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Highlights

• Equivalent elastic moduli of irregular auxetic honeycombs are analysed.

• Closed-form analytical formulae are presented.

• Spatially random cell angles have been considered.
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Abstract

An analytical framework has been developed for predicting the equivalent in-plane elastic

moduli (longitudinal and transverse Young’s modulus, shear modulus, Poisson’s ratios) of

irregular auxetic honeycombs with spatially random variations in cell angles. Employing

a bottom up multi-scale based approach, computationally efficient closed-form expres-

sions have been derived in this article. This study also includes development of a highly

generalized finite element code capable of accepting number of cells in two perpendicular

directions, random structural geometry and material properties of irregular auxetic hon-

eycomb and thereby obtaining five in-plane elastic moduli of the structure. The elastic

moduli obtained for different degree of randomness following the analytical formulae have

been compared with the results of direct finite element simulations and they are found to

be in good agreement corroborating the validity and accuracy of the proposed approach.

The transverse Young’s modulus, shear modulus and Poisson’s ratio for loading in trans-

verse direction (effecting the auxetic property) have been found to be highly influenced

by the structural irregularity in auxetic honeycombs.

Keywords: Auxetic honeycomb; irregularity; negative Poisson’s ratio; elastic moduli;

cellular structure; random cell angle.
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1. Introduction

The materials having negative Poisson’s ratio are called auxetic material, which ex-

hibits an unusual yet fascinating property of being thicker in dimension perpendicular to

the direction of stretching and vice-versa (Evans and Alderson, 2000; Evans et al., 1991).

The auxetic behavior in global response of these materials is developed by some specific

arrangement of the micro-structural geometry, which allows the material to deform in

a particular manner that results the negative Poisson’s ratio (refer figure 1, for demon-

stration of auxetic and non-auxetic behaviour of hexagonal honeycombs). This class of

materials have attracted considerable attention in last few decades due to their unusual

characteristics leading to several application specific desirable engineering properties such

as high indentation resistance, increased shear stiffness, increased plane strain fracture

toughness, enhanced resistance to buckling under pure bending, superior permeability,

enhanced acoustic absorption capacity and direct structural properties like formation of

double curvature under flexure (Bacigalupo and Bellis, 2015; Bacigalupo and Gambarotta,

2014; Critchley et al., 2013; Evans and Alderson, 2000; Grima et al., 2015; Nkansah et al.,

1994; Overaker et al., 1998; Rad et al., 2014; Scarpa et al., 2003; Stavroulakis, 2005; Yang

et al., 2015, 2004; Yao et al., 2008). Moreover natural as well as man made auxetic mate-

rials and structural forms can be found across different length-scales strating from nano

to macro scale (Evans and Alderson, 2000), wherein the underlying theory of elasticity

for analysing mechanical properties of these materials remain same. Thus study of the

mechanics behind different forms of such materials have always been of profound interest

to the research community since the discovery of auxetic materials. For details about

different forms of auxetic materials readers can refer to Evans and Alderson (2000). The

present article concentrates on auxetic re-entrant hexagonal honeycombs, a brief review

of which is presented in the next paragraph.

In last couple of decades, application of hexagonal auxetic lattice forms have been

explored from atomic scale to macro scale, in a vast domain ranging from engineering to

bio-medical technology. Figure 1 shows the presence of auxetic re-entrant honeycombs of

hexagonal structural form in different length scales. Some of the previous articles (Evans

and Alderson, 2000; Karnessis and Burriesci, 2013; Nkansah et al., 1994; Scarpa and

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: Occurrence and application of auxetic hexagonal honeycombs across the length scales

Tomlinson, 2000; Sun et al., 2014; Wang and Hu, 2014) have discussed this considering

different forms of auxetic materials, in general. Figure 1 emphasizes on the occurance

and application of hexagonal auxetic honeycombs only, according to the aim and scope

of the present work. Auxetic character in such hexagonal lattices develops due to the

re-entrant shape of their unit cell, as easily perceivable from the figure. The closed form

formulae for regular honeycombs provided by Gibson and Ashby (1999) are widely used

to obtain in-plane elastic moduli of auxetic honeycombs. Recently new analytical formu-

lae for regular hexagonal honeycombs have been reported considering the nodes at the

intersections of inclined and vertical members by Malek and Gibson (2015). Effect of

hierarchy in lattices have also been studied by many researchers (Banerjee, 2014). Gereke

et al. (2012) have presented a multi-scale stochastic modeling approach for elastic proper-

ties of strand-based wood composites. Several studies can be found in available literature

dealing with mechanical properties of regular auxetic honeycombs using numerical and

experimental investigations (Grima et al., 2013; Scarpa et al., 2000, 2003; Scarpa and

Tomlin, 2000). Available analytical approaches for obtaining equivalent elastic moduli of

auxetic honeycombs are based on unit cell approach, which fails to account for any form

of irregularity in the structure. Spatial irregularity in auxetic honeycomb may occur due

to uncertainty associated with manufacturing in macro-level and process of fabrication

and synthesizing in molecular level, uncertain distribution of intrinsic material properties,

structural defects, variation in temperature, pre-stressing and micro-structural variability.

Several investigations to explore the effect of irregularity are found to have concentrated
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on non-auxetic honeycombs including voronoi honeycombs (Ajdari et al., 2008; Alsayed-

noor et al., 2013; Li et al., 2005, 2007; Mukhopadhyay and Adhikari, 2016; Triantafyllidis

and Schraad, 1998; Zhu et al., 2001). Papka and Kyriakides (1994) have carried out nu-

merical and experimental study of honeycomb crushing behaviour considering geometrical

imperfections in the structure such as variation in length of bond line and over or under

expanded cells. The state of available literature which investigates the effect of irregu-

larity in auxetic honeycombs is very scarce. Recently Liu et al. (2014) have investigated

manufacturing irregularity in auxetic honeycomb using finite element analysis. They have

reported that structural irregularity influences the effective elastic modulus, yield strength

and Poisson’s ratio of auxetic honeycombs. All the studies mentioned above exploring the

effect of irregularity in both auxetic as well as non-auxetic honecombs are based on either

finite element simulations or experimental investigations. Experimental investigations are

very expensive and time consuming, which makes it practically not feasible to capture

the effect of random irregularities in honeycomb structure in a robust and comprehen-

sive manner by testing huge number of samples. The finite element approach becomes

quite computationally intensive because a small change in geometry of a single cell may

require creating completely new geometry and meshing the entire structure. Moreover

when irregular honeycombs are modelled as a part of another host structure, the degree

of freedom to be considered becomes very high making it prohibitively expensive to sim-

ulate. The problem becomes even worse for uncertainty quantification using a Monte

Carlo based based approach (Dey et al., 2015a,b; Hurtado and Barbat, 1998), where the

expensive finite element model is needed to be simulated for a large number of samples

with different structural configurations. A simple yet computationally efficient way to

characterize the elastic properties of irregular auxetic honeycomb could be following an

analytical approach.

This article develops an analytical framework leading to closed form formulae for

predicting equivalent in-plane elastic properties of irregular auxetic honeycomb having

spatially random variations in cell angle. Subsequently the effect of irregularity on the

auxetic properties of such honeycombs are discussed. To the best of authors’ knowledge,

no such closed form formulae for irregular auxetic honeycomb are available in literature.
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This article is organized as follows hereafter, section 2: derivations of closed form formulae

for five in-plane elastic moduli of irregular auxetic honeycombs; section 3: development

of finite element model to obtain the in-plane elastic moduli of irregular auxetic honey-

comb numerically for validating the proposed analytical approach; section 4: results and

discussion based on both the proposed analytical approach and the finite element code. A

comparative inference has been drawn in this section establishing validity of the developed

analytical expressions; and section 5: concise summary and conclusion.

2. Elastic properties of irregular auxetic honeycombs

A bottom up approach has been proposed in this article for deriving expressions of

effective in-plane elastic moduli for irregular auxetic honeycombs. The key philosophy

behind the proposed idea is that the entire irregular auxetic honeycomb structure is

considered to be consisted of several representative unit cell elements (as shown in fig-

ure 2(b)) having different individual elastic moduli depending on its structural geometry

and material properties. In the elementary local level, effect of irregularity is accounted

by analysing the representative unit cell elements (RUCEs) first and then this effect of

irregularity is propagated towards the global properties of the entire structure in a multi-

scale framework through a multi-stage process as shown in figure 6. The expressions for

elastic moduli of a single RUCE are derived first (as discussed in subsection 2.1) and

subsequently the expressions for effective in-plane elastic moduli of the entire irregular

auxetic honeycomb are derived using basic principles of mechanics (as discussed in sub-

section 2.2). The entire process of deriving expressions for each of the elastic modulus

of the entire irregular auxetic honeycomb consists of four stages: selection of appropriate

RUCE and proper idealization scheme; derivation of the expressions for elastic moduli of

a single RUCE; derivation of equivalent elastic moduli for each strip and finally, deriva-

tion of elastic moduli of the entire irregular auxetic honeycomb. The RUCEs have been

chosen from the viewpoint of the adopted discretization scheme (figure 6) in the pro-

posed bottom-up approach. One of the most important criteria is that the chosen form

of RUCE should reasonably allow us to assemble their individual properties in the ‘strip’

level first, and thereby in the ‘global’ level considering idealized blocks. Here the RUCEs

6
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are basically the representative building blocks of the entire irregular honeycomb. Elastic

properties (ZU) of the RUCEs can be represented as a function of structural irregularity

ZU(ω), where the parameter ω captures the random structural geometry/ irregularity of

a particular RUCE. Here Z and U denote a particular elastic modulus and representative

unit (RUCE) respectively. It is worthy to mention here that effectively three loading

directions are needed to be considered for deriving the expressions of five in-plane elastic

moduli as shown in figure 6. For longitudinal Young’s modulus (E1) and Poisson’s ratio

ν12, stress σ1 is applied in direction-1 (figure 2(b)), while for transverse Young’s modulus

(E2) and Poisson’s ratio ν21, stress σ2 is applied in direction-2. To obtain the expression

of shear modulus (G12), shear stress τ is applied as shown in figure 6. The notations

used for different elastic moduli throughout this article are as follows: ZU denotes elas-

tic moduli of a single RUCE; Ẑ denotes equivalent elastic moduli of a single strip; Zeq

denotes equivalent elastic moduli of the entire irregular auxetic honeycomb, where Z is

a particular elastic modulus under consideration. The subscripts i and j have been used

to indicate position of the RUCE or a single strip under consideration. The formulae

proposed here are applicable for both tensile as well as compressive stresses.

(a) regular auxetic honeycomb (b) irregular auxetic honeycomb

Figure 2: Typical representation of regular and irregular auxetic honeycomb structure

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.1. Derivation of expressions for elastic moduli of a single RUCE

Derivation of expressions for the five different in-plane elastic moduli of a single RUCE

is discussed in this section. These expressions will be utilized to obtain final closed form

formulae of the entire irregular auxetic honeycomb in subsequent sections.

2.1.1. Longitudinal Young’s modulus (E1U)

To derive the expression of longitudinal Young’s modulus for a RUCE (E1U), stress σ1

is applied in direction-1 (refer figure 2, for direction) as shown in figure 3. The inclined

cell walls having inclination angle α and β do not have any contribution in the analysis

of E1U , as the stresses applied on them in two opposite directions neutralise each other.

It can be noticed that the remaining structure except these two inclined cell walls is

symmetric. The applied stresses cause the inclined cell walls having inclination angle θ

to bend and this contributes to the overall deformation of the structure in direction-1.

From the condition of equilibrium, the vertical forces C in the free-body diagram of these

cell walls (refer figure 3(b)) need to be zero. In the present analysis the cell walls are

treated as beams of thickness t, depth b and Young’s modulus Es. l and h are the lengths

of inclined cell walls having inclination angle θ and the vertical cell walls respectively as

shown in figure 3(a). From figure 3(b) (similar to Gibson and Ashby (1999); Wan et al.

(2004)),

M =
Pl sin θ

2
(1)

where

P = σ1(h− l sin θ)b (2)

From the standard beam theory (Roark and Young, 1976), the deflection of one end

compared to the other end of the cell wall shown in figure 3(b) can be expressed as

δ =
Pl3 sin θ

12EsI
(3)

where I is the second moment of inertia of the cell wall, that is I = bt3/12.

The component of δ parallel to direction-1 is δ sin θ. The strain parallel to direction-1

becomes

ε1 =
δ sin θ

l cos θ
(4)

8
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(a) (b)

Figure 3: RUCE and free-body diagram used in the proposed analysis for E1U

Thus the Young’s modulus in direction-1 for a RUCE can be expressed as

E1U =
σ1
ε1

= Es

(
t

l

)3
cos θ(

h

l
− sin θ

)
sin2 θ

(5)

2.1.2. Transverse Young’s modulus (E2U)

To derive the expression of transverse Young’s modulus for a RUCE (E2U), stress

σ2 is applied in direction-2 (refer figure 2, for direction) as shown in figure 4(a). Total

deformation of the RUCE in direction-2 consists of three components, namely deformation

of the cell wall having inclination angle α, deformation of the cell walls having inclination

angle θ and deformation of the cell wall having inclination angle β. All the cell walls are

considered axially rigid in this analysis. Here in figure 4(a), if the remaining structure

except the two inclined cell walls having inclination angle α and β is considered, two forces

that act at joint B are: a vertical force (W ) and a moment (M1). Effect of the bending

moment M1 to the cell wall having inclination angle α is only to create rotation (φ) as

shown in figure 4(b).

Vertical deformation of the cell wall having inclination angle α has two components,

bending deformation in direction-2 and rotational deformation due the rotation of joint

9
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(a) (b) (c)

Figure 4: RUCE and free-body diagram used in the proposed analysis for E2U

B as shown in figure 4(b). The bending deformation in direction-2 can be expressed as

δ2vb =



Wcosα

( s

sinα

)3

3EsI


 cosα (6)

where W = 2σ2lb cos θ and I = bt3/12. From figure 4(b), M1 = Wscotα. Cell walls

BC and BA will share half of moment M1 each as they have equal stiffness. Using the

standard result of Euler-Bernoulli beam theory, deflection at one end due to application

of moment at the other end (δ = Ml2/6EsI), the angle of rotation at joint B can be

expressed as

φ =
M1

2

l

6EsI
(7)

The component of rotational deformation of the cell wall having inclination angle α in

direction-2 can be expressed as

δ2vr = φ
( s

sinα

)
cosα (8)

Thus from equation (6)-(8) after replacing W = 2σ2lb cos θ, M1 = Wscotα and I =

bt3/12, total deformation in direction-2 of the cell wall having inclination angle α can be

10
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expressed as

δv2 = δ2vb + δ2vr =
2σ2s

2l cos θ

ESt3

(
4s

cos2 α

sin3 α
+ lcot2α

)
(9)

Deformation of the cell wall having inclination angle β in direction-2 can also be expressed

in the similar way as

δ̇v2 =
2σ2s

2l cos θ

ESt3

(
4s

cos2 β

sin3 β
+ lcot2β

)
(10)

From figure 4(c), deformation of each of the cell walls having inclination angle θ in

direction-2

δ̄v1 =

(
W

2
cos θ

)
l3

12EsI
cos θ (11)

Replacing W = 2σ2lb cos θ and I = bt3/12 from equation (11), total deformation in

direction-2 of two cell walls having inclination angle θ can be expressed as

δv1 =
2σ2l

4 cos3 θ

12Est3
(12)

Thus total deformation in direction-2 of the RUCE represented in figure 4(a) due to

application of stresses σ2 is

δv = δv2+δ̇v2+δv1 =
σ2l cos θ

Est3

(
2l3 cos2 θ + 8s3

(
cos2 α

sin3 α
+

cos2 β

sin3 β

)
+ 2s2l(cot2α + cot2β)

)

(13)

Strain in direction-2 can be obtained as

ε2 =
δv

h+ 2s− 2l sin θ
(14)

Thus Young’s modulus in direction-2 of a RUCE can be expressed as

E2U =
σ2
ε2

= Es

(
t

l

)3

(
h

l
+ 2

s

l
− 2 sin θ

)

cos θ

(
2 cos2 θ + 8

(s
l

)3(cos2 α

sin3 α
+

cos2 β

sin3 β

)
+ 2

(s
l

)2
(cot2α + cot2β)

)

(15)

2.1.3. Poisson’s ratio ν12U

Poisson’s ratios are calculated by taking the negative ratio of strains normal to, and

parallel to, the loading direction. Poisson’s ratio of a RUCE for the loading direction-1

11
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(ν12U) is obtained as (refer figure 3(a))

ν12U = −ε2
ε1

(16)

where ε1 and ε2 represent the strains of a RUCE in direction-1 and direction-2 respectively

due to loading in direction-1. ε1 can be obtained from equation (4). From figure 3(b), ε2

can be expressed as

ε2 =
2δ cos θ

h− 2l sin θ + 2s
(17)

Thus the expression for Poisson’s ratio of a RUCE for the loading direction-1 becomes

ν12U = − 2 cos2 θ(
h

l
+ 2

s

l
− 2 sin θ

)
sin θ

(18)

2.1.4. Poisson’s ratio ν21U

Poisson’s ratio of a RUCE for the loading direction-2 (ν21U) is obtained as (refer

figure 4(a))

ν21U = −ε1
ε2

(19)

where ε1 and ε2 represent the strains of a RUCE in direction-1 and direction-2 respectively

due to loading in direction-2. ε2 can be obtained from equation (13) and equation (14) as

ε2 =
σ2l cos θ

Est3(h+ 2s− 2l sin θ)

(
2l3 cos2 θ + 8s3

(
cos2 α

sin3 α
+

cos2 β

sin3 β

)
+ 2s2l(cot2α + cot2β)

)

(20)

From figure 4(c)

ε1 =
δ1 sin θ

l cos θ
(21)

where δ1 =

(
W

2
cos θ

)
l3

12EsI
and W = 2σ2lb cos θ. Thus equation (21) reduces to

ε1 =
σ2l

3 sin θ cos θ

Est3
(22)

Thus the expression for Poisson’s ratio of a RUCE for the loading direction-2 becomes

ν21U = −
sin θ

(
h

l
+ 2

s

l
− 2 sin θ

)

2 cos2 θ + 8
(s
l

)3(cos2 α

sin3 α
+

cos2 β

sin3 β

)
+ 2

(s
l

)2
(cot2 α + cot2 β)

(23)

12
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2.1.5. Shear modulus (G12U)

To derive the expression of shear modulus (G12U) for a RUCE, shear stress τ is applied

as shown in figure 5(a). Lateral deformation of point D with respect to point H consists

of three components, namely lateral deformation of the cell wall having inclination angle

α, lateral deformation of the vertical cell walls and lateral deformation of the cell wall

having inclination angle β. The remaining structure except the two inclined cell walls

having inclination angles α and β is symmetric. Thus points A, B, C (and points E,

G, F) do not have any relative lateral movement under the applied stresses. For this

reason, the cell walls having inclination angle θ do not have any contribution in the

lateral deformation of the RUCE. From figure 5(b) M = Fs, where F = 2τ lb cos θ. Due

to equal bending stiffness of cell walls AB and BC, they will share half of moment M

each. Using the standard result of Euler-Bernoulli beam theory, (deflection at one end

due to application of moment at the other end δ = Ml2/6EsI), the angle of rotation at

joint B can be expressed as

φ =
M

2

l

6EsI
=

Fsl

12EsI
(24)

Lateral deformation of the cell wall having inclination angle α has two components, bend-

ing deformation and rotational deformation due the rotation of joint B as shown in fig-

ure 5(b). Thus the total lateral deformation of point D with respect to point B is

δL1 =

(
Fsinα

3EI

( s

sinα

)3
+ φ

s

sinα

)
sinα

=
Fs2

12EI

(
l +

4s

sinα

) (25)

Lateral deformation the cell wall having inclination angle β can also be expressed in the

similar way as

δL2 =
Fs2

12EI

(
l +

4s

sinβ

)
(26)

In figure 5(c), J is the midpoint of the member AE. Displacement of point J with

respect to point A is calculated in the similar way as above considering the rotation of

point A and bending deformation of member AJ,

δL3 =
Fh2

48EI
(l + 2h) (27)

Displacement of point J in direction-1 with respect to point E (δL4) is same as δL3.

13
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(a) (b)

(c)

Figure 5: RUCE and free-body diagram used in the proposed analysis for G12U

By replacing F = 2τ lb cos θ and I = bt3/12 in equation (25), (26), (27) total lateral

movement of point D with respect to point H

δL = δL1 + δL2 + δL3 + δL4

=
2τ l cos θ

Et3

(
2ls2 + h3 +

h2l

2
+ 4s3

(
1

sinα
+

1

sinβ

)) (28)

The shear strain γ for a RUCE can be expressed as

γ =
δL

2s+ h− 2l sin θ

=
2τ l cos θ

Et3(2s+ h− 2l sin θ)

(
2ls2 + h3 +

h2l

2
+ 4s3

(
1

sinα
+

1

sinβ

)) (29)

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Thus the expression for shear modulus of a RUCE becomes

G12U =
τ

γ

= Es

(
t

l

)3

(
2
s

l
+
h

l
− 2 sin θ

)

2 cos θ

(
2
(s
l

)2
+ 4

(s
l

)3( 1

sinα
+

1

sinβ

)
+

(
h

l

)3

+
1

2

(
h

l

)2
)

(30)

2.2. Derivation of expressions for elastic moduli of the entire irregular auxetic honeycomb
structure

Derivation of closed form expressions for elastic moduli of the entire irregular auxetic

honeycomb structure is discussed in this section. For this purpose the formulae for a single

RUCE (subsection 2.1) have been utilized and thereby a multi-step bottom up approach is

followed to derive equivalent elastic moduli for a single strip and finally equivalent elastic

moduli for the entire auxetic honeycomb with structural irregularity (refer figure 6). In

the present analysis, the entire irregular honeycomb structure (figure 2(b)) is assumed to

have m and n number of RUCEs in direction-1 and direction-2 respectively. A particular

cell having position at ith column and jth row is represented as (i,j), where i = 1, 2, ...,m

and j = 1, 2, ..., n.

2.2.1. Longitudinal Young’s modulus (E1eq)

To obtain E1eq, stress σ1 is applied in direction-1 as shown in figure 6. Figure 6

consists of three groups of loading directions considered in this study. For the analysis

of E1eq, we need to consider the group with loading in direction-1. If the deformation

compatibility condition of jth strip is considered, the total deformation due to stress σ1

of that particular strip (∆1) is the summation of individual deformations of each RUCEs

in direction-1, while deformation of each of these RUCEs in direction-2 are same. Thus

for the jth strip

∆1 =
m∑

i=1

∆1ij (31)

The equation (31) can be rewritten as

ε1L =
m∑

i=1

ε1ijLij (32)
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Figure 6: Idealization of RUCE and proposed bottom up approach for propagation of the effect of
irregularity from elementary level to global level

where ε1 and L represent strain and dimension in direction-1 of respective elements.

Equation (32) leads to
σ1L

Ê1j

=
m∑

i=1

σ1Lij
E1Uij

(33)
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From equation (33), equivalent Young’s modulus of jth strip (Ê1j) can be expressed as

Ê1j =

m∑
i=1

lij cos θij

m∑
i=1

lij cos θij
E1Uij

(34)

where θij is the inclination angle of the cell walls having length lij in the RUCE positioned

at (i,j). In the next step, expression of equivalent longitudinal Young’s modulus for a

single strip (Ê1j) is utilized to obtain equivalent longitudinal Young’s modulus of the entire

irregular auxetic honeycomb structure (E1eq) using force equilibrium and deformation

compatibility conditions as follows.

σ1Bb =
n∑

j=1

σ1jBjb (35)

where Bj is the dimension of jth strip in direction-2 and B =
n∑
j=1

Bj. b represents the

depth of honeycomb.

As strains in direction-1 for each of the n strips are same to satisfy the deformation

compatibility condition, equation (35) leads to
(

n∑

j=1

Bj

)
E1eq =

n∑

j=1

Ê1jBj (36)

Using equation (34) and equation (36), equivalent Young’s modulus in direction-1 of the

entire irregular honeycomb structure (E1eq) can be expressed as

E1eq =
1

n∑
j=1

Bj

n∑

j=1




m∑
i=1

lij cos θij

m∑
i=1

lij cos θij
E1Uij


Bj (37)

where Young’s modulus in direction-1 of a RUCE positioned at (i,j) is E1Uij, which can

be obtained from equation (5).

2.2.2. Transverse Young’s modulus (E2eq)

To derive the expression of equivalent transverse Young’s modulus for the entire irregu-

lar auxetic honeycomb structure (E2eq), the transverse Young’s moduli for the constituting

RUCEs (E2U) are assembled as discussed below. For obtaining E2eq, stress σ2 is applied

in direction-2 as shown in the group of loading direction-2 (refer figure 6). If the force
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equilibrium under the application of stress σ2 of jth strip is considered,

σ2

(
m∑

i=1

2lij cos θij

)
b =

(
m∑

i=1

σ2ij2lij cos θij

)
b (38)

By deformation compatibility condition, strains of each RUCE in direction-2 of the jth

strip are same. Equation (38), rewritten as

Ê2j

(
m∑

i=1

lij cos θij

)
ε =

(
m∑

i=1

E2Uijlij cos θijεij

)
(39)

where εij = ε, for i = 1, 2...m in the jth strip. Ê2j is the equivalent elastic modulus in

direction-2 of the jth strip.

Ê2j =

m∑
i=1

E2Uijlij cos θij

m∑
i=1

lij cos θij

(40)

Total deformation of the entire honeycomb in direction-2 (∆2) is the sum of deformations

of each strips in that direction,

∆2 =
n∑

j=1

∆2ij (41)

The equation (41) can be rewritten as

ε2B =
n∑

j=1

ε2jBj (42)

where ε2, ε2j and Bj represent total strain of the entire honeycomb structure in direction-

2, strain of jth strip in direction-2 and dimension in direction-2 of jth strip respectively.

Equation (42) can be rewritten as

σ2
n∑
j=1

Bj

E2eq

=
n∑

j=1

σ2Bj

Ê2j

(43)

From equation (40) and equation (43), the Young’s modulus in direction-2 of the entire

irregular honeycomb structure can be expressed as

E2eq =
1


n∑
j=1

Bj

m∑
i=1

lij cos θij

m∑
i=1

E2Uijlij cos θij




n∑

j=1

Bj (44)
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where Young’s modulus in direction-2 of a RUCE positioned at (i,j) is E2Uij, which can

be obtained from equation (15).

2.2.3. Poisson’s ratio ν12eq

To derive the expression of equivalent Poisson’s ratio for loading direction-1 of the en-

tire irregular auxetic honeycomb structure (ν12eq), the Poisson’s ratios for the constituting

RUCEs (ν12U) are assembled as discussed below. For obtaining ν12eq, stress σ1 is applied,

similar to the derivation of E1U (as shown in figure 6). If the application of stress σ1 in

the jth strip is considered, total deformation of the jth strip in direction-1 is summation of

individual deformations of the RUCEs in direction-1 of that particular strip. Thus from

equation (32), using the basic definition of ν12,

− ε2
ν̂12j

L = −
m∑

i=1

ε2ijLij
νU12ij

(45)

where ε2 and ε2ij are the strains in direction-2 of jth strip and individual RUCEs of jth

strip respectively. νU12ij represents the Poisson’s ratio for loading direction-1 of a RUCE

positioned at (i,j). ν̂12j denotes the equivalent Poisson’s ratio for loading direction-1 of

the jth strip. To ensure the deformation compatibility condition ε2 = ε2ij for i = 1, 2, ...,m

in the jth strip. Thus equation (45) leads to

ν̂12j =
L

m∑
i=1

Lij
ν12Uij

(46)

Total deformation of the entire honeycomb structure in direction-2 under the application

of stress σ1 along the two opposite edges parallel to direction-2 is summation of the

individual deformations in direction-2 of n number of strips. Thus

ε2B =
n∑

j=1

ε2jBj (47)

Using the basic definition of ν12 equation (47) becomes

ν12eqε1B =
n∑

j=1

ν12jε1jBj (48)

where ν12eq represents the equivalent Poisson’s ratio for loading direction-1 of the entire

irregular auxetic honeycomb structure. ε1 and ε1j denote the strain of entire honeycomb

structure in direction-1 and strain of jth strip in direction-1 respectively.

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

From the condition of deformation comparability ε1 = ε1j for j = 1, 2, ..., n. Thus from

equation (46) and equation (48),

ν12eq =
1

n∑
j=1

Bj

n∑

j=1




m∑
i=1

lij cos θij

m∑
i=1

lij cos θij
ν12Uij


Bj (49)

where ν12Uij can be obtained from equation (18).

2.2.4. Poisson’s ratio ν21eq

To derive the expression of equivalent Poisson’s ratio for loading direction-2 of the en-

tire irregular auxetic honeycomb structure (ν21eq), the Poisson’s ratios for the constituting

RUCEs (ν21U) are assembled as discussed below. For obtaining ν21eq, stress σ2 is applied

in direction-2, similar to the derivation of E2U (as shown in figure 6). If the application

of stress σ2 in the jth strip is considered, total deformation of the jth strip in direction-1

is summation of individual deformations of the RUCEs in direction-1 of that particular

strip. Thus,

ε1L =
m∑

i=1

ε1ijLij (50)

Using the basic definition of ν21 equation (50) leads to

ν̂21jε2L =
m∑

i=1

ν21Uijε2ijLij (51)

where ν̂21j represents the equivalent Poisson’s ratio for loading direction-2 of the jth

strip. ε2 and ε2ij are the strains in direction-2 of jth strip and individual RUCEs of

jth strip respectively. ν21Uij represents the Poisson’s ratio for loading direction-2 of a

RUCE positioned at (i,j). To ensure the deformation compatibility condition ε2 = ε2ij

for i = 1, 2, ...,m in the jth strip. Thus equation (51) leads to

ˆν21j =

m∑
i=1

ν21Uijlij cos θij

m∑
i=1

lij cos θij

(52)

Total deformation of the entire honeycomb structure in direction-2 under the application

of stress σ2 along the two opposite edges parallel to direction-1 is summation of the
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individual deformations in direction-2 of n number of strips. Thus

ε2B =
n∑

j=1

ε2jBj (53)

By definition of ν21 equation (53) leads to

ε1
ν21eq

B =
n∑

j=1

ε1j
ˆν21j
Bj (54)

From the condition of deformation comparability ε1 = ε1j for j = 1, 2, ..., n. Thus the

equivalent Poisson’s ratio for loading direction-2 of the entire irregular honeycomb struc-

ture

ν21eq =
1


n∑
j=1

Bj

m∑
i=1

lij cos θij

m∑
i=1

ν21Uijlij cos θij




n∑

j=1

Bj (55)

where ν21Uij can be obtained from equation (23).

2.2.5. Poisson’s ratio (G12eq)

To derive the expression of equivalent shear modulus of the entire irregular honeycomb

structure (G12eq), the shear moduli for the constituting RUCEs (G12U) are assembled as

discussed below. For obtaining G12eq, shear stress τ is applied as shown in figure 6). If

the equilibrium of forces for application of stress τ in the jth strip is considered,

τL =
m∑

i=1

τijLij (56)

By definition of shear modulus equation (56) can be rewritten as

Ĝ12jγL =
m∑

i=1

G12UijγijLij (57)

where Ĝ12j represents the equivalent shear modulus of the jth strip. γ and γij are the shear

strains of jth strip and individual RUCEs of the jth strip respectively. G12Uij represents

the shear modulus of a RUCE positioned at (i,j). To ensure the deformation compatibility
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Table 1: Summary of formulae for effective in-plane elastic properties of irregular auxetic honeycombs
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condition γ = γij for i = 1, 2, ...,m in the jth strip. Thus equation (57) leads to

Ĝ12j =

m∑
i=1

G12Uijlij cos θij

m∑
i=1

lij cos θij

(58)
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Total lateral deformation of one edge compared to the opposite edge of the entire honey-

comb structure under the application of shear stress τ is the summation of the individual

lateral deformations of n number of strips. Thus

γB =
n∑

j=1

γjBj (59)

By definition of G12 equation (59) leads to

τ

G12eq

B =
n∑

j=1

τj
ˆG12j

Bj (60)

From equation (58) and (60), equivalent shear modulus of the entire irregular auxetic

honeycomb structure can be expressed as

G12eq =
1


n∑
j=1

Bj

m∑
i=1

lij cos θij

m∑
i=1

G12Uijlij cos θij




n∑

j=1

Bj (61)

where G12Uij can be obtained from equation (30).

The closed-form formulae of elastic moduli for irregular auxetic honeycombs have

been summarized in Table 1, for ready reference to the readers. It is worthy to note here

that the formulae derived in this article for irregular auxetic honeycombs reduce to the

expressions provided by Gibson and Ashby (Gibson and Ashby, 1999) in case of uniform

honeycombs (i.e. B1 = B2 = ... = Bn; s = h/2; α = β = 90◦; lij = l and θij = −θ, for all
i and j).

3. Finite element modelling and validation

A highly generalized finite element code has been developed using Matlab (MATLAB,

2013) to obtain the in-plane elastic moduli numerically for honeycombs having spatially

random structural variation. The developed finite element code is capable of accepting

the number of RUCEs in direction-1 and 2 as input in addition to material properties and

other random geometrical features to obtain corresponding five elastic moduli as output.

Purpose of the finite element model in the present study is to validate the proposed

analytical approach for obtaining in-plane elastic moduli of irregular auxetic honeycombs.

Each cell wall has been modelled as an Euler-Bernoulli beam element neglecting axial and
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shear deformation with the assumption of high axial rigidity and low cell wall thickness

respectively.

Figure 7: Convergence study and validation of finite element model for obtaining elastic moduli of
auxetic honeycomb (Here GA and FEM denote the results obtained by the formulae provided by Gibson
and Ashby (1999) and the developed finite element code respectively for regular auxetic honeycomb)

The finite element model has been validated with results from available literature

(Gibson and Ashby, 1999). Representative results for validation are furnished in figure 7

for a regular auxetic honeycomb with cell angle 30◦ and h/l ratio of 1. Non-dimensional

elastic moduli have been plotted using: E1 →
E1

Es
× 105 , E2 →

E2

Es
× 105, ν12 → ν12 ,

ν21 → ν21 and G12 →
G12

Es
×106 respectively, for the ease of understanding the convergence

and validation study. It should be noted here that θ value referred in this study is

accordance with figure 3(a), meaning by θ = −30◦ as per the formulation presented

in Gibson and Ashby (1999). Here convergence studies have been carried out for the

five in-plane elastic moduli with different number of RUCE to ensure the average global

behaviour of the entire honeycomb by avoiding any localised deformation due to boundary

effect. In the present study, the number of RUCE has been adopted as 961 for all the

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 8: Variation of different non-denominational elastic moduli with cell angle (θ) for regular honey-
combs (∆θ = 0◦)

subsequent analyses to comprehensively capture the effect of random irregularity, which

is the emphasis of this work. As considering very less number of RUCEs for analysis may

fail to portray the effect of randomness in the global structural behaviour, a relatively

larger size of lattice is adopted.

4. Results and discussion

The analytical approach proposed in this study is capable of obtaining equivalent in-

plane elastic properties for irregular auxetic honeycombs from known spatial distribution

of cell angle and material properties of the honeycomb cell walls. Such irregularities in

auxetic material can be characterized by using common techniques like digital image anal-

ysis. For the purpose of finding the range of variation in elastic moduli due to spatial

uncertainty, cell angles and material properties can be perturbed following a random dis-

tribution within specific bounds. From the expressions of effective elastic moduli derived

in section 2, it is evident that the five elastic moduli depend on the ratios h/l, t/l, s/l

and the angles θ, α, β (refer Table 1). In addition to these quantities, the two Young’s

moduli and shear modulus also depend on Es. Only bending deformation has been ac-
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Figure 9: Typical location of nodes for a regular auxetic honeycomb (θ = 45◦; ∆θ = 0◦; h/l = 2) under
the application of stresses with different levels in direction-2.

Figure 10: Typical representation of irregular auxetic honeycombs (θ = 45◦; ∆θ = 5◦; h/l = 2) along
with location of nodes under the application of stress in direction-2.

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

counted in the present analysis as the effect due to axial and shear deformation becomes

negligible for very high axial rigidity and small value of the ratio t/l respectively. The

formulations presented in section 2 are valid for small strain allowing the non-linearity

due to beam-column effect to be neglected.
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Figure 11: Typical results for validation of proposed analytical approach with respect to direct finite
element simulation results for E2 with θ = 45◦, ∆θ = 5◦ (ratio of E2 for irregular honeycomb and regular
honeycomb is presented)

In the present analysis, results have been presented for three different h/l ratios,

namely: 2, 2.5 and 3 with a very small t/l value(∼ 10−2) to portray the effect of random

variation in cell angles. For each of these h/l ratios, three different cell angles have been

considered, namely: 30◦, 45◦ and 60◦. Deterministic results (∆θ = 0◦) for the five in-plane

elastic moduli are presented in figure 8 considering the variation of cell angle in the entire

domain. Non-dimensional elastic moduli have been plotted following: E1 →
E1

Es
× 105

, E2 →
E2

Es
× 105, ν12 → ν12 , ν21 → ν21 and G12 →

G12

Es
× 106 respectively, for the

ease of a comparative assessment. The figure caters to interesting insights on rate of

changes in the values of different elastic moduli with the variation of cell angle and h/l

ratio. This in turn, provides an idea about the relative sensitivity of the elastic moduli

to changes in cell angle at different points. In this article, results are furnished for spatial

irregularity in the cell angles only. The maximum, minimum and mean values of non-

dimensional in-plane elastic moduli for different degree of spatially random variations in

cell angles (∆θ = 0◦, 1◦, 3◦, 5◦, 7◦) are shown in figure 12 -16. In each of these figures,

subfugures (a)-(c) show the effect of irregularity on different in-plane elastic modulus,
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Figure 12: Effect of structural irregularity on non-dimensional E1.

wherein the ratios Z̄(=
Zirregular
Zregular

) are presented (Z denotes a particular elastic modulus

and the subscripts irregular and regular indicate the values of effective elastic moduli

of irregular auxetic honeycomb and regular auxetic honeycomb respectively) for different

degree of randomness in cell angles. The numerical values shown in the right side of each ‘I’

shaped marks represent percentage errors in the maximum and minimum values of elastic

moduli calculated using the proposed analysis compared to the finite element results. The

numerical values shown in the left side represent the same for the mean values. Smaller

values in the percentage errors would indicate that the proposed analytical approach is

capable of obtaining in-plane elastic moduli for irregular auxetic honeycombs with high

precision. Points on the Y-axis depicts the values of elastic moduli corresponding to
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Figure 13: Effect of structural irregularity on non-dimensional E2.

perfectly periodic cell structure (i.e.∆θ = 0). Subfigure (d), in each of the figures of

figure 12 -16 show elastic moduli of regular honeycombs. For a particular cell angle θ,

results have been obtained using a set of uniformly distributed 10, 000 random samples in

the range of [θ−∆θ, θ+ ∆θ]. The set of input parameter for a particular sample consists

of N number of cell angles in the specified range, where N(= n×m) is the total number

of RUCEs in the entire irregular honeycomb structure. In the present analysis t, s and

Es have been modelled to possess no spatial variation. The quantities h and θ have been

considered as the two random input parameters following uniform distribution, while α

and β are dependent features.

Typical location of nodes for a regular auxetic honeycomb under the application of
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Figure 14: Effect of structural irregularity on non-dimensional ν12.

stresses with different levels is shown in figure 9. Movement of the nodes for a particular

stress level are higher as the distance from support increases due to a cumulative effect. It

can also be noticed that movement of the nodes are higher in direction 2 for higher level

of stresses, as expected. Another interesting observation from the figure is that deformed

location of the nodes allow the lattice to expand in both direction 1 and 2 under the

application of tensile stress σ2 conforming auxetic property of the honeycomb. Location of

nodes for the deformed honeycombs can be visualized relative to undeformed shape of the

respective regular configuration (θ = 45◦; h/l = 2). Figure 10 presents typical irregular

auxetic honeycombs for different random configurations along with location of nodes under

the application of stress in direction-2. Figure 10(a) and (b) show the movement of
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Figure 15: Effect of structural irregularity on non-dimensional ν21.

nodes for two random irregular auxetic configurations respectively (corresponding to two

different random cell geometries), while figure 10(c) presents the bound of movements

for different nodes in randomly irregular auxetic honeycombs considering 10,000 random

cell configurations. It can be noticed from the figures that movement of the nodes in

direction 2 increases considerably for randomly irregular structural geometries compared

to the regular configuration. This, in turn indicates reduction in E2 due to the effect of

irregularity, which agrees well with the results presented (figure 13) later in this section.

A representative scatter plot for E2 showing accuracy of the proposed analytical for-

mulae is furnished in figure 11(a), wherein low deviation of the points from diagonal line

affirms high level of precision with respect to finite element results for irregular auxetic
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Figure 16: Effect of structural irregularity on non-dimensional G12.

honeycomb. Figure 11(b) shows probability density functions for E2 of irregular auxetic

honeycomb, wherein low deviation between results of the analytical methodology and fi-

nite element method corroborates high level of precision of the proposed approach. It

is interesting to notice here that, even though the cell angles of an irregular honeycomb

sample have been drawn from an uniform distribution, the elastic moduli of irregular

honeycombs follow Gaussian distribution.

Figure 12 -16 show the effect of spatially random variation of cell angles in the elastic

moduli of irregular auxetic honeycomb. From the figures it is evident that irregularity in

the cell angles have negligible influence in the mean values of E1 and ν12, whereas mean
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values of E2, ν21 and G12 reduce significantly with increasing degree of random variation

in cell angle. Thus the auxetic property of honeycomb is found to reduce considerably for

ν21 with the increase in degree of structural irregularity. The range of variations of all the

elastic moduli are found to increase with increasing degree of irregularity in cell angles, as

expected. The highest rates of reduction in the values of E2, ν21 and G12 with the increase

in degree of irregularity are noticed for mean cell angle of 60◦, followed by 45◦ and 30◦.

It is worthy to mention here that, the percentage errors presented in the figures indicate

the results obtained using the proposed computationally efficient analytical approach are

in good agreement with that of finite element method.

Previous investigations in the field of honeycomb structure have dealt with the effect of

under-expansion and over-expansion of cells (Papka and Kyriakides (1994)) in non-auxetic

hexagonal honeycomb with regular configuration using numerical and experimental stud-

ies. The present investigation shows the effects of spatially random distribution of under

and over expanded cells of different degree on elastic moduli for irregular auxetic honey-

comb structure. Liu et al. (2014) have reported based on limited number of samples using

finite element simulation that structural irregularity in auxetic honeycombs tends to lower

the effective in-plane elastic moduli and auxetic property of the system. This observation

is similar to the inference drawn in the present article, which uses an efficient analytical

approach. Noteworthy is the fact that it is possible to characterize the effect of structural

irregularity using a robust framework with adequate number of samples only because of

the development of the computationally efficient analytical approach. In the proposed

analysis of irregular auxetic honeycomb structure having spatially random variations in

cell angles, the cell walls having inclination angles α and β play a vital role. As the range

of random variation in cell angles (∆θ) increases, the inclination angle with respect to

direction-2 of these cell walls are also found to increase. Subsequently considering the

bending stiffness of the cell walls having inclination angles α and β, the trends of different

in-plane elastic moduli with variation in degree of randomness can be explained.
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5. Conclusion

A novel bottom up analytical approach for predicting equivalent in-plane elastic mod-

uli of auxetic honeycombs having spatial irregularities is presented in this article. In the

proposed framework, effect of structural randomness is accounted by analysing the repre-

sentative unit cell elements first and then the effect of irregularity is propagated towards

the global properties of the entire structure using basic principles of mechanics following

a multi-scale approach. Though there are few literature available dealing with different

forms of irregularity in honeycombs, those are based on either experimental investigation

or numerical simulation. Moreover such studies on auxetic honeycombs are very scarce.

This article proposes an efficient analytical framework for auxetic honeycomb. The basic

physics behind elastic deformation of irregular auxetic honeycombs as presented in this

article being scale-independent, the present study is applicable across different length

scales. The closed form expressions developed for longitudinal Young’s modulus, trans-

verse Young’s modulus and shear modulus are functions of both structural geometry and

material properties of irregular auxetic honeycombs, while the Poisson’s ratios depend

only on structural geometry. The results obtained using the proposed analytical method

for spatially random variation of cell angles have been compared with those obtained

from the direct finite element simulation. The mean and range of variation for differ-

ent elastic moduli are found to be in good agreement. Equivalent elastic properties of

irregular honeycombs can be obtained using the proposed analytical framework more effi-

ciently compared to expensive finite element simulation approach without compromising

the accuracy of results. An important finding of this study is that, though the effect

of spatially random variations in cell angle on E1 and ν12 is negligible, E2, ν21 and G12

reduce significantly with the increase in degree of random variation of the cell angles.

Thus the auxetic property of honeycomb reduces considerably for ν21 with the increase

in degree of structural irregularity. This uncertainty in the elastic moduli of auxetic hon-

eycombs owing to random variations in cell angle would have significant influence on the

subsequent analysis and design process. The formulae developed here can also be used to

predict equivalent in-plane elastic moduli of irregular auxetic honeycombs having spatial

variation in material properties and thickness of cell wall and therefore the closed form
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formulae can be used for efficient stochastic analysis of such material responses account-

ing different forms of irregularity and uncertainty associated with spatial distribution of

intrinsic material properties and structural geometry. The proposed analytical framework

to efficiently analyse irregular honeycombs can be extended further to other cellular struc-

tures considering appropriate representative unit cell element and the effect of axial and

shear deformations can also be incorporated in such future investigations.
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