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a  b  s  t  r  a  c  t

Objectives:  Developing  screening  and  diagnosis  methodologies  based  on  novel  biomarkers  should  allow
for the  detection  of the  lung  cancer  (LC)  and possibly  at an  earlier  stage  and thereby  increase  the  effective-
ness  of clinical  interventions.  Here,  our  primary  objective  was  to evaluate  the potential  of  spontaneous
sputum  as  a source  of  non-invasive  metabolomic  biomarkers  for  LC status.
Materials  and methods:  Spontaneous  sputum  was  collected  and processed  from  34  patients  with  suspected
LC,  alongside  33 healthy  controls.  Of the  34  patients,  23  were subsequently  diagnosed  with  LC (LC+, 16
NSCLC,  six  SCLC,  and  one  radiological  diagnosis),  at various  stages  of disease  progression.  The  67  samples
were  analysed  using  flow  infusion  electrospray  ion mass  spectrometry  (FIE-MS)  and  gas-chromatography
mass  spectrometry  (GC–MS).
Results:  Principal  component  analysis  identified  negative  mode  FIE-MS  as  having  the main  separating
power  between  samples  from  healthy  and  LC.  Discriminatory  metabolites  were  identified  using  ANOVA
and  Random  Forest.  Indications  of  potential  diagnostic  accuracy  involved  the  use  of  receiver  operating
characteristic/area  under  the  curve  (ROC/AUC)  analyses.  This  approach  identified  metabolites  changes
that  were  only  observed  with LC.  Metabolites  with  AUC  values  of  greater  than  0.8  which  distinguished
between  LC+/LC− binary  classifications  where  identified  and  included  Ganglioside  GM1  which  has  previ-
ously  been  linked  to  LC.
Conclusion:  This  study  indicates  that  metabolomics  based  on  sputum  can  yield  metabolites  that  can  be
used  as  a diagnostic  and/or  discriminator  tool.  These  could  aid clinical  intervention  and  targeted  diagnosis
of LC  within  an  ‘at  risk’ LC− population  group.  The  use  of sputum  as  a non-invasive  source  of  metabolite
biomarkers  may  aid  in the  development  of an at-risk  population  screening  programme  for  lung cancer
or  enhanced  clinical  diagnostic  pathways.

©  2016 Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

Lung cancer (LC) is the most prevalent cancer in the world;
responsible for 1.3 million deaths annually [1]. The last 30 years
has seen little improvement in the overall five year survival rate
for LC; with only 15% of patients living for at least five years after
their initial diagnosis [2]. These relatively poor survival rates are
primarily a result of the late detection of a malignancy; reducing
the success of clinical interventions. Clinicians currently rely on
three main tools for LC diagnosis: X-ray, computerised tomogra-
phy (CT) scans, and bronchoscopy. These methods have improved
our ability to detect lung cancer, but have nevertheless failed to

∗ Corresponding author.
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improve the rate of early LC detection [3]. Another aspect of this
poor early detection is the association of LC with smoking, which
masks some of the disease’s early symptoms, which has been linked
to approximately 90% of LC tumours [4].

An alternative screening methodology to radiography, which
is currently the most widely used approach, is the utilisation of
molecular markers, both genetic and metabolomic, in biofluids. For
example, microRNAs have been suggested as biomarkers for NSCLC
in sputum [5], plasma [6], and serum [7]. Previous work by mem-
bers of this research group has demonstrated that chemometric
analysis combined with Fourier transform infrared spectroscopy is
a non-invasive approach that allows for the discrimination of LC
positive patients. This demonstrated that sputum could be used as
a non-invasive source of biomarkers for LC [8]. However, analy-
sis of mid-IR spectra only provides information on broad changes
in classes of chemicals, and has a poor ability to resolve changes

http://dx.doi.org/10.1016/j.lungcan.2016.02.006
0169-5002/© 2016 Elsevier Ireland Ltd. All rights reserved.
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to particular chemicals. By comparison, metabolite profiling based
on sample screening using Mass Spectrometry (MS) can resolve
changes in individual chemicals and thus, could more readily iden-
tify biomarkers linked to LC detection.

The aim of this study was to employ MS  metabolomic profil-
ing to identify clinically relevant biomarkers in sputum that could
be used for detect LC (diagnosis) as well as provide some patho-
physiological insights based on the characteristics of the chemical
biomarkers. We utilised two MS  approaches in this study, Gas
Chromatography MS  (GC–MS) and Flow Infusion Electrospray MS
(FIE-MS). Our rationale for this approach is that both MS  technolo-
gies are widely used in biomarker discovery, but have differing
levels of sensitivities and different approaches in regards to sample
preparation and analysis. For example, GC–MS requires chemical
derivatization of sample metabolites prior to analysis whilst FIE-
MS requires no pre-treatment [9]. Although, our study employed
both univariate and multivariate approaches our study sought to
conform to the demands of the TRIPOD (The Transparent Report-
ing of a multivariable prediction model for Individual Prognosis Or
Diagnosis) Statement by adhering to the recommended checklist
[10]. We  employed assessments of diagnostic accuracy based on
receiver operating characteristic (ROC)/Area under the Curve (AUC)
that suggest that our approach could be used in clinical context
to inform the detection of the disease. To the best of our knowl-
edge, metabolomic profiles have not been reported using sputum
as a biofluid from clinical patients. Thus, beyond, the detection of
biomarkers, a description of the LC sputum metabolome offers a
novel insight into the pathology of LC.

2. Materials and methods

2.1. Ethics statement

The MedLung observational study (UKCRN ID 4682) received
loco-regional ethical approval from the Hywel Dda Health Board
(05/WMW01/75). Written informed consent was  obtained from
all participants at least 24 h before sampling, at a previous clinical
appointment, and all data was link anonymised before analysis.

2.2. Study design

This study aimed to compare the metabolomes of three groups
of sputum samples. Two sets of sputum samples were obtained
from patients referred to the access LC clinic at the Prince Phillip
Hospital, Wales, UK; a site of primary care. Lung cancer status
was subsequently assessed as part of the Medlung observational
study (UKCRN ID 4682) and patients were classified as either
LC+ or diagnosed with another pulmonary disease (LC−) based on
histological assessments of sputum bronchoscopy derived sam-
ples (Table S1). Metadata including comorbidities, smoking history
and drug history are given in Table S1. Additionally, spontaneous
sputum samples were collected from staff members at Swansea
University who had no previous history of cancer or lung disease,
other than asthma. These non-clinical samples were designated
as a control (CON) group. The design expensively exploited pair-
wise analyses between LC+ and LC− groups and the CON group. As
this project was seen as a pilot project, no external validation set,
comprising, for example, testing on another set of patients sam-
ples was used. Further, the danger of over-fitting the derived data
was reduced through the extensive use of simple two-way ANOVA
in our pairwise comparisons. Sampling occurred between 2012 and
2013 to align with the MedLung study timeline and this, rather than
an a priori design target, governed the number of samples analysed.

2.3. Patient recruitment and sampling

Spontaneous sputum was collected from referrals to our rapid
access LC clinic at the Prince Phillip Hospital, Wales, UK or volun-
teers from staff members at Swansea University. No a priori criteria
were applied to the selection of patients or volunteers other than
their ability to produce sputum. Patients were asked to cough into
sterile, 50 mL  polypropylene tubes (Greiner Bio-One Ltd., UK)  prior
to bronchoscopy, to at total volume of 2–3 mL.  A 100 �L aliquot of all
samples, including the CON group, was  taken to create a second pel-
let that was subsequently formalin fixed and wax  embedded prior
to sectioning and staining with haemotoxylin and eosin (H&E). To
confirm samples were of bronchial origin, H&E stained sections
were assessed by a consultant histopathologist for presence of
bronchial epithelial cells. Histological assessments of the LC+ class
allowed the recording of LC type and stage. Thus, NSCLC classifica-
tions were obtained for sixteen samples and six were SCLC. Only in
one case (LC06) was no classification obtained. Within the NSCLC
samples, seven could be sub-classified as adenocarcinoma type and
five squamous cell types. Considering the LC− classified samples,
three were diagnosed with chronic obstructive pulmonary disease
(COPD) and two  with pneumonia. Amongst the LC+ group, only two
(LC07, LC20) were diagnosed with COPD which could be considered
a LC co-morbidity and none with pneumonia.

2.4. Processing of raw sputum

In line Raw sputum samples were frozen at −80 ◦C and defrosted
in ice for approximately two hours when required. Sputum cells
were isolated by adding 0.5 mL  of a working solution of dithiothre-
itol (DTT), made up by adding 2.5 g of DTT to 31 mL  of 30% aqueous
methanol, and 5 mL  of 30% aqueous methanol. The samples were
then placed on a vortex mixer for 15 min  and underwent centrifu-
gation at 1800g for 10 min. The supernatant was removed and the
pellet used in subsequent metabolomic profiling.

2.5. Flow infusion electrospray mass spectrometry (FIE-MS)

After processing, 20 �L of the sputum pellet was  added to 20 �L
of ultrapure water and 40 �L of ice-cold HPLC grade acetone. Sam-
ples were vortex mixed for five seconds, cooled on ice for 30 min,
and then underwent centrifugation at 11,000g for five minutes.
After centrifugation, 50 �L of the supernatant was removed and
250 �L of 70% methanol (made up using HPLC grade methanol and
ultrapure water) was added. Glass vials were capped and analysed
in random order on a LTQ linear ion trap (Thermo Electron Cor-
poration). Data were acquired in alternating positive and negative
ionization modes over 4 scan ranges (15–110, 100–220, 210–510,
and 500–1200 m/z), with an acquisition time of five minutes. The
resulting mass spectrum was  the mean of 20 scans about the apex
of the infusion profile.

2.6. Gas chromatography mass spectrometry (GC–MS)

The sputum pellet was processed as described in Section 2.4 and
50 �L of the supernatant after centrifugation removed and dried
using a DNA SpeedVac (Savant, USA) at 40 ◦C. After removal of all
liquid, 30 �L of a 20 mg/ml  solution of methoxyamine dissolved in
pyridine was added and each sample was transferred to a 11 mm
diameter glass GC vials which were capped with Teflon crimp
caps and incubated at 90 ◦C for 15 min. After cap removal, 20 �L
of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was added to
the sample, alongside 5 �L of an alkane standard mix. This mixture
comprised of C10, C13, C15, C18, C19, C23, C28, C32 and C36 alkanes dis-
solved in pyridine each at a concentration of 2 �L/mL (for alkanes
liquid at room temperature) or 2 mg/mL  (for alkanes solid at room
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temperature). The vials were recapped and incubated at 90 ◦C for
15 min. Samples were analysed by duplicate injection on a 6890 N
GC linked to a 5973 N mass analyser and a 7683 auto-sampler (Agi-
lent Technologies) fitted with a Thermo Scientific TR-Pesticide II
fused silica column (30 m × 0.25 mm ID × 0.25 �m film thickness).
Helium carrier gas was supplied at a constant flow rate of 1 mL  per
minute and following the injection of 1 �L of sample the GC oven
was held at 80 ◦C for three minutes, increased to 280 ◦C at a rate of
15 ◦C per minute, and then to 330 ◦C at a rate of 50 ◦C per minute.
The inlet temperature was 280 ◦C and samples were split with a 2:1
split ratio. The temperature of the MS  transfer line was 330 ◦C.

2.7. Accurate mass determination

Selected discriminatory nominal mass signals were investigated
further by targeted nano-flow Fourier Transform-Ion Cyclotron
Resonance Ultra-Mass-Spectrometry (FT-ICR-MS) using TriVersa
NanoMate (Advion BioSciences Ltd.) on a LTQ-FT-ULTRA (Thermo
Scientific) to obtain ultra-high accurate mass information and MSn
ion-trees [11]. Resulting accurate mass values were used to interro-
gate the Human Metabolome Database [12]. Based on an accuracy
of 1 ppm for the FT-ICR-MS, the top ranking metabolite with this
range indicated as the identification for each discriminatory nega-
tive ionisation mode FIE-MS metabolite.

2.8. Data and statistical analysis

All GC–MS data pre-treatment procedures, including baseline
correction, chromatogram alignment, and data compression were
performed by using custom scripts in Matlab version 6.5.1 (The
Math Works Inc.). Targeted peak lists were generated, and peak
apex intensities of each characteristic mass in a retention time win-
dow were saved in an intensity matrix (run × metabolite). FIE-MS
data was normalised with the total ion count for each sample used
to transform the intensity value for each metabolite in to a per-
centage of the total ion count, after the removal of metabolites
below 50 m/z. Principal Component Analyses (PCA) [13]. Hierar-
chical Cluster Analyses (HCA) with heat maps, and Random Forest
(RF) multivariate analysis were completed using the PyChem (Ver-
sion 3.0.5g Beta) package [14] and/or MetaboAnalyst 2.0 [15]. ROC
(Receiver Operating Characteristic) curve analyses plot the true
positive rate (Sensitivity) in function of the false positive rate
(Specificity) and the validity of the fit is indicated based on area
under curve (AUC) calculations. ROC-AUC analyses used the ROC
Curve Explorer and Tester (ROCCET) online platform [16] to assess
our standard binary classification tests. Due to the exploratory
nature of this pilot study, no external validation set consisting of an
independent population of samples was available to be included in
(e.g.) the ROC analyses.

3. Results

Patients and participants sampled as part of this study are sum-
marised in Table 1, with individual sample data in Supplementary
Tables 1a and b. A total of 34 patients with suspected LC were
recruited, with 23 confirmed with LC (LC+) (16 NSCLC (nine Stage 4,
three Stage 3A, one Stage 3B, three Stage 2B, and one Stage 1B), six
SCLC (three extensive and three limited), and one receiving a clinic-
radiological diagnosis made by the LC multidisciplinary team), and
11 had no diagnosis of LC after extensive testing and follow up for at
least one year (LC−). In addition, a total of 33 non-clinical controls
(CON) were collected from participants with no history of clinical
lung disease.

Metabolomic profiles of the sputum samples were acquired
using FIE-MS (in negative and positive ionization modes) and
GC–MS platforms and analysed using PCA. Both MS platforms were

examined as although GC–MS is widely employed in metabolomics
profiling, it lacks the sensitivity of FIE-MS and thus, the latter could
yield a more comprehensive data set [17]. PCA indicated that the
metabolomic profile acquired in negative ionisation FIE-MS mode
(Fig. 1a) showed the greatest degree of separation between the
three sample groups (LC+/LC−/CON). Such a separation was  not evi-
dent in positive FIE-MS mode (Fig. 1b), and only partially exhibited
in the analyses of the GC–MS profiles (Fig. 1c) suggestive of the
value of the greater sensitivity of the FIE-MS approach and plat-
form. The FIE-MS− metabolites were then analysed using one-way
ANOVA which identified the top 25 metabolites based on their dis-
criminatory ability whose levels significantly differed between the
sample groups. Derivation of a HCA with heat map based on these
top 25 metabolites also demonstrated that the LC+ and LC− could be
readily separated from the CON group (Fig. 2). Furthermore, many
LC+ samples clustered together.

Whilst simple analyses such as PCA or ANOVA could distinguish
between the LC+/LC− class and CON, supervised analyses, where a
priori information of the sample classes was required, would be
need to identify variable between the LC+ and LC− classes. Due
to the separation shown with FIE-MS− metabolites into clinically
relevant classes these datasets were used to identify clinical rele-
vant metabolomic biomarkers. Random Forest (RF) analyses were
then used to indicate a number of metabolites which differentiated
between the experimental classes (Fig. 3). Metabolites which were
either increased or decreased in the LC+ or CON classes compared to
the LC− class which were taken forwards to identification by high
resolution MS.

ROC-AUC analyses were also used to identify discriminatory
metabolites. The top five metabolites for each differential com-
parison are listed in Table 2 with the AUC figure and box and
whisker distributions of the data for the top differential metabo-
lites shown in Fig. 4. t-tests of the targeted metabolites indicated
a high level of significance in each comparison. These identified
a number of metabolites that had a high AUC value (>0.99) for
differentiating between non-clinically (CON—class) and clinically
acquired (LC−/LC+ classes) samples. Four metabolites were identi-
fied with an AUC value of greater than 0.80, a threshold for clinically
useful prediction.

To identify the mass-ions targeted by RF and ROC-AUC analyses,
high resolution MS  using FT-ICR-MS was  employed. Metabolites
were identified, where possible, based on this accurate mass profil-
ing and database interrogations, Supplementary Table 2 and these
were used to annotate the analyses shown in Figs. 3 and 4. Exami-
nation of the metabolites listed in Supplementary Table 2 includes
those involved in polyamine (putrescine), amino acid, and lipid
metabolism. Clinical samples (LC+/LC−) appeared to be separated
from CON sample through differential processing of polyamine
metabolites; putrescine and N,N,N-Trimethylethenaminium, and
lipid metabolites, including glycerophospholipids of the cardiolipin
(PC) class, and isobutyl decanoate and diethyl glutarate. Separation
between the clinical samples (LC+ and LC− classes) appeared to be
due to elevated levels of metabolites identified as hexanal, cysteic
acid, hydroxypyruvic acid, and the cholesterol ester with an acyl
group CE (22:5(4Z,7Z,10Z,13Z,16Z)). The mass-ion 1496.72 show-
ing the highest AUC value (0.85) was  identified as the ganglioside
GM1  (18:1/12:0).

4. Discussion

Since the ‘Warburg Effect’ was  first described in 1956 [18], the
alterations that cells undergo during carcinogenesis has been a
focus of both basic and applied clinical research. To date, the major-
ity of metabolomic lung cancer studies appear to have focussed on
the cancerous tumours themselves or serum from affected patients,
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Table  1
Summarised patient and participant information. Summarised patient information detailing clinical data. Full clinical data for clinically acquired samples, and information
collected for healthy control participants, are fully detailed in Supplementary Table 1.

Non-clinical controls (CON) LC negative (LC−) LC positive (LC + )

Number 33 11 23
Age  55.3 (14.6) 66.5 (14.3) 66.6 (8.1)
Gender
Male  20 10 11
Female  13 1 12
Smoking Status
Current 15 3 10
Ex  0 8 10
Never  18 0 3
Smoking Pack Years NC 49.0 (34.9) 39.3 (18.9)
Infection Present
Yes NC 3 1
No  NC 8 22
CO  Level (ppm) NC 3.7 (1.3) 4.2 (2.8)

Fig. 1. Principal component analysis plots for FIE-MS and GC–MS metabolites. PCA, based on metabolites acquired in (a) FIE-MS negative mode, (b) FIE-MS positive mode,
and  (c) GC–MS, clearly differentiates between the clinically and non-clinically acquired samples, though separation of the two clinical groups, lung cancer and symptom
controls, does not occur. For (c), coordinate markers are means of individually calculated coordinates from duplicate GC–MS runs.

using a limited range of MS  techniques [19]. Here, we  suggest that
the sputum of patients can be used as a non-invasive source of
biomarkers for the identification of LC status.

Sputum represents a biofluid that could be readily accessed from
the target group and the results of this study indicate it could

be used as a biofluid matrix for an efficient LC screen. We  used
two mass-spectrometry platforms; the widely employed GC–MS
and also FIE-MS on the same sample set to allow comparison of
the discriminatory power of both. These results suggested that
derivatisation (in the case of GC–MS) or the wide range of adducts
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Fig. 2. Hierarchical cluster analysis with heat mapping for negative ionisation FIE-MS. Hierarchical cluster analysis and corresponding heat maps were constructed, based
on  the top 25 metabolites identified through one-way ANOVAs, for metabolites identified in FIE-MS negative ionisation mode. Similarly to PCA plots, separation between
the  clinically and non-clinically acquired samples was  clear, but separation between LC positive and negative samples was not evident.

Fig. 3. Random forest plots for identification of key FIE-MS metabolites. Random forests plots were constructed, using MetaboAnalyst 2.0 for negative ionisation FIE-MS
mode,  which revealed a number of metabolites which may  have potential in terms of diagnostic markers, particularly those that are either higher or lower in the LC positive
group.

formed with positive ionisation using FIE-MS (as opposed to nega-
tive, ionisation where simple proton loss [M−−H+] is predominant)
can obscure screens of sputum.

Analyses of FIE-MS− data allowed identification of clinically rel-
evant groupings and both PCA and HCA could separate a “healthy”
control samples from samples taken from clinically-referred
patients. Although, not all of these patients were subsequently con-
firmed to be LC+, the LC− group had symptoms necessitating referral
and thus, should be considered to be “unwell”. Even at this level, a
non-invasive and rapid test of lung health would be useful to the
medical community.

Random Forest analysis appeared to be particularly effective in
discriminating between LC+ and CON samples; with LC− samples
between these extremes. We  coupled RF analyses with assess-
ment of ROC using AUC analysis; which has been widely used to
determine the diagnostic value of biomarkers. Here, the False Dis-
covery rate vs. True Discovery rate compared a series of binary
tests between our three sample groups. The CON group was highly
distinctive, with ROC-AUC analyses detecting metabolites with
extremely high AUC values. Crucially, a number of FIE-MS− metabo-
lites that had AUC values greater than 0.80 when comparing LC+/LC,
a cut-off for discrimination that may  be useful in a clinical setting
were identified. This equates to a false discovery rate of under 20%
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Fig. 4. Univariate receiver operating characteristic curve analyses for biomarker identification. Using the online facility, ROCCET, univariate receiver operating characteristic
curves  (ROC) were created, and plotted to create area under the curve (AUC) figures for metabolites identified in negative ionisation FIE-MS mode. The metabolite with the
highest AUC value for each differential group is plotted.
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Table 2
Top five area under curve values for negative FIE-MS mode metabolites. Using the online ROCCET platform, the top five metabolites, based on AUC values, for each differential
group  comparison were identified. For clinical and non-clinical comparisons, high AUC values were obtained, and for the LC negative and positive comparison, a number of
metabolites were identified with AUC values greater than 0.8. AUC range refers to the 95% confidence intervals of the true AUC value as given by the ROCCET platform.

Differential Metabolite AUC value True AUC range t-Test Fold change

CON Vs LC− N,N,N-Trimethylethenaminium/CL(16:1(9Z)/18:1(11Z)/16:1(9Z)/18:1(9Z)) 1.00 0.989–1.000 4.47 × 10−15 −2.38
N,N,N-Trimethylethenaminium/1560.81 1.00 0.983–1.000 3.10 × 10−15 −2.26
Putrescine/CL(16:1(9Z)/18:1(11Z)/16:1(9Z)/18:1(9Z)) 0.99 0.975–1.000 6.09 × 10−15 −2.25
Putrescine/1560.81 0.99 0.975–1.000 3.64 × 10−15 −2.14
53.27/1209.45 0.99 0.967–1.000 1.79 × 10−14 −2.28

LC+  Vs CON 53.27/Isobutyl decanoate 1.00 0.993–1.000 8.74 × 10−24 4.71
Putrescine/Isobutyl decanoate 1.00 0.992–1.000 7.42 × 10−24 4.69
189.09 1.00 0.987–1.000 6.12 × 10−20 2.57
Diethyl glutarate 0.99 0.979–1.000 1.42 × 10−18 3.00
Cysteamine 0.99 0.980–1.000 3.03 × 10−20 2.35

LC+  Vs LC − Ganglioside GM1  (18:1/12:0) 0.85 0.709–0.953 2.93 × 10−3 −0.03
957.36 0.83 0.680–0.953 4.57 × 10−3 0.31
1382.45 0.83 0.668–0.957 5.93 × 10−4 0.07
CE(22:5(4Z,7Z,10Z,13Z,16Z)) 0.82 0.644–0.947 1.28 × 10−2 0.00
1434.00 0.81 0.621–0.947 9.84 × 10−4 0.14

for these metabolites although care needs to be taken with this fig-
ure and it requires confirmation with external validation datasets
to remove any danger of “overfitting” i.e. deriving a model which
describes random error or noise rather than any true relationship.
Our LC+ group consisted of a range of LC stages and histology, sug-
gesting that biomarkers established through metabolomic profiling
techniques could have utility as a preliminary screen, identifying
patients for clinical follow-up for LC confirmation, histology and
staging.

Considering the identities of metabolites separating the CON
and LC—class, the increases in putrescine were interesting because
polyamines are essential for normal mammalian cell growth.
Polyamine metabolism is frequently dysregulated in cancer and has
emerged as a target for therapeutic intervention [20]. However, as
polyamines did not discriminate between the CON and LC+ or LC−
and LC+ classes, we were not able to associate these polyamine
changes with LC in this study. Therefore, changes in polyamines
may  have reflected changes linked to an inflammatory response
and/or cell death; which may  reflect pathogen attack or polyamine
catabolism which can generate reactive oxygen species (ROS) [21].

Also prominent in the clinical samples (LC+/LC−) compared to
the CON class were lipid metabolites, including glycerophospho-
lipids of the cardiolipin (PC) class as well as isobutyl decanoate
and diethyl glutarate. Cardiolpins are major components of the
inner mitochondrial and is particularly susceptible to ROS attack
due to its high content of unsaturated fatty acids. Increased ROS
would affect mitochondrial membrane fluidity, possibly resulting
in cardiolipin release and possibly leading to the greater than two
fold increases that we have detected in our study. Cardiolipin-
associated changes in membrane fluidity have been associated with
reduced mitochondrial oxidative phosphorylation efficiency and
apoptosis [22]. In this context, it is relevant that isobutyl decanoate
and diethyl glutarate, as potential phospholipid fragments, could
represent the products of lipid peroxidation and as they exhibited
a 4.69 and 3 fold increase, respectively, in the LC+ class compared
to CON.

Identifying the metabolite changes in the LC+ samples targeted
by RF and ROC-AUC, there appeared to be higher levels of hex-
anal, cysteic acid, hydroxypyruvic acid, and one metabolite without
accurate mass identification, and eleven metabolites with lower
levels. Hexanal has previously been shown to be elevated in blood
samples from lung cancer patients [23], suggesting its validity as
a LC biomarker. To our knowledge there have been no reports of
cysteic acid or hydroxypyruvic acid being targeted as LC biomark-
ers. These could suggest alterations in cysteine metabolism (in
the case of cysteate) or glycolysis (in the case of the pyruvic

acid derivative) are being targeted in our metabolomic analyses.
The potential relevance of the cholesteryl docosapentaenoate; CE
(22:5(4Z,7Z,10Z,13Z,16Z)) is unknown, but its increase could reflect
membrane disruption. Of particular interest was  ganglioside GM1
(18:1/12:0) which represents a glycosphingolipid inked to a sin-
gle sialic acid through its sugar group. Gangliosides have primarily
been studied in neural tissues, but can be found in most cell types
where they are involved in cell–cell recognition, cell–matrix attach-
ment, cell growth and cell differentiation. Interestingly, ganglioside
GM1 has already been associated with LC and particularly with
SCLC due to a tendency to arise from neuroectodermal tissue [24].
Indeed, GM1  ganglioside-fused to hemocyanin has been used to
specifically target SCLC tissue in patients [25]. Cholera toxin which
is known to target GM1  ganglioside was  found to suppress the
growth of 9 out of 15 SCLC cell lines with those resistant to the
toxin exhibiting reduced GM1  ganglioside expression [26]. Taken
together with our results, ganglioside GM1  could be a good candi-
date for biomarker based LC screens.

5. Conclusions

As far as we can ascertain, this is the first study to report on the
metabolomic profiling of sputum acquired from LC patients. The
use of sputum, the production of which is symptomatic of LC, as
a biofluid for screening carries the benefit of being non-invasive,
high-throughput, and low-cost, compared to current conventional
methods such as CT scan [27]. It may  be that a combination of
metabolomic biomarkers and other types, such as circulating miR-
NAs, would allow for an integrated approach to LC screening, as has
been suggested for other cancers [28]. Here, we have shown the
power of using metabolomics to identify biomarkers with poten-
tial clinical application for LC. Further work, using a larger patient
cohort, will be required to ascertain the utility of metabolomic
biomarkers for LC stage and histological subtype.
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