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Highlights: 

1. A  bipedal walking algorithm is presented for curved feet and unequal masses 

2. The effect of changing length/mass ratio’s on stable walking process is studied  

3. Results are expressed in terms of roll-over shape curvature and foot length values 

4. The new insights are useful in the design of prosthetic as well as robotic feet.  
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Abstract 

Commercial prosthetic feet weigh about 25% of their equivalent physiological counterparts.  The 

human body is able to overcome the walking asymmetry resulting from this mass imbalance by 

exerting more energy. It is hypothesised that the passive walking dynamics coupled with roll-over 

shapes has potential to suggest energy efficient walking solutions. A two link passive walking 

kinematic model has been proposed to study the gait pattern with unbalanced leg masses. An optimal 

roll-over shape for the prosthetic foot that minimises the asymmetry in the inter-leg angle and the step 

period is determined. The proposed mathematical formulation provides insights into the variation of 

step length and inter-leg angle with respect to the position and location of the centres for mass of both 

prosthetic and physiological legs.  

 

Keywords: Gait analysis, Bifurcation diagrams, Chaos, Phase plane limit cycle, Passive bipedal 

model, Transtibial amputees, Prosthetic foot.  
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A novel mathematical formulation for predicting symmetric passive 

bipedal walking motion with unbalanced masses 

 

List of Nomenclature 

Parameters Descriptions Parameters Descriptions 

s  Angle of stance leg 
vsl  Length virtual stance leg  

vs  Angle of virtual stance leg 
vsa  Length virtual stance lower leg 

vsl  Angle of virtual stance lower leg 
Hm  Mass of hip joint 

ns  Angle of swing leg 
sm  Mass of stance leg 

  Slope angle 
nsm  Mass of swing leg 

  
legcalphysiologi

H

m

m
   

legcalphysiologi

legprosthetic

m

m
 

  
lengthleglowercalPhysiologi

lengthleguppercalPhysiologi
 γ  

lengthleguppercalPhysiologi

lengthlegupperProsthetic
 

 

1. Introduction 

A prosthetic leg is an artificial limb and effectively is a dead weight. It is not supported by human 

muscles and the associated nervous system. Some of the commercially available prosthetic feet weigh 

only a quarter of the corresponding weight of the human leg.  This paper investigates whether this 

mass imbalance has an influence on the kinematics of the gait. This is important as the human desire 

to maintain a symmetric walking gait irrespective of imbalances may increase energy consumption.  

Many gait descriptors have been presented to study the asymmetry of walking with a prosthetic foot 

[1, 2]. However, they did not include roll-over shapes. The roll-over shape is the locus of the centre of 

pressure as the foot rolls over the surface. It is defined in a local co-ordinate system with the y axis 
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aligned to the ankle-knee axis. The roll-over shape has been widely used to understand the knee-

ankle-foot kinematics as it is invariant to many gait parameters such as added weight, speed and shoe 

heel height [3-5]. The ideal roll-over shape for the prosthetic foot may be realised by aligning the 

prosthetic foot using number of techniques [6]. In this paper walking asymmetry is evaluated using 

the inter-leg angle and the step period. An example of asymmetric walking is shown in the schematic 

diagram in Fig. 1. If both physiological and prosthetic feet have different masses but the same roll-

over shape then the kinematic model suggests that the walking is asymmetric. This is shown by the 

shadowed triangle in Fig.1 describing the asymmetry in terms of the inter-leg angle, as well as the 

step length.   

The proposed mathematical formulation exploits the benefits of passive walking [7-9] and develops 

an optimal roll-over shape for the prosthetic foot so that the walking is stable and symmetric as shown 

in Fig. 1b. The mathematical formulation produces an optimal region for roll-over shape gain values 

that minimises asymmetric walking with respect to both the inter-leg angle (solid curve in Fig. 1c) and 

the step period (dotted curve in Fig. 1c).  

 

 

Fig. 1. Walking with identical roll-over shapes (a) and with an optimal roll-over shape (b). The grey 

region represents the inter-leg angle and the dotted curve shows an optimal roll-over shape. In (c) the 

solid and dotted lines describe symmetric gait with respect to the inter-leg angle and step period 

respectively. The ellipsoid shows the range of optimal roll-over gain for a forefoot arc length of 18cm. 

Refer to the end of Section 3 for further discussion.  
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Gard et al. [10] studied the kinematics of walking motion and measured the trajectory of a mass as it 

rolls on a circular arc. It was demonstrated that the trajectory can be modelled by a simple inverted 

pendulum but with a longer virtual leg length extending to a virtual floor beneath the actual floor. 

However, even simple double pendulum dynamics is not sufficient to model the biped walking 

motion. The distances between the rolling contact point and the hip and leg masses change during the 

rolling motion and must be accurately accounted for in the mathematical formulation.  

Mahmoodi et al. [11] gave a detailed review of the applicability of the roll-over shape for a biped 

walking process and of various computational approaches for modelling biped walking motion. They 

proposed a mathematical formulation to integrate an arbitrary shaped roll-over shape into a passive 

walking biped model. However, the formulation was limited in using identical masses for both legs.  

The proposed formulation, as described in Section 2 and Appendix 1, is designed to study the effect of 

the mass imbalance on walking symmetry resulting from using a lighter prosthetic foot. Section 2.2 

verifies the accuracy of the proposed model by reproducing the circular trajectory of the hip mass as it 

rolls on a circular arc. It is observed that the actual roll-over shapes are not symmetric around the 

ankle joint as the forefoot length is always longer than the hindfoot length. The predicted trajectories 

are shown.  Representative anthropometric and prosthetic foot data is used to demonstrate the passive 

biped walking model and the results are discussed in Section 3. For the physiological foot a roll-over 

shape is chosen that is consistent with experimentally observed shapes. The multiple pivot point 

model [11] that describes the roll-over shape is briefly described.  The paper is concluded in Section 

4. 

2. Dynamics of passive walking  

The dynamics of the biped walking motion with unbalanced mass is derived from the schematic 

representation shown in Fig. 2.  The effect of a roll-over shape for each leg is modelled as rolling 

contacts discretised by multiple pivot points where each pivot point is assumed to be a point contact. 

Mahmoodi et al. [11] should be consulted for a more detailed description of the modelling 

assumptions and the different phases of the walking motion. The model in this paper is an extension 
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to that developed by Mahmoodi et al., and only the differences in the model required for asymmetric 

leg properties will be highlighted.  

                                    

 

Fig. 2. A schematic representation of a two linked passive biped model with different masses.  The 

dashed lines represent the virtual stance leg  vsl  and the virtual stance lower leg  vsa . 

 

In a multiple pivot point model the dynamics of the walking process during the swing phase and the 

rolling of the stance leg between every two consecutive pivot points is assumed to be similar to 

double pendulum dynamics [11]. The initial conditions for each pivot point are changed for every 

contact point. The supported leg is defined as a link which connects the current pivot point to the hip 

mass. This virtual leg is different from the actual stance leg (Fig. 2). In this work, the supported leg is 

called the virtual stance leg  vsl .  As the contact moves over the roll-over shape, the virtual stance 

leg‟s length, initial angular displacement and initial angular velocity changes and the rolling model 

needs to capture this change accurately. The rolling contact model proposed by Srinivasan et al. [12] 

requires position data from gait analysis to calculate joint torques for its active model. Furthermore 

this model does not allow walking to be asymmetric due to a kinematic invariance assumption, and 

hence is not considered suitable for the proposed application. McGeer [13] proposed a synthetic wheel 

and a rimless wheel model for the rolling contact. However, both models assumed negligible weights 

for the legs and hence the swing leg motion did not have any influence on the dynamics of walking. 
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The rolling model was later developed for semi-circular feet with hip and leg masses [14].  They 

assumed that the centres of the semi-circular feet were located on the feet resulting in a symmetric 

roll-over shape for both sides of the ankle. Some limitations were also reported by the authors with 

reference to increased foot length at high values of foot radii.  

The proposed pivot point model does not constrain the position of the centre of the roll-over shape 

with the position of point masses. The formulation is generic, and hence, applicable to variety of 

shapes including non-circular shapes. The approach is designed to predict the positions of masses 

during the gait cycle using passive dynamics. As a result, the accurate calculation of the virtual stance 

leg‟s length, initial angular displacement and initial angular velocity during the rolling motion is 

necessary and is adequately determined by the proposed pivot point model resulting in an accurate 

description of the gait as described in Section 2.2. The kinematic model also defines another 

parameter, referred to as a virtual stance lower leg  vsa , which connects the pivot point to the centre 

of mass of the stance leg. Its initial conditions are assumed to be identical to those used for the virtual 

stance leg and hence will change at every time-step.  

The equations of motion for every pivot point are similar to the dynamics of the point feet biped [8] 

but have different positions for the centres of the leg masses and different values of leg masses for the 

prosthetic and physiological feet. Thus, at the 
thi  pivot point,    

      0,   iii gNM                                       (1) 

where  Tnsvs    and vs  and ns  are measured from the negative y-axis, as shown in Fig. 2. 

This equation is derived from the Lagrangian approach as described in Appendix 1.1. 

The inertia matrix, )(M , centrifugal terms, ),(  N , a vector of gravitational torques, )(g , and 

initial conditions, are  
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 

  
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             (3) 
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  













ns

vs

i

vsns

i

vsHvsl

i

vssi

mgc

glmglmgam
g






sin

sinsin
          (4)

 

 

i

vs

initial

vs   ,   
i

ns

initial

ns   ,   
i

vs

initial

vs       and   
i

ns

initial

ns   
                             (5) 

Note that the superscript i refers to the i th pivot point, and variables and parameters are defined in 

Fig. 2 and Appendix 1. The equations of motion given by Mahmoodi et al. [11] are recovered if the 

legs are symmetric. 

2.1 Transition phases 

The double support transition phase occurs when the body rotates about the last pivot point of the 

stance leg and the swing leg has just made contact with the ground at its first pivot point. Subsequent 

to the double support transition phase, a series of stance leg transition phases are defined via the 

multiple pivot point model. After the first pivot point contacts the ground, the body begins to swing 

about this contact while the second pivot point contact occurs, which is called as stance leg transition 

phase. This process continues until the swing leg contacts the ground. The impacts during transition 

phases are assumed to be inelastic and sliding at the pivot points is not allowed. The mathematical 

formulation for both phases for unbalance masses is described next. 
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2.1.1 The double support transition phase 

During both transition phases the body configuration remains unchanged and the angular momentum 

of the whole body is conserved about the impacting pivot points. The angular momentum of the 

former stance leg about the hip is also conserved during the double support transition phase. The 

geometry of the body at the first pivot point impact (double support transition phase) leads to the 

following relationship between the angular position of the virtual stance leg and the swing leg [11]: 

qvs
1 +qns

1 = -2f +2p                                                                                                                            (6) 

where  is the slope of the ground. The assumption that the body configuration remains unchanged 

during impact leads to: 

  11  J                                                                                                                                            (7) 

where 











01

10
J                                                                                                                                           (8)

 

The superscripts “+” and “-” denote post and pre-pivot point impact variables respectively and the 

value beside represents the number of pivot points, which for the double support phase is equal to 1. 

The conservation of angular momentum about the impacting pivot points and the hip, as derived in 

Appendix 1.2, leads to the condition: 

    1

1

1
1 


 

dH

H
                                                                                                                                 (9)

 

where the elements of   ( ) are 

)cos()cos(

)cos(

)cos()cos(

122

12

122121

11













nsvsvslns

e

vsvss

vsvslvs

e

vsnss

vslvs

e

vsvssvsvsvs

e

vssH

albm

albmm

albmllbmmH







                                             (10)
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  nsvslvsnss cabmmH                                                                                              (11) 
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)cos()cos(

21221
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
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



vslnsvs

e

vssvslnsvs

e

vsnss

vslnsvs

e
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e

vsnss

vslvsnsvsvs

e

vss

vsvsnsvsvs

e
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
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



                                          (12) 

)cos()cos(111

22

  nsvsnsvslvsvsnss abclmmH                                                                    (13) 

))(cos( 22121212121   nsvsvssvsnsvssvsHsd lmamlmlmbmH                                              (14) 

and e represents the e th pivot point.  

2.1.2 The stance leg transition phase 

During a walking step the stance leg transition phase occurs (e-1) times from the second pivot point 

impact up to the e
th
 pivot point. The assumption that the swing leg and the virtual stance leg angle 

remains unchanged during the impact gives the following condition for the 
thi  pivot point impact 

 2 i e  : 

  ii J                                                                                                                                         (15) 

The value of the time-step, 
*t , between each pivot point is assumed to be sufficiently small so that the 

consecutive pivot points accurately define the given roll-over shape. The sensitivity and convergence 

properties of using different number of pivot points for links with equal masses are discussed in an 

earlier publication [11]. During the stance leg transition phase the roles of the supported leg and the 

swing leg remain unchanged and the conservation of angular momentum about the hip during the 

double support transition phase is replaced with the conservation of angular momentum of the swing 

leg with respect to hip. The conservation of angular momentum, as derived in Appendix 1.3, leads to 

the following condition 
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Note that 021 
iH  as the number of pivot points increase.                                                                

)(cos22222
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  i

ns

i

vs

i

vsns

i

vsns

i

vss

i

vsH

i

d

i clmclmcamclmHH                                        (20)           

 

2.2  Verification of the model with a trajectory of hip mass rolling on a circular arc 

The roll-over shape model proposed in Section 2 was used to model the simple inverted pendulum 

experiment undertaken by Gard et al. [10] as described in the introduction section. The hip mass was 

52.3 kg, the gain value, r, was 0.77, and the hindfoot (Arch) and forefoot arc (Arcf) lengths were equal 

and taken as 11 cm. The trajectory of the hip mass is plotted in Fig. 3a. It is circular as observed  by 

Gard et al. [10].   In contrast, Fig. 3b shows the motion trajectory of the two link model with three 

point masses, located at the hip joint and at the centres of mass of both legs, corresponding to the mid-

person data given by Armstrong [15] (see Table 1).  A realistic roll-over shape is used where the 

hindfoot and forefoot lengths and the gain are 3cm, 14cm and 1.5h fArc Arc r   . The biped is 

assumed to walk down a shallow slope (2
o
) without using any controllers or actuators. The scuffing 
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problem of the kneeless swing leg with the ground is neglected during the swing phase [7, 13].  The 

resulting deviation from the circular trajectory is evident in Fig 3b.  

 

Fig. 3. (a) shows the motion trajectory of a mass rolling on a surface with identical hindfoot and 

forefoot lengths)  (b) describes the motion trajectory two masses located on the stance leg and the 

swing leg mass. Dotted, dashed and solid lines represent swing leg, stance leg and hip mass 

respectively. The trajectory of the overall centre of mass is shown with a bold curve. 

Table 1. Anthropometric data (mass distribution and the segment lengths) for small, medium and 

large persons. (*) and (**) present the data were taken from Armstrong (1988) and Chas A Blatchford 

and Sons Ltd. (2013) respectively. 

 Small person Mid person Large person 

Foot length* 88.4 cm 94.6 cm 100.8 cm 

Total mass ( totalm )* 63.3 kg 81.5 kg 97.7 kg 

Thigh centre of mass (Thigh COM)* 70.2 cm  75 cm 79.8 cm 

Calf centre of mass (Calf COM) * 30.7 cm 33 cm 35.3 cm 

Foot centre of mass (Foot COM * 2.6 cm 2.8 cm 3 cm 

Thigh mass ( thighm )* 7.7 kg 9.8 kg 11.8 kg 

Calf mass ( calfm )* 3.1 kg 3.8 kg 4.5 kg 

Foot mass ( footm )* 0.8 kg 1 kg 1.1 kg 

Physiological lower leg length* 54.9819 cm 59.1233 cm 63.4362 cm 

Physiological upper leg length* 33.4181 cm 35.4767 cm 37.3638 cm 

Mass ratio 




















)(

)(2

log footcalfthigh

footcalfthightotal

legicalphysio

H

mmm

mmmm

m

m
  

3.4569  3.5822  3.6149 
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Length ratio 











lengthleglowercalPhysiologi

lengthleguppercalPhysiologi
  

0.6078 0.6000 0.5890 

Prosthetic lower leg length 62.89 cm 68.67 cm 74.10 cm 

Prosthetic upper leg length 25.51 cm 25.93 cm 26.70 cm 

Prosthetic lower leg mass ( pllm )** 1.4 kg 1.4 kg 1.4 kg 

Leg‟s mass ratio 




















)(

)(

log footcalfthigh

pllthigh

legicalphysio

legprosthetic

mmm

mm

m

m
  

0.7845 0.7671 0.7586 

Leg‟s length ratio 











lengthleguppercalPhysiologi

lengthlegupperProsthetic
γ  

0.7634 0.7309 0.7146 

 

Three parameters, namely the hindfoot arc length  hArc , forefoot arc length  
fArc  and the roll-

over gain value, are used to uniquely describe a roll-over shape. The hindfoot arc length and forefoot 

arc length values present the rear part and the front part of roll-over shape respectively.  These lengths 

are measured from the position of the ankle in relation to the roll-over shape. Note that the ankle 

position is a point at which the slope of roll-over shape curve is zero. The roll-over shape curve is also 

aligned so that the corresponding x value is zero at this point (Fig. 4).   A roll-over gain value (r) 

describes the curvature of the roll-over shape. A higher gain value corresponds to a wider roll-over 

shape and vice a versa. The polynomial function that describes the roll-over shape [11] is given by: 

    22 11
h

r
hx

r
xf R                                                                                                                  (20) 

where h  is defined as the horizontal distance between the origin and the lowest point of the roll-over 

shape function. For the rest of the analysis in this paper, two roll-over shape curves are used for the 

physiological leg, as shown in Fig. 4. The corresponding gain values are 1.5 (solid line) and 2.5 

(dashed line). Also shown in Fig. 4 are sample roll-over shapes determined from experiments (Sam et 

al. [24]) 
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Fig. 4. Three individual roll-over shapes measured by Sam et al. [24]. The solid and dashed lines 

represent the physiological roll-over shapes used in this paper. 

 

A comparison of the multiple pivot point model with the analytical solution for the rolling motion of a 

disk on an inclined surface was undertaken by Mahmoodi et al. [11]. It was shown that if the number 

of pivot points is sufficiently large then the solution given by the multiple pivot point model 

converges to the analytical displacement profile.  The minimum number of pivot points used should 

be more than 3000 in this example to ensure convergence. This value was also used in all examples 

presented in this paper.  

                                       

3. The effect of the prosthetic foot roll-over shape on asymmetric walking 

The step length is directly proportional to the inter-leg angle value. Asymmetric walking means that 

the inter-leg angle (Fig. 5a) and/or step period (Fig. 5e) values are unequal when the prosthetic (dotted 

curve) and physiological (solid curve) feet act as the supported leg (refer to Fig. 2 and Section 2 for 

the definition of the supported leg). The inter-leg and step period values are reported to be either 

larger or smaller when the prosthetic (lighter) foot acts as the supported leg.  

Selles et al. [16] argue that even if there is mass imbalance, amputees tend to maintain the same 

kinematic pattern, i.e. the step length and step period values, by exerting different joint torques. It is 

also reported in the literature [17-21] that the step length for the prosthetic (lighter foot) stance leg is 

larger than for the physiological stance leg (e.g. the trend as shown in Fig. 5a) and the prosthetic leg 

stance period is slightly shorter than for the physiological leg (Fig. 5d). Hekmatfard et al. [22] 
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tabulated the step length variation with respect to additional mass placed on the prosthetic foot. 

Initially, the prosthetic foot step length [53.4 (±9.8) cm] was higher than the physiological foot [52.6 

(±9.2) cm]. However, as 600g was added to the knee of the prosthetic foot the step length for the 

prosthetic foot [50.2 (±8.1) cm] became smaller than the physiological foot [54.8 (±11.2) cm].  When 

300g was added at both the knee and ankle of the prosthetic foot the step period became almost same 

for both prosthetic and physiological feet [53.5 and 53.1 cm respectively].   The gait cycle duration 

almost remained the same for all combinations.  

The active model proposed by Srinivasan et al.  [12] may not be the best option to gain insight into 

such behaviour as amputees will adjust joint torques to maintain kinematic invariance. The proposed 

mathematical formulation, based on passive dynamics, may offer some insight. The observations 

reported in the literature depend on the actual roll-over shapes used and the corresponding 

anthropometric data of the amputee is unknown. However, for a given leg mass ratio  77.0  and 

leg length ratio )73.0(  , as defined in Table 1 for the mid person, and shown as section AA in Figs. 

5a and d, the results from the proposed mathematical model suggest that the inter-leg angle for a 

lighter prosthetic foot is larger than the physiological foot. For the same mass ratio, if the leg length 

ratio is increased, i.e. the position of the centre of mass on the prosthetic foot is lowered, then the 

kinematic modelling suggests a tendency for symmetric walking (Fig. 5a). The trend reverses for   

values greater than 0.87. This concurs with the observations made by Hekmatfard et al. [22] on step 

length variation. Similarly, Fig. 5d illustrates that the walking is symmetric with respect to step period 

until  = 0.82. If the prosthetic foot roll-over shape is optimised with respect to inter-leg angle then 

the walking can be made symmetric for   = 0.73 (Fig. 5b), however, it remains asymmetric with 

respect to step period (Fig. 5 e). Fig 5 f demonstrates that if the prosthetic foot roll-over shapes are 

optimised with reference to step period then inter-leg angle remains asymmetric (Fig 5c).   For this 

example, the forefoot arc length  T

ff ArcArc 
 was arbitrarily chosen to be 17cm in order to 

determine the corresponding optimal gain values. The gain values were found to be 27.2r  (Figs. 
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5b and e) and 1.1Tr  (Fig. 5c and f), where the superscript   or T  denotes optimal prosthetic roll-

over parameters with respect to the inter-leg angle or the step period respectively.  

 

 Fig. 5. Asymmetry diagrams for inter-leg angle (a, b, c) and step period (d, e, f). The solid and dotted 

curves correspond to gait parameters when the physiological leg and the prosthetic leg act as the 

supported leg respectively (refer to Fig. 2 and Section 2 for the definition of supported leg). The 

dashed line A-A represents the leg‟s length ratio of a mid person as described in Table 1. The point of 

intersection in each figure represents symmetric walking either with reference to inter-leg angle or the 

step period.  The plots (a,d) correspond identical roll-over gain value (r=1.5) for both legs. The 

optimal roll-over gain value (r=2.27 and r=1.1) with respect to the inter-leg angle and step period 

value respectively in plots (b,e) and (c,f). Optimal gain value means either the inter-leg angle value is 

same for both legs (Section A-A in plot b) or  the step period value (Section A-A in plot f) is identical. 

              

 It should be noted that for the same shoe size or foot length, the roll-over shape arc lengths for both 

feet do not have to be same. Hence, the forefoot arc length values for the prosthetic foot can differ 

from the physiological leg value and both values will be less than the corresponding shoe size of the 

amputee [23, 24]. 

The locus of intersection points that signify the symmetry, as defined in Figs. 5b and f, is plotted in 

Fig. 6c for various forefoot arc length and gain values. The solid curves in Fig. 6 correspond to 

symmetry with respect to inter-leg angle and the dotted curves represent symmetry with respect to 

step period. For Figs. 6a, c and e, the input roll-over shape for the physiological leg has values 
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3cm, 14cm and 1.5h fArc Arc r   , whereas the gain value r is changed to 2.5 for Figs. 6b, d 

and f. Fig. 6 shows that the higher prosthetic foot roll-over gain values (i.e. increasing the stiffness of 

the prosthetic foot) are associated with smaller prosthetic forefoot arc lengths for symmetric walking. 

Comparison of Figs. 6a, c and e with Figs. 6b, d and f highlights that a higher physiological foot roll-

over gain also requires a higher prosthetic forefoot arc length. Also, for a given physiological roll-

over shape, the anthropometric data with reference to the small (Figs. 6a, b), mid (Figs. 6c, d) or large 

(Figs. 6e, f) person does not influence the prosthetic foot roll-over shape parameters for symmetric 

walking with reference to the step period (dotted curves in Fig. 6 are same for Figs. 6a, c and e, as 

well as Figs. 6b, d, and f) whereas the optimum curve with respect to inter-leg angle is significantly 

different. The shorter curves shown in Figs. 6b, d, and f arise because of the non-existence of 

symmetric walking solutions for the assumed anthropometric and roll-over shape data. 

 

Fig. 6. The locus of points of intersection that represent the symmetry, as illustrated in Fig 5 b and f,  

is shown  for small (a, b), medium (c, d) and large (e, f) persons. The schematic diagram shown in 

Fig. 1c is based on Fig 6 c. The solid and dashed curves represent the optimal roll-over parameters 

with respect to the inter-leg angle and the step period respectively. The first and second columns show 

the optimal relationship for small, mid and large body while the physiological roll-over gain is 1.5 and 

2.5 respectively. 
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The effect of the optimised roll-over shape, with respect to the inter-leg angle and the step period, on 

the angular velocity and angular displacement variation with respect to time (Fig. 7) is studied to gain 

further insight into the asymmetry caused by the unbalanced mass distributions of both feet. The 

physiological roll-over shape gain, hindfoot arc length and forefoot arc length values are 1.5, 3cm and 

14cm respectively and the leg mass ratio and leg length ratio correspond to the mid person with 

prosthetic leg ( 77.0  and 73.0 ).  For a prosthetic foot gain value of 1.2 (Fig. 6c), the optimal 

forefoot arc length values with reference to inter-leg angle and step period are 21.5cmfArc   and 

16cmT
fArc   respectively. 

The curve 1-2 in Fig. 7c (dotted curve) denotes the swing phase of the prosthetic foot followed by the 

double support phase (2-3). In the subsequent stage (3-4) the prosthetic foot acts as a stance leg and 

the next double support phase (4-1) completes the gait cycle. Similarly, the solid curve (Figs. 7a and 

b) shows the variation for the physiological leg. Figs. 7a and b show the variation when the roll-over 

shapes are optimised for step period and inter-leg angles respectively, corresponding to the dotted line 

and solid curves shown in Fig. 6. Fig. 7b illustrates that the angular velocity and angular displacement 

variations for both prosthetic and physiological feet are similar when the prosthetic foot‟s roll-over 

shape is optimised with reference to inter-leg angle. This was not observed when the roll-over shape 

was optimised with reference to the step period (Fig. 7a). The change in the angular velocity during 

the double support phase (2-3) for the prosthetic foot is much longer than the physiological foot as 

shown in Fig. 7a (dotted line). This signifies residual walking asymmetry even though the prosthetic 

foot‟s roll-over shape is optimised with reference to the step period. There is minimal residual 

asymmetry for inter-leg angle based optimisation (Fig. 7b). Hence, the optimal elliptical region 

defined in Fig. 1 is shown closer to the inter-leg angle curve.  

Future work will consider the location of the hip, knee and ankle at various walking speeds [25], in 

addition to the step lengths and inter-leg angles, and study the effect of using optimal roll-overs 

shapes.  Li and Yang [26] studied the emergence of the chaotic gait for a simple point foot model. It 

will be interesting to see the effect of roll-over shapes on the basin of attraction and chaotic gait. 
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Fig. 7. The relationship between the angular velocity and angular displacement is shown for both 

physiological (as shown by solid curves in a and b) and prosthetic foot (dotted curve). Steps 1-2-3-4-1 

in Figure c demonstrate a gait cycle with the swing phase for the prosthetic foot, double support 

phase, prosthetic foot as a stance leg and the subsequent double support phase respectively.  Figures 

(a) and (b) are shown for optimised roll-over shapes for the prosthetic foot with reference to step 

period (a) and inter-leg angle (b).  The similarity of curves within each plot is considered as another 

measure of symmetry.  Figure (b) is considered as more symmetric and hence, the ellipsoid shown in 

Fig. 1c is chosen closer to the inter-leg angle curve.  

 

4. Conclusion 

Roll-over shapes have been used in the literature to characterise the direction of the ground reaction 

with reference to the position of the ankle-knee part of the leg. The roll-over shape of a prosthetic foot 

can be adjusted by varying the stiffness of the foot. The proposed passive walking kinematic model 

does not require information on joint torques, and hence does not need the motion or natural gait 

analysis of an amputee which is often unavailable. The model quantifies the natural tendency for 

asymmetry resulting from the mass unbalance, in terms of both the inter-leg angle and the step period, 

so that the necessary corrective action required at the prosthetic foot is measured by predicting an 

optimal prosthetic foot roll-over shape.  The sensitivity of the roll-over shape with the stability and 

symmetry of the walking process in terms of the inter-leg angle and step period is assessed in order to 

discover optimal regions with reference to forefoot arc length and the roll-over shape gain that 

quantifies the stiffness profile of the prosthetic foot.  

Appendix 1: Mathematical derivations 
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Fig. 8. Schematic representation of the positions of hip mass (CH), supported and non-supported legs 

mass (Cs and Cns). nss  and are the points of contact of the support and non-support legs. Dotted 

lines denote the virtual lengths of corresponding masses. (a) illustrates a double support phase and a 

schematic model of pivot point contacts for the swing phase is shown in (b).  

 

Appendix 1.1 

Derivation of Equation 1 (       0,   iii gNM  ) using an Euler Langrangian 

approach for the single support phase 
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  222
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1
, nsnsssHH

i vmvmvmK
                                                             (A.2)       

   nsvs

i

vsnsvsl

i

vssvs

i

vsH

i clgmgamglmP  coscoscoscos                     (A.3) 

jlilv vssvsvssvsH

  sincos                                                                                      (A.4) 

jaiav vslsvsvslsvss

  sincos                                                                                   (A.5) 

   jcliclv nsnsvssvsnsnsvssvsns

  sinsincoscos                                  (A.6) 

 

 

Appendix 1.2:  

Derivation of the Equation 9 (     1

1

1
1 


 

dH

H ) for the double support transition phase:  
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The condition of conservation of angular momentum about impacting pivot points and hip (Fig 8a) 

leads to:  









nsnssssssnsHHsH

nsnsnsnsssnssHHnsH

vCmvCmvCm

vCmvCmvCm
                                                      (A.7) 

  nsnsHsssHs vCCmvCCm                                                                                         (A.8)  

vslvss                                                                                                                          (A.9) 

jlilC vsvsvsvsHns


   cossin 11

                                                                                     (A.10) 

jlilv vss

e

vsvss

e

vsH

    sincos                                                                                  (A.11) 

   jbliblC nsvsvsnsvsvssns


   coscossinsin 11

                                           (A.12) 

jaiav vsls

e

vsvsls

e

vss

    sincos                                                                               (A.13) 

jaiaC vslvsvslvsnsns


   cossin 11

                                                                                 (A.14) 

   jcliclv nsnsvss

e

vsnsnsvss

e

vsns

    sinsincoscos                              (A.15) 

jlilC vsvsvsvsHs


   cossin 11

                                                                                     (A.16) 

jlilv vssvsvssvsH

    sincos 11
                                                                                 (A.17) 

jaiaC vslvsvslvsss


   cossin 11

                                                                                  (A.18) 

jaiav vslsvsvslsvss

    sincos 11
                                                                             (A.19) 

   jbliblC nsvsvsnsvsvsnss


   coscossinsin 11

                                        (A.20) 

   jbliblv nsnsvssvsnsnsvssvsns

    sinsincoscos 11
                           (A.21) 

jbibCC nsnssH


   cossin                                                                                        (A.22) 

jbibCC nsnsnsH


   cossin                                                                                       (A.23) 

Substituting these equations in A.7 and A.8 leads to the Equation 9.  
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Appendix 1.3:  

Derivation of Equation 16 (     i

i

d

i
i

H

H



  ) for the stance leg transition phase 

The condition of conservation of angular momentum about impacting pivot points and hip (Fig 8b) 

leads to:  


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                                                   (A.24)  

  nsnsHnsnsnsHns vCCmvCCm                                                                                    (A.25) 
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   cossin2                                                                                      (A.26) 
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i
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i
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i
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jlilv vss

i
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vsH

    sincos                                                                                  (A.32) 

jaiav vsls

i
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vss

    sincos                                                                               (A.33) 

   jcliclv nsnsvss

i

vsnsnsvss

i

vsns

  sinsincoscos                                 (A.34) 

jcicCC nsnsnsH


 cossin                                                                                         (A.35) 

Substituting these equations in A.24 and A.25 leads to the Equation 16.  
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