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Highlights 
 Fuzzy uncertainty propagation in free vibration of composite plate is analyzed.  

 Gram-Schmidt polynomial chaos expansion is employed as surrogate. 

 Design points are selected using D-optimal design algorithm. 

 Fuzzy mode shapes and frequency response functions are presented.  
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Abstract 

The propagation of uncertainty in composite structures possesses significant computational 

challenges. Moreover, probabilistic descriptions of uncertain model parameters are not 

always available due to lack of data. This paper investigates on the uncertainty propagation in 

dynamic characteristics (such as natural frequencies, frequency response function and mode 

shapes) of laminated composite plates by using fuzzy approach. In the proposed 

methodology, non-intrusive Gram-Schmidt polynomial chaos expansion (GPCE) method is 

adopted in uncertainty propagation of structural uncertainty to dynamic analysis of composite 

structures, when the parameter uncertainties represented by fuzzy membership functions. A 

domain in the space of input data at zero-level of membership functions is mapped to a zone 

of output data with the parameters determined by D-optimal design. The obtained meta-

model (GPCE) can also be used for higher α-levels of fuzzy membership function. The most 

significant input parameters such as ply orientation angle, elastic modulus, mass density and 

shear modulus are identified and then fuzzified. The proposed fuzzy approach is applied to 

the problem of fuzzy modal analysis for frequency response function of a simplified 

composite cantilever plates. The fuzzy mode shapes are also depicted for a typical laminate 

configuration. Fuzzy analysis of the first three natural frequencies is presented to illustrate the 

results and its performance. The proposed approach is found more efficient compared to the 

conventional global optimisation approach in terms of computational time and cost.  

Keywords: uncertainty; fuzzy; composite; Gram-Schmidt polynomial chaos; fuzzy natural 

frequency; fuzzy mode shapes 
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1. Introduction 

    Composite materials have gained immense popularity in application of aerospace, marine, 

automobile and construction industries due to its weight sensitivity and cost-effectiveness. 

Such structures are prone to considerable uncertainty in their fibre and material parameters. 

During production of composite materials, it is always subjected to large variability due to 

unavoidable manufacturing imperfection, operational factors, lack of experience and precise 

test data. Therefore, it is important to investigate the structural behavior of composites due to 

the variability of parameters in each constituent laminate level. This information predicts the 

correlation between the dynamic characteristics, input-output variables and structural health. 

Typical uncertainties incurred are intra-laminate voids, incomplete curing of resin, excess 

resin between plies, excess matrix voids, porosity, variations in ply thickness and fibre 

parameters. In practice, an additional factor of safety is assumed by designers due to 

difficulty in quantifying those uncertainties. This existing practice of designer results in either 

an ultraconservative or an unsafe design.  

Uncertainty can be modelled either by probabilistic or non-probabilistic approach. 

Due to availability of limited sample experimental or testing data (crisp inputs), it will be 

more realistic to follow non-probabilistic approach rather than probabilistic approach. In 

recent years, significant advances have been made in representing uncertainty in composite 

material properties by probabilistic models. However, there has been little attention in the use 

of non-probabilistic models such as fuzzy. In most recent studies, the probability density 

function is used to portray the map of volatility in output characteristics while many 

procedures such as Monte Carlo simulation and probabilistic finite element method [1], 

random field [2] models, random matrix [3], and generalized polynomial chaos with 

Karhunen-Loève expansion [4] are employed. The propagation of structural uncertainty in 

laminated composite structures is carried out by probabilistic approach [5, 6]. Following 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4 
 

random variable based probabilistic approach stochastic analysis for free vibration responses 

of composite plates and shells are reported recently including the effects of uncertainties 

associated with twist angle, rotation and environmental factors such as temperature [7-9]. 

However, these methods usually need large volumes of data, which are expensive and 

computational costs are high. An alternative approach, assuming that large quantities of test 

data are not available, would be to use non-probabilistic methods such as interval and fuzzy. 

Fuzzy finite element analysis [10-11] aims to combine the power of finite element method 

and uncertainty modelling capability of fuzzy variables. One way to view a fuzzy input-

output variable is the universality of an interval variable. It should be noted that the intervals 

do not represent the values of the variable, but the knowledge about the range of possible 

values that a variable can take. For an uncertain variable represented by interval, the values of 

the parameters can be observed within the two bounds (lower and upper). A membership 

function is introduced in fuzzy approach [12]. In real-life problems, original Monte Carlo 

simulation is expensive due to high computational time. Therefore, the aim of the majority of 

current research is to reduce the computational cost. Under the possibilistic interpretation of 

fuzzy sets [13] and uncertainty environment [14], fuzzy variables would become a 

generalized interval variables. Consequently techniques employed in interval analysis such as 

classical interval arithmetic [15], affine analysis [16] or vertex theorems [17] can be used. 

The Neumann expansion [18], the transformation method [19], and response surface based 

methods [20] are proposed for fuzzy analysis. In this context, recently fuzzy analysis is 

employed to deal with uncertainties in engineering problems using only available data [21]. 

Earlier fuzzy approach has been applied to safety analysis [22], random system properties 

[23] and optimal design [24]. In contrast, PCE approach [25] for material uncertainty effect 

on vibration control of smart composite plate and High Dimensional Model Representation 

(HDMR) approach are proposed [26] for the propagation of fuzzy uncertain variables through 
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a complex finite element model. The fracture and fatigue damage response of composite 

materials is studied by using fuzzy [27] while the robust stabilization design of nonlinear 

stochastic partial differential systems by Fuzzy approach [28] and a fuzzy-probabilistic 

approach introduced for strain-hardening cement-based composites [29]. Of late, the 

modeling uncertainty for risk assessment is studied by an integrated approach with fuzzy set 

theory and Monte Carlo simulation [30]. The fuzzy logic based approach to FRP retrofit of 

columns [31] and grey-fuzzy algorithm [32] on composites are studied while experimental 

study with fuzzy logic modeling [33] is also investigated. The coupling of fuzzy concepts 

[34,35] and the modeling of arbitrary uncertainties using Gram-Schmidt polynomial chaos 

[36] can open a novel idea of research. 

In general, Monte Carlo simulation technique is popularly utilized to generate the 

uncertain random output frequency dealing with large sample size. Although the uncertainty 

in material and geometric properties can be computed by direct Monte Carlo Simulation, it is 

inefficient and incurs high computational cost. Recently, the authors developed a fuzzy 

uncertainty propagation method [37] based on Legendre orthogonal polynomial chaos which 

was intrusively applied to static analysis of a rod with uncertain stiffness parameters. The 

present study employs the use of Gram-Schmidt algorithm based polynomial chaos expansion 

in propagation of structural uncertainties of composite structures, when parameter 

uncertainties are represented by fuzzy membership functions. In practice, the fuzzy models 

can be used when there is lack of data to estimate an accurate PDF of the uncertain 

parameters. This paper considers the application of the fuzzy propagation method to dynamic 

analysis of laminated composite plates with realistic uncertain parameters such as ply 

orientation. The polynomial chaos terms are determined by the method explained in Section 

2. The obtained polynomial chaos expansion acts as a surrogate model (meta-model) for the 

full finite element model of composite structure. The regression coefficients of the PCE are 
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then determined by first sampling in the space of input parameters (D-optimal design [38,39] 

in this paper) and then a least square technique. Since the widest range of input parameters 

are considered to be at zero membership function, the regression coefficients can be obtained 

once at this level and used for all highest α-cuts. The application of fuzzy PCE approach for 

uncertainty quantification in the field of composite structures is the first attempt of its kind to 

the best of authors’ knowledge.  The code which was developed by the authors in an earlier 

literature [40] is combined non-intrusively with the proposed method in this present study to 

treat uncertainty associated with complex systems like laminated composite structures. In the 

present study, four layered graphite-epoxy composite laminated cantilever plate is considered 

as furnished in Figure 1. 

 

      

(a)                                                                             (b) 

Fig. 1 (a,b) Laminated composite cantilever plate 

 

2. Theoretical formulation 

 

     In the fuzzy concept [36], a set of transitional states between the members and non-

members are defined via a membership function [ ]
ip

  that indicates the degree to which 

each element in the domain belongs to the fuzzy set. The fuzzy number [ )~(~
ip ] considering 

triangular membership function can be expressed as, 

 ],,[)~(~ L

i

M

i

U

ii pppp   (1) 
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where M

ip , U

ip  and L

ip denote the mean value, the upper bound and lower bounds, 

respectively. 
~  indicates the fuzziness corresponding to α-cut where α is known as 

membership grade or degree of fuzziness ranging from 0 to 1. 

 

Fig. 2 Linear approximation of a Gaussian distribution by triangular fuzzy  

 

 

The Gaussian probability function may be approximated by a triangle by equating the 

area under the normalised Gaussian distribution function [35] with the area under triangular 

membership function as shown in Figure 2. This is just an example to show how a fuzzy 

membership function can be constructed from a given PDF.  In practice, when there is limited 

measured data, the fuzzy membership function of uncertain data can be constructed using 

histogram (such as in [41]). As a result of this approximation the triangular fuzzy 

membership function can be defined as 
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where X 2 , iX̂ and X are the mean and standard deviation of the equivalent 

Gaussian distribution. In this paper, the triangular shaped membership function is employed. 

Now the membership function [ )(ip ] can be expressed as    

 

Otherwise
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The fuzzy input number ip can be expressed into the set iP  of (m+1) intervals )( j

ip using the 

α-cut method 

 ].............,,[)~( )()()2()1()0( m

i

j

iiiii pppppP   (4) 

 

where m denotes the number of α-cut levels. The interval of the j-th level of the i-th fuzzy 

number is given by 

 ],[ ),(),()( Uj

i

Lj

i

j

i ppp   (5) 

 

where ),( Lj

ip  and ),( Uj

ip  denote the lower and upper bounds of the interval at the j-th level, 

respectively. At j=m, ),( Lm

ip = ),( Um

ip = M

ip . The superscripts L and U denote the lower and 

upper bounds, respectively.  

In order to propagate uncertainty in a system where uncertain model parameters are 

represented by fuzzy input numbers, one may apply a numerical procedure of interval 

analysis at a number of α-levels [11].  In this case, the range of the response components on a 

specific level of membership function is searched within the same α-level on the input 

domain, which means that the analysis at each α-cut corresponds to an interval analysis for 

the system. In the present analysis, the orthogonal polynomial chaos basis functions, derived 

from Gram-Schmidt algorithm [36] is employed for uncertainty propagation, as depicted in 

Figure 3. Figure 3 shows the scheme for particular case of two input parameters and one 

output but the idea can be readily generalised for the case of multi-inputs multi-outputs. The 

solution to fuzzy generalised equation at each α-level may be expanded into a polynomial 

chaos expansion as follows: 

( ) ( ) ( )( )  y B ψ p            for , 1,2,...,k k r    (6) 

 

where 
( ) ( )( ) ( ) 1
1 2 ...

T
n

ny y y
     

 
y  denotes the assembled vector of output data at 

k   (the subscript k  is removed from k  for reason of simplicity), 
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 ( ) ( ) 1( ) vec ( ) p    ψ p Ψ p  denotes the assembled vector of Gram-Schmidt 

polynomial chaos basis functions, to be explained in the sequel and Β  is expressed as 
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





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B             (7) 

where )(i

k  are the coefficients of polynomial expansion with k=1,2,3….p ( p is the number of 

terms retained in the expansion), n  is the number of output parameters, 

( ) ( )( ) ( ) 1
1 2 ...

T
m

mp p p
     

 
p is an m-dimensional vector of interval variables at 

k  . As it is already mentioned in the paper, we represent a fuzzy variable with a set of 

interval variables via the membership function. The lower and upper bounds of interval 

variables at different α-levels (i.e.,
),(),(

,
U

i
L

i pp


) can be transformed into the normalized 

values of -1 and 1, respectively. As explained in [37], this is because the solution to the 

Legendre’s differential equation is convergent when the random variables are between -1 and 

1. This mapping can be done for any other type of probability distribution function, e.g. 

Hermite polynomials. The mapping process is shown in Figure 3. The transformation 

function    and its inverse function can be obtained as 

 
 

   

,

, ,

1
2

2

L
i i

i i U L
i i

p p
p

p p



 
 

 
   

 
 

                                                                                   (8) 

 

       , , , ,

1

2 2

U L U L
i i i i

i i i

p p p p

p

   

   

   
    

                                                      (9) 
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The fuzzy propagation starts with a deterministic solution at 1  and will continue by 

interval analysis at lower  -level cuts by substituting  ip  in Eq. (6) for all 1,2,...,i m  and 

all alpha-cuts ( , 1,2,...,k k r   ). Consequently the fuzzy propagation can be expressed in 

terms of the vector valued variable (   1
1 2, ,...,

T m
m    ξ ) as indicated in Eqn. (10). 

 

Fig. 3 Scheme for fuzzy analysis including transformation )(  of a fuzzy variable ip  to ξ ∈ 

[−1,1] for different α-cuts  

 The Gram-Schmidt algorithm used in this analysis to derive polynomial expressions ( )ψ ξ  

that map a domain in the space of input data ‘ξ ’ to a zone of output data. In this case,  

Equation (6) can be written as 

( ) ( ) y B ψ ξ             (10) 

 

where   1( ) vec ( ) p  ψ ξ Ψ ξ  and ( )Ψ ξ is a matrix that can be obtained by tensor 

product of  the ‘m’ one dimensional orthogonal polynomials   0 1( ), ( ),..., ( )i i h i      . The 

one dimensional polynomials are computed from classical Gram–Schmidt algorithm [36]. In 

this method, the polynomial terms are represented as  1
( )

j j
j i i iO    

   where 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11 
 

0,1,...,j h .  This results in 0( ) 1i   and the remaining terms are computed using the 

following recursive equations: 

                                                   

1

0

( ) ( ) ( )

j

j i j i jk k i

k

e c    





                                            (11) 

where 

1

1
1

2

1

( ) ( )

( )

j i k i i

jk

k i i

e d

c

d

   

  











 

      The D-optimal design approach [38, 39] is employed to evaluate the input design points 

for the respective samples at each α-cut and subsequently those values are called for finite 

element iteration.  The goodness of the present model obtained by least squares regression 

analysis is the minimum generalized variance of the estimates of the model coefficients. D-

optimality is achieved if the determinant of (Z
T
 Z)

-1
 is minimal where Z denotes the design 

matrix as a set of value combinations of coded parameters and Z
T
 is the transpose of Z. 

In this paper, the application of the above proposed method is demonstrated in 

laminated composite cantilever plate considering uncertain input parameters as ply 

orientation angle, elastic modulus, mass density and shear modulus while output parameters 

are considered as natural frequency, modal frequency response function and mode shapes 

[ ( )
y  in Equation (10)]. The dynamic equation of motion of the system shown in Figure (1) 

can be expressed as: 

                                 ( ) ( ) ( ) 0      M δ C δ K δ                                      (12) 

where ( )M is the mass matrix, ( )C is damping matrix, ( )K is the stiffness matrix 

and δ , δ  and δ are displacement, velocity and acceleration vectors. The governing equations 
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are derived based on Mindlin’s theory incorporating rotary inertia, transverse shear 

deformation [40] using an eight noded isoparametric plate bending element [42]. More details 

of derivation of the equation of motion are given in [6]. The composite plate is assumed to be 

lightly damped and the natural frequencies of the system are obtained as: 

                                             
 

2 1
( )j

j




 
 

        1,..., rj n                                     (13) 

where j    is the j -th eigenvalue of matrix 1( ) ( )  A K M and rn  indicates the 

number of modes retained in this analysis. Using the transformation  ( ) ( )t tδ Φ q , Equation 

(12) can be decoupled in the modal coordinates as: 

              2( ) 2 ( ) ( ) 0j j j j j jq t q t q t              1,..., rj n  (14) 

 

where j is the damping factor,   rn n
Φ  is a matrix whose columns are the eigenvectors 

of the system and ( )jq t  is the j -th component of vector ( )tq . The generalized proportional 

damping model expresses the damping matrix as a linear combination of the mass and 

stiffness matrices, that is 

( )C = α1 ( )M   (15) 

where α1=0.005 is constant damping factor. In this case, the damping is said to be 

proportional damping. The components of transfer function matrix of the system with 

proportional damping can be obtained as 

2 2

1

( ) ( )
( ) ( )

2

i k

n
l l

ik

l l ll

H j
i

 



 
 

   


 


  
  (16) 

 

where ( )
il

  and ( )
kl

 are the i -th and the k -th components of the l -th fuzzy mode 

shape ( )l Φ . Therefore, the dynamic response of proportionally damped system can be 
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expressed as a linear combination of the undamped mode shapes. As mentioned earlier, the 

Fuzzy outputs in Equation (10) are the natural frequencies in Equation (13), the component of 

mode shapes e.g. ( )
il

 and the components of frequency response function given by 

Equation (16).   

3. Fuzzy input representation 

The fuzziness of input parameters such as ply-orientation angle, elastic modulus, mass 

density and shear modulus at each layer of laminate are considered for composite cantilever 

plates. It is assumed that the distribution of fuzzy input parameters exists within a certain 

tolerance zone with their crisp values. The cases wherein the fuzzy input variables considered 

in each layer of laminate are as follows: 

(a) Variation of ply-orientation angle only:                     }..............{)~( 321 li     

(b) Variation of longitudinal elastic modulus only: }..............{)~( )(1)(1)3(1)2(1)1(11 li EEEEEE 

 
(c) Variation of mass density only:                                 }..............{)~( 321 li     

(d) Variation of longitudinal shear modulus only: }.......{)~( )(12)(12)3(12)2(12)1(1212 li GGGGGG 

 
(e) Combined variation of ply orientation angle, longitudinal elastic modulus, mass density 

and shear modulus (longitudinal): 

])..(),..(),...(),...([)]~(,,,[ )(12)1(12413)(1)1(1211121 llll GGEEGEg     

where θ(i) , E1(i) , ρ(i) and G12(i) are the ply orientation angle, elastic modulus (longitudinal), 

mass density and shear modulus (longitudinal), respectively and ‘l’ denotes the number of 

layer in the laminate. For individual and combined cases, the number of variables (nv) are 

considered as 4 and 16, respectively. In present study,  5º for ply orientation angle and  10% 

tolerance for material properties respectively from fuzzy crisp values are considered. The 

membership grades are considered as 0 to 1 in step of 0.1. Figure 4 presents the flowchart of 

present fuzzy approach. 
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Fig. 4 Flowchart of frequency responses using fuzzy 

4. Results and Discussion 

    The present study considers four layered graphite-epoxy angle-ply [(θ°/-θ°/θ°/-θ°)]  and 

cross-ply (0°/90°/0°/90°) composite cantilever plates. Material properties of graphite–epoxy 

composite [43] considered with deterministic value as E1=138 GPa, E2=8.96 GPa, ν=0.3, 

G12=G13=7.1 GPa, G23=2.84 GPa, ρ=1600 kg/m
3
. In general, the performance function is not 

available as an explicit function of the random design variables for complex composite 

Formulation of fuzzy output membership function 

  

Perform iteration by fuzzy Gram-Schmidt PCE approach  

Identification and definition of range of input parameters 

)~(),~(),~(),~( 121   GE   

Fuzzy analysis for natural frequency, frequency 

response function and mode shapes  

Finite Element formulation to evaluate natural frequencies  

Construct fuzzy input membership function 

FEM 

Code 
Input Output 

Define degree of fuzziness / α-cut 

 

Calculate input bounds for any α-cut 

 

Repeat for 

each α-cut 
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structures. The fuzzy response in terms of natural frequencies of the composite structure can 

only be evaluated numerically at the end of a structural analysis procedure such as the finite 

element method which is often time-consuming. The present fuzzy model is employed to find 

non-probabilistic responses by predefined range of variations in input parameters. The fuzzy 

membership functions are used to determine the first three natural frequencies corresponding 

to given values of input variables with different degree of fuzziness. The uncertainty 

propagation of fuzzy variables can be carried out by interval approach and global 

optimisation approach. In the first approach, a fuzzy variable is considered as an interval 

variable for each α-cut by employing classical interval arithmetic [44]. Moreover, for 

multiple occurace of interval valued variables, the fuzzy expression maximizes the deviation 

of results from true values and thus makes the overestimation effect. Such overestimation will 

not be applicable to design decisions. In contrast, for the global optimisation based approach, 

two optimisation problems are solved to find fuzzy output quantities for each α-cut. If there 

are multiple local optima for the objective function in the optimisation problem, the global 

optimization is used to find the globally best solution. In the present study, the fuzzy 

polynomial chaos expansion (PCE) approach is adopted for uncertainty propagation in 

composite structures wherein the large number of fuzzy input variables are considered to 

optimize the upper and lower bound for output quantity of interest (natural frequency). The 

first three fuzzy natural frequencies are approximated by using the proposed fuzzy PCE 

method described in section 2. The present computer code for fuzzy model is validated with 

the results available in the open literature. Table 1 presents the convergence study of non-

dimensional fundamental natural frequencies of three layered (θ°/-θ°/θ°) graphite-epoxy 

untwisted composite plates [45]. Based on convergence study, a typical discretization of 

(6×6) mesh on plan area with 36 elements 133 nodes with natural coordinates of an 

isoparametric quadratic plate bending element are considered for the present finite element 
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method. The present study investigates on a reliable representation for uncertainty 

quantification of frequency responses of laminated composite plates using fuzzy membership 

function approach. The propagation of uncertainties is also demonstrated in the estimation of 

structural responses of composite cantilever plates. The variations of fuzzy input variables of 

composite plate namely, ply-orientation angle, elastic modulus, mass density and shear 

modulus are considered as furnished in Figure 5. Another convergence study is carried out in 

conjunction to order of PCE model, as depicted in Table 2. There is a trade off between 

accuracy and computational cost found with the increase of order of polynomial i.e., a higher 

order polynomial yields a slightly higher level of accuracy but it costs comparatively much 

higher computational time and vice-versa. Hence, to balance between accuracy and 

computational cost, percentages of errors in results (i.e., maximum and minimum stochastic 

first three natural frequencies) are kept well below 1%. In order to maintain adequate level of 

accuracy and to optimize the computational time, the second order of polynomial is selected 

in the present study. Due to paucity of space, only a few important representative results are 

furnished. 

 

Table 1 Convergence study for non-dimensional fundamental natural frequencies [ω=ωn L
2
 

√(ρ/E1t
2
)] of three layered (θ°/-θ°/θ°) graphite-epoxy untwisted composite plates, a/b=1, 

b/t=100, considering E1 = 138 GPa, E2 = 8.96 GPa, G12 = 7.1 GPa, ν12 = 0.3. 

Ply 

orientation 

angle, θ  

Present FEM 

(4 x 4) 

 

Present FEM 

(6 x 6) 

 

Present FEM 

(8 x 8) 

 

Present FEM 

(10 x 10) 

Qatu and 

Leissa [45] 

 
0° 1.0112 1.0133 1.0107 1.004 1.0175 

45° 0.4556 0.4577 0.4553 0.4549 0.4613 

90° 0.2553 0.2567 0.2547 0.2542 0.2590 
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Table 2 Convergence study for order of polynomial in PCE model for maximum and 

minimum values of first three natural frequencies considering combined variation of ply-

orientation angle, elastic modulus, shear modulus and mass density for four layered graphite-

epoxy angle-ply (45°/-45°/45°/-45°) composite cantilever plate (FNF – Fundamental natural 

frequency, SNF – Second natural frequency, TNF – Third natural frequency) 

 

Mode Value Order of polynomial  

1 2 3 4 5 

 Max 6.3868 6.1996 6.1969 6.1719 6.1706 

FNF       

 Min 5.5876 5.3000 5.3231 5.2881 5.2891 

 Max 17.5101 17.9752 17.8513 17.8873 17.9041 

SNF       

 Min 16.9653 16.1847 16.4643 16.4278 16.4072 

 Max 38.9485 38.0000 38.3018 38.2333 38.2382 

TNF       

 Min 33.9329 33.0011 33.1779 33.0291 33.0316 

      

    The variation of elastic modulus, mass density and shear modulus are scaled in the range 

with the lower and the upper limit (tolerance limit) as ±10% variability (as per standard of 

composite manufacturing industry) with respective mean values while for ply orientation 

angle [ )~(  ] ranging from 0° to 90° in step of 15° in each layer of the composite laminate 

at the lower bound is considered as within ±5º fluctuation (as per standard of composite 

manufacturing industry) with respective mean deterministic values. The fuzzy models are 

formed to generate the maximum and minimum bounds for each α-cut of the first three 

natural frequencies for graphite-epoxy composite cantilever plates. Both angle-ply and cross-

ply laminated composite cantilever plates are considered for the present analysis. For 

variation in only ply orientation angle, it is found that the fundamental natural frequency 

decreases as the ply orientation angle increases from 0° to 90° in the step of 15° irrespective 

of  α-cut as furnished in Figure 6. This is expected as the fundamental mode is bending and 

the bending stffiness of the composite plate falls when ply orientation angle increases. In 

contrast, for variation in only ply orientation angle, the second and third natural frequencies 

increases as the ply orientation angle increases from 0° to 30° in the step of 15° and 
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subsequenyly deceases as the ply orientation angle increases from 45° to 90° in the step of 

15° irrespective of  α-cut. This is owing to the fact that the second and third modes are 

torsion and the maximum torsion stiffness is expected to be at about 45° while the minimum 

values are  around 0° and 90°.It is also observed that the least variation in natural freuqency 

at α=0 is identified for 90)~(   for the first three natural frequencies. This can be 

attributed to the fact that the sensitivity of elastic stiffness is minimum for the fuzziness of 

ply orientation angle at 90)~(  . For only variation in ply orientation angle, the 

maximum bound width (difference between maximum and minimum natural frequencies) is 

observed at α=0 and the minimum bound width is identified at α=1 for the first three natural 

frequencies as furnished in Figure 7. The maximum bound width for fundamental natural 

frequency is found for 15)~(  while the minimum bound width is identified for 

90)~(  irrespective of α-cut. In contrast, the maximum bound width for second and third 

natural frequencies are observed at 60)~(  and 45)~(  , respectively while the 

minimum bound width is consistantly identified for 90)~(  irrespective of α-cut. This 

could be attributed to the fact that the elastic stiffness for each α-cut of the fuzzy variation 

leads to such variation in natural frequencies and consequently the range of frequency 

response corresponding to ply orientation of the composite laminate. The maximum bound 

width or ranges of first three natural frequencies for both angle-ply (45°/-45°/45°/-45°) and 

cross-ply (0°/90°/0°/90°) composite cantilever plate are consistantly observed (Figure 8) for 

combined variation of ply-orientation angle, elastic modulus, mass density and shear modulus 

)]~(,,,[ 121  GE  irrespective of fuzzy α-cut except for α=1 which indicates the respective 

deterministic value of natural frequencies. For the cases of only variation of input parameters 

[i.e., )~(  , )~(1 E , )~(   and )~(12 G ], the maximum range of frequency is identified for 

first and third modes at different α-cuts of the only variation of ply-orientation angle [ )~(  ] 
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for angle-ply (45°/-45°/45°/-45°) composite plate. For cross-ply (0°/90°/0°/90°)  composite 

plate, the ranges of fundamental natural frequencies are in the order as )~(1 E  > )~(   > 

)~(   > )~(12 G (in case of only variation of any single input parameter) invariant to fuzzy 

α-cut. It is also noted that )~(12 G has negligible effect on variation of fundamental natural 

frequency for cross-ply composite plate. In contrast, the ranges of second and third natural 

frequencies of cross-ply composite plates  are in the order as )~(   > )~(1 E  > )~(12 G  > 

)~(   (in case of only variation of any single input parameter) irrespective of α-cut. 

Interestingly, the least influence of )~(  on range of natural frequencies in cross-ply is 

observed in case of cross-ply composite laminate while )~(12 G is found to be least effective 

on range of first three natural frequencies for angle-ply composite plates.  

The comparative studies for angle-ply (45°/-45°/45°/-45°) and cross-ply 

(0°/90°/0°/90°)  composite cantilever plates with respect to maximum and minimum values 

of first three natural frequencies  at α=0 and 0.5 are carried out using gobal optimization 

(GO) approach and present fuzzy Gram-Schmidt polynomial chaos expansion (GSPCE) 

approach as furnished in Table 3 (individual case) and Table 4 (combined case), respectively. 

The computational time required in the proposed approach is observed to be around (1/156) 

times (for individual variation of inputs) and (1/78) times (for combined variation of inputs) 

of global optimization approach. It should be noted that, standard Genetic Algorithm (GA) is 

used for global optimisation. GA has been found as one of the powerful and robust global 

optimisation method that search for global solutions to problems that contain multiple 

maxima or minima. Once the PCE model is formed that is capable of representing the entire 

design domain, global optimization algorithms like GA can be efficiently applied.  For the 

purpose of comparison, results obtained using classical polynomial chaos expansion (CPCE) 

are also furnished in Table 3 and 4 that indicate that there is not much difference between the 
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maximum and minimum values of responses following fuzzy GSPCE and CPCE approach. 

The deviation or difference between these two results corroborates the fact that the present 

PCE approach is accurate and computationally efficient. The frequency response function 

(FRF) plot is furnished in Figure 9 indicating simulation bound, simulation mean and 

deterministic values corresponding to different α-cut for combined stochaticity in ply-

orientation angle, elastic modulus, shear modulus and mass density of angle-ply (45°/-

45°/45°/-45°) composite cantilever plate. The maximum simulation bound of frequency 

responses due to combined variation of input parameters is found at α=0. As the value of α-

cut increases the simulation bound of frequency response function also decreases and finally 

at α=1, it shows the deterministic value without any simulation bound as expected. For a 

given amount of fuzziness in the input parameters, more changes in the fuzzy output 

quantities are observed in the higher frequency ranges. Figure 10(a-c) presents the 

representative modeshapes of the first three natural frequencies considering combined fuzzy-

variation in ply orientation angle, elastic modulus (longitudinal), mass density and shear 

modulus. The fundamental natural frequency corresponds to first spanwise bending and as 

the mode increases the combined effect of torsion and spanwise bending is predominently 

observed for the second and third modes. The normalised component of mode at point 3 (as 

indicated in Fig.1) of first three modes due to combined variation of ply-orientation angle, 

elastic modulus, shear modulus and mass density for four layered graphite-epoxy angle-ply 

composite cantilever plate for different α-cut are furnished in Figure 10(d-e). The normal 

component of first three modes portrays the representative variation of fuzzy mode shapes 

corresponding to different membership grades. As it is illustrated in figure 10(e), even though 

the input fuzzy numbers are defined by a triangular membership function, the resulting 

membership functions of output fuzzy numbers may not have a triangular shape. 
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(a) 

 
 

(b) (c) 

 

(d) 

Fig. 5 Variation of four fuzzy input variables namely, ply-orientation angle, elastic modulus, 

mass density and shear modulus for four layered graphite-epoxy angle-ply (θ°/-θ°/θ°/-θ°) 

composite cantilever plate considering E1=138 GPa, E2=8.9 GPa, G12=G13=7.1 GPa, 

G23=2.84 GPa, ρ=1600 Kg/m
3
, t=0.006 m, ν=0.3. 
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(a) 

 

 

 

 

(b) 

 

 
(c) 

 

Fig. 6 Variation of first three natural frequencies due to only variation in ply-orientation 

angle for four layered graphite-epoxy angle-ply (θ°/-θ°/θ°/-θ°) composite cantilever plate 

considering E1=138 GPa, E2=8.9 GPa, G12=G13=7.1 GPa, G23=2.84 GPa, ρ=1600 Kg/m
3
, 

t=0.006 m, ν=0.3, nv=4. 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

23 
 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 7 Bound width of first three natural frequencies with respect to fibre orientation angle 

due to only variation of ply-orientation angle for four layered graphite-epoxy angle-ply (θ°/-

θ°/θ°/-θ°) composite cantilever plate considering E1=138 GPa, E2=8.9 GPa, G12=G13=7.1 

GPa, G23=2.84 GPa, ρ=1600 Kg/m
3
, t=0.006 m, ν=0.3, nv=4. (FNF-Fundamental natural 

frequency, SNF-Second natural frequency, TNF-Third natural frequency). 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

24 
 

Angle-ply (45°/-45°/45°/-45°) Cross-ply (0°/90°/0°/90°) 

  

(a) (b) 

  

(c) (d) 

 
 

(e) (f) 

Fig. 8 Variation of first three natural frequencies due to only variation of ply-orientation 

angle, elastic modulus, shear modulus and mass density and combined variation for graphite-

epoxy angle-ply (45°/-45°/45°/-45°) and cross-ply (0°/90°/0°/90°)  composite cantilever plate 

considering E1=138 GPa, E2=8.9 GPa, G12=G13=7.1 GPa, G23=2.84 GPa, ρ=1600 Kg/m
3
, 

t=0.006 m, ν=0.3, nv=4 (for individual cases) and nv=16 (for combined case). 
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Table 3 Comparative study between gobal optimization (GO) approach and present fuzzy GSPCE and CPCE approach for α-cut=0 and 0.5 with 

respect to variation of first three natural frequencies due to only variation of ply-orientation angle [ )~(  ] for four layered graphite-epoxy angle-

ply (45°/-45°/45°/-45°) and cross-ply (0°/90°/0°/90°)  composite cantilever plate considering E1=138 GPa, E2=8.9 GPa, G12=G13=7.1 GPa, 

G23=2.84 GPa, ρ=1600 Kg/m
3
, t=0.006 m, ν=0.3, nv=4 (in each cases) (FNF – Fundamental natural frequency, SNF – Second natural frequency, 

TNF – Third natural frequency, , GSPCE– Gram-Schmidt polynomial chaos expansion, CPCE– Classical polynomial chaos expansion) 

α
-c

u
t 

Method 

Angle-ply Cross-ply 

FNF SNF TNF FNF SNF TNF 

Max Min Max Min Max Min Max Min Max Min Max Min 

0 

GO 

Approach 
6.4111 5.1612 17.5827 16.5128 38.9342 32.2457 12.4517 11.9790 17.0457 16.8653 36.2476 36.0004 

Fuzzy 

GSPCE 

Approach 
6.4252 5.1047 17.5887 16.4475 39.0405 31.8866 12.4495 11.9711 17.0625 16.8604 36.2891 35.9981 

% deviation 
-0.22% 1.09% -0.03% 0.40% -0.27% 1.11% 0.02% 0.07% -0.10% 0.03% -0.11% 0.01% 

Fuzzy CPCE 

Approach 
6.3212 5.2456 17.6324 16.3212 38.7645 32.4423 12.2314 11.8974 17.2301 16.6329 36.112 36.1432 

% deviation 
1.40% -1.64% -0.28% 1.16% 0.44% -0.61% 1.77% 0.68% -1.08% 1.38% 0.37% -0.40% 

0.5 

GO 

Approach 
6.0607 5.4366 17.3675 16.8286 37.4502 33.9303 12.4517 12.3274 16.9816 16.9345 36.0859 36.0230 

Fuzzy 

GSPCE 

Approach 
6.0719 5.4184 17.3710 16.8120 37.4868 33.8297 12.4515 12.3258 16.9850 16.9336 36.0929 36.0224 

% deviation 
-0.18% 0.33% -0.02% 0.10% -0.10% 0.30% 0.00% 0.01% -0.02% 0.01% -0.02% 0.00% 

Fuzzy CPCE 

Approach 
6.1265 5.3254 17.4235 16.6923 37.4321 33.7988 12.5978 12.2312 16.8765 16.8865 36.1238 36.1867 

% deviation 
-1.09% 2.05% -0.32% 0.81% 0.05% 0.39% -1.17% 0.78% 0.62% 0.28% -0.11% -0.45% 
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Table 4 Comparative study between gobal optimization (GO) approach and fuzzy GSPCE and CPCE approach for α-cut=0 and 0.5 with respect 

to variation of first three natural frequencies due to combined variation of ply-orientation angle, elastic modulus, shear modulus and mass 

density for four layered graphite-epoxy angle-ply (45°/-45°/45°/-45°) and cross-ply (0°/90°/0°/90°)  composite cantilever plate considering 

E1=138 GPa, E2=8.9 GPa, G12=G13=7.1 GPa, G23=2.84 GPa, ρ=1600 Kg/m
3
, t=0.006 m, ν=0.3, nv=16 (FNF – Fundamental natural frequency, 

SNF – Second natural frequency, TNF – Third natural frequency, GSPCE– Gram-Schmidt polynomial chaos expansion, CPCE– Classical 

polynomial chaos expansion) 

 

α
-c

u
t 

Method 

Angle-ply Cross-ply 

FNF SNF TNF FNF SNF TNF 

Max Min Max Min Max Min Max Min Max Min Max Min 

0 

GO 

Approach 
6.6376 4.9701 18.5214 15.8036 40.3142 31.1363 13.4631 11.3848 18.1851 15.9033 38.1998 34.1395 

Fuzzy 

GSPCE 

Approach 

6.6504 4.8989 18.6893 15.7116 40.6208 30.5514 13.4791 11.1632 18.2047 15.6801 38.4355 33.9291 

% deviation -0.19% 1.43% -0.91% 0.58% -0.76% 1.88% -0.12% 1.95% -0.11% 1.40% -0.62% 0.62% 

Fuzzy CPCE 

Approach 
6.6120 4.8932 18.8432 15.6543 40.4532 31.0876 13.3343 11.4532 18.0876 15.7643 38.3452 34.0054 

% deviation 
0.38% 1.57% -1.71% 0.95% -0.34% 0.15% 0.96% -0.59% 0.54% 0.88% -0.38% 0.39% 

0.5 

GO 

Approach 
6.1616 5.3326 17.8166 16.4582 38.0229 33.3266 12.9504 11.9618 17.5578 16.4166 37.0791 35.0451 

Fuzzy 

GSPCE 

Approach 

6.1996 5.3000 17.9752 16.1847 38.0000 33.0011 12.9907 11.9000 17.5889 16.2929 37.2481 34.9710 

% deviation -0.62% 0.61% -0.89% 1.66% 0.06% 0.98% -0.31% 0.52% -0.18% 0.75% -0.46% 0.21% 

Fuzzy CPCE 

Approach 
6.1494 5.2656 18.2107 16.7285 38.3598 33.1743 12.7521 11.8201 17.7572 16.3433 37.674 35.564 

% deviation 
0.19% 1.25% -2.21% -1.64% -0.88% 0.45% 1.55% 1.19% -1.12% 0.44% -1.57% -1.46% 
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α

-c
u

t 

Point 1 Point 2 Point 3 Point 4 

0.0 

    
 (a) (b) (c) (d) 

     

0.5 

    
 (e) (f) (g) (h) 

     

 

 

Fig. 9(a-h) Frequency response function plot with reference to Figure 1(b), indicating simulation bound, simulation mean and deterministic 

values for combined stochaticity in ply-orientation angle, elastic modulus, shear modulus and mass density of angle-ply (45°/-45°/45°/-45°) 

composite cantilever plate considering E1=138 GPa, E2=8.9 GPa, G12=G13=7.1 GPa, G23=2.84 GPa, ρ=1600 Kg/m
3
, t=0.006 m, ν=0.3, nv=16. 

 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

28 
 

Mode 1 Mode 2 Mode 3 

   

(a) (b) (c) 

                 

(d)                                                                                (e)       

Fig 10 (a-c) Modeshape diagram and (d-e) normalised component of mode at point 3 (point 3 furnished in Fig.1) of first three modes due to 

combined stochaticity in ply-orientation angle, elastic modulus, shear modulus and mass density for four layered graphite-epoxy angle-ply (45°/-

45°/45°/-45°) composite cantilever plate at α-cut=0 considering E1=138 GPa, E2=8.9 GPa, G12=G13=7.1 GPa, G23=2.84 GPa, ρ=1600 Kg/m
3
, 

t=0.006 m, ν=0.3, nv=16. 
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5. Conclusions 

     The novelty of present study includes the hybridization of fuzzy PCE approach based 

uncertainty propagation with laminated composite plate. The uncertainty quantification of 

natural frequency and the frequency response functions with fuzzy variables are derived 

implicitly using finite element method. The present study proposes a new approach to predict 

the uncertainty bounds of first three natural frequencies of composite cantilever plates with 

fuzzy-variation in ply orientation and material properties (such as elastic modulus, mass 

density, shear modulus) in an efficient manner. The computational time and cost is reduced 

by using the present fuzzy PCE approach compared to global optimization method. The 

maximum ranges of first three natural frequencies are consistantly found for combined 

variation of ply-orientation angle, elastic modulus, mass density and shear modulus  

compared to individual variation of any input parameter irrespective of fuzzy α-cut. Due to 

combined variation of input parameters, the maximum simulation bound of frequency 

response function is obtained at α=0 which decreases with increase of fuzzy α-cut and it 

shows the deterministic value without any simulation bound finally at α=1. The fundamental 

natural frequency corresponds to first spanwise bending and as the mode increases the 

combined effect of torsion and bending is predominently observed for the second and three 

modes. The normal component of first three modes are portrayed as the representative 

variation of fuzzy mode shapes corresponding to different membership grades. The present 

study can be extended for future research to deal with more complex system considering a 

large number of fuzzy variables.  
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