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Carbon nanotubes (CNTs) have shown marked capabilities in enhancing antigen delivery to antigen presenting
cells. However, proper understanding of how altering the physical properties of CNTsmay influence antigen up-
take by antigen presenting cells, such as dendritic cells (DCs), has not been established yet.Wehypothesized that
altering the physical properties of multi-walled CNTs (MWNTs)-antigen conjugates, e.g. length and surface
charge, can affect the internalization of MWNT-antigen by DCs, hence the induced immune response potency.
For this purpose, pristine MWNTs (p-MWNTs) were exposed to various chemical reactions to modify their phys-
ical properties then conjugated to ovalbumin (OVA), amodel antigen. The yieldedMWNTs-OVA conjugateswere
longMWNT-OVA (~386 nm), bearing net positive charge (5.8mV), or shortMWNTs-OVA (~122 nm) of increas-
ing negative charges (−23.4, −35.8 or −39 mV). Compared to the short MWNTs-OVA bearing high negative
charges, short MWNT-OVA with the lowest negative charge demonstrated better cellular uptake and OVA-
specific immune response both in vitro and in vivo. However, long positively-charged MWNT-OVA showed lim-
ited cellular uptake andOVA specific immune response in contrast to short MWNT-OVA displaying the least neg-
ative charge. We suggest that reduction in charge negativity of MWNT-antigen conjugate enhances cellular
uptake and thus the elicited immune response intensity. Nevertheless, length of MWNT-antigen conjugate
might also affect the cellular uptake and immune response potency; highlighting the importance of physical
properties as a consideration in designing a MWNT-based vaccine delivery system.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Spherical nanosized vaccine delivery systems, ranging from 15 to
1000 nm, have demonstrated a marked capability in augmenting im-
mune response against the delivered antigens [1–3]. This has led to clin-
ical investigations of these delivery systems with respect to enhancing
the body's immune response against challenging diseases such as can-
cer [4,5]. Cylindrical-shaped nanosized delivery systems have also
attracted increased interest over the last decades [6]. CNTs are among
the most extensively studied cylindrical-shaped delivery systems in
the biomedical field [7,8]. CNTs, owing to high aspect ratio (length to

width ratio), have been shown to internalize into cells utilizing both
energy-dependent and independent routes. For example, single walled
CNT (SWNT) conjugated to fluorescently labeled-DNA or protein was
shown to be internalized by HeLa cells via energy-dependent endocyto-
sis [9]. Another study reported the internalization of fluorescently-
labeled ammonium-functionalized-MWNTs in Jurkat cells, under
endocytosis inhibiting conditions, suggesting utilization of energy-
independent uptake mechanisms [10].

CNTs have been reported as antigen delivery systems in a number of
studies for enhancing the immune response against infectious agents or
cancer. In one study, peptide derived from the foot and mouth disease
virus (FMDV) was conjugated to SWNT. The binding specificity and bi-
ological activity were confirmed using surface plasmon resonance,
in vitro and in vivo, respectively [11–13]. A stronger immune response,
shown by a higher level of anti-FMDV antibodies, was obtained in
BALB/C mice immunized with the SWNT-FMDV conjugate compared
to the free FMDV [12]. Another study illustrated that conjugation of a
malaria-derived peptide to MWNTs induced higher levels of specific
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antibodies in mice immunized with the conjugate compared to the free
peptide [14]. Furthermore, a shift from Th2 to Th1 immune response,
marked by increased interferon gamma (IFN-γ) production, was
obtained following immunization with SWNT-conjugated tuberculin
[15].

Cancer is another disease where CNTs have shown promise as a vac-
cine delivery tool. Earlier studies explored enhancing delivery of cancer
antigens using SWNT or MWNT. Meng et al. reported that immuniza-
tion with tumor lysate proteins, derived from H22 liver cancer, conju-
gated to MWNT reduced tumor volume and prolonged the survival of
H22 tumor-bearingmice [16]. Conjugation of tumor lysate proteins, de-
rived from MCF7 breast cancer cells, to MWNTs resulted in enhanced
DCs uptake and anti-tumor T cell response in vitro [17]. Lastly, Villa
et al. reported an augmented humoral immune response against a
weak immunogenic peptide derived from Wilm's tumor protein, fol-
lowing conjugation to SWNTs [18].

CNT have also been exploited for the delivery of immunoadjuvants
such as the synthetic oligodeoxynucleotides containing cytosine-
phosphate-guanine motifs (CpG-ODN). Bianco et al. demonstrated im-
proved immune-stimulatory properties of CpG-ODN in vitro following
non-covalent loading onto cationic SWNTs [19]. Similarly, Zhao et al. re-
ported enhanced cellular uptake of CpG-ODN in vitro and in vivo. This
was associated with an eradication of established intracranially-
implanted glioma in mice [20]. In a more sophisticated approach, de
Faria et al. utilizedMWNTs for the co-delivery of NY-ESO-1 (cancer tes-
tis antigen) and CpG-ODN (immunoadjuvant) to DCs in vivo. This ap-
proach resulted in reduced tumor size and prolonged survival of NY-
ESO-1-expressing B16F10-tumor bearing mice challenged with this
treatment [21].

All the outlined studies highlighted the immune modulating poten-
tial of these cylindrical-shaped nanocarriers and their use as an emerg-
ing vaccine delivery system [22,23]. Despite this, only one study has
investigated the relationship between CNT's physical properties, specif-
ically their dimension, and the elicited immune response [24]. In this

study, functionalizedMWNTs (f-MWNTs) of altered physical properties
were synthesized to address the structure–activity relationship with re-
spect to influencing antigen presenting cells uptake and immune re-
sponse in vitro and in vivo.

2. Materials and methods

2.1. Mice

All the experiments involving animal use were performed in accor-
dance with the project and personal license authorized by the UK
Home Office and the UKCCCR Guidelines (1998). C57BL/6 mice were
purchased from Harlan UK (Bicester, UK). OT2 Rag−/− and OT1
Rag−/−miceweremaintained at Charles River (Margate, UK). All exper-
iments were carried out using female 6–8 weeks old mice.

2.2. Synthesis of functionalized MWNTs (f-MWNTs)

The synthetic steps to prepare f-MWNTs are described in Scheme 1.
Synthetic steps andNMR spectra of compounds 2, 3 and 4 are illustrated
in Scheme S1 and Fig. S1, respectively. Details on the synthesis of f-
MWNT and the compounds are described in SI.

2.3. Synthesis and Characterization of MWNT-OVA or MWNT-SIN
conjugates

Details on thiol modification of OVA and solid phase peptide synthe-
sis of SIINFEKL (SIN) or cysteine-modified SIINFEKL (SIN-SH) are de-
scribed in SI. A solution of 8 mg Albumin chicken egg grade V (OVA,
Sigma-Aldrich, UK), or 13 mg SIN in phosphate buffered saline (PBS,
Life Technologies, UK) (pH 7.4), was added to a dispersion of 5 mg L+,
S−− or S−/+ in PBS (pH 7.4). The reactions were mixed for 24 h at
room temperature. A solution of 8 mg OVA-SH (containing 4 μmol of
sulfhydryl group) or 13 mg SIN-SH (containing 10.4 μmol of sulfhydryl

Scheme 1. Synthesis of f-MWNTs, MWNTs-OVA and MWNTs-SIN. p-MWNT was functionalized either via 1,3-dipolar cycloaddition or oxidation reactions yielding L+ (long f-MWNT) or
S−− (shortened f-MWNT), respectively. S−−was used as a precursor for the synthesis of S−/+ that was further functionalized to yield S−. Non-covalent conjugation approach was used
for OVA loading onto L+, S−−, or S−/+ yielding L+(OVA), S−−(OVA), or S−/+(OVA), respectively. Similarly, non-covalent conjugation was applied for SIN loading onto L+, S−−, or S−/+

yielding L+(SIN), S−−(SIN), or S−/+(SIN), respectively. Covalent conjugation was employed for OVA-SH or SIN-SH loading onto S−, yielding S−(OVA) or S−(SIN), respectively.
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group) in PBS (4 mM EDTA, pH 6.5) was added to a dispersion of
5 mg S− (containing 0.4 μmol of maleimide group) in PBS (4 mM
EDTA, pH 6.5). The reactions were mixed for 12 h at 4 °C before brief
sonication, and filtration through 0.22 μmpolycarbonate membrane fil-
ters (Merck Millipore, Germany). Solids recovered from MWNTs-OVA
orMWNTs-SINwere re-dispersed in appropriate reaction buffer, briefly
sonicated and vacuum filtered. Filtrates were collected for the quantifi-
cation of unreacted OVA or SIN using bicinchoninic acid (BCA) protein
assay reagent (Fisher Scientific, UK) as described in SI. The solids recov-
ered fromMWNTs-OVA or MWNTs-SIN were re-dispersed in methanol
(Fisher Scientific, UK) before being collected by filtration through
0.22 μm polycarbonate membrane filter.

2.4. Transmission Electron Microscopy (TEM) and length analysis

The samples of the f-MWNTs were dispersed by sonication in de-
ionized water at 1 mg/ml, deposited onto a carbon-coated copper TEM
grid and dried. Samples were then imaged on a Philips CM 120 Bio-
Twinwith an accelerating voltage of 120 KV. The lengths of 100 individ-
ualized f-MWNTs from the TEM images were measured using ImageJ
software (National Institute of Health, USA). Results are presented as
Box plot graph and the descriptive analysis of length distribution.

2.5. Thermogravimetric analysis (TGA)

Weight loss was quantified using a TGA Q500 (TA instrument) with
a ramp of 10 °C/min from 100 to 800 °C under nitrogen with a flow rate
of 60 ml/min.

2.6. Electrophoretic measurements

Zeta potential was determined using a Nanosizer ZS series (Malvern
Instruments, Southborough, MA). f-MWNTs, MWNT-OVA or MWNTs-
SIN were dispersed in 10 times diluted PBS at final f-MWNT concentra-
tion of 50 μg/ml then transferred to a disposable plain folded capillary
Zeta cell [25]. Measurements were carried out at room temperature.

2.7. Assessment of f-MWNTs or MWNTs-OVA cellular uptake in vitro

A1mg/ml dispersion of f-MWNTs or f-MWNTs conjugated to OVA in
PBS was prepared. Details on generation of DCs from bone marrow of
C57BL/6 are described in SI. Bone marrow derived DCs (BM-DCs) were
treated with f-MWNTs or MWNTs-OVA each at 10 μg/ml. As a control,
BM-DCs were treated with PBS or OVA alone. After 24 h, BM-DCs were
harvested, washed with RPMI 1640 medium (Life Technologies, UK)
then fixed by the incubation with 4% paraformaldehyde and analyzed
using ImageStream 100 cell analyzer (Amins Corporation, USA).

2.8. Assessment of the immune response induced by MWNTs-OVA in vitro
using 3H-thymidine incorporation assay

A 0.5 mg/ml dispersion of OVA alone, OVA conjugated to f-MWNTs
in PBS was prepared. f-MWNTs alone were dispersed in PBS at 1 mg/ml.
BM-DCs were treated with each of the conjugates at 5 μg/ml OVA. As a
control, BM-DCs were treated with PBS or uncoupled f-MWNTs. After
24 h, treated BM-DCs were harvested, washed and gamma-irradiated
(3000 Gys). CD8+ or CD4+ T cells were isolated from spleens of OT-I or
OT-II mice, respectively, as described in SI. In a 96-well round-bottom
plate, CD8+ or CD4+ T cells were co-cultured with the irradiated BM-
DCs at 1:4 in complete medium. The 1:4 ratio was decided from optimi-
zation studies (SI). CD8+ or CD4+ T cells cultured without BM-DCs or
with naive BM-DCs were used as controls. Cells were maintained for
3 days/37 °C and the proliferation was measured by adding 1 μCi of 3H-
thymidine (Perkin Elmer, USA) per well for the last 18 h of culture.
Proliferation of CD8+ or CD4+ T cells was determined by measuring the
radiation emitted from the incorporated 3H-thymidine using liquid

scintillation counter (Wallac 1205 Betaplate) and read as counts permin-
ute (c.p.m.).

2.9. Quantification of IFN-γ production using ELISA

IFN-γ present in the culture supernatants collected from BM-DC:T
cell co-cultures was determined using anti-mouse IFN-γ sandwich
ELISA kit following the manufacturer's protocol (eBioscience). The
ELISA plates were measured at 450 nm using FLUOstar Omega, BMG
LABTECH (Germany).

2.10. Assessment of f-MWNTs uptake in vivo

C57BL/6mice (n=3)were injected via the footpadwith 100 μg of f-
MWNTs. Micewere scarified 24 h post injection and the draining popli-
teal lymph nodeswere dissected. The lymph node cells were isolated by
incubating the harvested lymph nodes with 50 μl RPMI 1640 medium
containing 5 μl of 40 mg/ml collagenase and 2 μl of 0.8 mg/ml DNase
(Roche Diagnostics, USA) for 30 min at 37 °C, followed by straining
the cells through a 70 μm cell strainer (Becton Dickinson, USA) and
washing in PBS (1×). Isolated lymph node cells were resuspended in
150 μl PBS and incubated for 30 min at 4 °C with 0.86 μg/ml PE-
conjugated mAb against CD11c (PE-CD11c) (Becton Dickinson, USA).
Lymph node cells were thenwashed in PBS and analyzed for side scatter
and bright-field intensity using ImageStream 100 cell analyzer (Amins
Corporation, USA).

2.11. Assessment of MWNTs(DQ-OVA) uptake and antigen processing by
DCs in vivo

MWNTs(DQ-OVA) were synthesized as described in SI. C57BL/6
mice (n = 3) were injected via the footpad with MWNTs(DQ-OVA)
each containing 10 μg of DQ-OVA [26]. Micewere scarified 24 h post-in-
jection, the draining popliteal lymph nodes were dissected and cells
were isolated and stained with PE-CD11c as described before. Lymph
node cells were then analyzed on a FACSCalibur, using CellQuest soft-
ware (BD Bioscience, CA). Subsequent analysis was done using FlowJo
software (TreeStar, Ashland, OR).

2.12. Assessment of the immune response induced by the MWNTs-OVA in
mice using in vivo specific cytotoxic T lymphocyte killing assay

An in vivo cytotoxic T lymphocyte (CTL) killing assaywas performed
using a previously reported method [27]. Briefly, C57BL/6 mice (n= 3)
were injected via the footpad with PBS, OVA or MWNTs-OVA, each at
50 μg OVA, on days 0, 7 and 14 [28]. On day 21, a 1:1 mixture of
0.5 μM carboxyfluorescein diacetate succinimidyl ester (CFSE,
eBioscience, UK)-labeled SIN-pulsed splenocytes and 5 μMCFSE-labeled
un-pulsed splenocytes (prepared as described in SI) were administered
iv into treated or untreatedmice. At 18 h post-injection,micewere scar-
ified; spleenswere harvested and splenocytes analyzed usingflowcyto-
metric analysis to determine the percentage of SIN-pulsed (0.5 μM
CFSESIN) and un-pulsed (5 μM CFSEno SIN) cells present. Antigen-
specific killing was calculated using the following equation:

1–
Percentage of 0:5 μM CFSESIN
h i

Percentage of 5 μM CFSEno SIN
h i

2
4

3
5� 100:

2.13. Statistical analysis

Results are expressed as mean value ± standard deviation (S.D.).
Statistical analysis was performed using GraphPad Prism version 5.01,
California, USA. Statistical differences were determined using one-way
ANOVA followed by Bonferroni post-test.
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3. Results

3.1. Synthesis and characterization of f-MWNTs

The surface of the p-MWNTs was chemically modified via the incor-
poration of functional groups to yield f-MWNTs (Scheme 1). The first
functionalization approach relied on reacting the aromatic rings at the
sidewalls of p-MWNTs with compound 4 utilizing the previously de-
scribed 1,3-dipolar cycloaddition reaction [8,29,30], yielding MWNT 1.
The Boc group protecting the amine of MWNT 1 was removed using
an acidic treatment that yielded L+ with positively charged primary
amine groups. The second functionalization approach involved shorten-
ing p-MWNTs by treatment with oxidizing acids that introduce surface
defects and negatively charged carboxylic acids yielding S−− [31–35].
MWNT 2 was synthesized by reacting compound 2 with S−− via
amide coupling reaction [36,37]. Boc-deprotection ofMWNT 2 liberated
the primary amines of S−/+. To incorporate functional groups capable of
establishing covalent interaction with OVA, S−/+ was reacted
with a maleimide-terminated spacer, yielding S−. Characterization of
f-MWNTs was achieved using TGA (Figs. 1 A and S2). TGA has
shown to be one of the useful techniques to characterize MWNT
functionalization [38]. It is based onmeasuring theweight of the sample

being analyzed upon exposing it to a gradually increasing temperature
under inert gas (nitrogen). Normally, p-MWNTs are thermally stable
up to 600 °C above which they dramatically decompose. Functional
groups incorporated onto the surface of the f-MWNT are, however,
less thermally stable and decompose at lower temperatures. Theweight
lossmeasured at 600 °C is directly related to the functional groups load-
ing density. The degree of chemical functionalization was calculated
using TGA and are summarized in Table 1. Furthermore, the primary
amine content of S−/+ and S− was qualitatively determined using
Kaiser test [39]. The UV–Vis spectra (Fig. S3A) confirmed the reduced
primary amine content of S− compared to S−/+ as a consequence of
the maleimide-terminated spacer addition.

The morphology of an aqueous dispersion of f-MWNTs was studied
using TEM (Figs. 1B-C and S4). The mean and median lengths of L+

were found to be 386 ± 133 nm and 380.6 nm, respectively, whereas
S−− exhibited mean and median lengths of 122 ± 82 nm and
107.5 nm, respectively (Tables 1 and 2). Since S−− was the precursor
for the synthesis of S−/+ and S−, the mean length of S−/+ and S− was
considered to be 122 ± 82 nm. A maximum of one minute sonication
steps were applied during washing cycles with organic solvents so
that further shortening of f-MWNT can be avoided. MWNT-OVA and
MWNT-SIN lengths were extrapolated from their f-MWNT precursors.

Fig. 1. Physicochemical characterization of f-MWNTs and MWNTs-OVA. (A) Thermogravimetric profiles of f-MWNTs (left) or MWNTs-OVA (right). A known weight of MWNT was ex-
posed to gradually increasing temperature and the weight loss was detected as the temperature increased. p-MWNTs were thermally stable up to 600 °C. The weight loss at 600 °C
was directly correlated to the amount of introduced functional groups or OVA. Representative thermogravimetric profiles are shown (n=3). (B)Morphology of f-MWNTs. Representative
TEM images of L+ (left) and S−− (right), deposited on carbon grid from aqueous dispersions. S−− displayed shorter lengths compared to L+. (C) Box plot of L+ or S−− length distribution.
The horizontal line inside the box indicates the median value; the black dots indicate values outside the 10–90 percentiles. Measurements were carried out on 100 individualized nano-
tubes and analyzed using ImageJ software. (D) Polyacrylamide gel electrophoresis ofMWNTs-OVA. MWNTs-OVAwere gel electrophoresed using 10% polyacrylamide gel under native gel
condition. 10 μg of free OVA or OVA conjugated with MWNTs were loaded in the well. OVA bands were detected by gel staining with brilliant-Coomassie blue. Matching band intensities
were observed for both the free OVA and MWNT-conjugated OVA.

208 H.A.F.M. Hassan et al. / Journal of Controlled Release 225 (2016) 205–216



Zeta potential of f-MWNTswas measured and expressed in Table 1. The
fact that S−/+ possessed a reduced overall negative charge compared to
S−− indicated the presence of residual un-reacted carboxylic acid moi-
eties in S−/+. Zeta potential values measured agreed with chemical
structures.

3.2. Synthesis and characterization of MWNTs-OVA and MWNTs-SIN
conjugates

Initially the aim was to conjugate OVA or SIN to f-MWNTs, using
non-covalent or covalent approaches. Thiol-modification of OVA was
achieved using Traut's reagent [40,41]. SIN and SIN-SH synthesized
using solid phase peptide synthesis were characterized using mass
spectrometry (Fig. S5). The concentration of the sulfhydryl groups, de-
termined using Ellman's assay [42] was 0.5 μmol or 0.8 μmol per mg of
OVA-SH or SIN-SH, respectively (Fig. S3B). As depicted in Scheme 1,
L+(OVA), S−−(OVA) or S−/+(OVA) were prepared by non-covalent
conjugation of non-modified OVA, while thiol-modified OVA (OVA-
SH) was used in preparation of S−(OVA) [12,39]. The same approaches
were applied for the conjugation of SINwith f-MWNTs yielding L+(SIN),
S−−(SIN), S−/+(SIN) or S−(SIN). Following their reaction with OVA or
SIN, the solids of MWNTs recovered by filtration were analyzed using
TGAwhile the unreactedOVAor SIN contained in thefiltrateswasquan-
tified using BCA assay. From the thermogravimetric profiles of MWNTs-
OVA (Fig. 1A) and the BCA assay, the OVA contents in MWNTs-OVA
were calculated and are summarized in Table 1. SIN loading values de-
termined from the thermogravimetric profiles of MWNTs-SIN (Fig. S6)
or BCA assay are summarized in Table S1.

TGA showed a mean OVA or SIN loading of 404 or 81 μg per mg f-
MWNT, respectively. The mean OVA or SIN loading determined using
BCA assay was 412 or 78 μg permg f-MWNT, respectively, in agreement
with the loading values determined by TGA. Venturelli et al. reported a
similar observation on determining the protein loading on CNTs using
TGA or by measuring the absorbance of unreacted protein using UV–
vis spectroscopy [39]. The surface charges of MWNTs-OVA or MWNTs-
SIN are summarized in Tables 1 or S1, respectively.

To further assess OVA and SIN interaction with f-MWNTs, MWNTs-
OVA and MWNTs-SIN were subjected to native gel electrophoresis
(PAGE). OVA contained in MWNTs-OVA exhibited the same migration
pattern and band intensity as free OVA (Fig. 1D), suggesting that OVA
conjugation with the f-MWNTs, even with S−, was achieved using

non-covalent conjugation. A similar trend was observed for MWNTs-
SIN (Fig. S7).

3.3. Cellular uptake of f-MWNTs by BM-DC does not affect their viability or
phenotype in vitro

In order to study the effect of f-MWNTs on DCs, CD11c+ve BM-DCs
were generated from the bone marrow of C57BL/6 mice (Fig. S8) [43,
44]. First, whether these cells were able to uptake f-MWNTs and the ef-
fect on BM-DC viability was assessed prior to undertaking further stud-
ies. Light microscopy images of f-MWNT treated BM-DC revealed the
association of the BM-DCs with dark aggregates of f-MWNT; however
it was difficult to distinguish between cellular uptake of f-MWNTs
and aggregation of f-MWNTs on the cell surface (Fig. 2A). To further as-
sess the cellular uptake of the f-MWNTs, BM-DCs were treated with
10 μg/ml of f-MWNTs for 24 h before ImageStream analysis.

To overcome the need for fluorescent probes, ImageStream analysis
have been previously used to quantify cellular uptake of CNTs for an in-
dividual cell, utilizing the CNT ability to absorb and scatter light [45–47].

As illustrated in Fig. 3A, the scatter plot of naïve BM-DCs appeared as
main single population. Following the internalization of f-MWNTs,
and the associated light scattering, two populations of BM-DCs, namely
f-MWNT positive (f-MWNT+ve) or negative (f-MWNT-ve) BM-DC popu-
lation were observed (Figs. 3B and S9). In contrast to the f-MWNT-ve

BM-DC population, the f-MWNT+ve BM-DC population had light-
absorptive black spots of internalized f-MWNTs (Fig. 3B). Employing
the direct correlation between the reduction in the bright-field intensity
and the increase in cellular uptake of CNTs [45,46], the mean bright-
field intensity of BM-DCs treated with the various f-MWNTs was mea-
sured to quantify f-MWNT internalization (Fig. 3C). ImageStream
analysis showed that S−/+ was significantly acquired by BM-DCs
in comparison to L+ or S−−, while the difference in uptake between
S−/+ and S− was not significant. Interestingly, positively charged long
f-MWNT (L+) showed the least uptake. The same trend was obtained
for f-MWNT conjugated to OVA with the highest uptake efficiency
being attributed to S−/+(OVA) (Fig. 3D).

Acquisition of these molecules was not associated with significant
loss of BM-DC viability, as determined by the modified LDH assay [48],
even following incubation of these cells with 10–100 μg/ml S−/+ for
up to 48 h (Fig. 2B).

Table 1
Physicochemical properties of f-MWNTs and MWNTs-OVA conjugates.

MWNT Initial primary amine [final maleimide]abc (μmole/g MWNT) OVA loading (mg/g f-MWNT MWNT lengthbd (nm) Zeta potentialbce (mV)

TGAbc BCA assaybc

L+ 263 ± 72 – – 386 ± 133 17.3 ± 5.0
L+(OVA) 263 ± 72 317 ± 31.1 329 ± 44.0 386 ± 133 5.8 ± 3.2
S−− − – – 122 ± 82 −21.2 ± 3.4
S−−(OVA) − 431 ± 40.0 449 ± 32.5 122 ± 82 −39.0 ± 4.0
S−/+ 140 ± 48 – – 122 ± 82 −10.1 ± 3.0
S−/+(OVA) 140 ± 48 435 ± 28.6 441 ± 36.0 122 ± 82 −23.4 ± 5.1
S− 140 ± 48 [80 ± 25] – – 122 ± 82 −16.4 ± 4.0
S−(OVA) 140 ± 48 [80 ± 25] 438 ± 30.5 445 ± 42.2 122 ± 82 −35.8 ± 3.3

a Analyzed by TGA.
b Data are represented as mean ± SD.
c n = 3.
d Determined from TEM images (n = 100 nanotubes).
e Analyzed by electrophoretic mobility using 10× diluted PBS buffer.

Table 2
Descriptive analysis of L+ or S−− length distribution.

f-MWNT Number of nanotubes
measured

Minimum
(nm)

25% Percentile
(nm)

Median
(nm)

75% Percentile
(nm)

Maximum
(nm)

Lower 95% confidence interval
of mean (nm)

Upper 95% confidence interval
of mean (nm)

L+ 100 136.131 292.6 380.6 465.9 761.3 359.6 412.8
S−− 100 28.607 70.1 107.5 146.9 610.0 106.5 139.3
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Materials used in formulating particulate delivery system might
have an impact on the induced immune response. For instance, it has
previously been reported that DC treatmentwith poly(lactic-co-glycolic
acid) (PLGA) film or PLGA microparticles increased the expression of
CD40, CD80 and CD86 [49]. To evaluate whether treatment with f-
MWNTs or MWNTs-OVA for 24 h affected these co-stimulatory mole-
cules as well as major histocompatibility complex (MHC) levels, BM-
DCs were assessed by flow cytometry following incubation with anti-
bodies specific to MHC class I, MHC class II, CD40, CD80 or CD86
(Fig. S10). No significant difference in expression of any of these mole-
cules was detected following f-MWNTs-treatment compared to un-
treated cells. Furthermore, no significant differences were observed
following incubation with MWNTs-OVA or OVA.

In conclusion, S−/+ and S−/+(OVA) treatment of BM-DCs resulted in
a higher uptake efficiency compared to f-MWNTs and MWNTs-(OVA),
respectively. Exposure to these compounds did not affect BM-DC viabil-
ity nor maturation of these cells.

3.4. MWNTs-OVA andMWNTs-SIN augment T cell specific response in vitro
with varying intensities

To further assess the efficiency of f-MWNTs, to deliver OVA or the
MHC I-restricted OVA peptide epitope (SIN) to BM-DCs, we measured
their ability to activate antigen specific T cell proliferation and cytokine
production. CD8+ or CD4+ T cells were isolated from the spleens of
mice expressing a T cell receptor capable of recognizing OVA peptide
SIN (OVA257–264) or OVA323–339 presented by H-2Db (MHC I) or I-Ab

(MHC II), respectively (Fig. S11). Initially, we titrated the ratio of SIN
pulsed BM-DCs to CD8+ T cells and found a DC: T cell ration of 1:4

allowed maximal activation of OVA-specific CD8+ T cells (Fig. S12A).
In addition, we titrated the concentration of soluble OVA to determine
maximum and minimal OVA concentration required to induce T cell
stimulation (Fig. S12B). A suboptimal concentration (5 μg/ml) of soluble
OVA or OVA contained in MWNTs-OVA was used to determine the dif-
ferences in T cell activation induced by MWNTs-OVA. BM-DC were cul-
tured with OVA in free form or conjugated with f-MWNT and T cell
proliferationwas assessed by 3H-thymidine incorporation. As illustrated
in Fig. 4A, MWNTs-OVA treated BM-DCs significantly increased the pro-
liferation of CD8+ antigen specific T cells compared to soluble OVA
treated BM-DCs. However, significantly higher CD8+ T cell proliferation
was induced by S−/+(OVA) treated compared to L+(OVA), S−−(OVA)
or S−(OVA) treated BM-DCs. A similar pattern of proliferation was ob-
servedwith antigen-specific CD4+ T cells. These results show that treat-
ment of BM-DCs with MWNTs-OVA derivatives lead to more efficient
antigen presentation compared to antigen in a soluble form and that
L+(OVA) and S−/+(OVA) pulsing induced the least and the highest T
cell proliferation rates, respectively. Additionally, IFN-γ production
was assessed by ELISA. IFN-γ production correlated with T cell prolifer-
ation assay (Fig. 4A).

A dose-dependent CD8+ T cell proliferation was obtained on
treating the BM-DCs with soluble SIN up to 1 μg/ml (Fig. S12C). As illus-
trated in Fig. 4B, MWNTs-SIN treated BM-DCs induced significantly
stronger CD8+ T cell proliferation compared to SIN treated BM-DCs, at
concentrations of 0.5 or 1 μg/ml. Furthermore, S−/+(SIN) induced a
significantly higher CD8+ T cell response compared to L+(SIN), S−−

(SIN) or S−(SIN). The overall pattern of T cell stimulation and IFN-γ pro-
duction elicited by MWNTs-SIN was similar to MWNTs-OVA (Figs. 4B
and S13).

Fig. 2. Viability of BM-DCs following treatment with f-MWNTs. (A) Light microscopy images of BM-DCs after 24 h incubation with S−/+ at 10–100 μg/ml. Images were captured at 20×
magnification. (B) Assessment of f-MWNT cytotoxicity using the modified LDH assay. 10% DMSO was used as a positive control. LDH content in the viable BM-DCs was determined in
triplicates for each treatment. Results are expressed as mean ± SD (n=3).
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Although it was demonstrated that the f-MWNTs were not capable
of affecting the BM-DC phenotypes, further studies were performed to
assess the innate immune activation of BM-DCs by f-MWNTs. To do
this, S−/+ was added separately to SIN-pulsed BM-DCs then co-
cultured with CD8+ T cells. A comparable CD8+ T cell proliferation
was induced by SIN-pulsed BM-DCs in presence or absence of S−/+

(Fig. S14) suggests that f-MWNTs lack adjuvanticity and require the an-
tigen to be coupled to them.

Taken together, from these observations we conclude that MWNTs-
OVA derivatives were able to induce better CD8+ and CD4+ T cell re-
sponses than soluble OVA, with L+(OVA) and S−/+(OVA) inducing the
least and highest T cell proliferation, respectively, which correlated
with the cellular uptake profile. Furthermore and importantly, conjuga-
tion of antigen to f-MWNT did not appear to interfere with the process
of antigen processing.

3.5. Cellular uptake ofMWNTs-OVA is correlatedwith the potency of CTL re-
sponses induced in vivo

To study the cellular uptake of f-MWNTs in vivo, C57BL/6 mice were
injected with f-MWNTs and the popliteal lymph nodes were dissected
24 h later. ImageStream analysis revealed that the lymph node cells
and the CD11c+ve lymph node cells internalized S−/+ in a significantly
higher manner compared to L+ or S− [Fig. 5A–B], judging from the
bright-field intensity signals. Furthermore, in vivo internalization and
processing of f-MWNT conjugated OVA by the antigen presenting cells

was studied by substituting OVA with DQ-OVA in the conjugates. DQ-
OVA is a dye-labeledOVA that emits green fluorescence following expo-
sure to proteolytic enzymes [50]. Administration of S−/+(DQ-OVA)was
associated with highest green fluorescence intensity in the CD11c+

lymph node cells [Fig. 5C], determined with flow cytometry analysis.
Thus indicating that more DQ-OVA was delivered to CD11c+ lymph
node cells when conjugated to S−/+ than other the other f-MWNTs.
No significant differences were detected among the phenotypes of the
CD11c+ve lymph node cells derived from MWNTs(OVA) injected mice
[Figs. 5D and S15], which was consistent with the in vitro phenotypic
characterization of BM-DCs. Histological analysis of themain organs ex-
cised from injected mice showed no accumulation of MWNTs in lungs,
liver, spleen or kidneys (data not shown).

Given the above findings, the in vivo efficacy of the MWNTs-OVA
conjugates to induce T cell activation in vivo was assessed using an
in vivo CTL assay [27,28]. C57BL/6 mice were treated with soluble OVA
or MWNTs-OVA on days 0, 7 and 14. On day 21 post immunization,
mice were injected with a 1:1 splenocyte mixture consisting of 0.5 μM
CFSE labeled SIN-pulsed splenocytes (target cells) and 5 μM CFSE la-
beled un-pulsed splenocytes (control cells). The ratio of the target: con-
trol splenocytes was assessed after 24 h using flow cytometry to
determine the percentage of antigen specific killing (Fig. 6). Treatment
with S−/+(OVA) induced the highest percentage of antigen specific kill-
ing (18.7% ± 3.1) (Pb0.0001) compared to uncoupled OVA. No signifi-
cant differences were found between S−−(OVA) (10.4% ± 2.86) and
S−(OVA) (10.6% ± 1.1). Both conjugates, however, showed better

Fig. 3. Intracellular uptake of f-MWNTs orMWNTs-OVA in vitro. BM-DCs were incubated with f-MWNTs or MWNTs-OVA each at MWNT concentration of 10 μg/ml for 24 h then analyzed
with image stream analysis. (A) Scatter plot of naive BM-DCs. (B) Scatter plot of BM-DCs incubatedwith S−/+, as a representative plot for f-MWNT treated BM-DC, showing the S−/+ pos-
itive and S−/+ negative BM-DC populations, identified frommean image intensity in the brightfield and scatter channels (cell images are shown in an inset). (C) Relative f-MWNTs uptake
indirectly determined by measuring the bright field intensity of BM-DCs following treatment with f-MWNT. Naive BM-DCs were used as a control. (D) Relative MWNTs-OVA uptake in-
directly determined bymeasuring the bright field intensity of BM-DCs following treatment with MWNTs-OVA. Soluble OVA treated BM-DCswere used as a control. Results are expressed
as mean ± SD (n=3).
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efficacy than soluble OVA (3.3% ± 0.6) (Pb0.01) or L+(OVA) (5.2% ±
0.58) (Pb0.05). Interestingly, administration of soluble OVA and S−/+

did not improve CTL induction compared to treatment with S−/+(OVA).
It is important to note that overall levels of CTL induction were rather
low not exceeding 18.7% of antigen-specific killing. However, this is not
surprising taking into account the lack of adjuvanticity of MWNT. In
conclusion, consistentwith the in vitrofindings, S−/+(OVA) demonstrated
the same capabilities on ensuing significantly higher antigen specific
immune response than the other MWNTs-OVA in vivo.

4. Discussion

In this study, we investigated the ability ofMWNTs-OVAwith differ-
ent surface functionalities and physical properties to induce antigen-
specific immune responses following internalization by the antigen pre-
senting cell. Our in vitro studies highlighted differences in T cell activa-
tion and cytokine production, for both CD4+ and CD8+ T cells induced
by the different MWNTs-OVA conjugates, which correlated with their
cellular internalization. Interestingly, no change in the expression of
co-stimulatory molecules was detected among BM-DCs treated with f-
MWNTs, and the same was observed for MWNTs-OVA treated BM-
DCs. This lack of f-MWNT's adjuvant properties is in agreement with
previously reported studies [17,19,51,52]. These observations might in-
dicate that the pattern of induced immune responsewas determined by
the conjugated antigen uptake by antigen presenting cell and not due to
the adjuvanticity of f-MWNT. Lastly, cellular uptake and CD8+ T cell re-
sponses observed in vivo were in a good agreement with the in vitro
studies.

p-MWNTs were exposed to various functionalization approaches
that yielded long positively charged L+ or short negatively charged
S−−, S−/+ or S−. OVA conjugation with the f-MWNTs yielded
MWNTs-OVA of increased negativity. This was in agreement with
work reported by de Faria et al. where an increase in the negativity of
oxidized MWNT following conjugation with OVA was observed [21].
This could be due to the acidic amino acids content of OVA. Fadel et al.
observed the same behavior following the interaction of negatively
charged CNTs with streptavidin, neutravidin or avidin bearing net nega-
tive, neutral or positive charges, respectively [25]. Taking advantage of
their high surface area and surface hydrophobicity, CNTs have been
shown to be able to adsorb peptides or proteins of various molecular
weights [53]. Based on our findings, we concluded that OVA and
its MHC class I-restricted epitope SIN were non-covalently conjugated
to f-MWNT, possibly via π–π stacking or hydrophobic interaction [54].

Bianco et al. assessed the immune response induced by CpG-ODN
complexed with either ammonium-functionalized SWNT (ammoni-
um-SWNT) or lysine-functionalized SWNT (lysine-MWNT). The study
demonstrated a higher enhancement in immunostimulatory activity
of CpG-ODN loaded on the lysine-SWNT than ammonium-SWNT
in vitro [19]. It was suggested that the more positive lysine-SWNT neu-
tralized the negative charge of CpG-ODN and enhanced its cellular up-
take. Li et al. examined the uptake efficiency of 4 types of MWNTs
functionalized using 1,3-dipolar cycloaddition (12.95 mV), oxidation
(−52.61 mV), amidation reaction (−2.35 mV) or polyetherimide-
modification (53.33 mV) in BEAS-2B (epithelial cells) and THP-1
(monocytes) cells in vitro [55]. A direct correlation between f-MWNT's
surface positivity and cellular acquisition was found. We have also re-
ported similar findings using a series of cationic dendron-modified

Fig. 4. Assessment of the immune response induced in vitro. (A, B; left) Determination of T cells proliferation using 3H-Thymidine incorporation assay. BM-DCswere incubated with OVA,
SIN, MWNTs-OVA, orMWNTs-SIN, each at 5 μg/ml OVA, 0.5 or 1 μg/ml SIN for 24 h. Incubated BM-DCswere harvested, irradiated then co-culturedwith CD4+ or CD8+ T cells at 1:4 ratio
for 3 days. CD8+ andCD4+ T cells proliferationwas assessedwith 3H-thymidine incorporation assay. (A, B; right)Measurement of IFN-γ production in the supernatants of CD4+or CD8+T
cells co-cultured for 3 days with OVA, SIN, MWNTs-OVA, or MWNTs-SIN stimulated BM-DCs, by ELISA. Results are expressed as the mean value ± SD (n=3).
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MWNT in cancer cells [56,57]. This was attributed to the enhanced elec-
trostatic interactions between the anionic cell membranes and the cat-
ionic f-MWNTs.

In case of the shortened f-MWNTs series, it is possible that the differ-
ences in biological activity, e.g., DCs uptake and immune response are
due to reduction in the overall negative charge. One, however, cannot
ignore the differences in the chemical structures introduced, which
may also have influenced uptake in DC's. Nevertheless, it can be con-
cluded from this study that alteration in f-MWNT's surface chemistry
may influence the degree of uptake in DC's. The former is directly pro-
portional to the intensity of immune response produced, agreeing
with previously reported studies. Previous studies have also demon-
strated a correlation between enhanced cellular uptake of positively
charged particulate vaccine delivery systems and immune response
augmentation. For instance, cationic poly-L-lysine coated nanoparticles
(1000 nm in diameter) in vitro [58], polystyrene spheres (1000 nm)
in vitro [59], liposomes (200 nm) of varying lipid composition and

surface charges in vitro [60], PLGA microspheres loaded with hepatitis
B Ag (HBAg) in vivo [61], tetanus toxoid-loaded chitosan nanoparticles
(40–400 nm) in vivo [62] or OVA-conjugated rod-shaped hydrogel
nanoparticles in vitro and in vivo [63].

The positively charged L+(OVA) and L+(SIN) showed lower im-
mune response intensity compared to the negatively charged S−/

+(OVA) and S−/+(SIN), respectively. These observationsmight be relat-
ed to the longer length possessed by L+ (~386 nm) in contrast to S−/+

(~122 nm) affecting cellular uptake. The effect of MWNT's length on
specific antibody response was previously investigated in vivo in New
Zealand rabbits and BALB/c mice immunized with protein hapten-
MWNTs of two lengths but similar surface charge, and shorter
MWNTs (500 nm) induced higher antigen-specific antibody response
than the longer MWNTs (N2 μm) [24].

Size-dependency was also reported for spherical nanoparticles. Pre-
vious studies concluded that higher uptake by the antigen presenting
cells and a subsequently more potent immune response was induced

Fig. 5. In vivo uptake and phenotypic characterization. (A) Uptake of f-MWNTs in draining popliteal lymph nodes. C57BL/6 mice (n=3) were injected via the footpad with 100 μg of f-
MWNTs, and the draining popliteal lymph nodes were dissected 24 h later. The isolated lymph node cells were stained for DCs using PE anti-CD11c (PE-CD11c) and analyzed using
ImageStream analysis. Scatter plot of lymph node cells isolated from S−/+ injected mouse is shown, as a representative plot, illustrating the gating strategy applied to determine the f-
MWNT+ve and CD11c+ve cells based on the reduction in bright-field intensity and the increase in PE-CD11c fluorescence intensity, respectively (cell images are shown in an inset).
(B) Quantification of f-MWNTs uptake in popliteal lymph nodes. (Left) Percentage of f-MWNT+ve cells in the whole cell population. (Right) Percentage of f-MWNT+ve cells in the
CD11c+ve cells. (C) Uptake and processing of f-MWNT conjugated OVA in draining popliteal lymph nodes. C57BL/6 mice (n=3) were injected with MWNTs(DQ-OVA), each contained
10 μg DQ-OVA. The isolated lymph node cells were stained with PE-CD11c and analyzed using flow cytometry. (Left) Representative histograms showing the processed DQ-OVA fluores-
cence, determined using the FL-1 detector. (Right) The MFI of processed DQ-OVA. (D) Effect of MWNTs-OVA on CD11c+ve lymph node cells phenotypes. C57BL/6 mice (n=2) were
injected with OVA or MWNTs-OVA, each at 50 μg OVA. The isolated lymph node cells were stained with fluorescently-labeled antibodies and analyzed using flow cytometry. The MFI
of the positive cells was determined tomeasure the fold change in theMFI of eachmarker compared to the naive cells. Results are expressed as mean± S.D. Statistical analyses were per-
formed using one-way ANOVA with Bonferroni post-test.
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using smaller sized spherical-shaped particulate vaccine delivery sys-
tems [28,59,64,65]. Interestingly, Foged et al. showed that 100nmnano-
particles, despite being negatively charged, can be taken up more
efficiently in DCs than positively charged nanoparticles of bigger size
(1000 nm) [59].

It is possible that the differences in immune responses found in our
study are due toMWNT's dispersibility characteristics. Short oxidized f-
MWNTs exhibited enhanced dispersibility and a higher degree of indi-
vidualization, as observed in the TEM, compared to long non-oxidized
f-MWNT (L+), which displayed a higher tendency of agglomeration.
This could be due to the shortening induced by acid-assisted bath soni-
cation [34]. Interestingly, Iannazzo et al. conjugated HIV inhibitor to
oxidized-MWNTs or oxidized-MWNTsmodifiedwith hydrophilicmoie-
ties, and found that increasing the MWNT's dispersibility is associated
with higher therapeutic effect of the loaded drug [66]. In our study,
the in vitro uptake studies demonstrated increased uptake of S−/+ or
S−/+(OVA) on treating the BM-DCs with fixed concentration of f-
MWNTs or MWNTs contained in MWNTs-OVA, and similar findings
were observed in vivo. However, variations in antigen loading density
among MWNTs-OVA or MWNTs-SIN cannot be ignored among the fac-
tors leading to the induced immune response intensities.

Despite the suggestion that differences in immune response efficacy
in vitro and in vivo are related to differences in amounts of nanocarriers
and antigen internalized, one cannot exclude the possibility of f-MWNT
affecting the process of antigen processing by BM-DCs. Exogenous anti-
gens processed in the endocytic compartments of the DCs are loaded
ontoMHC II molecules and presented to CD4+ T cells, while those proc-
essed in the cytosolic compartments are loaded onto the MHC I

molecules and presented to CD8+ T cells. The latter is called cross-
presentation [67–69]. The similar pattern of CD8+ T cell stimulation in-
duced by MWNTs-OVA and MWNTs-SIN treated BM-DCs proposes the
absence of MWNT's interference with antigen presentation. Thus sug-
gesting that the pattern of induced immune response was dependent
on the tendency of MWNTs to enhance the cellular uptake of the conju-
gated antigen, whether it is an already processed antigen (SIN) or not
(OVA).

5. Conclusions

Tailoring the physical properties of MWNT-based vaccine delivery
systems may increase their efficiency in inducing potent T cell immune
responses against challenging infectious or cancer diseases.
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Fig. 6. In vivo CTL assay. C57BL/6mice (n=3)were injected via the footpadwithOVA orMWNTs-OVA, each at 50 μgOVA onday 0, 7 and 14.Mice injectedwith PBSwereused as a negative
control. On day 21 following immunization, target cells derived from naive C57BL/6 micewere intravenously administered to the immunizedmice. Splenocytes were harvested from the
immunizedmice 18 h later and analyzed by flow cytometry to determine the specific killing of the target cells. (A) Representative histograms for splenocytes analyzed by flow cytometry.
(B) Specific killing of target cells induced by the different treatments. CTL induced by each individualmouse is represented as a dot, bars represent themean antigen specific killing for each
treatment.
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