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1
Abstract  

We present a drought reconstruction for southeastern China based on a tree-ring width 

chronology of Cryptomeria fortunei developed from the two sampling sites in central Fujian.  A 

reconstruction of July-February drought variability, spanning AD 1855–2011, was developed by 

calibrating tree-ring width data (total ring or latewood? Specify here) with the Palmer drought severity 

index (PDSI). The reconstruction was verified against an independent data set, and accounts for 36% 

of the actual PDSI variance during their common period (1955–2011). Dry intervals are reconstructed 

between AD 1859–1880, 1899–1911, 1927–1933, 1946–1959, 1964–1970 and 1987–1997. Wet 

conditions prevailed during 1855–1858, 1881–1898, 1912–1926, 1934–1945, 1960–1963, 1971–1986 

                                                        
F. Chen (Corresponding author) · Y. Yuan · S. Yu · H. Wang 

Key Laboratory of Tree-ring Physical and Chemic Research of China Meteorological Administration/Xinjiang 

Laboratory of Tree-Ring Ecology, Institute of Desert Meteorology, China Meteorological Administration, No 46 

Jianguo Road, Urumqi 830002, China  

F. Chen  

e-mail: feng653@163.com 

URL: https://www.researchgate.net/profile/Feng_Chen35/ 

F. Chen  

MOE Key Laboratory of Western China’s Environmental Systems, Collaborative Innovation Centre for Arid 

Environments and Climate Change, Lanzhou University, Lanzhou 73000, China 

H. Wang 

College of Earth and Environmental Science, Lanzhou University, Lanzhou 73000, China 



 2 

and 1998–2011. Comparisons between our PDSI reconstruction and a moisture-sensitive tree-ring 

width record from Vietnam reveal consistencies with  the Southeast Asia drought record, suggesting 

similar drought regimes. Spectral peaks of 2.8–6.4 years may be indicative of El Niño-Southern 

Oscillation (ENSO) activity, as also suggested by the significant correlations with Sea Surface 

Temperatures (SST) in the eastern equatorial and southeastern Pacific Ocean and an extreme event 

analysis. The analysis of links between our PDSI reconstruction and the large-scale regional climatic 

variation shows that there is a relationship of regional drought variation with the East Asian Summer 

Monsoon (EASM) intensity. 

Keywords: Tree-rings, Southeastern China, Drought reconstruction, Sea surface temperature, El 

Niño-Southern Oscillation, East Asian summer monsoon 

Introduction 

The Asian summer monsoon is one of the most energetic components of the Asian climate system. 

Its spatiotemporal variability can result in drought or floods, crop failure and famine, and changes in 

the hydrologic regimes of monsoonal China, and has the potential to  impact the lives of most of the 

population of China.  The city of Shanghai, and other coastal cities, have meteorological records 

which be traced back to the late 19th century, however, most of the climate records for monsoonal 

China begin in the 1950s and provide poor temporal and spatial coverage. Thus, due in part to the lack 

of long-term climatic records, the historical characteristics and variability of the Asian summer 

monsoon circulation, at various timescales, is not sufficiently understood for modelling studies to be 

used predictively (Zhou et al. 2009; Cook et al. 2010). Indirect evidence for past variability, such as 

tree-rings, historical climate documents, lake sediment records and stalagmite-based reconstructions  

have successfully served as proxy records of Asian summer monsoon intensity (Wang et al. 2001; 

Yancheva et al. 2007; Cook et al. 2010).. 

Existing dendroclimatological reconstructions exist for the subtropical and tropical regions of 

monsoonal Asia, giving an insight into the history of the regional monsoon climate. The most 

southerly studies in Asia were carried out in Java, Indonesia, where the signals of monsoon drought 
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and streamflow are recorded in the ring variability of Tectona grandis (D’Arrigo et al. 2006, 2011a). 

Buckley et al. (2007) develop a 448-year teak chronology for northwestern Thailand revealing 

significant correlations with  the regional ENSO signal. Elsewhere in Indochina and Myanmar, 

dendroclimatical studies have been used to evaluate various drought patterns and climate trends (Sano 

et al. 2009; D’Arrigo et al. 2011b). Buckley et al. (2010), based-on tree-ring width records from 

Vietnam, explore drought fluctuations over the past 759 years discussing the significant contribution 

of drought to the demise of the Temple at Angkor Wat. Such has been the success of tree-ring based 

climate reconstructions in Asia , Cook et al. (2010) developed the Monsoon Asia Drought Atlas 

(MADA), a seasonally resolved gridded spatial reconstruction of Asian monsoon drought and pluvials 

over the last millennium, derived from a 327-series tree-ring chronology network. Despite the 

significant sample depth of this network southern China is not represented (Cook et al. 2010), and, to 

the best of our knowledge, no drought reconstructions based on tree-rings have been developed to date 

in southern China. 

Fujian Province has widespread forests and, indeed is the Chinese province with the highest 

forest coverage on the mainland. The region, as it contains significant areas where tree growth is 

moisture sensitive, has great potential for contributing drought-deconstructions .. Here we address this 

research gap with the aim to : (i) develop tree-ring width chronologies from  Chinese cedar 

(Cryptomeria fortunei) in the region of Fujian Province, southeastern China; (ii) explore the 

relationships between tree growth and climate; (iii) develop a drought reconstruction and investigate 

the effects of El Niño-Southern Oscillation (ENSO), East Asian summer monsoon (EASM), and other 

forcing factors on the regional climate as revealed by the time-series. 

Materials and methods 

Site description and tree-ring data  

Tree-ring width data were collected from two sites known as TDS (located at 25°56′N, 117°30′E, 

and at an altitude of 998 m a.s.l.) and TMC (located at 27°48′N, 117°42′E, and at an altitude of 950 m 

a.s.l.) in Fujian Province (Fig. 1). Existing climate records from the study area (located at Nanping, 

26°39′N, 118°10′E, 127.8 m a.s.l.) reveal a 1955–2011 mean annual precipitation of 1632 mm and 
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mean annual temperature of 19.5 °C. January (mean temperature of 9.4 °C) and July (28.8 °C) are the 

coldest and the warmest month, respectively (Fig. 2). The regional precipitation regime is, as 

previously stated, powerfully influenced by the East Asian summer monsoon rainfall belt (Song and 

Cai 2007), with 58.5% of the total annual precipitation falling during the rainy season from March to 

June (approximately). There is a dry season (July to February), influenced by the west pacific 

subtropical high and Asian winter monsoon (Chen et al. 2012a). The regional landscape consists of 

low hills with extensive forested areas of cedar and yew and patches of dense bamboo forest. There is 

no evidence of a significant fire history or of human disturbance. The largest tree sampled was over 1 

m in diameter, however, it was later found to be hollow when cored. The ring-width chronology of 

Chinese cedar is comprised of data derived from 69 series sampled from 39 living trees. 

A standard sampling protocol was followed. Samples were air-dried and mounted on wooden 

holders,  before being sanded with progressively finer grit sand paper. Annual tree-ring widths were 

measured to a precision of 0.001 mm using a Velmex measuring system (Velmex, Bloomfield, USA). 

Measurement errors and cross-dating were further checked with the use of the computer program 

COFECHA (Holmes et al. 1986). A 60-year cubic smoothing spline was used to remove non-climatic 

trends in each series due to age, stand dynamics and increasing trunk diameter (Cook & Kairiukstis 

1990). The variance in the mean chronology was stabilized during the chronology compilation process 

using the Briffa RBAR-weighted method, which uses the average correlations between series in 

combination with the sample size each year to make adjustments in the variance (Osborn et al. 1997). 

Finally, the detrended ring-width series were standardized and developed into the standard (STD) 

tree-ring width chronology using a bi-weight robust mean function with the program ARSTAN (Cook 

& Kairiukstis 1990). 

We calculated signal to noise ratio (SNR), expressed population signal (EPS) and the variance in 

first eigenvector (VFE) for the common time interval 1950–2011. The SNR and VFE are the 

expressions of the strength of the common signals among the trees. The EPS quantifies how well a 

chronology based on a finite number of trees represents the hypothetical true chronology (Wigley et al. 

1984). At the same time, the running EPS statistic, based on a 50-year window lagged by 25-years at 
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each step, was used to evaluate the time-varying signal strength over the length of the chronology (see 

Figure 3?). 

Meteorological data and statistical analysis   

The tree-ring width climate relationships were initially investigated by exploring the simple 

correlations with several local climate indices. The climate data included the monthly records of mean 

temperature and total precipitation (1955–2011) from the Nanping meteorological station. The gridded 

monthly PDSI data was obtained from the Climatic Research Unit (CRU), East Anglia, UK 

(http://www.cru.uea.ac.uk; 0.5° × 0.5°; van der Schrier et al. 2011) for our study area for the time 

period 1955–2011 (averaged over 25.50–27.50° N, 116.50–117.50° E). All statistical procedures were 

evaluated at P < 0.05 level of significance using DENDROCLIM2002 (Biondi & Waikul 2004). In the 

correlation analysis, monthly climate data for the period from the previous January to the current 

September were investigated to account for potential lagged growth-climate correlations. To 

investigate the relationships between tree-ring indices and the climatic data in more detail, we also 

screened the tree-ring chronology during the correlation analysis with seasonal combinations of 

temperature, precipitation and PDSI from previous January to current September (Figure 4)Based on 

the results of climate response analysis, a linear regression equation between the predictors (tree-ring 

indices) and the predictand (PDSI) was computed for the calibration period using the program SPSS. 

The ‘leave-one-out’ method was employed to test the potential and reliability of the PDSI 

reconstruction (Cook & Kairiukstis 1990). Statistics used to test the reliability of the reconstruction 

models included the reduction of error (RE) and coefficient of efficiency (CE), the sign test, the 

first-order sign test and the Pearson’s correlation coefficient. 

To demonstrate that our tree-ring record is representative of regional-scale PDSI variability, we 

correlated the tree-ring series and instrumental PDSI series with the gridded PDSI dataset set after 

removing the linear trends of data during the period 1955–2011 , using the detrending options 

containing within the  KNMI Climate Explorer (http://climexp.knmi.nl). In addition, we also used the 

KNMI Climate Explorer to generate correlation fields with synoptic scale climate parameters, 

including sea surface temperature (SST) (Rayner et al. 2003). We applied Multi-taper (MTM) spectral 
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analysis (Mann & Lees 1996) to examine the characteristics the tree-ring record’s variability in the 

frequency domain. Spectral analysis was performed over the full temporal range of our reconstruction, 

using 5×3π tapers and a red noise background. Furthermore, wavelet coherence analysis (Torrence & 

Compo 1998) was used to analyze the relationships between the PDSI reconstruction and an index of 

ENSO  activity (http://jisao.washington.edu/data_sets/globalsstenso/#analysis). Finally, we also 

compared our tree-ring series with moisture-sensitive tree-ring width series from the surrounding 

regions to find the large-scale climate signals. 

In order to establish whether our tree-ring width series exhibited links with the Asian summer 

monsoon, we analyzed correlations with the June–August EASM index (Li & Zeng 2002). 

Composites of July–February SST anomalies from the 1981–2010 mean were created using National 

Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data 

(Kalnay et al. 1996) for the highest and lowest deciles of reconstructed PDSI (n=10) in the period 

1981–2011. Composites of July–February 500 hPa vector wind were also created for the highest and 

lowest deciles of reconstructed PDSI (n=10) in the period 1948–2011. 

Results  

Tree-ring chronology of Chinese cedar 

Figure 3 presents the tree-ring chronology of Chinese cedar (1822–2011) developed from the 

merged tree-ring width data from Fujian. The most reliable period of the tree-ring chronology is from 

1855 to 2011, based on an EPS value greater than 0.85. The mean sensitivity (MS: 0.14) and standard 

deviations (SD: 0.18) of the chronology are small, indicating rather moderate interannual variations in 

the ring-width series,  characteristic for trees growing in humid and warm environments. In addition, 

the common interval analysis reveals that the EPS (agreement with population chronology: 0.85) and 

VFE (the variance in first eigenvector: 31.7%) are high, both indicative of strong common signals in 

the time-series. The first-order autocorrelation  is 0.59. This implies that conditions that cause a ring 

to be narrow (or wide) in one year tend to carry over and impact the growth of the following year’s 

ring.  

Climate response analysis and PDSI reconstruction  
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Significant positive correlations (all at P<0.05) between the mean chronology and regional 

precipitation occur in the previous November, whereas significant positive correlations occur just for 

precipitation for the concurrent June (Fig. 4a). Significant positive correlations are found with 

temperature of the previous October and concurrent February and September (Fig. 4b). Continuous 

correlations between the tree-ring index and the PDSI index are found in both prior and concurrent 

growing seasons, with greater strength from previous July to concurrent February (see Figure…). 

Various multi-month seasons of climate data were also  explored in the correlation analysis 

(Figure…). Finally, the average  the PDSI Index from previous July through concurrent February was 

found to correlate most strongly with the tree-ring index of the current year (r=0.60, n=57, p<0.001). 

Based on the above climate correlation analysis results,  we concluded that mean July–February 

PDSI is the most appropriate seasonal predictand for developing a climate reconstruction from the 

tree-ring width time series. A linear regression model was employed to perform the reconstruction. 

During the common period (1955–2011), the reconstruction accounted for 36% of the actual PDSI 

variance. The results of a leave-one-out cross-validation are shown in Table 1. Both the RE and CE are 

strongly positive, indicating considerable validity in the reconstruction model. The results of the sign 

test and the first-order sign test, which describes how well the predicted value tracks the direction of 

actual data, exceed the 99% confidence level. These statistical tests demonstrate the veracity of the 

regression model and lend confidence to the resultant reconstruction (Fig. 5).  

Drought signal. 

Our July–February PDSI reconstruction reveals wet periods occuring in AD 1855–1858, 

1881–1898, 1912–1926, 1934–1945, 1960–1963, 1971–1986 and 1998–2011, while episodes of below 

average PDSI value occurred in AD 1859–1880, 1899–1911, 1927–1933, 1946–1959, 1964–1970, 

1987–1997 (Fig. 6A). The values of the first differences of tree-ring width series (±1SD) indicate dry 

and wet years. An extreme events analysis allowed the comparison of dry and wet years identified in 

the chronology with a historical archive for the region and the relevant climate data. The first 

differences of the tree-ring width series with the historical archive for Fujian (Song and Cai 2007) and 

climate data, reveals events of a severe magnitude in in 1856, 1857, 1858, 1864, 1869, 1876, 1881, 
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1891, 1894, 1895, 1904, 1908, 1924, 1927, 1933, 1944, 1956, 1962, 1965, 1966, 1978, 1988, 1998, 

2004 and 2010 (Fig. 6B). These extreme eventsare revealed to have stronge effects on the local social 

and agricultural activities in Fujian (Table 2). In the most recent period, a  a wetting trend can be 

observed (over the most recent 20 years) 

Instrumental and reconstructed July–February PDSI correlate significantly with the regional 

gridded July–February PDSI and show very similar spatial correlation fields (Figure…). Significant 

positive correlations are found within Fujian, north Guangdong and Vietnam, with the highest 

correlations occurring in central Fujian. The results confirm that our tree-ring width series captures 

broad-scale regional drought variations (Fig. 7A, B). The instrumental and reconstructed 

July–February PDSI is significantly correlated with sea surface temperatures in the eastern equatorial 

and western Pacific Ocean (Fig. 7C). Correlations between reconstructed July–February PDSI and 

SSTs over the common period, 1900–2011, show similar patterns, albeit with somewhat lower signal 

strengths (Fig. 7D). The reconstructed PDSI correlates at r=-0.27 (p<0.01) with the ENSO index back 

to AD 1855. Significant high-frequency peaks are found at 9.1-year (99%), 6.4-year (99%), 2.6-year 

(95%) and 2.2-year (95%) (Figure 8A) and some significant common oscillations of 2-3 years, 

between the PDSI reconstruction and the ENSO index, were revealed by wavelet coherence analysis 

(Fig. 8B).  

Several moisture-sensitive tree-ring records (D’Arrigo et al. 2006; Buckley et al. 2007, 2010) 

from Southeast Asia provide a reference for comparisons with our record and validation of the climate 

dynamics revealed . Possibly due to site-specific factors, such as variations between tree species, 

regional climate and growing environments, correlations among the records describe a generally low 

level of agreement. However, significant positive correlations (r=0.22, p<0.01, n=154) are found 

between our PDSI reconstruction and a tree-ring width series from Vietnamese Fokienia hodginsii 

(Fig. 9, Buckley et al. 2010). We note also the presence ofcommon low value years in the periods (AD) 

1864–1865, 1875–1877, 1889–1890 and 1956–1958 (Fig. 9). A significant positive correlation (r=0.35, 

n=63, p<0.01, Fig. 10) was also found between our PDSI reconstruction and the EASM index of Li & 

Zeng (2002). During the indicative dryer years, a positive SST anomaly, and weak wind vector at 
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500-hPa, are found in the tropical eastern Pacific indicating a warm ENSO phase, and vice versa (Fig. 

11). 

Discussion 

The dendroclimatological potential of Chinese cedar 

We found significant positive correlations between our tree-ring index and precipitation in the 

period from prior November through to concurrent June. The correlation analysis between the 

tree-ring width series and climate variables indicated that moisture availability was a major limiting 

factor for the growth of these trees. It is interesting to note that there is a marked dry season (July to 

February, Fig. 2), influenced by the west pacific subtropical high and Asian winter monsoon (Song 

and Cai 2007; Chen et al. 2012a). In central Fujian, dry and warm conditions before the onset of the 

summer monsoon season cause drought stress to the trees and are thus limiting to growth, which 

resembles other finding from Southeast Asian forests (D’Arrigo et al. 2006; Sano et al. 2009; Buckley 

et al. 2010). Tree growth thus benefits from the  precipitation stored from the previous autumn and 

winter, which increases the soil moisture content during the critical early part of the growing season. 

Later on, after the onset of the rainy season, enough moisture is available to satisfy the water demand 

of the trees. 

Linkages with the potential climate regimes 

A wealth of low-latitude Asian tree-ring series now indicate significant palaeoclimatic potential 

in the trees of the region (D’Arrigo et al. 2006; Sano et al. 2009; Buckley et al. 2007, 2010). It is 

widely recognized that ENSO exerts an influence over the historical drought patterns in regions quite 

remote from the main centres of the tropical Pacific (D’Arrigo et al. 2006; Buckley et al. 2007, 2010). 

These regional teleconnections were also evident in our PDSI reconstruction (Fig. 7D). Of particular 

interest are correlations with the moisture-sensitive tree-ring width series from Vietnam, which is itself 

highly correlated with the Niño 3.4 index (Buckley et al. 2010). The significant positive correlation 

between our this series and our reconstruction is potentially the  result of the strong common 

ENSO-derived climate signals in tree growth of the western Pacific region. The significant negative 

correlations, and the significant common oscillations of 2-3 years, between the PDSI reconstruction 
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and the ENSO index also support the connections between the regional drought pattern revealed in our 

series and ENSO variability.  

In comparison to the  ENSO events occurring since AD 1840 (Gergis and Fowler 2009), our 

PDSI reconstruction reveals valuable information about extreme events related to ENSO variability 

over the last 166 years, with particular relevance to events in 1876–1879, 1926–1928, 1965–1966, 

1997–1998 and 2004–2005 (Fig. 6). Detailed analysis reveals that drought events have occured in our 

study region during both the early and late phases of the El Niño events. The opposite is revealed in 

La Niña events with significant wet extremes occurring (Table 2). Significant drought events (1877, 

1926, 1928 and 1998) follow some extreme events revealed within our study area (occurring in 1876, 

1924, 1927 and 1998) as reported for northern China (Chen et al. 2012c, 2013). Investigations with 

regional instrumental records have revealed similar impacts of El Niño on the precipitation patterns in 

China over the recent past (Lu 2005). During the mature phase of El Niño events an intensified 

Western Pacific High allows more precipitation to reach the middle and lower reaches of the Yangtze 

and Huaihe Rivers, included in our study region, and less precipitation to reach northern China (Zhang 

et al. 1999; Lu 2005). This means that the ENSO-related climate events not only affect northern China, 

but also impact the precipitation regimes  of southern China. 

Composite maps of the wettest and driest years in the recent past also reveal patterns that are 

similar to those indicative of ENSO events, particularly with regards to ocean and atmospheric 

conditions in eastern Pacific (Fig. 11), revealing ENSO events as a causal mechanism for wet and dry 

conditions in southern China. Of particular interest are the shifts from the dry phases to the wet phases 

following primarily El Niño events (Fig. 6A). After warm phases of ENSO, the strength of East Asian 

summer monsoon (EASM) tends to be enhanced via the Walker circulation, and precipitation in 

southeast China increases (Zou and Ni 1997; Gong and Wang 1998; Sano et al. 2009). As discussed 

above, drought variations in southeastern China are probably related to ENSO and various parts of the 

remote ocean circulation. 

A weakening Asian summer monsoon, observed from the 1970s to the early 1990s, can be 

attributed to the decreased thermal contrast between the Asian continent and the Indian and western 
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Pacific Oceans (Wang et al. 2001; Li & Zeng 2002). This weakening trend ,and the recent recovery of 

the East Asian summer monsoon (Liu et al. 2012), is precisely captured by our tree-ring series, and a 

significant correlation (r=0.35, n=63, p<0.01) also exists between our tree-ring width series and the 

monsoon index. The EASM has been shown to be strongly related to warm-season precipitation 

variations in China (Zhao et al. 2007; Zhou et al. 2009). On the inter-annual and inter-decadal scales, 

corresponding to a higher (weaker) EASM, the lower-troposphere low-pressure system over eastern 

Asia strengthens (weakens), and the western Pacific subtropical high strengthens (weakens) with its 

location shifting northwards (southwards), resulting in more (less) rainfall in the Yellow River valley 

and southeastern China, included in  our study area, and less (more) rainfall in the Yangtze River 

valley (Zhou et al. 2009). The 500-hPa vector wind composite anomalies of the wet and dry years 

during the period 1948–2011 support the connection with the EASM intensity (Fig. 11C, D). 

Conclusions 

A ring-width chronology constructed from sampled Chinese Cedar (Cryptomeria fortunei) was 

developed from central Fujian, southeastern China. The record is most reliable from 1855 to 2011, 

based on various chronology statistics indicative of signal strength. This record was utalised in the 

construction of a regional PDSI record covering the period from previous July to concurrent February. 

Significant correlations were revealed with moisture conditions of the pre-growing season, indicative 

of the importance of moisture stress and its tree-growth limiting capacity in the region, and suggesting 

that the tree-ring chronolo can provide a valuable tool for exploring regional drought history. The 

reconstructed PDSI explains 36% of the actual variance for the common period of 1955–2011, a 

low % explained variance, but characteristic of trees growing in humid and warm environments. The 

reconstruction stands up to various tests of fit and comparisons to other regional reconstructions. Wet 

periods  are  reconstructed in AD 1855–1858, 1881–1898, 1912–1926, 1934–1945, 1960–1963, 

1971–1986 and 1998–2011, and dry periods  from 1859–1880, 1899–1911, 1927–1933, 1946–1959, 

1964–1970 and 1987–1997. There is reasonable agreement with drought variations previously 

estimated from a tree-ring record constructed for Vietnam. Spectral peaks of 2.8–6.4 years indicate the 

possible influence of ENSO activity. Additionally, the negative correlations of the PDSI 
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reconstruction with eastern equatorial and southeastern Pacific Ocean SSTs, and the extreme event 

analysis, also suggest the influence of ENSO on regional droughts in this area. Significant positive 

correlations between the drought and the EASM index further suggested the influences of the EASM 

on regional droughts in our study area. 

The Chinese cedar (Cryptomeria fortunei) often forms large trees of up to 30 m in height, and  

individuals usually lives for up to 150 years. In appropriate circumstances (e.g., in the environments of 

the Tianmu Mountains), Chinese cedar can reach 2 meters in diameter at breast height. The species is 

common in low lying hills and at lower altitudes in such areas. Its distribution extends from the 

southeastern China to southwestern China. The tree-rings within Chinese cedar are clearly visible and 

the species was noted by Qian et al. (2002) as having good potential for dendroclimatic study as a 

widespread species with reliable growth. However, ,to date the species has only offered tree-ring 

isotope chronologies, with the oldest chronology extending to AD 1662 (Zhao et al. 2006). This study 

is, to our knowledge, the first tree-ring width-based PDSI reconstruction for southeastern China, 

which also identifies dry and wet periods for central Fujian over the past 157 years. The species has 

clear dendroclimatic potential and offers an opportunity for exploring regional climate dynamics over 

the recent past, as such future research efforts should be made to sample additional Chinese cedar sites 

and indeed to explore more species with dendroclimatic potential, and potentially greater ages, in 

southern China. 
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Figure captions 

Fig. 1. Map showing the tree-ring sampling sites and the meteorological station. 
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Fig. 2. Climate diagram for the meteorological station of Nanping in Fujian. 

 

Fig. 3. Plot of the standard ring width chronology from Fujian, its running Expressed Population 

Signal (EPS), sample depth and mean inter-series correlation (Rbar). 

 

Fig. 4. Response plots for the STD chronology with monthly total rainfall, mean monthly temperature 

and monthly PDSI for the period AD 1955–2011. The coefficients were calculated from the previous 

year January to the concurrent September. Horizontal dashed lines denote 95% significance levels. 

 

Fig. 5. (A) Comparison of actual and reconstructed July–February PDSI from AD 1955 to 2011. (B) 

Comparison between the first differences (year-to-year changes) of instrumental and reconstructed 

July–February PDSI for their common period AD 1955–2011. 

 

Fig. 6. (A) July–February PDSI reconstruction for central Fujian since AD 1855. The bold line 

indicates the smoothed data, with a 10-year low-pass filter, to emphasize long-term fluctuations. (B) 

The first differences (year-to-year changes) of the PDSI reconstruction. The central horizontal line 

shows the mean of the estimated values; inner horizontal lines (dotted) indicate one standard deviation; 

outer horizontal lines indicate one standard deviation. Diamonds indicate low values, each following a 

drought event. Round symbols indicate high values, each following a flood event. 

 

Fig. 7. Spatial correlation fields of instrumental (A) and reconstructed (B) July–February PDSI with 

regional gridded July–February PDSI for the period AD 1955–2011. The numbers 1 and 2 denote our 

study area and a tree-ring study site in Vietnam (Buckley et al. 2010). (B) Correlation patterns of 

instrumental (C) and reconstructed (D) July–February PDSI with the gridded sea surface temperature 

(SST) dataset of HadISST1 over their overlapping periods from AD 1955 to 2011 and from AD 1900 

to 2011. 
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Fig. 8. (A) Results of MTM spectral analysis of the PDSI reconstruction. The dashed and dotted lines 

indicate the 95% and 99% significance level. (B) The wavelet coherence between the PDSI 

reconstruction and ENSO index (Braganza et al., 2009). Arrows indicate the phase of the coherence, 

where right is in phase and left is antiphase; note that significant regions all show an in-phase 

relationship, which supports the idea that there may be a simple cause and effect relationship between 

the two phenomena. 

 

Fig. 9 Comparison of our PDSI reconstruction (southern China) and tree-ring width series of Fokienia 

hodginsii from Vietnam (Buckley et al. 2010).  

 

Fig. 10 Comparison of the July–February PDSI reconstruction with the June-August EASM index (Li 

and Zeng 2002). 

 

Fig. 11 Composite maps of SST for the ten wettest (A) and ten driest (B) years for southern China 

July–February PDSI, 1981–2011. Composite anomaly maps of 500-hPa vector wind (from July of the 

prior year to February of the concurrent year) for the 10 wettest (C) and 10 driest (D) years for PDSI 

reconstruction during the period 1948–2008. 

 


