitatively 

captured 

- Transition states detected between flow phases of steady, oscillatory and 

unstable form 

- Flow-rate increase exhibits larger epd compared to fluid-relaxation time 

increase  
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 Predicting large experimental excess pressure drops for Boger fluids 

in contraction-expansion flow  
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†
  

 

Institute of Non-Newtonian Fluid Mechanics, Swansea University, College of Engineering, 

Bay Campus, Fabian Way, Swansea, SA1 8EN, UK 

 

 

Abstract  

More recent finite element/volume studies on pressure-drops in contraction flows 

have introduced a variety of constitutive models to compare and contrast the 

competing influences of extensional viscosity, normal stress and shear-thinning. In 

this study, the ability of an extensional White–Metzner construction with FENE-CR 

model is explored to reflect enhanced excess pressure drops (epd) in axisymmetric 

4:1:4 contraction-expansion flows. Solvent-fraction is taken as =0.9, to mimic 

viscoelastic constant shear-viscosity Boger fluids. The experimental pressure-drop 

data of Rothstein & McKinley [1] has been quantitatively captured (in the initial 

pronounced rise with elasticity, and limiting plateau-patterns), via two modes of 

numerical prediction: (i) flow-rate Q-increase, and (ii) relaxation-time 1-increase. 

Here, the former Q-increase mode, in line with experimental procedures, has proved 

the more effective, generating significantly larger enhanced-epd. This is accompanied 

with dramatically enhanced trends with De-incrementation in vortex-activity, and 

significantly larger extrema in N1, shear-stress and related extensional and shear 

velocity-gradient components. In contrast, the 1-increase counterpart trends remain 

somewhat invariant to elasticity rise. Moreover, under Q-increase and  with elasticity 

rise, a pattern of flow transition has been identified through three flow-phases in epd-

data; (i) steady solutions for low-to-moderate elasticity levels, (ii) oscillatory 

solutions in the moderate elasticity regime (coinciding with Rothstein & McKinley 

[1] data), and (iii) finally solution divergence. New to this hybrid algorithmic 

formulation are - techniques in time discretisation, discrete treatment of pressure 

terms, compatible stress/velocity-gradient representation; handling ABS-correction in 

the constitutive equation, which provides consistent material-property prediction; and 

introducing purely-extensional velocity-gradient component specification at the 

shear-free centre flow-line through the velocity gradient (VGR) correction. 

 

Keywords: Viscoelastic fluid; pressure-drop prediction; extensional White–

Metzner_FENE-CR model; axisymmetric contraction-expansion 

                                                 
†
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Introduction 

This article considers predictive methods for the accurate capture of experimental 

levels of excess pressure drop (epd) in contraction-expansion  flow situations, now a 

classical and elusive challenge to computational rheology. The geometric-ratio 

adopted is that of 4:1:4, and the study explores various alternative constitutive models 

to analyse and address this problem. This work follows a second partner-study on the 

dual problem of flow-past-a-sphere and the capture of enhanced drag (Garduño et al. 

[2]. Of the many constitutive models proposed, here particular advantage has been 

taken of the FENE-type construction, see Chilcott and Rallison [3]; alongside other 

models with more dissipative contributions, of viscoelastic White-Metzner (WM)-

form. This approach has gainfully lead to the development and application of a hybrid 

class of models, introducing a dissipative function whilst combining the merits of 

both White-Metzner and FENE-CR models. In the dissipative function,
D

( )   , itself 

dependent on a material dissipative extensional-viscous time-scale (
D

 ) and an 

extension-rate ( ), here two approximations have proved of substantial benefit in 

large epd-capture – the full  cosh D -form, and its truncated equivalent form 

 
2

1 D   . 

 

The experimental background is such that, Nigen and Walters [4] found significant 

differences in pressure-drop between Boger and Newtonian liquids for axisymmetric 

flow. However, no distinction could be drawn between corresponding pressure drops 

for Newtonian and Boger fluids in planar configurations. Likewise, Rothstein and 

McKinley [5, 1] switched attention to axisymmetric contraction-expansion 

geometries of various contraction ratios (between two and eight) and degrees of re-

entrant corner curvature, covering a large range of Deborah numbers. There large epd 

was observed for Boger fluids, above that for a Newtonian fluid, independent of 

contraction-ratio and re-entrant corner curvature. Furthermore, Rodd et al. [6] 

considered microfabricated contraction-expansion geometries (16:1:16, planar, 

sharp), investigating vortex generation, pressure-drops and the complex relationships 

between inertial and elastic influences. For a large range of Weissenberg numbers, the 

length-scale of the geometry was found important to generate strong viscoelastic 

effects, which were non-reproducible for the same fluid when using macro-scale 

geometries. In this manner, significant upstream vortex growth was generated 

alongside increase in excess pressure-drop of some 200 percent. 

 

Computational prediction has somewhat lagged behind the above advances made 

experimentally. In the infancy of computational rheology, the so-called Upper-

Convected Maxwell model (UCM) and the Oldroyd-B model (with solvent addition) 

were strongly favoured. This was partly due to their mathematical simplicity, whilst 

mimicking sufficiently complex rheometrical behaviour for the class of polymer 

solutions known as Boger fluids, made popular in the late 1970s (Boger [7]). In their 

early predictive work for L-shaped geometry flows, Perera and Walters [8] described 

the effects of increasing elasticity in viscoelastic flows. There a decrease in pressure-

drop was reported as elasticity increased for a four-constant, shear thinning Oldroyd 

model (now known to be due to the shear-thinning contribution). In contrast, it was 

shown that by increasing inertia through Reynolds number, the pressure-drop was 

found to increase almost five orders higher than that observed upon increasing 

elasticity. The work of Debbaut et al. [9] and of Binding [10] already provided strong 
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hints as to the likely causes of the inadequacy of the Oldroyd B model in its under-

prediction of the observed experimental increases in excess pressure drop (epd). 

Nevertheless, the outstanding question and computational challenge on contraction-

flow pressure-drops remains: when and under what conditions could a constant shear-

viscosity/strain-hardening viscoelastic fluid reflect experimental enhanced epd, as 

experienced under axisymmetric flow settings for Boger fluids. 

 

It is now well accepted that the increase in Couette correction for Boger fluids 

flowing in axisymmetric contractions can be very high indeed. The various 

contributions clearly present the theoretical and computational rheologist with some 

significant challenges, some of which on vortex dynamics for example, have already 

been resolved (see Phillips and Williams [11]; Aboubacar et al. [12]; Walters and 

Webster [13]; Alves et al. [14]). Moreover, the POLYFLOW finite element package 

with Oldroyd models and an EVSS formulation (Binding et al., [15]), has provided 

some epd-results for 4:1:4 planar and axisymmetric contraction-expansion geometries 

with solvent-fraction viscosity-ratios of β=0.9 and 1/9 (see on for definition). With 

increasing Deborah number (De) and the larger β=0.9 ratio, an increase in epd was 

reported in the planar context, with upturn and modest enhancement (of O(1~2%); 

whilst under the axisymmetric context, only upturn without enhancement was 

observed. In addition and more recently, Pérez-Camacho et al. [16] have examined a 

Newtonian, Boger, and shear-thinning polymer solutions for various contraction-

ratios (2:1:2, 4:1:4, 6:1:6, 8:1:8, 10:1:10). There, particular attention has been given 

to the pressure-drops and kinematics obtained experimentally, in a flow apparatus 

specifically designed for the purpose. These authors found computationally that 

pressure-drops revealed a relationship between N1 and extensional viscosity for both 

Boger and shear-thinning solutions, and that enhanced-epd could be extracted 

experimentally for ratio-factors of 4 and above. 

 

This present paper stands as a continuation of our previous work on this problem 

(Aguayo et al. [17]; Walters et al. [18], Tamaddon-Jahromi et al., [19, 20], in 

predicting pressure-drop for Boger-type fluids in contraction-expansion  flows. There, 

a variety of new models have been explored, all with a single relaxation mode, 

constant shear-viscosity and extensional-viscosity, in common with Oldroyd-B. A 

general conclusion of these earlier numerical findings (Walters et al. [18, 21]), have 

confirmed earlier comments by Binding [10] and Debbaut and Crochet [3] that, 

whereas high extensional viscosity levels can give rise to large increases in the epd, 

increasing normal-stress difference levels can have the opposite effect. In addition to 

generate enhanced-epd, the levels of stress must be raised across the constriction, for 

which the fluid rheology plays a key role (Aguayo et al. [17]). Moreover, Walters et 

al. [21], attempted to show how some generalizations of the original White-Metzner 

model could help to understand the competing influence of various rheometrical 

functions on important flow characteristics. Adopting this line of approach, 

Tamaddon-Jahromi et al. [19], proposed a constitutive model with the combined 

extensional viscosity functionality of Debbaut and Crochet [3], and the shear-thinning 

viscoelastic Linear Phan-Thien-Tanner (LPTT) model. There, experimental–levels of 

epd-enhancement were successfully derived with flow-rate increase, and also 

somewhat in line with the experimental range of deformation-rates reported. 

However, there were limitations to this finding, in that modest shear-thinning was 

introduced, and that the viscoelastic component itself was limited in range and 

effectiveness on enhancement (as purely viscous dissipative models, also gave 

similar, with slightly less epd-enhancement). 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

  5 

 

2. Problem specification - governing equations and constitutive models  

 

Incompressible and isothermal viscoelastic flow is governed by mass and momentum 

conservation principles, along with an equation of state for the material. In 

dimensionless form, balance equations under these conditions may be expressed as: 

 

0 u            (1) 

Re Re ,p
t


    


T

u
u u +        (2) 

 

where 2  T d , is the total stress. This is decomposed into a Newtonian solvent 

contribution  2d , and a viscoelastic polymeric contribution  . In eqs.(1)-(2), u, 

†1
( )

2
  d u + u , and p represent fluid velocity, rate-of-deformation, and 

hydrodynamic pressure, respectively. Throughout the flow is assumed to be creeping 

flow (Re ≈ O(10
−2

)), and as a consequence, the momentum convection term has 

negligible contribution. Here, superscript notation † denotes tensor transpose. The 

solvent fraction parameter  is defined as solvent

solvent polymeric

β =
+



 
, where solvent  and 

polymeric are the Newtonian solvent and zero-rate polymeric viscosity contributions. 

 

In this paper, the relevant equations of state are introduced, alongside a 

comprehensive listing in Tables1-2 for all constitutive variants discussed and their 

rheometrical functions. Firstly, the constitutive equation for the FENE-CR model 

(Chilcott and Rallison [22]) provides the following expression for the conformation 

tensor: 

 

 f Tr( ) ( I) 0.De


  A A                  (3) 

 

Here,  f Tr( )A  is the stretch-function. This stretch-function is affected by the 

extensibility parameter L, which modulates the influence of Tr( )A  as: 

 

2

1
f (Tr( )) .

1 Tr( ) / L



A

A
                (4) 

 

In eqs. (3)-(4), Reynolds and Deborah group numbers may be defined as: 
2

solvent polymericavgRe = ρ L / ( + )  , De = 1 avg , where  represents material density, 

and avg

U

L
   is the average shear-rate in the constriction zone, with average velocity 

U  across the constricted region, and characteristic length L  equal to constriction 

radius Rc= RU/4 (see Figure 1). For the 4:1:4 contraction-expansion flow, Rothstein 

and McKinley [5, 1] introduced the Deborah number as: 
1

EXP

1 3

c

Q

R
De  


, with flow 

rate (0<Q≤0.5 cm
3
/sec), constriction radius (Rc=0.3175cm), and relaxation time of 
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λ1=0.146sec (see Appendix I for scaling factor equivalence on Deborah numbers from 

experiments to simulation). One notes in passing that, De-incrementation may be 

gathered under (i) elevation of flow-rate, Q-increase (rise in average velocity U , 

mode preferred experimentally), or under (ii) elevation of fluid elastic-memory (
1 -

increase, mode favoured computationally). Below, this issue is explored in some 

depth. 

 

Kramers’ rule in eq.(5) is the means to translate the conformation tensor into its 

counterpart stress tensor form: 

 

 
 

1
f Tr( ) .

De


 A A                 (5) 

 

ABS-f-correction Furthermore and in the context of complex 4:1:4 contraction-

expansion flow of wormlike micellar fluids, López-Aguilar et al. [30] provided 

evidence of negative dissipation function values being generated during flow 

evolution and along the spatial domain. In turn, this provoked negative values of the 

ffunctional (leading to negative viscosity predictions) when approaching numerical 

Wi-solution breakdown. Hence to eliminate this source of inconsistency, the absolute-

value operation was applied to each term of the dissipation function in the associated 

ffunctional. Correspondingly, to avoid such a possibility arising under FENE-CR-

type models, an ABS-correction has been applied similarly to the ffunctional of eq. 

(4), where the absolute-value operation is taken to apply to each constituent 

component of the trace function (Tr(|A|). This correction has strong influence on 

numerical tractability at relatively larger De-levels, whilst remaining invariant within 

the underlying theoretical predictions in simple shear and uniaxial extensional flows. 

The corresponding ABS-f -correction is then: 

 

2

FENE

1
f (Tr( ))

1 Tr( ) / L



A

A
.            (6) 

 

This analysis also investigates a viscoelastic extensional polymer-network-based 

White-Metnzer model (White and Metzner [23]). The White-Metzner (WM) 

theoretical framework assumes that a flowing polymeric-material consists of a long 

chain of molecules connected in a continuously changing network, for which 

junctions vanish in a limited time. In this work, a modification to the base White-

Metzner expressions is considered. Here, the viscosity   is modified to be a function 

of second ( dII ) and third ( dIII ) invariants of the rate-of-deformation tensor, where 

expressions for generalised shear-rate and extension-rate in complex flow may be 

taken as, 

 

   
1

tr
2

d d, det . d d2II III              (7) 

 

By design, such a modified White-Metzner model introduces extensional hardening 

effects.  
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In a similar hybrid fashion, the FENE-CR model may also be modified with an 

extension-rate-dependent viscosity, rendering an extensional White-Metzner FENE-

CR model (eWM_FENE-CR). Adapting eq.5 and accounting for both viscous and 

polymeric contributions, this hybrid combination of a White–Metzner construction 

with a FENE-CR model, eWM(Cosh)/FENE, may be expressed in the form: 

 

 
(1 )

f Tr( ) ( ) 2 ( )
De


  


   A A d,T            (8) 

 

where   is the extensional strain rate defined as 3 d d/  III II . The dissipative 

function ( )  is defined in eq. (9) below. In particular, note here that the FENE-CR 

contribution remains in terms of the conformation-tensor. The hyperbolic viscosity 

law of Debbaut and Crochet [3] and Debbaut et al. [9] is adopted for this version of 

eWM_FENE-CR, as: 

 

 ( ) cosh D                      (9a) 

or, its preferred quadratic-term truncated Taylor series approximation, 

 
2

( ) 1 D                       (9b) 

see alternative truncated forms of ( )  in Appendix-II. Note, the form for the 

rheometrical functions for these models, as provided in Table 2, where in particular, 

the magnifying product influence of the dissipative function ( ) is apparent on the 

extensional viscosity. Henceforth, to render model naming more succinct, the choice 

is made to replace the form eWM_FENE-CR, with more simply swanINNFM, using 

(c) or (q) appendage to indicate type of hyperbolic or quadratic dissipative function.  

 

The next phase of study is targeted at adjustment of the extensional viscosity response 

alone, essentially layered upon the rheology of the foregoing models with no 

additional influence upon N1 and ηs. This departs somewhat from the Oldroyd-B form 

for ηe (unbounded, sharp change around De= 12  ), while anticipating a wider 

exploration of deformation-rate space (Figure 2). The goal now becomes that of 

identifying the balance between ηe and N1 as deformation-rate rises, and capturing 

significant epd in line with experimental findings.  

 

Here, two new viscoelastic hybrid White-Metzner/FENE-CR model forms are 

deployed; namely the  cosh D  function form (eq. 9a), now swanINNFM(c), and a 

second, with a quadratic approximation of the cosh function  
2

1 D    (eq. 9b), now 

swanINNFM(q). The elongational-dependence of these two functions may be 

introduced into the separate solvent and polymeric contributions, individually (purely 

dissipative) or in combination (dissipative/recoverable). The extensional viscosity of 

these two new models is shown in Figure 2 for the range of 0.1≤ D ≤ 4.0. Here, an 

increasing trend in ηe is clearly apparent for both swanINNFM forms when compared 

to the FENE-CR model. Sharp increase in extensional viscosities is displayed for 

larger value of D =4.0 around the strain-rate of O(0.1) units. For lowers value of 

D =0.1 and D =0.5, the extensional viscosities (ηe) of both WM models follow the ηe 
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of FENE-CR up to strain-rates of around O(3) and O(2) units, respectively. Again, a 

sharp increase in ηe is observed for both models as the strain-rate increases.  

 

 

3. Numerical schemes and discrete problem approximations 

3.1 Hybrid finite element/finite volume scheme The hybrid finite element/volume 

scheme utilised is a semi-implicit, time-splitting, fractional-staged formulation. This 

invokes finite element (fe) discretisation for velocity-pressure, alongside  cell-vertex 

finite volume (fv) sub-cell approximation for stress (see Webster et al. [24], Matallah 

et al. [25]). Over triangles in two dimensions, this leads to a parent-cell quadratic-

linear velocity-pressure fe-approximation, with a four-subtended triangular child-cell 

fv-approximation within each parent-cell. Overall, the algorithm is based on a two-

step Lax-Wendroff splitting (Donea [26], Zienkiewicz [27]), crafted around an 

incremental pressure-correction procedure to satisfy incompressibility (conservation 

of mass). With a forward time-increment, such a three-stage pressure-correction 

implementation provides second-order temporal accuracy. 

Conservation of mass, momentum & finite-element scheme Galerkin discretisation 

may be applied to the Stokesian sections of the system; the momentum equation at 

Stage 1, the pressure-correction at Stage 2 and the incompressibility correction 

constraint at Stage 3. For reasons of accuracy, an element-by-element Jacobi scheme 

is used to solve the resulting Galerkin Mass matrix-vector equations at Stages 1 

(momentum) and Stage 3, requiring only a handful of iterations. With only a single 

matrix reduction phase necessary at the initial stage, Stage 2a is handled through a 

direct Choleski decomposition procedure. Finally, pressure and diffusive terms at 

Stages 1a and 1b are treated in semi-implicit form, to enhance stability. Pressure 

temporal treatment calls upon multi-step reference across three successive time-

levels. 

Constitutive eq. & finite-volume scheme Cell-vertex fv-schemes applied to the 

conformation-tensor equation are based upon an upwinding technique (fluctuation 

distribution) on each triangular fv-child-cell. This distributes control volume residuals 

to provide nodal solution updates (Wapperom and Webster [28]). The non-

conservative form of the conformation-tensor equation [eq. (3)] may be treated by 

gathering flux-terms into a flux-contribution  R u A , and grouping the remaining 

terms under the source-contribution (Q).The objective is to evaluate the flux and 

source variations over each finite volume triangle (Ωl), with their distribution to its 

three vertices according to the preferred strategy. The resulting nodal update for a 

particular node (l) is obtained by accumulating the contributions from its control 

volume Ωl, composed of all fv-triangles surrounding node (l). The flux and source 

residuals may be evaluated over different control volumes associated with a given 

node (l) within the fv-cell T; namely, the flux contribution governed over the fv-

triangle T, (RT, QT), and that subtended over the median-dual-cell zone, (Rmdc, Qmdc). 

This procedure demands appropriate area-weighting to maintain consistency, which 

for temporal accuracy has been extended to time-terms likewise (see further details in 

the references cited above Aboubacar et al. [29]). 

 

Problem specification & mesh refinement The benchmark problem studied is that of 

creeping flow (Re ≈ O(10
−2

)) within a 4:1:4 axisymmetric contraction-expansion with 

rounded contraction-cap and corners (Figure 1, schematic and meshes). Here, solvent 

fractions of 90% are taken as standard (β=0.9), to represent the low-solvent balance 
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and constant shear-viscosity of typical Boger fluids (Boger [7]). Three successively 

refined meshes (see Figure 1 detail) have been utilised in this study (following 

Aguayo et al. [17]), to ensure present solution consistency with mesh refinement to 

within 0.1% accuracy across primary solution variables. As such, all solutions are 

reported on the medium refinement mesh. 

 

VGR-correction & imposition of centreline shear-free boundary conditions This 

velocity gradient modification has been introduced specifically to prevent noise 

proliferation in the pursuit of high-De solutions [30]. The VGR-correction is imposed 

at the centreline, where shear-free extensional flow prevails. This pure extensional-

deformation condition is enforced by imposing: (i) null values onto the shear 

velocity-gradient components (shear-free flow), thus ensuring 1D-extensional 

deformation (eq. 10); (ii) pure uniaxial-extension relationship between the normal 

velocity-gradient components (eq. 11); and (iii) nodal-pointwise continuity imposed 

exactly, in discrete form (eq. 12). Note that, in the constitutive equation, condition 

(iii) has been imposed throughout the domain to meet conservation of mass. 

Conditions (i)-(iii) under VGR-correction become:  

 

0z ru u

r z

 
 

 
,                  (10) 

^1 1
,

2 2

r zu u

r z


 
   

 
                 (11) 

^1
.

2

r z ru u u

r z r


  
     

  
                (12) 

In the above, 
^

zu

z






 represents the strain-rate on the centreline in the axial direction, 

a region of pure uniaxial (non-homogeneous) extensional deformation.  

 

4. Earlier work, some background and prior results 

 

In an earlier study with the FENE equations-of-state, Szabo et al. [31] provided 

solutions for such a 4:1:4 contraction-expansion flow, and concluded that the total 

dissipation rate resulted from the product of the pressure-drop times the flow-rate. 

Moreover, the 4:1:4 contraction-expansion problem was found to be more 

computationally tractable than its counterpart for 4:1 contraction flows. This is due to 

the balanced inlet-outlet configuration (periodic in kinematics/stress), which 

generates significantly smaller pressure-drops in the contraction-expansion setting, 

proving an order of magnitude lower than those for contraction flows (Walters et al. 

[18, 21]). In this work, the flow-domain meshing is composed of 1080 quadratic 

elements and 2289 nodes with 14339 degrees of freedom. Such a problem setting has 

been vigorously studied by Aguayo et al. [17], which provides for a thorough mesh 

refinement analysis and much further detail, see Figure 1b. 

 

The excess pressure-drop (epd), itself is defined as the ratio between the pressure-

drop for a Boger fluid (subscript B in eq.(12)) to that for a corresponding Newtonian 

fluid (subscript N) (Szabo et al. [31], Aguayo et al. [17], and Binding et al. [15]). 

This amounts to a relative Couette correction between the two fluids: 
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 
 

B

N

fd

fd

p p
epd

p p

 


 
,     f d u u d dp p L + p L    .                                                   (13) 

 

In this notation, Δp is the total pressure-drop between the inlet and outlet zones, 

where fully-developed flow is ensured; Δpu is the fully-developed pressure-gradient 

generated in the upstream section, Δpd  is the fully-developed pressure-gradient in the 

downstream section; and Lu and Ld are upstream and downstream lengths, 

respectively. Note in the present study, experimental 4:1:4 axisymmetric contraction-

expansion epd-data for polystyrene Boger-fluids (Rothstein and McKinley [5, 1]) 

may be compared directly against the numerical predictions for epd, for the various 

constitutive models proposed. 

 

4.1 Effect of normal stress (N1) and extensional viscosity (ηe) on epd : Models A-

D, α, J, and FENE-CR  models – some earlier simulation predictions 

 

In this section, a summary of our earlier numerical results (Walters et al. [18, 21], 

Tamaddon-Jahromi et al. [20, 32]) are presented in Figures 3-5 and Tables 1-3. 

There, these models introduced and explained share the same constant shear viscosity 

as for Oldroyd-B, whilst others share common Oldroyd-B extensional viscosity form. 

Overall, these studies take into account a number of additional factors, such as: finite 

extensibility, weakening of N1 effects, and balance of N1 and ηe influences.   

 

Epd for Models A-D In Walters et al. [18], four constitutive Models A–D were 

introduced to investigate the influence of normal stress and extensional viscosity 

upon the epd-prediction, where Model-D represents Oldroyd-B and Model-A 

Newtonian (base-reference, with constant ηe). Model-B (inelastic extensional, N1=0) 

and Model C represent embellishments upon GNM1 and UCM1 models, respectively, 

from the work of Debbaut and Crochet [3] and Debbaut et al. [9]. Figure 3a conveys 

the corresponding findings on excess pressure drop (epd) against increasing 

deformation rate (De) for these four constitutive models (A-D). These data 

demonstrate the influence of the various rheometrical functions on epd-estimation. A 

comparison of Models-A to B shows the increasing effect on epd that extensional-

viscosity has alone, as both models support vanishing N1. At the same time, under 

constant extensional viscosity (ηe), a comparison of Models-A to C indicates that 

increasing influence of normal stress difference can give rise to a decrease in epd, 

that is the opposite effect (as suggested in Binding [10].  

 

Taking this comparison one step further, one may contrast epd-findings for Model-B 

(N1=0) versus Model-D (Oldroyd B). Note that, Oldroyd B reflects the same 

extensional viscosity as Model-B (an example of extreme strain-hardening), but 

Model-D has a non-zero normal stress-difference of quadratic variation in shear-rate 

(so, N1≠0). Model D is often used to approximate experimental results for Boger 

fluids, due to its constant shear-viscosity and strain-hardening properties. Consistent 

with the above, the results of Figure 3a again demonstrate decline in epd from Model-

B to Model-D, and this may be associated with the consequent rise in N1. In addition, 

there is the usual upper-limit on De attainable in the simulations for Model-D 

(attributed to the unbounded nature of ηe). Here, there is a slight dip in epd before 

reaching the limiting value at the Newtonian reference line (for this level of solvent 
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fraction, β=0.9), which lies below the large positive epd experimental expectations 

reported for Boger fluids (Nigen and Walters [4]; Rothstein and McKinley [5, 1]. 

 

Following this line of approach, a direct comparison of Figure 3a epd results can be 

established for Models-C to D, both of which share in common the same quadratic N1 

behaviour. Hence, this comparison is held useful to represents the effects of 

extensional viscosity alone (nb. Model-C bears a constant extensional viscosity). 

Once more, an increase is detected in epd from Model-C to that for Model-D, but 

now this finding may be attributed to rise in extensional viscosity. 

 

Epd for α and J-models The -Model and Oldroyd-B share the same extensional 

viscosity, with a constant shear viscosity. The choice =1 reproduces Oldroyd-B first 

normal stress (Walters et al. [18]), and =0 mimics the inelastic GNM1 model (see 

Debbaut and Crochet [3]). As such for the -Model, the first normal stress difference 

(N1) declines with reducing -level. The relevant epd results are displayed in Figure 

3b. Here the effect on epd of gradual N1-weakening is apparent from the inelastic 

GNM1(=0) to the Oldroyd-B(=1) model; this may then be associated with the 

strong and sustained quadratic form of N1 in the latter case of Oldroyd-B. The results 

for the inelastic model (=0) show an increase in epd, initiated from the most early 

stages of deformation-rate rise. Epd results for Model-(=0.1) take up a position 

interposed between the two extremes of =0 and =1, with epd-elevation above 

Oldroyd-B(=1) and the Newtonian reference line, a finding that can be attributed to 

the reduction in N1-influence from that of Oldroyd-B. Significantly, the maximum 

increase in epd for the -Model lies at De=6.4, and even then substantiates only a 

modest 5% increase above the Newtonian epd-unity reference-line; a shift in the 

correct direction, but admittedly still far from the much more marked experimental 

findings. The viscometric (N1) distinction of the J-Model is its sustained N1-plateau 

levels attained at high deformation-rates (Figure 4a). Counterpart, epd predictions 

with the J-Model are given in Figure 3c. Here, the dependence on J-parameter level is 

clearly evident, with a trend in the direction anticipated, and positive epd-values for J 

sufficiently large. Unfortunately, J-Models suffer from the lack of finite extensibility 

along with Oldroyd-B, and with rise in J-level, the limiting De achievable reduces, so 

that the (J=1.0)-instance, provides the smallest such De–value 

 

Epd for FENE-CR and generalised variants Our experience with these various 

forms of the FENE-CR model (capturing finite extensibility), is that they are indeed 

capable of predicting enhanced epd, unlike observations with Oldroyd-B alternatives. 

As observed in Figure 4a, the FENE CR model possesses a first-normal stress-

difference weaker than the strong quadratic-form of Oldroyd-B, and strain-hardening 

gives way to a constant plateau in extensional viscosity (finite extensibility, Figure 

4b). Elsewhere in Tamaddon-Jahromi et al. [20, 32], epd response has been examined 

for the FENE-CR(L=5) model in contrast to Oldroyd-B results (L=∞, constant ηs). 

There, the impact on epd has been established, from the extent of lowering of epd 

values due to ηe damping, and elevation due to N1 damping. This knowledge has been 

gathered from solutions with L={3, 5, 10}. The evidence points to a clear trade-off 

between these two rheometric factors, with rising deformation-rate (or De). There is 

the additional positive benefit of limiting ηe-capping with the FENE-CR model, 

which provides access to a significantly wider range of De-values than that reported 

for Oldroyd-B (limit De=5.1). Typically, FENE-CR predictions support upper limits 

of De~100 for L=3 (epd rise 5.2%), of De~70 for L=5 (epd rise 28%), of De~9 for 
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L=10 (epd rise 18%, see Figure 5). For L=10, the epd-trend at the upper De-limits is 

still rising, whilst for L=5 and 3 there is closer approximation to the limiting plateaux 

with De~10
2
. Thus, one observes an increase in epd-values for L=5 of 15% at De=10, 

and in the extended range up to De~70, this rises to approximately 28%. It has been 

shown more recently that this FENE-CR upper De-limit may still be further extended, 

up to say De~2000, with additional attention to discretisation improvements, as in 

improved centreline and continuity approximation, and switch in primary variable 

from stress to configuration tensor form [30)]. Thus, providing some 32% epd-

enhancement. This is notably, still well short of experimental findings, in 

enhancement level and deformation-rate range. In the several decades beyond De=10, 

ηe is noted to approach its upper limiting-plateau, so that any further rise in epd can be 

unequivocally attributed to continual weakening of N1 (from its quadratic form). 

Furthermore, and based on the above finding, a new and generalised model FENE-

CR(αJ
m

) has been explored, combining features of FENE-CR, -Model and J-Model. 

This model, supported theoretically with its still weaker form of first-normal stress-

difference (N1) in comparison to FENE-CR (Figure 4a), was devised to predict a 

considerably larger epd-enhancement (say, up to 200%, see Figure 5). Unfortunately, 

in practice this model inherits the poor numerical stability characteristics of its J-

Model antecedent, due to the properties of its 2 ( )  function and the roots of its 

denominator (see Table 1). As a consequence, all the above deliberations leave one 

disappointingly short of capturing the large positive epd experimental findings, 

reported for Boger fluids (Nigen and Walters [4]; Rothstein and McKinley [5, 1]). We 

proceed below to revisit this cycle of analysis, and overcome the barriers met above, 

by adopting alternative routes to solve the same problem. 

 

5. Present numerical predictions versus experimental data 

 

The experimental data for Boger fluids and the 4:1:4 geometry, as supplied by 

McKinley and co-workers (Rothstein and McKinley [5, 1]), is presented in Figure 6 

(blue circle-line). Of considerable importance is the appearance of substantial 

increase in epd as the Deborah number rises. With respect to viscoelastic modelling, 

the wide discrepancy between numerical and experimental work has been suggested 

by some to relate to a missing dissipative contribution to the polymeric stress, arising 

from a stress-conformation hysteresis in the strong non-homogeneous extensional 

flow near the contraction plane. Rothstein and McKinley [5] cite Doyle et al. [33], 

Ryskin [34], and Rallison [35] on this issue. Rothstein and McKinley use this idea 

and pressure-drop data to derive an approximate powerlaw-type extensional viscosity, 

based on a Cogswell shear analysis [36], from which an approximate dissipative 

stress can be determined. The eWM_FENE-CR models employed in this work, 

hybrid extensional White Metzner and FENE-CR forms, achieve a similar objective, 

but transposed to the viscoelastic context, through the specification of its extensional 

viscosity function (see eWM_LPTT alternative in [20]). Such models naturally 

introduce an additional dissipative extensional-viscous time-scale (discussed above), 

and are based on a generalisation in complex flow for the strain-rate. The expectation 

for these models is to show a positive capacity to capture enhance levels of pressure 

drop, as desired. 
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5.1 Flow-rate (Q) increase solutions: swanINNFM(c), swanINNFM(q) models 

 

In this section, we attempt to demonstrate the effective capture of enhance levels of 

pressure drop, discussing the necessary steps and procedure to adopt in achieving this 

goal. Following the split of solution approach into flow-rate increase and relaxation-

time increase, first solutions are presented under consideration of increased flow-rate 

(Q) settings. Essentially, this involves ramping of the flow-rate between the various 

intermediate steady-state De-solutions attained. Here, Figure 6 conveys comparison 

of epd experimental data, of Rothstein and McKinley [1]), against the numerical 

predictions with the two dissipative model variants proposed - swanINNFM(c) and 

swanINNFM(q) models. As such, Figure 6a displays epd for the first variant (full-

cosh), swanINNFM(c), with restriction for clarity to three values of dissipative 

extensional-viscous time-scale D =0.1, 0.18, and 0.2. In this instance, one can 

observe that the epd( D =0.1)-solution underestimates the experimental data, whilst 

the epd( D =0.2)-solution provides overestimation. Hence, the epd( D =0.18)-

interpolant is seen to provide a close match to the experimental data, both in the mid-

range 2.0≤De≤3.0 and in the earlier range 0≤De≤2.0. Beyond the De~3.0 level, the 

experimental data begins to attain its plateau (see below for discussion). 

 

Figure 6b reflects a similar picture in experimental data capture with the alternative 

quadratic-approximation swanINNFM(q) model. In this form, solutions are displayed 

for 0≤ D ≤0.26, from which a tight window of capture is provided by the range 

0.12≤ D ≤0.16. This provides the mid-range interpolant epd( D =0.14), that well 

tracks the Rothstein and McKinley [1] epd-data right up to De~3.2+. One notes here, 

the slightly reduced demands on dissipative extensional-viscous time-scale D -level 

to achieve such matching. Then, swanINNFM(q) solutions require only ( D =0.14), as 

opposed to ( D =0.18) with swanINNFM(c). Significantly, since inclusion of a larger 

dissipative factor is observed to affect numerical stability, hence this issue also 

influences De–solution levels for steady-state attenuation. Therefore, higher level 

De–solutions (with epd) may be achieved with the swanINNFM(q) option (more 

robust) than its full-cosh counterpart. 

  

In Figure 6b, one may also note the location of the outer dashed limiting line, drawn 

to link the steady-solution limit-points observed for each instance of D trialled. This 

effectively delimits the steady-unsteady transition boundary being mapped out.  

 

Subsequently beyond De~3.2+, and to cover the wider range up to De=5.2+, the the 

Rothstein and McKinley [1] epd-data is better captured with D -values in the reduced 

range of 0.1≤ D <0.14. Yet, see below for further results in this extended rate range, 

when strain-rate capping is invoked. 

 

Note, there is only a slight hint of an initial early-rate drop in epd (dip below unity-

Newtonian reference-line, see below). This dip is itself a phenomenon that may be 

associated with stored energy and recoverable stress (Rothstein and McKinley, [1]), 

and seems to be a feature present when there is significant N1 influence in the 

representation. 
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Moreover, extensional-viscosity capping (through restriction in strain-rate within the 

dissipative function ( )  , to say, O(15) units) with either swanINNFM model 

options, is observed to resolve the limiting plateau the Rothstein and McKinley [1] 

epd-data behaviour. Such capped-results are shown in Figures 7(a-b), achieved 

beyond De=2.8 for the  cosh D -form (Figure 7a), and De=3.2 for the quadratic-

form (Figure 7b). It is particularly noteworthy that for the quadratic-option, to capture 

the experimental-epd between De=4 and De=5, capping levels must be reduced for a 

second-time, around De=4.1 to O(14) strain-rate units.  

 

It is worth mentioning in passing, that experimentally and in some corresponding 

planar configurations, any excess pressure drop is not particularly prominent for 

Boger fluids ([4] for 32:1 and 20:0.5 contraction ratios). Clearly under planar 

deformation settings, the particular extensional viscosity model (swanINNFM(q)) 

advocated in this study theoretically collapses to the base FENE-CR form, through 

the definition of generalised strain-rate. Hence, since base FENE-CR axisymmetric 

solutions (say, with D =0 of Figure 6b) under Q-increase provide considerably 

reduced epd, it follows that planar solutions will do so likewise. To illustrate this 

situation, one may compare data in Figure 6c under both planar and axisymmetric 

configurations, and within the deformation rate range 0≤De
Exp

≤9. Then, one can 

observe a significant decline in epd response between the axisymmetric ( D = 0, D = 

0.14) to the planar configuration ( D = 0)
‡
. Notably in the planar instance, there is an 

exaggerated early dip in epd over the axisymmetric case, to a minimum planar value 

of epd=0.964 at De~0.4, before reaching a delayed intercept with the unity reference 

line at De~1.4, and proceeding subsequently to an upper limit at De~9 of epd=1.16 

(substantiating ultimate epd-enhancement, though admittedly modest). For the 

equivalent axisymmetric case with D =0 (base FENE-CR), and at the same level of 

De=9, then epd=1.30, providing twice the epd-enhancement of its planar counterpart 

(though still relatively modest). Amongst the two axisymmetric results reported ( D = 

0, D = 0.14), the early dip in epd is seen to be increasingly suppressed as the 

dissipative time-constant is elevated. 

 

5.2 Relaxation time ( 1 )-increase solutions: swanINNFM(c), swanINNFM(q) models 

 

Subsequently, one turns to study the relaxation time ( 1 )-increase mode, whereupon 

Figure 8 illustrates epd counterpart solutions to the above, again with both 

swanINNFM model options. This is important to consider for back-reference, as one 

may note that all previous simulation results, covered and reported in section 4, were 

essentially reported under ( 1 )-increase mode. One observes that, under this mode of 

solution-approximation, the huge epd-enhancement of the experimental-epd may be 

captured once again with either model. That is with the proviso that now a suitable 

selection must be made over a set of extensional-viscous time-scales for D . This 

requires a different D -value for each 1 -increment replacing the single-value of the 

Q-increase mode. With the  cosh D -form, the D -set is D ={0,…,4.0}; with the 

                                                 
‡
 Note, that the same average velocity in the constriction zone is taken as the basis of equitable 

comparison between axisymmetric and planar flows. 
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quadratic-option, the set is 
D ={0,…,3.5}. One observes that maxima in D  are now 

an order of magnitude greater than found under Q-increase mode, and the solution-

lines at fixed- D  striate the epd-solution space. As such, their intercepts with the  

Rothstein and McKinley [1] epd-data provide the necessary characterisation anchor-

points, from which to determine the D –interpolant for each 1 -value. In this 

manner, a cubic relationship may be recognized between dissipative extensional-

viscous time-scale (
D ) and fluid-relaxation time (

1
 ) [red circle/line in Figure 8]. 

Once more to capture the Rothstein and McKinley [1] epd-data, as observed with the 

Q-increase mode above, a narrower range of D  ( D <3.5) is required with the 

quadratic-option in comparison to the  cosh D -form ( D <4.0). Since lower-
D  

requirement yields access to improved numerical stability and wider-De steady-state 

solution acquisition, hence only the quadratic-option is retained henceforth, in the 

analysis sections to follow.  

 

5.3 Comparison of solutions: Q-increase versus 1 -increase 

 

Here, direct comparison is made between the solutions extracted with rising De and 

fixed D =0.14, for the two possible solution approximation modes: of increasing 

flow-rate (Q-increase) and fluid-relaxation time increase ( 1 -increase). First, one 

gathers from Figure 9a, the large increase in epd and capture of the the Rothstein and 

McKinley [1] epd-data with flow-rate Q-increase. Second, and in contrast, the 

relatively unresponsive epd-solution line is noted under 1 -increase, which 

asymptotes to a position parallel and above the unity-Newtonian reference-line, 

somewhat distant from the experimental data. As observed above from Figure 8b 

under λ1-increase, the relatively large value of D =3.5 is necessary to capture 

extrema in the experimental data, almost 25 times larger than D =0.14, as required 

under the Q-increase mode. Thus, this considerable reduction in dissipative factor 

(and its fixed nature) renders the Q-increase mode the more robust and practical 

method to extract enhanced-epd. 

 

In addition and in Figure 9b for λD=0.14, large vortex intensities are observed with Q-

increase (upstream, downstream) in comparison to 1 -increase (upstream only). 

Here, and for De={1, 3, 5}, enhancement in downstream vortex intensity with Q-

increase is almost {10, 112, 1185} times larger than under 1 -increase (static). 

Upstream vortex dynamics provides for vortex enhancement under both modes, so 

that for De={1, 3, 5}, factors of vortex intensity increase from 1 -increase to Q-

increase are now {10, 26, 47} times larger. Clearly here, the Q-increase mode 

generates considerably greater vortex activity. One notes in passing that, upstream 

vortex intensities for 1 -increase and Q-increase at De=5 are 0.314*10
1 

and 14.7*10
-1

 

respectively. The equivalent values in downstream vortex intensities are 0.004*10
-1 

and
 
4.74*10

-1
. 

 

These significant differences in flow dynamics between Q-increase and 1 -increase 

modes, expressed through epd and vortex intensity (Figure 9), are also clearly 

apparent in the rate of deformation fields of Figure 10. As anticipated under 1 -
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increase of Figure 10a, the maximum in strain-rate (of duz/dz) remains unaltered 

(around 1.7 units), as De rises from De=1 to De=5. In contrast, Q-increase strain-rates 

show much larger levels. These lie around 8 times the 1.7 units value at De=1; 

reaching almost 96 times at De=5. Note under Q-increase and at De=1, that zones of 

small (dark blue) and large (red) strain-rates appear at the centreline and along the 

contraction-wall. There is an antisymmetric pattern detected about the centreline, 

large-positive-upstream to large-negative-downstream, with reflection about the 

obstruction plane. About the obstruction-cap, again the pattern is antisymmetric, but 

opposite in sign-direction upstream-downstream. These regions grow as elasticity 

rises, both upstream and downstream, becoming distorted, with larger extrema 

downstream. Strain-rate maxima near the obstruction-cap, compared with centreline 

values, are {2.2, 4.7, 5.6}-times larger for De={1, 3, 5}. 

 

Similar growth trends are observed in shear-rate (duz/dr) fields of Figure 10b. Here 

and under λ1-increase, minima in shear-rate (Figure 10b) remain practically constant 

as De rises. Considering the counterpart Q-increase scenario (Figure 10b), significant 

differences are detected in shear-rate minima between solution states at De=1, 3, and 

5. As De rises from De=1 to De=5, a growth zone of small (dark-blue) around the 

constriction is identified (see Figure 10b). For example, shear-rate minimum at De=1 

is -50.93 units, shifting to -236.78 units at De=3; a factor of ~5 times. Between De=3 

to De=5 solutions, the factor of increase is ~2 times (from -236.78 to -522.89 units). 

Here, the field patterns are generally symmetric about the obstruction-plane, 

upstream-downstream; becoming drawn slightly more upstream around the 

obstruction-cap as De–rises.  

 

Additionally, this naturally leads on to charting corresponding first normal stress 

difference (N1=zz-rr), as shown in fields Figure 10c (3D), and Figure 10d (2D) for 

both 1 -increase and Q-increase modes. The 3D-plots are informative on relative 

growth of peak-values, their local nature and sharpness, and in contrast to their 

surroundings. The counterpart 2D-plots are also helpful, as the perspective-view in 

3D-plots can obscure some of the important information to convey. In the complex 

flow situation, this contains both pure shear (boundary wall) and pure extensional 

(centreline) deformation regions, alongside mixed flow. Hence, earlier comments 

concerning increase-decrease in N1 and extensional viscosity (ηe) from ideal 

homogeneous settings, and their relative impact on epd-estimation, can be 

reconsidered in this more general deformation context. Here, there is significant 

increase in N1 under the Q-increase mode around the obstruction-wall. There, N1-

peak-values rise from N1=37.8 units at De=1, to N1=235.3 units at De=3, to N1=814.1 

units at De=5; which represents magnification of more than 20 times from De=1 to 

De=5. Note that, maxima in the first-normal stress (N1) plots are located near the 

constriction mid-plane in shear, close to the constriction-cap around (r=1, z=0). In a 

similar fashion but in extension along the centreline, maxima in N1 (representative of 

ηe) adjust through the De–rise as in: N1=28.6 units at De=1, N1=91.9 units at De=3, 

and N1=150.1 units at De=5. This supports the expectation on ηe–enhancement of 

homogeneous flow. Notably, N1 shear-maxima near the obstruction-cap, compared to 

N1 extension-maxima along the centreline, are {1.3, 2.7, 5.4}-times larger alongside 

the rise in De={1, 3, 5}. 

 

The situation is completely different in the 1 -increase instance, where normal stress-

maxima remain around the same order (O(4.8) units) as De rises. Hence, these 
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maxima are lower in magnitude from those for their Q-increase counterparts, by 

about a factor of nine at De = 1.0 (maxima of 4.4 units) to some 50 times at De = 3.0 

(maxima of 4.7 units). In addition, Q-increase data show an intense red-zone, of 

relatively large positive-values, which shifts upstream about the contraction with De 

rise. Such an increasing trend in N1 does not emerge under the 1 -increase scenario. 

 

Furthermore, Figure 11 at De=5 provides 3D corresponding field plots for response in 

the dissipative function  
2

( ) 1 D      . Here, the comparison of Figure 11a 

( D =0.14) to Figure 11b ( D =3.5), under the increasing relaxation-time ( 1 -

increase) mode, reveals there is significant increase in  (of almost two order of 

magnitudes in extrema) around the constriction-cap and along the wall. The 

corresponding epd=1.2 for D =0.14, and epd=3.15 for D =3.5 (see in Figure 11). 

This reflects almost 215% in epd-enhancement for D =3.5, in comparison to only 

20% epd-enhancement for D =0.14. One observes the crucial fact, that larger values 

of  generate larger extensional viscosities in the non-homogeneous constriction 

flow-zone, resulting in corresponding epd–enhancement. In addition, and with the 

smaller value of D =0.14, even larger epd-values can be achieved under the 

increasing flow-rate (Q-increase) mode. This is demonstrated between Figures 11b 

and 11c, which manifests doubling in maxima, that provides epd-enhancement 

from 215% to 380% (now epd=4.8), an increase of some 165%. In this data, 

significant elevation is noted in the dissipative function  
2

( ) 1 D       as D  rises 

under λ1-increase, and as elongation-rate rises under Q-increase. As such, dissipative 

extensional-viscous time-scale D  and elongation-rate  , are both factors that can 

provoke enhanced epd. Notably, the stronger influence of the two, proves to be 

through the elongation-rate factor.  

 

5.4 Steady-oscillatory transition and flow instability 

 

In Figure 12, three different flow phases (steady, oscillatory, and unstable) are 

identified against De-rise (Q-increase mode), for the quadratic-option 

swanINNFM(q) model with D =0.14. Steady numerical solutions are predicted up to 

De=5. Then, oscillatory flow solutions appear at De~5.1, and are sustained 

throughout the range of 5.1≤De≤5.9. Subsequently, the flow becomes unstable, with 

solution divergence detected beyond De=5.9. In contrast, and reflecting on the 

experimental data of Rothstein & McKinley [1, 5], steady flow conditions are 

observed up to around De~2.8 (hollow symbols, Figure 12), beyond this point, the 

Rothstein and McKinley [1] epd-data level out, and subsequently, first oscillatory 

flow and then temporal instability is reported (filled symbols). These authors found 

that the onset of an elastic instability is first indicated by small amplitude oscillations 

in both the global pressure drop and the local velocity measurements which are 

observed to grow in magnitude with increasing Deborah number. 

 

To further investigate the steady-oscillatory phase transition, Figure 13 displays the 

associated developments in total pressure-drop (Δp) across the contraction against 

time, for the base-value λD=0.14 and traced through De-rise. For De≤5, the pressure-

drop is observed to be uniform in time, whilst oscillations onset (early in time) for 

De>5, becoming visually detectable in the double-magnification zoomed-view 
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(Figure 13b). The magnitude of these fluctuations increase with rise in De: showing 

first ordered oscillation at De=5.1 (constant amplitude-frequency); giving way to 

repeated regular-irregular fluctuation patterns at De=5.6; prior to more irregular-

chaotic fluctuation patterns at De=5.9. Nevertheless, even at this advanced level of 

elasticity (De=5.9), such oscillatory behaviour in pressure-drop barely affects flow 

kinematics via the vortex structures generated (mimicking pseudo-steady form), see 

Figure 14 below. Conspicuously, pressure-drop gradually increases as De rises, 

generating values of Δp={100, 650, 1900} units at De={1, 3, 5}. Subsequently with 

λD=0.14, and between De=5.1 to De=5.9 solutions, there is almost 40-times increase 

in pressure-drop rising to Δp=2800 units.  

 

Additionally, further evidence on temporal velocity development is displayed in 

Figure 14, now taken from two sample point locations, one around the inlet-centreline 

(Figure 14a), and another within the contraction-gap (Figure 14b). Data sampled from 

both locations provides evidence of smooth velocity solution form, as far as the peak-

level of De=5.9 (see De=5.8 result). Only at this elevated level and within the 

contraction-gap location, is there any evidence of minor fluctuation in the kinematics. 

Moreover, to add supplementary solution evidence, the associated streamline patterns 

for three De-values, De={5.1, 5.6, 5.9}, are depicted in Figure 14c. From this, one 

notes that upstream vortex intensities are considerably larger in size compared to 

those downstream. For example at De=5.1, the upstream vortex ( min -value) is ~2.9 

times larger than downstream, which by De=5.9, adjusts to a factor-difference of ~2.3 

times. 

 

Considering the impact on pressure-drop of elevation in λD, in switching between 

λD=0.14 to λD=0.2, then Δp(λD=0.2) rises to around ~120% from De=3.7 (Δp=1500 

units) to De=5.1 (Δp=3300 units), see Figure 15a. Hence, with the inclusion of a 

larger dissipative-factor of λD=0.2, the onset of oscillatory flow appears earlier, at 

around De=3.7, in comparison to De=5.1 with λD=0.14. Here with λD=0.2 solutions 

and for De≤3.5, temporal solution development in pressure-drop is smooth and 

steady. For De≥3.5 and with De-rise subsequently, both amplitude and frequency of 

fluctuations increase; fluctuation patterns become more irregular as the peak-vale of 

De=5.1 is approached. Figure 15b also provides the comparative streamline patterns 

for 0.1<De<5.1 solutions. At the relatively low-level of De=0.1, both upstream and 

downstream vortex intensities maintain a balanced comparable size of O(10
-3

). Once 

more with De-rise, upstream vortex intensity becomes much larger than for its 

downstream counterpart. Typically at De=3.5, upstream vortex intensity ( min ) is 

~2.87-times greater than that of the downstream vortex. At De=5.1, this upstream-

downstream factor-difference approaches more like ~1.67-times. 

 

5.5 Solution evolution and analysis of second eigenvalue (s2) of stress-subsystem  

 

In the various graphs provided in Figure 16, the second eigenvalue (s2) of the stress-

subsystem is seen to remain positive along the pure-extension centreline for all values 

of De noted. One notes here, the theory would indicate that s2=Azz once N1<0 along 

the centerline of the flow [30], and hence, negativity in the Azz solution component in 

this zone should be avoided. The zoom insert on centreline Azz data with De-rise, 

reveals the gradual decline in (s2)-values and downstream shifts of its minima. Yet, 

positivity is maintained in this zone, and a lower limit would seem to apply. 
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It would appear, that even though the present simulation procedures use steady-state 

De-continuation (mimicking gradual flow-rate ramping experimentally, and do not 

evolve the Initial Value Problems (IVP) forward purely through time per De-

solution), the hope is that any development of s2-negativity in the field is kept to 

manageable levels, so that steady-solutions are still maintained. For example, under 

true time-evolution conditions, for a single De-solution (mimicking IVP theory) with 

sudden flow-rate ramping from De=0.1 state, experience dictates a steady critical De-

solution state occurs around De~1.8, with divergence at De~1.9 (without any 

oscillatory flow phase detected). Under such conditions, s2 does however remain 

positive in the field, through time evolution to steady-state for each De-solution level, 

as the IVP theory would demand. 

 

Then, under De-continuation, a more detailed analysis of plots (3D & 2D) for the 

refined range 1.0≤De≤3.2, seeks to locate more precisely the approach and onset of 

s2-negativity. In the range 1.0≤De≤2.0, s2 is positive throughout the field (s2min>0; 

s2min represents s2-global minimum in the field), although it follows a declining trend 

with De-rise, with only a slight hint of solution activity around the backface-tip of the 

contraction (3D-plot; Figure 17a, De=1.0). From this location, a light-blue fringe-

contour level is growing, and by De=2.0 (data not shown), this connects the 

constriction backface-tip region with the centreline, downstream of the contraction 

(2D-plots). Conspicuously, beyond such a stage and at De=2.2 (Figure 17b), s2-data 

enters negativity (s2min=-0.08), localised about the constriction backface-tip. Tracing 

solution form from De=2.8 (-s2min=1.32; Figure 17c), the negative-peak based on the 

backface-wall is now accompanied by a second negative-peak (3D-plot), which 

appears behind the first-peak, yet less prominent. In the solution transition from 

De=2.8 to 3.0, and then 3.2 (the experimental range of some interest and comment; 

see Figure 17c-e respectively), one observes gradual growth of the first negative-

peak, but with a sudden dramatic elevation occurring around De= 3.2 (as for De=3.4, 

see below).  

 

Hence, and proceeding beyond De=3.2, steady predictive solutions are already 

displaying erratic nature. Rising to De=3.4 (in the oscillatory experimental range; 

Figure 17f), the negative-peak based on the wall has grown some five-fold in 

intensity (-s2min=7.32), and obscures the second negative-peak observed earlier in the 

De-rise. Here, the patch of negative s2-values (strong blue) starts growing 

downstream and departs away from the contraction backface-wall (2D-plot). 

Elevating to De=4.1 (Figure 18a), s2-negativity slightly intensifies (-s2min=7.86), but 

grows spatially, covering a significant region away from the contraction-wall (2D-

plot). Various negative peaks are now apparent at De=4.1, all of them contained 

within the same region, accompanied with onset of upstream overshoot-undershoots 

and small red-positive peaks, alongside the relatively stronger blue-negative peaks 

(3D-plot). At De=4.3 (Figure 18b), s2-negativity reaches its extremum, with (-

s2min=14.56). Now there is a transfer of energy emerging between the two negative-

peaks, with the second downstream-peak gradually increasing in strength. This 

position continues through solutions for De={4.5, 5.1, 5.9} (see Figure 18c-e), 

whereupon smaller multiple ripple-peaks also appear. The overshoot-undershoot 

phenomena, with rising upstream red-positive peaks, is particularly prominent in 

solution for 5.1≤De≤5.9 (see Figure 18d-e), whilst approaching a state of numerical 

breakdown and solution intractability. 
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Effects of strain-rate capping This procedure significantly reduces the s2-negativity 

for the same level of elasticity (as illustrated through De=3.4 solutions; contrast 

Figure 17f vs Figure 18f). The solution without-capping (Figure 17f) provides a pair 

of relatively more intense and sharper negative peaks (-s2min=7.32). In contrast, with 

capping at the first-capped-level of De=3.4 (Figure 18f) and strain-rate constrained to 

less than 15 units, the global minimum is some five-times less intense (-s2min=1.61). 

This reduction in s2-negativity is sustained up to the second-capped-level of De=4.1, 

where stronger capping is enforced, with strain-rate constrained to less than 14 units. 

In this fashion, steady rheologically-constrained numerical solutions may be extended 

up to De=5.1 (with -s2min=2.38), whilst faithfully tracking the epd-plateau levels 

displayed in the experimental results.  

 

 

6. Conclusions  

 

This study, motivated by much background work of many contributors, has attempted 

to capture numerically the highly elusive huge enhancements in pressure-drops 

observed experimentally for some Boger fluids in axisymmetric contraction-type 

flows, see Rothstein and McKinley [1]. To this end, a new dissipative model has been 

proposed for use in the simulation procedures with constant-shear viscosity, yet large 

extensional viscosity response. Such a model (motivated by Tamaddon-Jahromi et al. 

[19]) possesses an extension-rate dependent viscosity and is based on the combination 

of White-Metzner and FENE-CR constructions, providing a hybrid White-

Metzner/FENE-CR model (swanINNFM). Notably, solutions with this model have 

successfully generated significant epd elevation, of over 200% above the Newtonian 

reference for these contraction-expansion flows.  

 

This advance has only been made possible through a number of major strategies 

adopted. First, through constitutive model developments as discussed at length, and 

particularly to devise suitable and balanced rheometrical properties (in N1 versus ηe, 

see further comments below on this).  

 

Second, it has been vital to identify the roll of problem approximation – seeking 

parity in experimental and simulation protocols over epd-assessment with rising De. 

Here, the importance of adopting the flow-rate increasing mode (Q-increase, 

experimentally favoured), as opposed to the mode through incrementation in fluid-

relaxation time (
1 -increase, computationally favoured), has been recognised and 

demonstrated. This demands scaling between experimental and simulation definitions 

in De, and ensures correlation on rate-ranges considered in either protocol. In this 

manner, it has been confirmed that flow-rate increase (Q-increase) conditions exhibit 

larger epd-enhancement, when compared to fluid-relaxation time increase (
1 -

increase), at the same level of dissipative extensional-viscous time-scale (
D ). 

 

Third, some new modelling strategies have been introduced, found particularly 

helpful in extraction of large De-solutions, and hence expanding the range of 

numerical solutions open to investigation. These strategies, discussed and referenced 

above, include: utilising the absolute value of the stress-trace function (ABS-f-

correction); assuming the configuration tensor construct of the FENE-approach; 

adopting fe/fv improvements through advanced techniques in time discretisation, 

discrete treatment of pressure terms, velocity gradient treatment along the pure-



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

  21 

stretch flow-centreline (VGR-correction), correction for continuity, and compatible 

stress/velocity-gradient approximation. 

 

Correspondingly, alongside large epd-enhancement, large vortex enhancement has 

been generated, both upstream and downstream with De-rise. Moreover, upon 

applying capping in the model through restriction in strain-rate, it is also practical to 

capture the limiting-plateau response noted in the experimental epd-data. Here, there 

is barely any initial decrease detected in epd, as associated with stored energy and 

recoverable stress, though this may be present in the very low range of deformation-

rates (admittedly, not particularly explored in depth here). 

 

Moreover, and for the quadratic-option swanINNFM(q) model in particular, it has 

now become possible to explore the different solution flow phases (steady, 

oscillatory, and unstable) identified against De-rise. In this respect, it has been shown 

that, the magnitude and chaotic form of fluctuation in pressure, rises with De-

elevation, as there is transition between flow phases; these being of first steady 

solution, giving way to oscillatory form, before finally yielding to unstable, 

untractable and divergent form. Nevertheless, such oscillatory behaviour in pressure-

drop has been observed to have very little impact upon the flow kinematics 

(mimicking pseudo-steady form), noted through the vortex structures generated. 

 

In parallel with this work, a counterpart experimental-to-simulation study has also 

been conducted on the enhanced-drag past a falling-sphere (to appear separately). 

There comparable findings on an alternative flow problem have been developed (for 

generality of application – under different fluid solvent-fractions, deformation-

settings and constriction-gap ratios), some of which have been found most instructive 

in exploring the many intricacies of the enhanced-epd theme. There also, close 

matching to experimental drag findings has been extracted, over comparable 

measures of deformation-rate between the experiments and the simulations. 

 

There is still the intriguing question to address of separation of elasticity and normal-

stress (and viscosity) effects on pressure-drops, which links arguments from 

viscometry to the Linear Viscoelastic Regime to complex flow response. This 

demands still further detailed investigation (beyond the scope of the present article), 

which requires splitting of the various component contributions to the total 

dissipation rate (itself related to epd, see Aguayo et al. [17]) to explain the source of 

the epd-enhancement, from the complex flow within the constriction window alone. 

In addition, this should be supported by the differences, detected across this complex 

flow zone, from idealised viscometric expectations (extensional viscosity and normal-

stress) to those actually predicted by numerical solutions. Such theoretical and 

practical considerations are consigned to a further paper on ‘epd and a hyperbolic-

shaped contraction-expansion geometric alternative’ (Nyström et al. [37]). 

 

On derivation of a physical understanding to this new swanINNFM model (with 

extension-rate dependent viscosity, constant in shear) - this may emerge from the 

background physics to substantiate the extensional dissipative response nurtured. So, 

for example, fibre suspension additives would point the way here to such a 

mechanism, providing dissipative extensional behaviour, and hence strong strain-

hardening effects (yet little impact on shear properties). Since this concept may be 

applied under scale-reduction, at the mesoscopic-level to the molecular-level, one can 
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well see how appropriate physics may be constructed to substantiate such effects 

(applicable equally to planar deformation). 

 

Concerning the modelling of Boger fluids, and the use of a more representative multi-

mode as opposed to single-mode approximation (as used here), for its impact on 

present epd-findings - the use of such more realistic-fluid models would not change 

present epd-findings substantially. This is because the current modelling work 

attempts to distinguish differences associated with and boost ‘hardening’ extensional 

viscosity behaviour alone (separability), by introducing extensional dissipative effects 

(inactive in shear), with its impact on pressure-drops. This position would not be 

substantially affected by a multi-mode approximation. Indeed, in Matallah et al. [38,  

39], a detailed comparison was performed between a ‘multi-mode’ and a ‘single-

mode’ approach, without fruitful outcome on enhanced pressure-drops and stress 

fields in complex flows. There, the key factor to estimating the pressure-drop 

accurately in complex flows was found to be the quality of fit to the shear viscosity, 

and in a single-mode case, reasonable qualitative correspondence was derived. 

Improved matching may be achieved to shear viscosity data with ‘multi-mode’ 

approximation, but shear viscosity is essentially constant here anyway. Moreover, 

experience would dictate that, it is often found difficult to derive a good parameter 

match and fitting to both experimental shear and elongational data, simultaneously. 

Here, the incorporation of a dissipative extensional-viscous time-scale (
D ), has 

proven to have a strong impact on dissipation with rising flow-rate, and it is this fact 

that is important to take advantage of (see also Rothstein & McKinley [1] on this 

point). 

 

Acknowledgement 

Sincere thanks must be expressed to the many helpful contributions made to this 

study through our colleagues in the INNFM Wales, but particularly to Professor Ken 

Walters FRS. I.E. Garduño (through scholarship No. 310618) and J. E. López-Aguilar 

would also like to gratefully acknowledge the financial support from Consejo 

Nacional de Ciencia y Tecnología (Mexico).  

 

Dedication 

This work has been written and dedicated to the memory of a dear sister-in-law, 

Linda Webster, recently deceased. 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

  23 

Appendix I: Scaling factor on Deborah numbers: experimental versus numerical 

 

Standard experimental practice would provide for incrementation in an experimental 

Deborah number (  
1 1

3

1

MIT Exp

cDe De Q R     ) through raising the volume flow rate 

  
Q cm3 s( )  at fixed geometric radius Rc and fluid relaxation time, 

1
 . Experimentally, 

this approach proves convenient for retention of the same fluid across multiple flow-

rate test runs (Q-increase). The relaxation time is based on values extracted from 

Rothstein and McKinley [1],  

 

 

2

10
1

0

first normal stress coefficient 6.66 Pa s
0.146 s

2*zero shear-rate viscosity 2 2 22.75 Pa s





     

 

In the simulations, a Deborah number (
1 1 1

Swan SimDe De U L    ) is often stipulated, 

where  U  is a characteristic velocity (characteristic velocity across constriction) and 
L  is a characteristic length (constriction width). In this form, common practice is to 

increment the simulation Deborah number (
1 1

SwanDe U L  ) by raising the fluid 

relaxation time, 1 , at fixed deformation rate, 
 U L  ( 1 -increase).  

 

One may derive a relationship between these two definitions of Deborah number, 

experimental (
1 1 1 3

MIT Exp

c

Q
De De

R
  


  ) and computational (

1 1 1

Swan SimDe De U L    ) 

and hence establish a scaling factor, in order to compare experimental and simulation 

findings on a one-to-one basis. Similar lines of argument for the De-simulation 

definition, and noting that the rate-factor 
 
U L( )  is held fixed (which may be taken 

unambiguously as base-factor of unity), whilst varying (
1
 ), then: 

1 1 1

Swan U
De

L
    . 

As such, unity may also be established for 
1

SwanDe  with a relaxation time setting of 

1 1 ssim  . 

On this basis, one may establish parity in common Group numbers, when one 

recognises the fixed factor in each definition. Hence, a scaling factor of (
1

1 exp/  ) 

emerges, which yields: 

 

1 1 1

1
6.8

0.146

Swan MIT MITDe De De    . 

 

Subsequently, once base parity has been established, the actual method of De-

incrementation employed, experimentally or computationally, is of course open to 

selection in either setting. 
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Appendix II: Approximations for the dissipation function 

The  cosh D   function can be expanded into its constituent Taylor series 

components, viz.:  

   

 

 

2

2

1
cosh

2

1
{1 ...

2

  1 ..}.

D D

D

D D

D D

e e
    

   

   

 
 

   

  

      (II-1) 

 

Then successively, quadratic and quartic truncated approximations for 

 ( ) cosh D     may be extracted, with even polynomial structure noted (as plotted 

in Fig. AII.1). Note that, the  cosh D   and [  
2

1 D  ] functions intercept at 

around 2.9D   , whilst the interception point between the  cosh D   and 

[    
2 4

1 D D     ] functions is almost three times larger ( 9.8D   ). Such forms 

(with linear in addition for comparison) have been used as appropriate replacement 

functions for ( ), to overcome the rather over-strong exponential original form of 

 cosh D   for 3
D
   , viz.: 

 

( ) 1 D         linear     (II-2) 

 
2

( ) 1 D        quadratic    (II-3) 

   
2 4

( ) 1 D D          quartic     (II-4)

Figure AII.1 , quadratic [  
2

1 D  ] and quartic    
2 4

[1 ]D D      

approximation functions  
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Figure captions 

Table 1a. Constitutive models: Models B-D, α, J, α-J and FENE-CR(αJ
m

), stress 

tensor forms 

Table 1b. FENE-CR and swanINNFM models, conformation tensor forms 

Table 2. Rheometrical functions, various models 

Table3. Constitutive models, material properties and epd predictions 

Figure 1. a) Schematic diagram, contraction-expansion geometry, b) zoomed mesh 

sections, 4:1:4 contraction/expansion: coarse (elts=1080, nodes=2280, dof=14339, h-

min=0.0099), medium (elts=1672, nodes=3519, dof=22038, h-min=0.0074), refined 

(elts=2112, nodes=4439, dof=27798, h-min=0.0058) 

Figure 2. Extensional viscosity of Oldroyd-B, FENE-CR; swanINNFM(c), 

swanINNFM(q) models, 0.1, 0.25, 4.0D   

Figure 3. Normalised pressure-drop (epd) vs De, for a) A-D, b) α, and c) J models 

Figure 4. Material function, a) first normal stress difference (N1), b) Extensional 

viscosity (ηe) Oldroyd-B, , J, FENE-CR, and FENE-CR(αJ
m

) models 

Figure 5. Normalised pressure-drop (epd) vs De for Oldroyd-B, J, FENE-CR, and 

FENE-CR(αJ
m

) models  

Figure 6. Normalised pressure-drop (epd) vs 1

ExpDe  for swanINNFM, a)  cosh D , 

b)  
2

1 D   models; c) planar vs axisymmetric,  
2

1 D    model 

Figure 7. Normalised pressure-drop (epd) vs 1

ExpDe  for swanINNFM, a)  cosh D , 

b)  
2

1 D   models, flow-rate (Q) increase, finite plateau cap 

Figure 8. Normalised pressure-drop (epd) vs 1

ExpDe  for swanINNFM, a)  cosh D , 

b)  
2

1 D    models, λ1- increase 

Figure 9. a) Normalised pressure-drop (epd) vs 1

ExpDe , b) stream function, λ1-

increase vs Q-increase, swanINNFM(q) model, λD=0.14, min= -*min*10
-1

 

Figure 10. a) strain-rate b) shear-rate   fields c, d) 3D, 2D first normal stress difference 

(N1), λ1-increase vs Q-increase, swanINNFM(q) model, λD=0.14 

Figure 11.  
2

( ) 1 D      , a, b) λ1-increase ( D =0.14 and 3.5), c) Q-increase ( D =0.14) 

Figure 12. Normalised pressure-drop (epd) vs 1

ExpDe  for swanINNFM(q) model, 

flow-rate (Q) increase, λD=0.14, full symbols represent oscillatory flow condition 

Figure 13. Temporal pressure-drop across contraction, λD=0.14: rising-De, 

swanINNFM(q)], Q-increase; a) full view, b) zoomed view  

Figure 14. Temporal velocity development, λD=0.14: a) inlet centreline b) contraction 

zone; c) stream function (min= -*min*10
-1

); rising-De, swanINNFM(q), Q-increase 

Figure 15. a) Temporal pressure-drop across contraction, b) stream function (min= -

*min*10
-1

); rising-De, swanINNFM(q), λD=0.2,  Q-increase 

Figure 16. a) Azz & b) N1 @ centreline against rising-De, λD=0.14; swanINNFM(q), 

Q-increase 

Figure 17. s2-tracking, λD=0.14; No-capping strategy against rising-De (1.0≤De≤3.4); 

swanINNFM(q), Q-increase 

Figure 18. s2-tracking, λD=0.14; a)-e): No-capping strategy against rising-De 

(4.1≤De≤5.9); f) Capping-strategy @ De=3.4; swanINNFM(q), Q-increase 

Figure AII.1 , quadratic [  
2

1 D  ] and quartic    
2 4

[1 ]D D      

approximation functions  
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Table 1a. . Constitutive models: Models B-D, α, J, α-J and FENE-CR(αJ
m

), stress tensor forms 
 

Table 1b. FENE-CR and swanINNFM models, conformation tensor forms 
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Table 2. Rheometrical functions, various models 
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Table3. Constitutive models, material properties and epd predictions 

 

Models Material properties Critical 

De  

epd enhancement 

B (Generalised 

Newtonian) 

ηe same as Old_B; ηs const; 

N1=0 
0.6 8% 

C (White- 

Metzner) 

(ηe , ηs ) const;  N1 - damping 2 epd decreasing 

D (Oldroyd-B) ηe  extreme strain hardening; ηs 

const; N1=quadratic 
5 1% 

 (White- 

Metzner) 

ηe same as Old_B, ηs const, 

N1=weaker than Old-B 
(=0.1) 6.4 5% 

J (Whit-Metzner) ηe same as Old_B; ηs const; N1 - 

damping 

(J=0, Oldroyd-B) 

1 (J=1) 

3 (J=0.01) 

5% 

epd decreasing 

 - J (Whit-

Metzner) 

ηe same as Old_B; ηs const; 

N1 - damping 
(=0.1, J=1) 

0.5 

5% 

LPTT ηe same as Old_B(Capped); ηs 

shear-thinning 

N1 - damping 

4 (ε=0.4) 

8 (ε=4*10-4) 

epd decreasing 

epd decreasing / 

increasing below 

Newtonian ref. 

line 

FENE-CR(L=5) 

 

ηe same as Old_B(Capped); ηs 

const; 

N1 - damping 

70 

(L=10) 9 

28% 

18% 

FENE-CR(L=5) 

abs(f), continuity 

correction 

ηe same as Old_B(Capped); ηs 

const; 

N1 - damping 

2000 

 
32% 

 

FENE-CR(L=5) 

abs(f),continuity/ 

VGR correctios 

ηe same as Old_B(Capped); ηs 

const; 

N1 - damping 

3400 

(L=10) 19 

35% 

47% 

 swanINNFM(c) 

(L=5) 

ηe WM[(cos(λDε))]_FENE-CR; 

ηs const; N1 – damping 
O(30-40) ~ 200% 

Matching Exp. 

 swanINNFM(q) 

(L=5) 

ηe WM[(1+ (λDε)
2
)]_FENE-CR; 

ηs const; N1 – damping 
O(30-40) ~ 200% 

Matching Exp. 

. 

. 
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39 L   

 

 

 

 

 

Figure 1. a) Schematic diagram, contraction-expansion geometry, 

b) zoomed mesh sections of 4:1:4 contraction/expansion: coarse 

(elts=1080, nodes=2280, dof=14339, h-min=0.0099), medium 

(elts=1672, nodes=3519, dof=22038, h-min=0.0074), and refined 

(elts=2112, nodes=4439, dof=27798, h-min=0.0058) 

r 
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Figure 2. Extensional viscosity of Oldroyd-B, FENE-CR; swanINNFM(c), swanINNFM(q) models, 
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Figure 3. Normalised pressure-drop (epd) vs De , for a) A-D, b) α, and c) J models 
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Figure 4. Material function, a) first normal stress difference (N1), b) Extensional viscosity (ηe) Oldroyd-B, 
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) models 
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Figure 6. Normalised pressure-drop (epd) vs 1

ExpDe  for swanINNFM, a)  cosh D , b)  
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1 D   models; 

 c) planar vs axisymmetric,  
2

1 D    model 

 

c) 

30% 

16% 

Axisymmetric 

Planar 

Newtonian 

ref. line 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

  38 

De
1

Exp

E
p

d

0 1 2 3 4 5 6
0

1

2

3

4

5

Experiment (Rothstein & McKinley, 2001)


D
=0.14


D
=0.14

De
1

Exp

E
p

d

0 1 2 3 4 5 6
0

1

2

3

4

5

Experiment (Rothstein & McKinley, 2001)


D
=0.18


D
=0.18

.

 [Cosh(     )]              
D


[            ]               
2

1
D
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

b) 

Newtonian 

ref. line 

Figure 7. Normalised pressure-drop (epd) vs 1
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Figure 9. a) Normalised pressure-drop (epd) vs 1

ExpDe , b) stream function, λ1-increase vs Q-increase, 

swanINNFM(q) model, λD=0.14, min= -*min*10
-1
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Figure 10. a) strain-rate b) shear-rate   fields c, d) 3D, 2D first normal stress difference (N1), λ1-

increase vs Q-increase, swanINNFM(q) model, λD=0.14 
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Figure 13. Temporal pressure-drop across contraction, λD=0.14: rising-De, swanINNFM(q)], Q-increase; a) 

full view, b) zoomed view 
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Figure 14. Temporal velocity development, λD=0.14: a) inlet centreline b) contraction zone; c) stream function 

(min= -*min*10
-1

); rising-De, swanINNFM(q), Q-increase 
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rising-De, swanINNFM(q), λD=0.2,  Q-increase 
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Figure 16. a) Azz & b) N1 @ centreline against rising-De, λD=0.14; swanINNFM(q), Q-increase 
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Figure 17. s2-tracking, λD=0.14; No-capping strategy against rising-De (1.0≤De≤3.4); 

swanINNFM(q), Q-increase 

 
 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

  51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. s2-tracking, λD=0.14; a)-e): No-capping strategy against rising-De (4.1≤De≤5.9); f) Capping-

strategy @ De=3.4; swanINNFM(q), Q-increase 

 
 

 


