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e Equivalent elastic moduli of irregular auxetic honeycombs are analysed.
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Abstract

An analytical framework has been developed for predicting the equivalent in-plane elastic
moduli (longitudinal and transverse Young’s modulus, shear modulus, Poisson’s ratios) of
irregular auxetic honeycombs with spatially random variations in eell angles. Employing
a bottom up multi-scale based approach, computationallyefficient closed-form expres-
sions have been derived in this article. This study alse ineludes development of a highly
generalized finite element code capable of acceptingsnumber of cells in two perpendicular
directions, random structural geometry and material properties of irregular auxetic hon-
eycomb and thereby obtaining five in-plane elastic moduli of the structure. The elastic
moduli obtained for different degree of randomness following the analytical formulae have
been compared with the results of direct finite element simulations and they are found to
be in good agreement corroborating the validity and accuracy of the proposed approach.
The transverse Young’s modulusy’shear modulus and Poisson’s ratio for loading in trans-
verse direction (effegting the auxetic property) have been found to be highly influenced
by the structural’irsegularity in auxetic honeycombs.
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1. Introduction

The materials having negative Poisson’s ratio are called auxetic material, which ex-
hibits an unusual yet fascinating property of being thicker in dimension perpendicular to
the direction of stretching and vice-versa (Evans and Alderson, 2000; Evans et al., 1991).
The auxetic behavior in global response of these materials is developed by some’specific
arrangement of the micro-structural geometry, which allows the material tondeform in
a particular manner that results the negative Poisson’s ratio (refer figure, 1, for demon-
stration of auxetic and non-auxetic behaviour of hexagonal honeycembs). This class of
materials have attracted considerable attention in last few decades duejto their unusual
characteristics leading to several application specific desirable engineering properties such
as high indentation resistance, increased shear stiffness, increased plane strain fracture
toughness, enhanced resistance to buckling under pure bending, superior permeability,
enhanced acoustic absorption capacity and direct structural properties like formation of
double curvature under flexure (Bacigalupo and\Bellis,; 2015; Bacigalupo and Gambarotta,
2014; Critchley et al., 2013; Evans and Aldersen, 2000; Grima et al., 2015; Nkansah et al.,
1994; Overaker et al., 1998; Rad et al., 2014;"Scarpa et al., 2003; Stavroulakis, 2005; Yang
et al., 2015, 2004; Yao et al., 2008). Moreover natural as well as man made auxetic mate-
rials and structural forms can be found across different length-scales strating from nano
to macro scale (Evans aid Alderson, 2000), wherein the underlying theory of elasticity
for analysing mechanical properties of these materials remain same. Thus study of the
mechanics behind’ different forms of such materials have always been of profound interest
to the research commiunity since the discovery of auxetic materials. For details about
different forms of auxetic materials readers can refer to Evans and Alderson (2000). The
present article concentrates on auxetic re-entrant hexagonal honeycombs, a brief review
of whichyis presented in the next paragraph.

In"last couple of decades, application of hexagonal auxetic lattice forms have been
explored from atomic scale to macro scale, in a vast domain ranging from engineering to
bio-medical technology. Figure 1 shows the presence of auxetic re-entrant honeycombs of
hexagonal structural form in different length scales. Some of the previous articles (Evans

and Alderson, 2000; Karnessis and Burriesci, 2013; Nkansah et al., 1994; Scarpa and
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Applications in various engineering and medical
appliances like smart materials, angioplasty stents,
annuloplasty prosthesis, smart bandage etc.
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Figure 1: Occurrence and application of auxetic hexagonal honeycombs across the length scales

Tomlinson, 2000; Sun et al., 2014; Wang and Hu, 2014) have.discussed this considering
different forms of auxetic materials, in general. Figure 1 emphasizes on the occurance
and application of hexagonal auxetic honeycombs onlyiaccording to the aim and scope
of the present work. Auxetic character in such hexagonal lattices develops due to the
re-entrant shape of their unit cell, as easily pereeivable from the figure. The closed form
formulae for regular honeycombs provided(by Gibson and Ashby (1999) are widely used
to obtain in-plane elastic moduli of auxetie;honeycombs. Recently new analytical formu-
lae for regular hexagonal honeycombs have been reported considering the nodes at the
intersections of inclined and wertical members by Malek and Gibson (2015). Effect of
hierarchy in lattices have alsobeen'studied by many researchers (Banerjee, 2014). Gereke
et al. (2012) have presented'a multi-scale stochastic modeling approach for elastic proper-
ties of strand-based wood composites. Several studies can be found in available literature
dealing with mechanical properties of regular auxetic honeycombs using numerical and
experimental investigations (Grima et al., 2013; Scarpa et al., 2000, 2003; Scarpa and
Tomlin; 2000). Available analytical approaches for obtaining equivalent elastic moduli of
auxetic honeycombs are based on unit cell approach, which fails to account for any form
of irregularity in the structure. Spatial irregularity in auxetic honeycomb may occur due
to uncertainty associated with manufacturing in macro-level and process of fabrication
and synthesizing in molecular level, uncertain distribution of intrinsic material properties,
structural defects, variation in temperature, pre-stressing and micro-structural variability.

Several investigations to explore the effect of irregularity are found to have concentrated



on non-auxetic honeycombs including voronoi honeycombs (Ajdari et al., 2008; Alsayed-
noor et al., 2013; Li et al., 2005, 2007; Mukhopadhyay and Adhikari, 2016; Triantafyllidis
and Schraad, 1998; Zhu et al., 2001). Papka and Kyriakides (1994) have carried out nu-
merical and experimental study of honeycomb crushing behaviour considering geometrical
imperfections in the structure such as variation in length of bond line and over or under
expanded cells. The state of available literature which investigates the effect’ of irregu-
larity in auxetic honeycombs is very scarce. Recently Liu et al. (2014) haveiinvestigated
manufacturing irregularity in auxetic honeycomb using finite element amalysis. They have
reported that structural irregularity influences the effective elastic modulus, yield strength
and Poisson’s ratio of auxetic honeycombs. All the studies mentioned above exploring the
effect of irregularity in both auxetic as well as non-auxeticshonecombs are based on either
finite element simulations or experimental investigationsy Experimental investigations are
very expensive and time consuming, which makes.it.practically not feasible to capture
the effect of random irregularities in honeycomb strueture in a robust and comprehen-
sive manner by testing huge number of samples. The finite element approach becomes
quite computationally intensive becausé assmall change in geometry of a single cell may
require creating completely new geemetry’and meshing the entire structure. Moreover
when irregular honeycombs are modelled as a part of another host structure, the degree
of freedom to be considered becomes very high making it prohibitively expensive to sim-
ulate. The problem bécomes even worse for uncertainty quantification using a Monte
Carlo based based.approach (Dey et al., 2015a,b; Hurtado and Barbat, 1998), where the
expensive finit¢ element model is needed to be simulated for a large number of samples
with different structural configurations. A simple yet computationally efficient way to
characterize the elastic properties of irregular auxetic honeycomb could be following an
analytical approach.

This article develops an analytical framework leading to closed form formulae for
predicting equivalent in-plane elastic properties of irregular auxetic honeycomb having
spatially random variations in cell angle. Subsequently the effect of irregularity on the
auxetic properties of such honeycombs are discussed. To the best of authors’ knowledge,

no such closed form formulae for irregular auxetic honeycomb are available in literature.



This article is organized as follows hereafter, section 2: derivations of closed form formulae
for five in-plane elastic moduli of irregular auxetic honeycombs; section 3: development
of finite element model to obtain the in-plane elastic moduli of irregular auxetic honey-
comb numerically for validating the proposed analytical approach; section 4: results and
discussion based on both the proposed analytical approach and the finite element code. A
comparative inference has been drawn in this section establishing validity of the'developed

analytical expressions; and section 5: concise summary and conclusion.

2. Elastic properties of irregular auxetic honeycombs

A bottom up approach has been proposed in this article for deriving expressions of
effective in-plane elastic moduli for irregular auxetic honeyeombs. The key philosophy
behind the proposed idea is that the entire irregularijauxetic honeycomb structure is
considered to be consisted of several representative unit cell elements (as shown in fig-
ure 2(b)) having different individual elastic moduli depending on its structural geometry
and material properties. In the elementary local level, effect of irregularity is accounted
by analysing the representative unit cellwelements (RUCESs) first and then this effect of
irregularity is propagated towards_the global properties of the entire structure in a multi-
scale framework through a multi-stage process as shown in figure 6. The expressions for
elastic moduli of a single RUCE are derived first (as discussed in subsection 2.1) and
subsequently the expressions for effective in-plane elastic moduli of the entire irregular
auxetic honeycomb”are/derived using basic principles of mechanics (as discussed in sub-
section 2.2). The entire process of deriving expressions for each of the elastic modulus
of the entire irregular auxetic honeycomb consists of four stages: selection of appropriate
RUCE and proper idealization scheme; derivation of the expressions for elastic moduli of
a single RUCE; derivation of equivalent elastic moduli for each strip and finally, deriva-
tion of elastic moduli of the entire irregular auxetic honeycomb. The RUCEs have been
chosen from the viewpoint of the adopted discretization scheme (figure 6) in the pro-
posed bottom-up approach. One of the most important criteria is that the chosen form
of RUCE should reasonably allow us to assemble their individual properties in the ‘strip’

level first, and thereby in the ‘global’ level considering idealized blocks. Here the RUCESs



are basically the representative building blocks of the entire irregular honeycomb. Elastic
properties (Zy) of the RUCEs can be represented as a function of structural irregularity
Zy(w), where the parameter w captures the random structural geometry/ irregularity of
a particular RUCE. Here Z and U denote a particular elastic modulus and representative
unit (RUCE) respectively. It is worthy to mention here that effectively three loading
directions are needed to be considered for deriving the expressions of five in-planetelastic
moduli as shown in figure 6. For longitudinal Young’s modulus (£;) and Peisson’s ratio
V19, stress oy is applied in direction-1 (figure 2(b)), while for transversesYoung’s modulus
(E5) and Poisson’s ratio 1y, stress o9 is applied in direction-2. Te"ebtain the expression
of shear modulus (G12), shear stress 7 is applied as shown in figure/6. The notations
used for different elastic moduli throughout this article are as follows: Z; denotes elas-
tic moduli of a single RUCE; Z denotes equivalent elastic moduli of a single strip; Zeq
denotes equivalent elastic moduli of the entire irregular, auxetic honeycomb, where 7 is
a particular elastic modulus under consideration. Thessubscripts ¢ and 7 have been used
to indicate position of the RUCE or a single strip under consideration. The formulae

proposed here are applicable for both tensile as well as compressive stresses.
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Figure 2: Typical representation of regular and irregular auxetic honeycomb structure



2.1. Derivation of expressions for elastic moduli of a single RUCFE

Derivation of expressions for the five different in-plane elastic moduli of a single RUCE
is discussed in this section. These expressions will be utilized to obtain final closed form

formulae of the entire irregular auxetic honeycomb in subsequent sections.

2.1.1. Longitudinal Young’s modulus (Eyy)

To derive the expression of longitudinal Young’s modulus for a RUCE (Exty), stress oy
is applied in direction-1 (refer figure 2, for direction) as shown in figure3. The inclined
cell walls having inclination angle o and 8 do not have any contribation in the analysis
of Ey, as the stresses applied on them in two opposite directions neutralise each other.
It can be noticed that the remaining structure except these twowinclined cell walls is
symmetric. The applied stresses cause the inclined cell walls having inclination angle 6
to bend and this contributes to the overall deformationef the structure in direction-1.
From the condition of equilibrium, the vertical forces C"in the free-body diagram of these
cell walls (refer figure 3(b)) need to be zero. In the present analysis the cell walls are
treated as beams of thickness t, depth b and Young’s modulus Fy. [ and h are the lengths
of inclined cell walls having inclination angle 6 and the vertical cell walls respectively as
shown in figure 3(a). From figur€ 3(b) (similar to Gibson and Ashby (1999); Wan et al.
(2004)),

M= Plsin 6 (1)
2
where
P =o01(h—1sinf)b (2)

From the standard beam theory (Roark and Young, 1976), the deflection of one end
compared to the other end of the cell wall shown in figure 3(b) can be expressed as
Pl3sin@

12E,1

where [ is the second moment of inertia of the cell wall, that is I = bt3/12.

5= (3)

The component of § parallel to direction-1 is d sin#. The strain parallel to direction-1

becomes
B dsinf
~ lcosh

(4)

€1
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Figure 3: RUCE and free-body diagram used in the proposed amalysis for Fy

Thus the Young’s modulus in direction-1 for a RUCE can be, expressed as

o1 £\° cos 0
bw="=F (z) : (5)
! (7 —\sin 9) sin® 0

2.1.2. Transverse Young’s modulus (Esy )

To derive the expression of transverse Young’s modulus for a RUCE (Eyy), stress
oy is applied in direction-2 (referfigure 2, for direction) as shown in figure 4(a). Total
deformation of the RUCE in direction-2 consists of three components, namely deformation
of the cell wall having inclination angle o, deformation of the cell walls having inclination
angle f and deformation of the cell wall having inclination angle 5. All the cell walls are
considered axially"rigid,in this analysis. Here in figure 4(a), if the remaining structure
except the twerinclined cell walls having inclination angle o and f is considered, two forces
that act at jeint B are: a vertical force (W) and a moment (M;). Effect of the bending
moment, M; to the cell wall having inclination angle « is only to create rotation (¢) as
showmin figure 4(b).

Vertical deformation of the cell wall having inclination angle @ has two components,

bending deformation in direction-2 and rotational deformation due the rotation of joint



(b) (c)

Figure 4: RUCE and free-body diagram used in the propoesed analysis for Forr

B as shown in figure 4(b). The bending deformation‘in direction-2 can be expressed as

3
Weosa ( ,S )
Dowp = SLY 2 coso (6)

3E.I

where W = 20ylbcos® and I = bt3/12.\From figure 4(b), M; = Wscota. Cell walls
BC and BA will share half of moment M; each as they have equal stiffness. Using the
standard result of Euler-Bernoulli beam theory, deflection at one end due to application
of moment at the other‘end (6= MI*/6E,I), the angle of rotation at joint B can be
expressed as

My

¢ = 2 6E,I

(7)
The component of rotational deformation of the cell wall having inclination angle « in

direction-2=¢an be expressed as

Oovr = ¢ ( > cosa (8)

Thus from equation (6)-(8) after replacing W = 20slbcos 6, My = Wscotaw and I =

sino

bt3 /12, total deformation in direction-2 of the cell wall having inclination angle o can be

10



expressed as

2095%1 cos 0 (4 cos? o

2
R ST + lcot a) (9)

61}2 = 621}1) + 521}7’ =

Deformation of the cell wall having inclination angle 3 in direction-2 can also be expressed

in the similar way as

: 2095% cos 0 cos? 3 9
Oy = 4 lcot 10
2 Bt ( Ssin?’/@’ + lcot™f3 (10)
From figure 4(c), deformation of each of the cell walls having inclinatién angle 6 in
direction-2 -
(7 CoS 9) 3
6U1 = WCOSH (11)

Replacing W = 205lbcosf and I = bt3/12 from equation. (&), total deformation in

direction-2 of two cell walls having inclination angle # gan be expressed as

2090* cos?
5111 -
12E.13

Thus total deformation in direction-2 of the RUCE’ represented in figure 4(a) due to

(12)

application of stresses o is

cos’a  cos?f3

. lcosf . .
Op = Op2+0ya+0d,1 = G270 CO8 (215 cos?  +8s° (

“E5 ) + 25%(cot*a + cotzﬁ))

(13)

sin®a  sin® B

Strain in direction-2 can bebtained as

dy
 h+2s—2lsin6

Thus Young’s modulusiin direction-2 of a RUCE can be expressed as

(l% +2§ — QSmH)

N\
K (l) s\3 [cos’a  cos® 3 $\2
cos @ (2 cos?f + 8 (7> ( + ) +2 (7> (cot?a + cot26)>

(14)

€2

Eoyy = —
€2

sina  sin®

(15)

2.1.8. Poisson’s ratio vioy
Poisson’s ratios are calculated by taking the negative ratio of strains normal to, and

parallel to, the loading direction. Poisson’s ratio of a RUCE for the loading direction-1

11



(v12p) is obtained as (refer figure 3(a))

€
Viou = ——2 (16)
€1

where €; and €, represent the strains of a RUCE in direction-1 and direction-2 respectively
due to loading in direction-1. €, can be obtained from equation (4). From figure 3(b), e

can be expressed as

28 cos 0
T 2lsinf + 2s (17)

Thus the expression for Poisson’s ratio of a RUCE for the loading direction=1 becomes

2cos? 0

Viou = — h S ' ' (18>
7+2——2sm9 sin @

l

2.1.4. Poisson’s ratio vo1y
Poisson’s ratio of a RUCE for the loading direétions2 (15y7) is obtained as (refer

figure 4(a))

@
Va1 = ——1 (19)
€2

where €; and €, represent the strains of a RUCHEin direction-1 and direction-2 respectively

due to loading in direction-2. €3 can be obtained from equation (13) and equation (14) as

o2t cosd 3 M2 5 [cosa  cos? B ) ) ,
B & 0+8 2521 (cot t
“ T E(h + 25 — 2lsind) ( 05" 0+ 85\ Sg T g ) T2 et ia ko)
(20)
From figure 4(c)
51 sin
- 21
U= Tcosh (21)
(% €os 0) A
where 4y = BT and W = 205lbcos 6. Thus equation (21) reduces to
o, = 2 sindcost 22)

Et3

Thus the expression for Poisson’s ratio of a RUCE for the loading direction-2 becomes

sin 6 (%—1—2; —QSiDG)

3 2 2 2
2cos?60 + 8 (;) (COS 242 ﬁ) +2 (f) (cot? a + cot? B)

sina  sin® B [

(23)

iy = —

12



2.1.5. Shear modulus (G1ay)

To derive the expression of shear modulus (G1oy7) for a RUCE, shear stress 7 is applied
as shown in figure 5(a). Lateral deformation of point D with respect to point H consists
of three components, namely lateral deformation of the cell wall having inclination angle
«, lateral deformation of the vertical cell walls and lateral deformation of the cell wall
having inclination angle 5. The remaining structure except the two inclined. cell, walls
having inclination angles o and § is symmetric. Thus points A, B, C.(and’ points E,
G, F) do not have any relative lateral movement under the applied-stresses. For this
reason, the cell walls having inclination angle # do not have any cemtribution in the
lateral deformation of the RUCE. From figure 5(b) M = F's where F' = 27lbcosf. Due
to equal bending stiffness of cell walls AB and BC, they{will share half of moment M
each. Using the standard result of Euler-Bernoulli héam theory, (deflection at one end
due to application of moment at the other end §.==MI%/6E,I), the angle of rotation at

joint B can be expressed as
M 1 Fsl

2 6F,5. M2E.I

¢ = (24)

Lateral deformation of the cell wall having inelination angle o has two components, bend-

ing deformation and rotational déformation due the rotation of joint B as shown in fig-

ure 5(b). Thus the total lateral defermation of point D with respect to point B is

o — (Fsmoz( s )3+¢ s )sina
3ET \sina sino
. Fs? <l+ 4s )
12E71 sino

Lateral deformation the cell wall having inclination angle 5 can also be expressed in the

Fs? 4s
O12 = 57 (l * sinﬁ) (26)

(25)

similar way ‘as

In/figure 5(c), J is the midpoint of the member AE. Displacement of point J with
respect to point A is calculated in the similar way as above considering the rotation of

point A and bending deformation of member AJ,
R
- 48EI

Displacement of point J in direction-1 with respect to point E (d74) is same as d3.

L3 (14 2h) (27)

13
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By replacing F Ibcos® and I = bt3/12 in equation (25), (26), (27) total lateral

movement of poi respect to point H

( l :/ ~ 27lcosf 2 1 1 (28)

h
2 g3 NV 3
Et3 (2[5 R 2 s <sinoz * smﬂ))

Th strain v for a RUCE can be expressed as
oL
Y

- 2s +h —2lsinf

29)
27l cos h2l 1 1 (
= 2s* + b+ — +45°

Et3(2s+h—2lsin6)( S ( * ))

sina  sinf

14



Thus the expression for shear modulus of a RUCE becomes

T
G12U =

h .
A\ 3 <2§+7—281n9) (30)
5\ 2 s\3 [ 1 1 A\? 1R\
l) +4(7> (sina—'—smﬂ)—i—(T) +§(7))

2.2. Derivation of expressions for elastic moduli of the entire irreqular augetiexhoneycomb
structure

[\
o
o
9]
>
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|

Derivation of closed form expressions for elastic moduli of the.entire irregular auxetic
honeycomb structure is discussed in this section. For this purpese the formulae for a single
RUCE (subsection 2.1) have been utilized and thereby a multi-step bottom up approach is
followed to derive equivalent elastic moduli for a single‘strip and finally equivalent elastic
moduli for the entire auxetic honeycomb with struetural irregularity (refer figure 6). In
the present analysis, the entire irregular honeygomb structure (figure 2(b)) is assumed to
have m and n number of RUCESs in direction-1 and direction-2 respectively. A particular
cell having position at 7" column and 4%xow is represented as (i,5), where i = 1,2,...,m

and j =1,2,....n.

2.2.1. Longitudinal Young’s modulus (F1e,)

To obtain FEj.,, stress o is applied in direction-1 as shown in figure 6. Figure 6
consists of three groups of leading directions considered in this study. For the analysis
of Fieq, we need Ao comsider the group with loading in direction-1. If the deformation
compatibility-eondition of j* strip is considered, the total deformation due to stress o,
of that partieular strip (A;) is the summation of individual deformations of each RUCESs
in direction-1} while deformation of each of these RUCESs in direction-2 are same. Thus

for thew!" strip
A=) Ay, (31)
i=1
The equation (31) can be rewritten as

e L = Zelz’jLij (32)
i=1

15
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where ¢; and L represent strain and dimension in direction-1 of respective elements.

Equation (32) leads to

O'lL - UlLij
— = —_— 33
Fyj Zl Eruij (33)

1

16




From equation (33), equivalent Young’s modulus of j* strip (Elj) can be expressed as
Z lij COS gij
=1

K3

m li]‘ COS 91‘]‘ (34)

=1 Ewij
where 0;; is the inclination angle of the cell walls having length /;; in the RUCE pésitioned
at (i,7). In the next step, expression of equivalent longitudinal Young’s modulus for a
single strip (El ;) is utilized to obtain equivalent longitudinal Young’s modulus of the entire
irregular auxetic honeycomb structure (Ej.,) using force equilibrium and deformation
compatibility conditions as follows.
n
o1Bb =Y 01;B;b (35)
j=1
where B; is the dimension of j™ strip in direction-2 and“B = Zn: Bj. b represents the
depth of honeycomb. =
As strains in direction-1 for each of the n strips are same to satisfy the deformation

compatibility condition, equation (35) leads, te

(Z Bj) Elq =) EB, (36)
=1 j=1
Using equation (34) and equation (36), equivalent Young’s modulus in direction-1 of the

entire irregular honeycomb strugture (E).,) can be expressed as

1 n Z lij COS 91']‘
_ =t ,
Eieg = &5 2 T cosy | B (37)
= = Y
j=1 ’ i=1 ElUij

where Young’s modulus in direction-1 of a RUCE positioned at (,5) is Ey;5, which can

be @btained from equation (5).

2.2.2.7 Transverse Young’s modulus (Ese,)

To derive the expression of equivalent transverse Young’s modulus for the entire irregu-
lar auxetic honeycomb structure (Es,,), the transverse Young’s moduli for the constituting
RUCESs (Eyy) are assembled as discussed below. For obtaining FEs.,, stress o, is applied

in direction-2 as shown in the group of loading direction-2 (refer figure 6). If the force
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equilibrium under the application of stress oy of j strip is considered,

09 (Z 2[1] COS HU) b= <Z UQileij (¢0)] 01]) b (38)
i=1 =1

By deformation compatibility condition, strains of each RUCE in direction-2 of the j™*
strip are same. Equation (38), rewritten as
m m
Egj (Z lij COS HU) €= <Z EQUijlij COS 0@‘6@') (39)
i=1 i=1
where €;; = ¢, for i = 1,2...m in the j strip. EQj is the equivalent elastie modulus in
direction-2 of the j™ strip.
EQUZ'j lij COS 91']'
=1

~ :

i
EQJ‘ =

o (40)
Z:l le COS 92]

)

Total deformation of the entire honeycomb in direction-2 (Ay) is the sum of deformations

of each strips in that direction,
Ay = A5 (41)
j=1
The equation (41) can be rewritten as
CQB = Z GQij (42)
j=1

where €, €2; and B; represent, total strain of the entire honeycomb structure in direction-
2, strain of j™ strip in direction-2 and dimension in direction-2 of j** strip respectively.

Equation (42) can beyrewritten as
u O'QB]'

03>, Bj
j=1

= - (43)
E2eq ; EZ]‘

From equation (40) and equation (43), the Young’s modulus in direction-2 of the entire

irregularshoneycomb structure can be expressed as

1
Eeq = m B; (44)
n Z lZ] COS 91] Jj=1
j=1 z E2Uijlij COS (92']'

7

Il
—
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where Young’s modulus in direction-2 of a RUCE positioned at (,5) is Eay;j, which can

be obtained from equation (15).

2.2.8. Poisson’s ratio vigeq

To derive the expression of equivalent Poisson’s ratio for loading direction-1 of the en-
tire irregular auxetic honeycomb structure (v12.,), the Poisson’s ratios for the constituting
RUCES (v12r) are assembled as discussed below. For obtaining v9.,, stress gpis applied,
similar to the derivation of Eyy (as shown in figure 6). If the application of Stress o; in
the j** strip is considered, total deformation of the j* strip in direction-1 is summation of
individual deformations of the RUCESs in direction-1 of that particularstrip. Thus from

equation (32), using the basic definition of v,

€2 . €2ijLij
— 2 L= ; o (45)
where €5 and €y;; are the strains in direction-2 of gtestrip and individual RUCEs of ;%
strip respectively. 119, represents the Poissons.ratiorfor loading direction-1 of a RUCE
positioned at (,7). 12; denotes the equivalent Poisson’s ratio for loading direction-1 of

the j* strip. To ensure the deformatiofi ¢cémpatibility condition e, = €gijfori =1,2,....m

in the j strip. Thus equation (45)leads to

. L
V12j = —L (46)

Total deformation of the entire honeycomb structure in direction-2 under the application
of stress oy along theitwo opposite edges parallel to direction-2 is summation of the

individual deformagions in direction-2 of n number of strips. Thus

€2B = Z EQij (47)
j=1
Usingsthe basic definition of v equation (47) becomes
V126q61B = Z V12j€1ij (48)
7=1

where vy5., represents the equivalent Poisson’s ratio for loading direction-1 of the entire
irregular auxetic honeycomb structure. €; and €;; denote the strain of entire honeycomb

structure in direction-1 and strain of j** strip in direction-1 respectively.
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From the condition of deformation comparability €, = €;; for j = 1,2,...,n. Thus from

equation (46) and equation (48),

m
1 n lij COS(gij
i=1
Viseq = T o5t | Bi (49)
ij COS ij
> B a1 | Y A
j=1 =1 Vi2uij

where v191;; can be obtained from equation (18).

2.2.4. Poisson’s ratio vayeq

To derive the expression of equivalent Poisson’s ratio for loading directions2 of the en-
tire irregular auxetic honeycomb structure (141¢,), the Poisson’s ratios forthe constituting
RUCES (v9117) are assembled as discussed below. For obtaining tgyeq,Stress o, is applied
in direction-2, similar to the derivation of Fyy (as shown'in figure 6). If the application
of stress o5 in the j* strip is considered, total deformation of the 5 strip in direction-1
is summation of individual deformations of the RUCEs"in direction-1 of that particular

strip. Thus,

e L = Z elijLij (50)
=1
Using the basic definition of v5; equation (50) leads to
7921j62L = Z V21Uij€2ijLz'j (51)
i=1

where 75;; represents the, equivalent Poisson’s ratio for loading direction-2 of the ;%
strip. €, and ey;; afe the strains in direction-2 of j™ strip and individual RUCEs of
g™ strip respectively. w11 represents the Poisson’s ratio for loading direction-2 of a
RUCE positioned at-(i,j). To ensure the deformation compatibility condition e; = €y;;

for i = 152; “ym-in the j strip. Thus equation (51) leads to

m
z VQlUijlij COS 0”
i=1

(52)

915 =

m
Z li]‘ COS eij
i=1
Total deformation of the entire honeycomb structure in direction-2 under the application

of stress oy along the two opposite edges parallel to direction-1 is summation of the

20



individual deformations in direction-2 of n number of strips. Thus
EQB = ZEQij (53)
7j=1

By definition of 15 equation (53) leads to
B =

Jj=1

€1 €15

~

V915

B; (54)

D21eq

From the condition of deformation comparability €, = €;; for j = 1,27 %, n.\Thus the
equivalent Poisson’s ratio for loading direction-2 of the entire irregular honeycomb struc-

ture

1
1/21€q = Z B] (55)

m
Z li]‘ COS 97;]‘ J=1

n =1
1=
Zl Bj—
= > Vawijliy cos by
i=1

where v517;; can be obtained from equation (23).

2.2.5. Poisson’s ratio (Giaeq)

To derive the expression of equivalent. shear modulus of the entire irregular honeycomb
structure (Ghzeq), the shear modulifor the constituting RUCEs (G1ay7) are assembled as
discussed below. For obtaining Giae,,/ shear stress 7 is applied as shown in figure 6). If

the equilibrium of forces fér application of stress 7 in the j* strip is considered,

TL = Z TijLij (56)
i=1
By definition of shear modulus equation (56) can be rewritten as
GhojyL = Z Ghovijvij L (57)
i=1

whete élgj represents the equivalent shear modulus of the j™ strip. v and v;; are the shear
strains of j strip and individual RUCEs of the j** strip respectively. Giar; represents

the shear modulus of a RUCE positioned at (i,7). To ensure the deformation compatibility
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Table 1: Summary of formulae for effective in-plane elastic properties of irregular auxetic honeycombs
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= Yij for i = 1,2,..

condition ~y

(58)

Z GlZUijlij (¢0)] 0”

Z Zi]‘ COS (92‘]‘

7

=1
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Total lateral deformation of one edge compared to the opposite edge of the entire honey-
comb structure under the application of shear stress 7 is the summation of the individual

lateral deformations of n number of strips. Thus
YB =Y ;B (59)
j=1

By definition of G152 equation (59) leads to

n

T p=% B (60)

GlZ@Q j=1 125

From equation (58) and (60), equivalent shear modulus of the entive/irregular auxetic

honeycomb structure can be expressed as

1
Gloeq = 3"B; (61)

m
n Z:l li]‘ COS 49”‘ J
1=
-21 Bj—
= > Guovijlgeosts;
i=1

fl
_

where Gigp;; can be obtained from equation (30):

The closed-form formulae of elastic moduli for irregular auxetic honeycombs have
been summarized in Table 1, for ready reference to the readers. It is worthy to note here
that the formulae derived in thig artiele for irregular auxetic honeycombs reduce to the
expressions provided by GibsonyandyAshby (Gibson and Ashby, 1999) in case of uniform
honeycombs (i.e. By = By = ..%="B,; s = h/2; a =  =90° [;; = | and 0;; = —0, for all

i and j).
3. Finite element modelling and validation

A highly generalized finite element code has been developed using Matlab (MATLAB,
2013) to obtain the in-plane elastic moduli numerically for honeycombs having spatially
randommstructural variation. The developed finite element code is capable of accepting
the number of RUCES in direction-1 and 2 as input in addition to material properties and
other random geometrical features to obtain corresponding five elastic moduli as output.
Purpose of the finite element model in the present study is to validate the proposed
analytical approach for obtaining in-plane elastic moduli of irregular auxetic honeycombs.

Each cell wall has been modelled as an Euler-Bernoulli beam element neglecting axial and
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shear deformation with the assumption of high axial rigidity and low cell wall thickness

respectively.
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Figure 7: Convergence study and validation of finite element model for obtaining elastic moduli of
auxetic honeycomb (Here GA and FEM denote the results obtained by the formulae provided by Gibson
and Ashby (1999) and the developed. finite element code respectively for regular auxetic honeycomb)

The finite element smodel has been validated with results from available literature
(Gibson and Ashby#1999). Representative results for validation are furnished in figure 7
for a regular auxetie-honmeycomb with cell angle 30° and h/[ ratio of 1. Non-dimensional

FE E
elastic moduli have been plotted using: E; — El x 10° |, By — EQ x 10°, v19 — vig

G

Vo1 — Uoy and, Gia — % 108 respectively, for the ease of understanding the convergence

andwyalidation study. it should be noted here that 6 value referred in this study is
accordance with figure 3(a), meaning by § = —30° as per the formulation presented
in Gibson and Ashby (1999). Here convergence studies have been carried out for the
five in-plane elastic moduli with different number of RUCE to ensure the average global
behaviour of the entire honeycomb by avoiding any localised deformation due to boundary

effect. In the present study, the number of RUCE has been adopted as 961 for all the
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Figure 8: Variation of different non-denominational elastic moduli with cell angle (6) for regular honey-
combs (A = 0°)

subsequent analyses to comprehensively capturethe effect of random irregularity, which
is the emphasis of this work. As considéring wery less number of RUCESs for analysis may
fail to portray the effect of randommness inn"the global structural behaviour, a relatively

larger size of lattice is adopted.
4. Results and discussion

The analytical approach proposed in this study is capable of obtaining equivalent in-
plane elastic properties for irregular auxetic honeycombs from known spatial distribution
of cell angle and material properties of the honeycomb cell walls. Such irregularities in
auxetic/material can be characterized by using common techniques like digital image anal-
ysis. Forthe purpose of finding the range of variation in elastic moduli due to spatial
uncertainty, cell angles and material properties can be perturbed following a random dis-
tribution within specific bounds. From the expressions of effective elastic moduli derived
in section 2, it is evident that the five elastic moduli depend on the ratios h/l,t/l, s/l
and the angles 0, a, § (refer Table 1). In addition to these quantities, the two Young’s

moduli and shear modulus also depend on E,. Only bending deformation has been ac-

25



— Regular undeformed auxetic configuration

« Location of nodes in undeformed condition

for regular auxetic honeycomb

« Location of nodes for stress level 1

- Location of nodes for stress level 2

a

« Location of nodes for stress level 3

V

level 3

stress level 1 < stress level 2 < stress

ACCEPTED MANUSCRIPT

)

PEERERREEEERRREEEAEAROLERAREREEEEEROEAMILL

2) under

i

45°%

0,

0

(
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counted in the present analysis as the effect due to axial and shear deformation becomes
negligible for very high axial rigidity and small value of the ratio ¢/l respectively. The
formulations presented in section 2 are valid for small strain allowing the non-linearity

due to beam-column effect to be neglected.
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(a) Scatter plot for Es (b)¢Probability density function for Es

Figure 11: Typical results for validation of proposed analytical approach with respect to direct finite
element simulation results for Ey with § = 45°, A = 52 (ratio of E for irregular honeycomb and regular
honeycomb is presented)

In the present analysis, results have"been presented for three different h/l ratios,
namely: 2, 2.5 and 3 with a very small ¢/l value(~ 1072) to portray the effect of random
variation in cell angles. For each of.these h/l ratios, three different cell angles have been
considered, namely: 30°, 45° and 60°. Deterministic results (Af = 0°) for the five in-plane

elastic moduli are presentediin figure 8 considering the variation of cell angle in the entire

E
domain. Non-dimensienal elastic moduli have been plotted following: FE; — L% 10°

G12

s
Es 3

R E2 — _E X 10 swlis — V12 , Vo1 — U2 and Glg —

s s

ease of ateomparative assessment. The figure caters to interesting insights on rate of

x 10°® respectively, for the

changes\in the values of different elastic moduli with the variation of cell angle and A/l
ratio. This in turn, provides an idea about the relative sensitivity of the elastic moduli
to changes in cell angle at different points. In this article, results are furnished for spatial
irregularity in the cell angles only. The maximum, minimum and mean values of non-
dimensional in-plane elastic moduli for different degree of spatially random variations in
cell angles (Af = 0°,1°,3°,5° 7°) are shown in figure 12 -16. In each of these figures,

subfugures (a)-(c) show the effect of irregularity on different in-plane elastic modulus,
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Figure 12: Effect/of structural irregularity on non-dimensional Ej.

Zirregular

wherein the ratios Z(= ) are presented (Z denotes a particular elastic modulus

and the subscripts irreguZl;iguz;Zd regular indicate the values of effective elastic moduli
of irregular auxetic Honeycomb and regular auxetic honeycomb respectively) for different
degree of randémness in cell angles. The numerical values shown in the right side of each ‘I’
shaped marks represent percentage errors in the maximum and minimum values of elastic
moduli calculated using the proposed analysis compared to the finite element results. The
numerical values shown in the left side represent the same for the mean values. Smaller
values in the percentage errors would indicate that the proposed analytical approach is

capable of obtaining in-plane elastic moduli for irregular auxetic honeycombs with high

precision. Points on the Y-axis depicts the values of elastic moduli corresponding to
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Figure 13: £ Effect ofStructural irregularity on non-dimensional Ej5.

perfectly periodic.cellstructure (i.e.Af = 0). Subfigure (d), in each of the figures of
figure 12 -16 show elastic moduli of regular honeycombs. For a particular cell angle 6,
results have been obtained using a set of uniformly distributed 10,000 random samples in
the range of [§ — A6, 0+ Af]. The set of input parameter for a particular sample consists
of Nenumber of cell angles in the specified range, where N(=n x m) is the total number
of RUCEs in the entire irregular honeycomb structure. In the present analysis ¢, s and
E, have been modelled to possess no spatial variation. The quantities h and 6 have been
considered as the two random input parameters following uniform distribution, while «
and [ are dependent features.

Typical location of nodes for a regular auxetic honeycomb under the application of
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Figure 14/ Effect of'structural irregularity on non-dimensional vs.

stresses with different levels is shown in figure 9. Movement of the nodes for a particular
stress level areshigher as the distance from support increases due to a cumulative effect. It
can also be moticed that movement of the nodes are higher in direction 2 for higher level
of stresses, asjexpected. Another interesting observation from the figure is that deformed
location_of the nodes allow the lattice to expand in both direction 1 and 2 under the
application of tensile stress o9 conforming auxetic property of the honeycomb. Location of
nodes for the deformed honeycombs can be visualized relative to undeformed shape of the
respective regular configuration (§ = 45° h/l = 2). Figure 10 presents typical irregular
auxetic honeycombs for different random configurations along with location of nodes under

the application of stress in direction-2. Figure 10(a) and (b) show the movement of
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Figure 15/ Effect of'structural irregularity on non-dimensional v.

nodes for two randemirregular auxetic configurations respectively (corresponding to two
different randem“¢ell geometries), while figure 10(c) presents the bound of movements
for different nodes in randomly irregular auxetic honeycombs considering 10,000 random
cell configurations. It can be noticed from the figures that movement of the nodes in
direetion 2 increases considerably for randomly irregular structural geometries compared
to the regular configuration. This, in turn indicates reduction in Fy due to the effect of
irregularity, which agrees well with the results presented (figure 13) later in this section.

A representative scatter plot for Fy showing accuracy of the proposed analytical for-
mulae is furnished in figure 11(a), wherein low deviation of the points from diagonal line

affirms high level of precision with respect to finite element results for irregular auxetic
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Figure 16: Effect of structural irregularity on non-dimensional Gyso.

honeycomb. Figure)l1(h) shows probability density functions for Fy of irregular auxetic
honeycomb, whereindow deviation between results of the analytical methodology and fi-
nite element method corroborates high level of precision of the proposed approach. It
is interesting/to notice here that, even though the cell angles of an irregular honeycomb
sample have been drawn from an uniform distribution, the elastic moduli of irregular
honeycombs follow Gaussian distribution.

Figure 12 -16 show the effect of spatially random variation of cell angles in the elastic
moduli of irregular auxetic honeycomb. From the figures it is evident that irregularity in

the cell angles have negligible influence in the mean values of F; and vy, whereas mean
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values of Fs, 151 and G5 reduce significantly with increasing degree of random variation
in cell angle. Thus the auxetic property of honeycomb is found to reduce considerably for
v91 with the increase in degree of structural irregularity. The range of variations of all the
elastic moduli are found to increase with increasing degree of irregularity in cell angles, as
expected. The highest rates of reduction in the values of Fs, v5; and G2 with the increase
in degree of irregularity are noticed for mean cell angle of 60°, followed by 45¢ and 30°.
It is worthy to mention here that, the percentage errors presented in the figures indicate
the results obtained using the proposed computationally efficient analytical approach are
in good agreement with that of finite element method.

Previous investigations in the field of honeycomb structure have dealt with the effect of
under-expansion and over-expansion of cells (Papka and Kyriakides (1994)) in non-auxetic
hexagonal honeycomb with regular configuration using numerical and experimental stud-
ies. The present investigation shows the effects ofispatially random distribution of under
and over expanded cells of different degree on elastic moduli for irregular auxetic honey-
comb structure. Liu et al. (2014) have reported based on limited number of samples using
finite element simulation that structuralirregularity in auxetic honeycombs tends to lower
the effective in-plane elastic moduli=and auxetic property of the system. This observation
is similar to the inference drawn in the present article, which uses an efficient analytical
approach. Noteworthy is the fact that it is possible to characterize the effect of structural
irregularity using a robust framework with adequate number of samples only because of
the development of the computationally efficient analytical approach. In the proposed
analysis of irregular auxetic honeycomb structure having spatially random variations in
cell angles, the cell walls having inclination angles o and (3 play a vital role. As the range
of random variation in cell angles (Af) increases, the inclination angle with respect to
direetion-2"of these cell walls are also found to increase. Subsequently considering the
bending stiffness of the cell walls having inclination angles o and 3, the trends of different

in-plane elastic moduli with variation in degree of randomness can be explained.
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5. Conclusion

A novel bottom up analytical approach for predicting equivalent in-plane elastic mod-
uli of auxetic honeycombs having spatial irregularities is presented in this article. In the
proposed framework, effect of structural randomness is accounted by analysing the repre-
sentative unit cell elements first and then the effect of irregularity is propagateddtowards
the global properties of the entire structure using basic principles of mechanies following
a multi-scale approach. Though there are few literature available dealing with different
forms of irregularity in honeycombs, those are based on either experimental investigation
or numerical simulation. Moreover such studies on auxetic hongycombsrare very scarce.
This article proposes an efficient analytical framework for auxeticthemeycomb. The basic
physics behind elastic deformation of irregular auxetic honeycombs as presented in this
article being scale-independent, the present study i§ applicable across different length
scales. The closed form expressions developed for-longitudinal Young’s modulus, trans-
verse Young’s modulus and shear modulus are funetions of both structural geometry and
material properties of irregular auxetic honeycombs, while the Poisson’s ratios depend
only on structural geometry. The resultssobtained using the proposed analytical method
for spatially random variation of cell angles have been compared with those obtained
from the direct finite element simulation. The mean and range of variation for differ-
ent elastic moduli are found te,be in good agreement. Equivalent elastic properties of
irregular honeycombgcan be obtained using the proposed analytical framework more effi-
ciently compared’to _expensive finite element simulation approach without compromising
the accuracy-of results. An important finding of this study is that, though the effect
of spatially random variations in cell angle on E; and vy is negligible, Es, v9; and Gis
reduce significantly with the increase in degree of random variation of the cell angles.
Thus the auxetic property of honeycomb reduces considerably for 15; with the increase
in degree of structural irregularity. This uncertainty in the elastic moduli of auxetic hon-
eycombs owing to random variations in cell angle would have significant influence on the
subsequent analysis and design process. The formulae developed here can also be used to
predict equivalent in-plane elastic moduli of irregular auxetic honeycombs having spatial

variation in material properties and thickness of cell wall and therefore the closed form
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formulae can be used for efficient stochastic analysis of such material responses account-
ing different forms of irregularity and uncertainty associated with spatial distribution of
intrinsic material properties and structural geometry. The proposed analytical framework
to efficiently analyse irregular honeycombs can be extended further to other cellular struc-
tures considering appropriate representative unit cell element and the effect of axial and

shear deformations can also be incorporated in such future investigations.
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