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Abstract 

Chromium/chromium oxide based coatings, cathodically electrodeposited from either Cr (VI) 

or Cr (III) containing electrolytes are compared with respect to their ability to resist the 

corrosion driven delamination of an adherent polymer overcoat. Cathodic disbondment rates 

are determined using an in-situ scanning Kelvin probe technique. Anodic disbondment 

(filiform corrosion, FFC) rates are determined optically. The Cr (VI) derived coatings were 

fully resistant to corrosion driven disbondment. The Cr (III) derived coatings exhibited 

measurable rates of both FFC and cathodic disbondment. Disbondment kinetics are explained 

in relation to coating morphology, porosity and chemical composition determined using a 

combination of scanning electron microscopy (SEM), transmission electron microscopy 

(TEM) and xray photoelectron spectroscopy (XPS). 
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1 Introduction 

Hexavalent chromium based electrolyte baths are traditionally used during the production of 

coatings for packaging steel, primarily electro chromium coated steel (ECCS), or tin free 

steel (TFS). The material consists of a thin gauge (0.13-0.49 mm) low carbon steel substrate 

with a thin coating, comprising of a base layer of chromium metal and a top layer of 

chromium oxide, produced using chromic acid.  

There is significant current interest in the development of chromium free coatings due to the 

international concern regarding environmental health [1, 2, 3, 4, 5]. Alternatives should be 

equivalent or better than existing treatments, non-toxic, acceptable to the food industry, and 

capable of application under similar tinning line conditions [6]. One approach to doing this 

has been the application of the chromium/chromium oxide coating from a trivalent (III) 

chromium salt based electrolyte [5, 7].  

The principal purpose of the coating on packaging materials is to provide corrosion 

resistance. In the case of ECCS iron, exposed during can forming, has previously been found 

to act as an initiation site for corrosion [8]. The material is therefore used in conjunction with 

an organic (lacquer or laminate) overcoat. Two mechanisms of corrosion are of primary 

concern; firstly, wet corrosion where the internal packaging surface is in contact with the 

contents [9] and secondly, atmospheric corrosion of the external surface. 

The aim of the current paper is to present a detailed study of the role of technologically 

important chromium based coatings in resisting corrosion driven coating delamination that 

occurs at penetrative defects in these organic coatings. Firstly, the well understood cathodic 

disbondment mechanism, during which the delamination of the organic coating from the 

metal substrate is driven by the cathodic reaction (usually oxygen reduction), is studied. 

Within the localised corrosion cell, anodic metal dissolution located in the vicinity of the 
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defect is coupled to the cathodic delamination front by a thin (<5μm) gel like electrolyte, 

which ingresses beneath the coating [10]. Secondly anodic delamination, or filiform 

corrosion (FFC), which produces ‘threadlike’ corrosion product deposits, whereby failure is 

often linked to an anodic reaction [10]. It is widely accepted that filament advance involves 

anodic undercutting at the ‘active head’, driven by differential aeration arising from facile O2 

diffusion in the filament tail, which consists of dry corrosion products [10, 11, 12, 13, 14, 

15].  

Although passivation systems based on titanium [9] and zirconium [16] have previously been 

investigated on tinplate, they were found to be poor in terms of performance and often require 

different application technologies. Trivalent chromium based coatings have been found to 

perform effectively on both aluminium and zinc [17, 18]. When directly comparing trivalent 

and hexavalent chromium based conversion coatings using polarisation data, Zhang et. al 

found that Cr(III) based baths inhibited the corrosion of zinc to a significant degree, but less 

effectively than the coating produced using a Cr(VI) bath. The difference was attributed to 

the thinner layer produced in the case of Cr(III) based coatings [19].  

During the work described here steel, used in conjunction with both trivalent and hexavalent 

chromium based systems (ECCS), are organically coated using a model polyvinyl butyral 

organic lacquer, and their resistance to corrosion driven organic coating delamination, by 

both anodic and cathodic mechanisms, are investigated. Corrosion driven cathodic 

delamination is investigated by employing a ‘Stratmann’ type cell, and a 0.86 mol.dm-3 

aqueous sodium chloride (NaCl) electrolyte is used to reflect standard accelerated corrosion 

test conditions [20, 21]. The time dependent extent of cathodic disbondment is determined by 

repeated in situ scanning using a scanning Kelvin probe (SKP) apparatus. The capability of 

the SKP to visualise the spatial distribution of localised free corrosion potential variation with 

time has been demonstrated previously [20, 21]. Anodic disbondment (FFC) is initiated using 
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FeCl2 and the time dependent extent of corrosion is determined optically. Results are 

explained in relation to coating morphology, porosity and chemical composition determined 

using a combination of scanning electron microscopy (SEM), transmission electron 

microscopy (TEM) and xray photoelectron spectroscopy (XPS). In doing this we hope to 

determine the viability of using trivalent chromium based coating systems, which make use 

of the same application technology as for current sodium dichromate passivation systems, as 

alternatives to those produced using hexavalent chromium.  

2 Experimental 

2.1 Materials 

Iron foil of 0.15mm thickness and 99.5% purity was obtained from Goodfellow Cambridge 

Ltd. Low alloy mild strip steel of 0.2 mm gauge, with two different types of coatings applied, 

were obtained from Tata Steel Packaging. In the case of the first material the chromium- 

chromium oxide layer was applied to the cathodic steel strip from a hexavalent chromium 

based chromic acid electrolyte. This product is referred to as ECCS. In the case of the second 

material the coating was applied from a trivalent chromium salt based electrolyte using a 

process described elsewhere [7].  

Polyvinyl butyral (PVB) and all other chemicals were obtained from Aldrich Chemical Co. 

and of analytical grade purity.  

2.2 Methods 

2.2.1Materials Characterisation 

X-ray Photoelectron Spectroscopy (XPS) spectra and depth profiles were recorded on a 

Kratos Axis Ultra using Mg Ka x-rays of 1253.6 eV. The measured spot size was 700 mm × 
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300 mm. The depth profiles were recorded using 4 keV Ar+ ions creating a sputter crater of 3 

mm × 3 mm. The composition was determined by fitting the XPS spectra of the Cr2p, O1s 

and C1s peak. The latter two were used to refine the quantification of the oxide and carbide 

content [5]. Determination of the individual Cr-species from the XPS spectra, Figure 1, was 

performed using the following procedure. Peaks from metallic chromium and chromium 

carbides overlap. The carbide part of the C1s peak was well separated from other species 

within the peak and can therefore be quantified reliably. The amount of chromium carbide 

present was thus calculated, assuming it existed in the form Cr3C2.  

(Figure 1) 

The overall Cr weight, determined by integrating over the entire depth, was ca. 60 mg.m-2 

(25.1 mg.m-2 metallic chromium, 16.1 mg.m-2 chromium oxide and 18.8 mg.m-2 chromium 

carbide). In comparison, in the case of ECCS, the overall Cr weight was ca. 80 mg.m-2 (69 

mg.m-2 metallic chromium, 8 mg.m-2 chromium oxide and 3 mg.m-2 chromium carbide).  

Scanning electron microscopy (SEM) images were collected using a Zeiss Ultra 55 with an 

InLens detector. Representative locations were found using light imaging microscopy (LIM) 

and SEM, and were selected for cross sectioning. Cross sections were prepared using a 

focused ion beam (FIB), before which they were ultrasonically cleaned in isopropanol for 10 

minutes. The samples were coated with a thin (30nm) pure metallic platinum (Pt) layer via 

sputter coating. A platinum layer was deposited by dissociation of a volatile organic Pt 

complex using an electron beam (which does not affect the sample). The organic Pt complex 

was dissociated using a Ga ion beam (where the sample is protected by the first two layers). 

The first Pt layer is easily recognised in the TEM and marks the original surface; subsequent 

layers contain more carbon and are thus less bright in the TEM images. The final thinning 

stage was performed on a Nova Nanolab200 Small Dual Beam. 
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Transmission electron microscopy (TEM) imaging and analysis was performed using a FEI 

Tecnai F30ST, operating at 300kV, and equipped with a Field Emission Gun (FEG) and an 

energy dispersive x-ray spectrometer (EDX) spectrometer. The TEM was also equipped with 

a high angle annular dark field (HAADF) detector. The contrast in HAADF images is well 

resolved by atomic number (Z). Contrast in composition shown in images is thus similar to 

that obtained using the back scattered detector in an SEM.  

2.2.2Electrochemical Characterisation 

Direct current electrochemical experiments were conducted using a Solartron 1280 

Electrochemical Measurement Unit. A saturated calomel electrode (SCE) reference electrode 

was used to provide a fixed potential throughout the experiment. Coupons of approximately 

40 mm x 30 mm were cut from large sheets to obtain a suitably sized sample. The sample 

was masked using extruded polytetrafluoroethylene (PTFE) tape (type 5490 HD supplied by 

3M) which exposed a 10 mm x 10 mm area in the centre. Materials were characterised in 

terms of their open circuit potential (OCP) at 20°C in a 0.1 M HCl electrolyte. The primary 

intention of taking potential measurements in acid was to determine the likely galvanic series 

for iron and chromium based coatings in an electrolyte relevant to the anterior portion of the 

FFC head [11, 12]. This was done to determine whether or not a coating would anodically 

dissolve when coupled to the iron substrate. Potentiodynamic scans were conducted in an 

aerated 0.6 mol.dm-3 NaCl electrolyte at 20°C. The primary intention of potentiodynamic 

polarisation experiments was to characterise cathodic activity for oxygen reduction on 

various substrates. This is directly relevant to cathodic disbondment [21], and indirectly 

relevant to FFC (where the coating maybe partly or wholly removed by anodic dissolution), 

by showing whether residual coating or substrate iron will present the most active site for 
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oxygen reduction. A platinum gauze counter electrode and a scan rate of 0.1667 mV.sec-1 

were used. Three repeat measurements were made. 

Prior to corrosion studies the materials were cut into coupons of 5 cm x 5 cm. In the case of 

the pure iron the surface was lightly abraded. All samples were cleaned and degreased before 

experimentation. All samples were solvent coated with 15% w/w ethanolic solution of 

polyvinyl butyral (PVB), molecular weight 70,000-100,000, lacquer using insulating tape 

height guides to give an air-dried thickness of 30 μm, as determined using a micrometer 

screw gauge.  

For cathodic delamination experiments, coatings were partially peeled back to create a defect 

comprising a 20 x 15 mm area of bare metal. A residual lip of clear adhesive tape and 

overcoated PVB formed a barrier between the intact polymer coated metal surface and the 

electrolyte applied to the defect area. Non corrosive silicone rubber was applied to the 

remaining edges of the defect to form a reservoir sufficient to contain a 2 cm3 volume of 

corrosive electrolyte. When conducting cathodic delamination experiments humidity was 

kept constant at 95% RH by use of electrolyte reservoirs containing 0.86 mol.dm-3 aqueous 

NaCl at pH 6.5 in the chamber. Experiments took place at room temperature. An aliquot of 

electrolyte was applied to the defect to initiate the delamination. The reference probe was 

moved over the surface along a 12mm line up to the boundary of the defect. Measurements 

were therefore made approaching the defect (~100µm away at closest approach). The SKP 

chamber was closed and scans taken at regular intervals after initiation. Scans were recorded 

as a numeric grid on the computer. In the case of deaerated cathodic delamination 

experiments, corrosion was allowed to initiate in the presence of oxygen before nitrogen was 

sparged through the 0.86 mol.dm-3 NaCl electrolyte, prior to entering the chamber. Full 

details of the SKP apparatus and calibration have been described elsewhere [22, 23]. Three 

repeat measurements were taken for each material. 
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In the case of FFC two types of sample were prepared. In the case of the first type the 

chromium coated surface was continuous. In the case of the second type the chromium based 

coating was removed from half the sample surface. Two types of experiment were carried 

out. In the first type FFC was initiated on the coating. In the second type FFC was initiated on 

the exposed steel substrate and allowed to propagate over the coated portion of the sample. 

All samples were solvent coated with 15% w/w ethanolic solution of polyvinyl butyral 

(PVB). A 10 mm line penetrative PVB coating defect was created by scribing the sample 

with a scalpel blade. FFC was initiated by introducing 2 μL of 2.5 x 10-3 M aqueous FeCl2 

evenly over the length of the scribe using a glass microcapillary, following a procedure 

described elsewhere [24]. After allowing the FeCl2 to react with the exposed metal, and 

excess water to evaporate in air, samples were placed in an environmental chamber. The 

temperature was constant at 20°C and a relative humidity of 93% RH was maintained 

throughout the experiment by allowing the atmosphere to remain in equilibrium with a 

reference solution comprising saturated aqueous Na2SO410H2O. Samples were removed from 

the humidity chamber at intervals in time to carry out photography and computerised image 

analysis. The image analysis software (Sigma Scan Pro) was calibrated by specifying a pre-

measured distance between two points and inputting real distance. The surface area of the 

FFC attack was measured as that occupied by corrosive discolouration. A value for a 

designated surface area was then given. SEM images showing FFC morphology were 

obtained using a Hitachi tabletop microscope TM3000. 

3 Results  

3.1 Material characterisation 

The SEM images at lower magnification (first three images in Figure 2) show that the 

substrate steel is heterogeneous (varying rolling roughness, traces of contaminations, etc.). 
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The grain boundaries of the steel substrate are easily identified and other origins for 

heterogeneity can also be discerned. At higher magnification (1µm) the SEM images show 

that the coating follows the structure of the steel substrate and is applied homogeneously on 

each steel grain. The grains of the Cr coating are in the 10-20 nm range. The SEM images at 

the highest magnification show the presence of circular features (indicated by arrows) with a 

diameter of ca. 50-100 nm. During the chromium deposition process 90% of current is 

attributed to the evolution of hydrogen [5]. It is therefore proposed that the presence of these 

circular features results from the attachment of gas bubbles to the surface. At these positions 

the deposition process will be hindered compared to the rest of the surface and thus a circular 

feature will be present.  

It is worth noting that a similar chromium grain structure is seen in the SEM image of ECCS 

(Figure 2ii) at a similar magnification. ECCS also exhibits heterogeneities, as with any 

material produced on an industrial scale [25]. Hydrogen evolution is suggested to occur at 

sites at which ‘circles’ are present. However, in comparison to Cr3+ based coatings, Cr6+ ions 

will spontaneously deposit onto most surfaces (including carbon-containing species), 

providing additional corrosion inhibition.  

(Figure 2) 

The resolution associated with SEM images is not high enough to discern changes in 

composition of the Cr grains. The coating layer is also too thin to image in cross section. 

Both pieces of information are required to interpret XPS depth profiles, which are averaged 

over the entire spot. Samples were therefore coated with a protective platinum layer (which 

also acts to mark the original outer sample surface), cross sectioned with FIB, and analysed 

using a TEM. The results are given in Figure 3 and Figure 4. Dark lines ~5-20 nm apart, and 

perpendicular to the surface, can be seen in the enlarged image of the TEM cross section 
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shown in Figure 4i. The distance between the lines relates to the size of the Cr grains in the 

SEM images and it is thus proposed that they correspond to grain boundaries of the Cr 

coating. The HAADF detector is sensitive to both the elemental composition (a higher atomic 

number will show brighter in the image) and to the density (a higher density will give a 

brighter image). As an EDX line scan showed no difference in elemental composition, the 

difference in colour can be attributed to a slight decrease in density rather than the presence 

of lighter elements. A decrease in density is typical for a grain boundary; i.e., the layer is 

closed on the nm scale. The cross section also shows a position where the steel substrate is 

uneven, due to a crevice caused by the rolling roughness (Figure 4ii). The Cr coating is 

deposited preferentially into the crevice (yellow triangle), with only a small void at the tip, 

which is suggested to occur due to the electrolyte resistance.   

(Figure 3 and Figure 4) 

Given the number and random scattering of the circles observed in the SEM images, it is 

highly likely that one of them is cut in the TEM cross section shown in Figure 3 and Figure 4. 

It is of importance that it is determined whether the circles are topological or permeating in 

nature. In the latter case the steel substrate will be exposed, this being detrimental in terms of 

corrosion resistance. As there is no evidence of holes permeating through the surface, or of 

protrusions associated with the “rim” around a circle, it is inferred that the circular features, 

suggested to represent hydrogen bubbles, are superficial in nature.  

The XPS depth profiles are given in Figure 5. The outer surface of the Cr3+ coating is 

enriched in oxide, but the layer itself is a mixture of Cr-metal, Cr-oxide and Cr-carbide. A 

significant amount of Fe is detected in the layer. It is postulated that this is due to porosity in 

the Cr layer (the XPS spot size was 700x300 µm, and the SEM images show some porosity 

on that scale). In comparison the XPS profiles obtained in the case of ECCS show a higher 
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amount of Cr-OH groups at the outer surface of the coating compared to the Cr3+ based 

coating, this being related to the two-stage process where the second deposition step deposits 

solely oxides [5].  

(Figure 5) 

OCP Characterisation Results 

All materials were characterised in terms of their OCP at 20°C in a 0.1 M HCl electrolyte, the 

results being shown in Table I. The confidence limits (errors) shown correspond to ± one unit 

of standard deviation on the mean, on the basis of three repeat measurements. The values 

obtained are, within experimental error, identical for all materials. The galvanic polarity of a 

cell formed between the iron substrate and the chromium based coatings can therefore not be 

inferred. It is suggested that in the case of porous, or imperfect, coatings the exposed iron will 

dominate the potential reading.  

(Table I) 

Potentiodynamic Results 

Potentiodynamic scans were conducted in a 0.6 mol.dm-3 NaCl electrolyte at 20°C. A scan 

rate of 0.1667 mV.sec-1 was used and results are shown in Figure 6. Figure 6 shows that 

cathodic currents measured on ECCS are significantly smaller (~100 times) than those 

observed for pure iron and Cr3+ based coatings on steel. Anodic current values are highly 

dependent on polarisation potential, however at a potential value of ~0V vs. SHE (standard 

hydrogen electrode) the current measured for ECCS, is over ten times smaller than that for 

both pure iron and Cr3+ based coating systems. The three zero current measurements 

observed in the case of iron indicates an active/passive transition suggesting the material is 

unstable, this being expected at the relevant pH [26]. 



13 
 

(Figure 6) 

3.2 Resistance to organic coating failure by cathodic disbondment 

The kinetics of disbondment of the PVB lacquer from pure iron was determined in an initial 

experiment to establish baseline characteristics in the absence of a chromium coating. After 

initiation the time dependent Ecorr(x) profiles (where  is distance from the defect edge) 

became established, and are shown in Figure 7. Ecorr values over the intact coating surface 

(Eintact) were uniformly high and remained constant at ca. 0.2 V vs. SHE, this being similar to 

those reported previously [27]. Ecorr values in the vicinity of the delamination front fall to 

match that of the bare metal in contact with electrolyte in the defect, in this case ca. -0.3 V 

vs. SHE, this being expected for anodically active iron (ca. -0.44 V vs. SHE) [20, 21, 28, 29]. 

It has been shown that during coating delamination a local cathode, resulting from the oxygen 

reduction reaction (ORR), exists in the region of the delamination front resulting in loss of 

coating adhesion. Anodic iron dissolution is constrained to the vicinity of the coating defect 

[21]. The anodic and cathodic reactions are linked by the ionic transport of current through 

the underfilm electrolyte. Throughout the duration of the experiment the electrolyte ingresses 

further under the coating. The linear gradient in potential between Ecorr at the delamination 

front and undelaminated region is the result of the ionic conductivity in the underfilm 

electrolyte. The point of maximum gradient in time dependent Ecorr(x) profiles has been 

identified as a semi-empirical means of locating the cathodic delamination front [21, 22, 27]. 

As delamination time increases the linear gradient moves further away from the defect. The 

rate of this progression decreases with time. This is indicative of the delamination rate being 

controlled by the migration of electrolyte cations (here Na+) from external (defect zone) 

electrolyte to the cathodic delamination front [27, 28]. Under these circumstances the 

distance (xdel) over which delamination has occurred is related to the time since electrolyte 
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contact (tdel) by equation (1), where kd is the delamination rate constant and ti the initiation 

period. 

xdel = kd (tdel – ti)1/2     (1) 

Figure 8 shows plots of xdel vs. (tdel – ti)1/2 obtained from time dependent Ecorr profiles for 

iron. The curve is a good straight line consistent with migration control and thus parabolic 

kinetics. The kd value obtained from the gradient was (550 ± 79) μm.min-1/2. The confidence 

limits (errors) shown correspond to ± one unit of standard deviation on the mean. Error bars 

are omitted for the sake of clarity. 

(Figure 7 and Figure 8) 

Cathodic driven coating delamination was not observed on ECCS over a time period of 96 

hours, for three repeat measurements, this being made evident by the potential plateau shown 

in Figure 9. In the case that delamination does not occur there is no coupling to the defect and 

therefore Ecorr >> than that for the bare metal in contact with the electrolyte.  

(Figure 9) 

In comparison, cathodic disbondment was observed on Cr3+ based coatings. Figure 10 shows 

Ecorr(x) profiles that are separated by a constant distance as time progresses. This suggests the 

system is controlled by linear kinetics which are produced when the rate is controlled by 

electron transfer. The delamination rate constant was calculated as (7.7±2.3) µm min-1 from 

Figure 11. It is suggested that delamination may be observed in the case of Cr3+ coatings, and 

not ECCS, due to the increased exposed iron substrate and the presence of metallic iron at the 

outer surface of the coating. As shown in Figure 6, larger cathodic currents are observed for 

pure iron than Cr3+ coated steel, and thus cathodic delamination will progress at a faster rate 

in the presence of iron.  
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(Figure 10 and Figure 11) 

The change in kinetics from parabolic to linear, with the introduction of a Cr3+ coating, can 

be confirmed by use of a different electrolyte. Stratmann et al. found that a linear relationship 

exists between delamination area and square root of time, this proving that diffusion of 

cations from the anode to the cathode is a rate determining step for systems displaying 

parabolic kinetics [28]. It was also concluded that the smaller the cation size the slower the 

rate, this corresponding to the dependence on diffusion coefficient in aqueous electrolytes 

[28]. The rate will not, however, be influenced in a system that exhibits linear kinetics. The 

electrolyte cation was therefore changed from sodium to caesium. As can be seen in Figure 

12 the rate is within experimental error, similar, in the case of both NaCl, for which a 

delamination rate of (4.5±1.35) µm min-1 was obtained and CsCl, for which a rate of (3.1±0.9) µm 

min-1 was obtained. 

(Figure 12) 

Cathodic delamination was then studied in the absence of oxygen. This is especially 

important when considering both the low oxygen partial pressure in a food can environment 

and the autoreduction reaction, given by equation (2), which occurs as a result of the ability 

of iron to exist in more than one oxidation state [30].  

    Fe2O3 + 3H2O + 2e- →2Fe2++ 6OH-    (2) 

The reduction of Fe3+ can thus drive oxidation at the defect, and consequently cathodic 

delamination can proceed in the absence of oxygen. 

Delamination was allowed to initiate in the presence of oxygen before nitrogen was sparged 

through the 0.86 mol.dm-3 sodium electrolyte prior to entering the chamber. Alongside this 

experiment another was conducted during which the SKP was used to scan a sample, half of 
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which consisted of the exposed blackplate substrate, the other half where the coating was 

intact. A line scan was taken across the sample both in the presence and absence of oxygen. 

The change in the potential when the atmosphere within the Kelvin probe chamber is changed 

from that containing oxygen to solely inert nitrogen, has previously been used as an 

indication of the ability of a material to reduce oxygen [31].  

A potential drop is observed at the defect, due to a reduction in the rate of the cathodic partial 

reaction when nitrogen is introduced [30], as shown in Figure 13. The presence of an 

equipotential region within the delaminated zone, in the absence of oxygen, has been noted 

elsewhere [30]. In this case the presence of the chromium/chromium oxide layer results in 

zero ionic transport, and thus a potential gradient does not exist when the oxygen reduction 

reaction rate decreases. Figure 14 shows that the rate of delamination decreases, to 0.15 that 

of the original, in the absence of oxygen. 

(Figure 13 and Figure 14) 

Both this reduction in delamination rate and the finding that potential value is independent of 

atmosphere, as shown in Figure 15, suggests that the Cr3+ layer does not support 

autoreduction.  

(Figure 15) 

Although there is a lower oxidation state, Cr2+, the reduction of Cr3+ to Cr2+ given by 

equations (3) and (4) is unable to support the oxidation of Fe0 to Fe2+ (6) at a pH typical of 

those within the delaminated region (pH10-12) [28]. Reaction (5) was not considered as a 

viable reaction as chromic hydroxide, Cr (OH)3. nH2O, has a very limited range of stability 

between approximately pH 8 and 9 [26].  

E = -0.785  -0591pH    E (V vs. SHE) = -1.376 V (pH 10)  (3) 
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E = -0.561 - 0591pH    E (V vs. SHE) = -1.152 V (pH 10)  (4) 

E = -0.360 - 0591pH    E (V vs. SHE) = -0.951 V (pH 10)  (5) 

E = -0.440 + 0.0295 log (Fe2+)    E (V vs. SHE) = -0.440 V (1M)  (6) 

It is thus suggested that autoreduction occurs at iron exposed by pores in the coating, this 

leading to the continuation of delamination, albeit at a reduced rate. This notion is supported 

by the presence of a small local reduction in potential, shown in Figure 13, at the 

delamination front, at which autoreduction would typically occur. It is also possible that 

autoreduction is able to occur as a result of the metallic iron present in the chromium layer as 

shown in Figure 5. This proposal is supported by Figure 6 which shows significantly 

increased cathodic currents for Cr3+ coated systems, in comparison to ECCS. It is suggested 

that the increased currents measured in the case of the former material is the result of iron 

from the substrate ‘doping’ the coating during production.  

3.3 Resistance to organic coating failure by anodic disbondment (FFC)  

It is widely accepted that filament advance involves anodic undercutting at the ‘active head’. 

This process is driven by differential aeration arising from facile O2 diffusion in the filament 

tail, which consists of dry corrosion products [10, 11, 12, 32]. Elsewhere it has been 

suggested that delamination of the protective layer from the substrate is due to cathodic 

mechanisms in the vicinity of the head [33]. Williams and McMurray observed an area of 

cathodic delamination but contest its function as a primary cathode, claiming it plays no role 

in the mechanism of FFC advance [24]. 

Figure 16 shows that FFC could not be initiated on ECCS using a 0.0025 M FeCl2 

electrolyte. The similarity of the images taken ii.) three weeks and iii.) five weeks after 

initiation on the steel substrate demonstrate that FFC could not propagate onto the ECCS 
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coated steel. The open circuit potential measurement taken in 0.1 M HCl electrolyte (pH 1) 

for Cr3+ coatings is, within experimental error, identical to that recorded for pure iron and 

therefore the protection mechanism cannot be inferred. It is however suggested that the 

chromium/chromium oxide based coating retards the anodic reaction rate, a cathode having 

already been established on the steel substrate. The depth of FFC into steel has previously 

been reported as up to 10 µm, this being substantially more than the thickness of the 

chromium/chromium oxide layer (~50nm) [12]. It is subsequently proposed that had the 

coating not acted to retard the anodic reaction it would have been destroyed and thus the 

substrate would have been exposed allowing FFC propagation to continue.  

(Figure 16) 

In comparison, Figure 17 shows that FFC was both i.) initiated and ii.) propagated onto Cr3+ 

coated steel. The SEM image in Figure 18 suggests that filament advance is salutatory in 

nature, where propagation exists in a step-wise or discrete manner [34]. The constant 

propagation rate is indicative that there is no mass transport limitation and that the facile 

diffusion of oxygen through the dry corrosion products within the filament tail has negligible 

effect on rate of extension [34]. In the bottom left of Figure 18 a build-up of corrosion 

product is evident, this being indicative of the coating being damaged and that substrate 

corrosion has occurred. It should be considered that more corrosion product may be present if 

it were not for removal of the PVB lacquer prior to image acquisition.  

There are two possible explanations for the protection offered by the chromium/ chromium 

oxide derived coatings based on their chemical composition. The first considers the metallic 

chromium content of the layers. As explained, coatings produced using hexavalent chromium 

contain over double the amount of metallic chromium as those derived from trivalent 

chromium. It may therefore be suggested that ECCS exhibits a superior resistance to both 
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cathodic delamination and filiform corrosion due to the higher metallic chromium compared 

to Cr3+ based coatings. However chromium does not display passivity at low pH [26], typical 

of those within the FFC head electrolyte [11, 12]. It is thus suggested that the chromium 

oxide provides a partial barrier to the anodic reaction and that corrosion rate is thus 

dependent on coating uniformity and defect population.  

(Figure 17 and Figure 18) 

4.0 Discussion 

The difference in corrosion resistance of the coatings may exist due to a number of factors. It 

is believed that Cr3+ based coatings, SEM images of which are shown in Figure 2, are 

relatively imperfect (with penetrative defects) when compared to the Cr6+ based coating 

produced in the case of ECCS. This is particularly apparent at heterogeneities in the coating 

that are visible on the larger scale (above 1-10 µm spacing), for example due to varying 

rolling roughness and at sites of contamination. The activity of Cr6+ during plating means that 

it is reduced to Cr3+ rapidly when in contact with iron, which is considered to be relatively 

noble. Consequently very little iron is exposed in the case of undeformed ECCS. In 

comparison Cr3+ based coatings are deposited due to a local change in pH at the substrate 

surface which occurs as a result of the hydrogen evolution reaction [5, 7]. The lack of 

spontaneous deposition at heterogeneities provides a higher porosity. It is believed that this, 

alongside iron ‘doping’ of the coating leads to increased cathodic currents and thus cathodic 

delamination rates. In the case of FFC it is suggested that the chromium oxide provides a 

partial barrier to the anodic reaction and that the corrosion rate is thus dependent on coating 

uniformity and defect population. 

The chemical nature of the outer surface, particularly the availability of Cr-OH groups, plays 

a key role in the adhesion, which is defined as an important property of a coating [10]. 
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However, improving coating adhesion alone may not improve resistance to cathodic 

delamination and FFC if an alternative disbondment mechanism, such as hydrolysis, is 

available [35]. Irrespective, the possible influence of Cr-OH group population should be 

considered during comparison of coating resistance to corrosion driven coating disbondment. 

The XPS profiles show a higher amount of Cr-OH groups at the outer surface of the ECCS 

coating than the Cr3+ based coating, this being related to the two-stage process where the 

second deposition step deposits solely oxides [5]. The TEM images also show that the Cr3+ 

based layer has a single chemical composition. In comparison, ECCS is composed of two 

layers (metallic Cr with a Cr-oxide on top). [8, 25] This may contribute to the increased 

resistance of ECCS to both cathodic delamination and FFC, together with other factors.  

4 Conclusions 

A comparison between coatings produced using hexavalent and trivalent chromium based 

electrolyte baths, with regards to their resistance to atmospheric corrosion, has been 

completed to show that; 

 The Cr (VI) derived coatings were fully resistant to corrosion driven disbondment. 

 On Cr3+ based coatings the rate of FFC was substantially reduced when compared to 

that measured on pure iron,  

 Disbondment via the cathodic delamination mechanism was found to occur on 

trivalent chromium coatings, 

 Disbondment via the cathodic delamination mechanism on trivalent chromium based 

coatings occurred at a significantly reduced rate in deaerated conditions, typical of 

those within packaging products.  

It is proposed that;  
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 Differences between the Cr3+ and Cr6+ based coatings in terms of resistance to 

atmospheric corrosion, such as cathodic delamination and FFC occur, firstly due 

to pores in the Cr 3+ coating which exist as a result of the deposition mechanism, 

and secondly due to the chemical composition of the coating. XPS depth profiles 

show that Cr3+ layers have higher levels of surface metallic iron and less outer 

OH- groups, which may contribute to increased rates of corrosion driven coating 

delamination.  

 Trivalent chromium based coatings for use on packaging steel may be a feasible 

alternative to traditional hexavalent based systems with respect to corrosion 

resistance, especially with a reduced porosity. This proposed alternative also 

makes use of the same application technology as for current passivation systems.  

 It is suggested that future work concentrates on the quantitative measurement of 

the adhesion of organic coatings and lacquers to chromium based coatings, and 

consequently the correlation between adhesion and corrosion properties.  
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Figure 1: Example of XPS spectra from the outermost surface of sample with fitted curves 

for i.) metallic Cr, ii.) Cr carbides and iii.) Cr oxides [5]. 
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Figure 2: SEM images (InLens detector) at increasing magnification showing the i.) Cr3+ 

based coating ii.) Cr6+ based coating (ECCS). Arrows indicate areas at which hydrogen 

bubbles are suggested to form.  
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Figure 3: LIM image showing position from which sample is cut (inset), and overview of 

FIB-TEM image, where the white layer is platinum and shows the location of the original 

substrate/air interface. 
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Figure 4: Enlargements of Figure 3 on the i.) smooth part ii.) rough part.  
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Figure 5: XPS spectra measured for Cr3+ coated blackplate and ECCS and deconvoluted into 

respective species, alternated with a short sputtering for i.) Cr and Fe metal, ii.) Cr hydroxide 

and iii.) Cr carbide and oxide.   
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Figure 6: Current density as a function of potential for pure iron, ECCS and Cr3+ coated 

blackplate measured in aerated 0.6 mol.dm-3 NaCl. Potential sweep rate 0.1667 x10-3 Vs-1. 
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Figure 7: SKP derived Ecorr vs. distance (x) profiles for pure iron overcoated with a 30 µm 

PVB film, held in air at 95% R.H., where corrosion was initiated using 0.86 mol.dm-3 NaCl 

(aq.) applied to a penetrative coating defect. Time key i.) 60 mins ii.) 120 mins iii.) 180 mins 

and one hour intervals thereafter. 
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Figure 8: Plots of delamination distance (xdel) vs. t1/2 obtained for a pure iron sample 

overcoated with a 30 µm PVB film where corrosion was initiated using a 0.86 mol.dm-3 NaCl 

electrolyte. 
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Figure 9: SKP derived Ecorr vs. distance (x) profiles for a ECCS overcoated with a 30 µm 

PVB film, held in air at 95% R.H., where corrosion was initiated using 0.86 mol.dm-3 NaCl 

(aq.) applied to a penetrative coating defect.  
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Figure 10: SKP derived Ecorr vs. distance (x) profiles for a Cr3+ coated blackplate sample 

overcoated with a 30 µm PVB film, held in air at 95% R.H., where corrosion was initiated 

using 0.86 mol.dm-3 NaCl (aq.) applied to a penetrative coating defect. Time key i.) 660 mins 

ii.) 780 mins iii.) 900 mins and two hour intervals thereafter. 
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Figure 11: Plots of delamination distance (xdel) vs. t obtained for Cr3+ coated blackplate 

sample overcoated with a 30 µm PVB film where corrosion was initiated using a 0.86 

mol.dm-3 NaCl electrolyte. 
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Figure 12: Plots of delamination distance (xdel) vs. t obtained for Cr3+ coated blackplate 

sample overcoated with a 30 µm PVB film where corrosion was initiated using a 0.86 

mol.dm-3 ● NaCl and ▲CsCl electrolyte. 

  



40 
 

 

Figure 13: SKP derived Ecorr vs. distance (x) profiles for a Cr3+ coated blackplate sample 

overcoated with a 30 µm PVB film, held at 95% R.H., where corrosion was initiated using 

0.86 mol.dm-3 NaCl (aq.) applied to a penetrative coating defect, in the presence of O2 prior 

to propagation in a deaerated atmosphere. Time key i.) 440 mins ii.) 600 mins iii.) 660 mins 

and one hour intervals thereafter. 
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Figure 14: Plots of delamination distance (xdel) vs. t obtained for Cr3+ coated blackplate 

sample overcoated with a 30 µm PVB film whereby corrosion was initiated using a 0.86 

mol.dm-3 NaCl electrolyte in the presence of O2 (●) prior to propagated in a deaerated 

atmosphere (▲). 
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Figure 15: SKP derived Ecorr vs. distance (x) profile obtained for both Cr3+ coated blackplate 

and blackplate in both the presence and absence of O2. 
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Figure 16: Photographs of samples showing that i.) FFC could not be initiated on ECCS and 

ii.) FFC propagated into ECCS 3 weeks after initiation on a steel substrate and iii.) FFC 

propagated into ECCS 5 weeks after initiation on a steel substrate, using 0.0025 M FeCl2. 

Black lines indicate the border between coated and uncoated region. 

   



44 
 

 

Figure 17: Photographs of samples taken after 5 weeks showing that i.) FFC could be 

initiated on Cr3+ coated steel and ii.) FFC propagated into Cr3+ coated steel when initiated on 

a steel substrate. Black lines indicate the border between coated and uncoated region. 

   



45 
 

 

Figure 18: SEM images of FFC initiated using 0.0025 M FeCl2 on Cr3+ coated blackplate. 

Propagation direction is from right to left. Scale bar 300 µm.  
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Tables 

Table I. Free Corrosion Potential of pure iron, ECCS and Cr3+ coated steel in 0.1M HCl at 

20°C. The confidence limits (errors) shown correspond to ± one unit of standard deviation on 

the mean, on the basis of three repeat measurements. 

Material Ecorr (V vs. SHE) 

Pure Iron -0.320±0.0081 

ECCS -0.319±0.0015 

Cr3+ coated steel  -0.322±0.0071 

 

 


