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Analytical simulation of the
cantilever-type energy harvester

Jie Mei1, Menglun Tao1, Hanbin Xiao1, Dingfang Chen1 and Lijie Li1,2

Abstract
This article describes an analytical model of the cantilever-type energy harvester based on Euler–Bernoulli’s beam theory.
Starting from the Hamiltonian form of total energy equation, the bending mode shapes and electromechanical dynamic
equations are derived. By solving the constitutive electromechanical dynamic equation, the frequency transfer function
of output voltage and power can be obtained. Through a case study of a unimorph piezoelectric energy harvester, this
analytical modeling method has been validated by the finite element method.
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Introduction

With the rapid advancement of information technology
in the past 20 years, we are facing a new era of Internet
of things (IOTs). However, this new technology is
greatly dependent on various kinds of wireless sensor
nodes (WSNs),1 portable electronics,2 and micro-
electromechanical system (MEMS) devices.3 Currently,
most of them are powered only by batteries, which may
limit the whole system’s operational time and perfor-
mance by periodically replacing or recharging these bat-
teries. Since MEMS are scaled down in the range
of 100nm–1mm and WSNs operate cyclically, the
required power for one separate device is limited into
micro-Watt level, which makes it possible to develop
regenerative micro power supply such as solar cells,
thermoelectric energy harvester, and mechanical vibra-
tion energy harvester4 to power these devices. However,
compared with conventional battery technology, all of
these complementary schemes have their corresponding
advantages and disadvantages. Cook-Chennault et al.5

had ever reviewed these power solutions for portable
MEMS devices, where the author made an emphasis on
piezoelectric vibration generator for its structure

simplicity, easy fabrication, high output voltage, and
long lifespan duration. In this article, we mainly focus
on the analytical modeling of piezoelectric vibration
energy harvester.

The typical structure of piezoelectric scavenger is the
rectangular cantilever beam,6 which mainly consists of
an elastic substrate and a piezoelectric layer as shown
in Figure 1, where one end of the beam is fixed with
host structure and the other end is kept free. When the
host structure is vertically vibrating, the fixed end will
rigidly translate along with the fixture, and the free end
will move with a lagged phase, by which mechanical
strains are induced in the dynamic vibrating process. If
the piezoelectric patch is coated with electrodes on top
and bottom surfaces, electric charges across the
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electrode surfaces on the basis of direct piezoelectric
effect can be induced from the mechanical strain.

In this article, the structure is outlined as follows. In
section ‘‘Analytical model of piezoelectric unimorph
cantilever energy harvester,’’ the analytical model of
piezoelectric unimorph cantilever energy harvester is
described. Section ‘‘Multimode frequency response of
the unimorph cantilever beam’’ provides multimode
frequency response of the unimorph cantilever beam.
In section ‘‘Case study of piezoelectric unimorph canti-
lever scavenger in bending mode,’’ both analytical and
numerical results are compared to prove the validity of
the analytical method. Beside this, the transient
dynamic response of the device is also characterized.
The conclusion remarks are finally made in section
‘‘Conclusion.’’

Analytical model of piezoelectric
unimorph cantilever energy harvester

When the composite cantilever beam vibrates with host
structure vertically, arbitrary point P will translate from
the original position to terminal position P00 as denoted

in Figure 1, where the vector PP00
��!

is resolved into PP0
�!

and P0P00
��!

. For the vector PP0
�!

, we assume that the canti-
lever beam moves rigidly with a displacement of Wbase.

In terms of vector P0P00
��!

, the cantilever along the longitu-
dinal direction will deflect with a relative transverse dis-
placement of wrel. Based on Euler–Bernoulli’s beam
theory, the plane normal to the neutral plane before
deformation is still perpendicular to it after a rotation.
Therefore, the rotation angle u of point P00 is defined as
∂wrel=∂x. The position vectors of point P and P00 in the

OXZ coordinate system can be expressed as equations
(1) and (2), respectively

OP
!

= x~e1 + z~e3 ð1Þ

OP00
!

= x� z
∂wrel

∂x

� �
~e1 + z+wbase +wrelð Þ~e3 ð2Þ

In order to characterize the dynamic motion with
respect to reference coordinate, the absolute velocity of
point P00 can be derived based on equations (1) and (2)

d PP00
!

dt
=

d OP00
!

dt
� d OP

!

dt
= � z

∂ _wrel x, tð Þ
∂x

~e1

+ _wbase tð Þ+ _wrel x, tð Þð Þ~e3

ð3Þ

And the relative displacement of P00 with respect to
P0 is derived as

P0P00
!

= PP00
!
�PP0
!

= � z
∂wrel x, tð Þ

∂x
~e1 +wrel x, tð Þ~e3 ð4Þ

Based on the continuum thermodynamics, the strain
tensor can be denoted as

eij =
1

2
ui, j + uj, i

� �
ð5Þ

where eij is the strain tensor, and ui, j denotes the displa-
cement derivative with respect to coordinate j. By dif-
ferentiating equation (4) with respect to x, the stretch
strain field across the whole composite beam structure
can be expressed as

exx = e1 =

∂ P0P00
!
�~e1

� �
∂x

= � z
∂2wrel x, tð Þ

∂x2
= � ze 1ð Þ

1 ð6Þ

As the linear electrical enthalpy of piezoelectric
material can be approximated by7,8

H ekl,Ekð Þ= 1

2
cE

ijkleijekl � eijkEiejk �
1

2
ze

ijEiEj ð7Þ

Then, the constitutive relation derived from equation
(7) can be obtained as

sij =
∂H

∂eij

= cE
ijklekl � ekijEk ð8Þ

Di = � ∂H

∂Ei

= eiklekl + ze
ikEk ð9Þ

In equations (7)–(9), the terms cE
ijkl, eijk , and zE

ij are
the elastic stiffness at constant electric field, piezo-
electric coupling coefficient, and permittivity at con-
stant strain, respectively. sij, Di, and Ek represent the
stress tensor, electric displacement vector, and

Figure 1. Schematic figure showing the dynamic motion of the
unimorph piezoelectric energy harvester.
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electric field vector that are expressed in Voigt’s nota-
tion. The total energy equation of the piezoelectric
composite beam is expressed in the Hamiltonian form
shown as7,9

ðt2
t1

dKE � dPE+ dWE+ dWf

� �
dt= 0 ð10Þ

where KE, PE, WE, and Wf are the kinetic energy,
potential energy, electric energy derived by the direct
piezoelectric effect from piezoelectric patches, and
mechanical energy from the external host structure
vibration, respectively. If the piezoelectric layer is polar-
ized upward in thickness direction and electrodes are
set at major surfaces of the beam, then electric field will
be induced in the vertical direction. Considering the
assumption of Euler–Bernoulli’s beam theory that only
the strain component exx is nontrivial while others are
all zero, equations (8) and (9) will be reduced as

sxx = cE
11e1 � e31E3 ð11Þ

D3 = e31e1 + ze
33E3 ð12Þ

where E3 is the electric field in vertical direction.
Combining equations (3)–(12), the Lagrangian La of
the total energy that takes both external mechanical
and electrical works into consideration can be deduced
as

ðt2
t1

d La +Wf

� �
dt=

ðt2
t1

dKE � dPE+ dWE+ dWf

� �
dt

=

ðt2
t1

ð
S

I C, kð Þ ∂
2 €wrel

∂x2
dwrel

� �
ds

8<
:

9=
;dt+

ðt2
t1

ð
S

�I A, kð Þ€wreldwrel � I A, kð Þ€wbasedwrel

h i
dS

8<
:

9=
;dt

�
ðt2
t1

ð
S

C
F, kð Þ

11

∂4wrel

∂x4
dwrel � R

H , kð Þ
31

∂2v(t)

∂x2
dwrel

� �
dS

8<
:

9=
;dt+

ðt2
t1

ð
S

R
H , kð Þ

31

∂2wrel

∂x2
+ S

kð Þ
33 v tð Þ

� �
dv tð ÞdS

8<
:

9=
;dt+

ðt2
t1

qdv tð Þdt

�
ðt2
t1

þ
S

nx C
F, kð Þ

11

∂2wrel

∂x2

� �
d

∂wrel

∂x

� �
dS

8<
:

9=
;dt+

ðt2
t1

þ
S

nxC
F, kð Þ

11

∂3wrel

∂x3
dwreldS

8<
:

9=
;dt+

ðt2
t1

þ
S

nxR
H , kð Þ

31 v(t)d
∂wrel

∂x

� �
dS

8<
:

9=
;dt

�
ðt2
t1

þ
S

nxR
H , kð Þ

31

∂v(t)

∂x
dwreldS

8<
:

9=
;dt �

ðt2
t1

þ
S

I C, kð Þnx

∂€wrel

∂x
dwrelds

8<
:

9=
;dt ð13Þ

where I (A, k) and I (C, k) are the zeroth and second mass
moments of inertia per unit area with respect to the
characteristic material property and cross-sectional
area of piezoelectric layer and substrate layer, respec-
tively. q and v(t) are the electric charges and electric
potential, respectively. The coefficients C

(F, k)
11 , R

(H , k)
31 ,

and S
(k)
33 are defined as follows

C
F, kð Þ

11 =

ðzs�tp

� ts + tp�zsð Þ
z2Esdz+

ðzs

zs�tp

z2cE
11dz

=
1

3
Es t3

s � 3ts zs � tp

� �
ts � zs + tp

� �	 

+

1

3
cE

11 t3
p + 3z2

s tp � 3zst
2
p

� �
ð14Þ

R
H , kð Þ

31 =

ðzs

zs�tp

ze31

1

tp

� �
dz= e31 zs �

tp

2

� �
ð15Þ

S
kð Þ

33 =

ðzs

zs�tp

ze
33

t2
p

dz=
ze

33

tp

ð16Þ

In the equations, tp, ts, zs, and b represent the piezo-
electric layer thickness, substrate layer thickness, dis-
tance between neutral plane and top surface, and
composite beam width, respectively. cE

11 and Es denote
the stiffness coefficient for piezoelectric layer and
Young’s modulus for substrate, respectively. z33 is the
relative permittivity. From equation (13), it can be seen
that the Lagrangian theorem can be reformulated in
terms of virtual relative displacement and electrical
potential for the basic constitutive electromechanical
dynamic equations of piezoelectric unimorph cantilever
beam. With the parameter of virtual relative transverse
displacement and electrical potential being set as

zero, the corresponding electromechanical dynamic
equations can be deduced as follows

dwrel : Î C, kð Þ ∂
2 €wrel

∂x2
� Î A, kð Þ€wrel � Î A, kð Þ€wbase

� Ĉ
F, kð Þ

11

∂4wrel

∂x4
+ R̂

H , kð Þ
31

∂2v(t)

∂x2
= 0

ð17Þ
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dv :

ðL
0

R̂
H , kð Þ

31

∂2wrel

∂x2
+ Ŝ

kð Þ
33 v tð Þ

� �
dx+ q= 0 ð18Þ

where Î (A, k), Î (C, k), Ĉ
(F, k)
11 , R̂

(H , k)
31 , and Ŝ

(k)
33 denote the

integration of the corresponding terms with respect to
y. In order to characterize the dynamic equation, it
should first derive the natural frequency and its corre-
sponding mode shapes, where external excitations
including both terms €wbase and v(t) will not be consid-
ered. Therefore, it is assumed that wrel =F(x)eivt. And
the corresponding eigenfunction can be derived as

∂4F xð Þ
∂x4

+
Î

C, kð Þ
v2

Ĉ
F, kð Þ

11

∂2F xð Þ
∂x2

� Î
A, kð Þ

v2

Ĉ
F, kð Þ

11

F xð Þ= 0 ð19Þ

The solution to the ordinary differential equation
(19) is obtained as

F xð Þ=C1 coshmx+C2 sinhmx+C3 cos nx+C4 sin nx

ð20Þ

where

m=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� Î

C, kð Þ
v2

2Ĉ
F, kð Þ

11

+
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Î

C, kð Þ
v2

Ĉ
F, kð Þ

11

 !2

+ 4
Î

A, kð Þ
v2

Ĉ
F, kð Þ

11

vuut
vuuut

n=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Î

C, kð Þ
v2

2Ĉ
F, kð Þ

11

+
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Î

C, kð Þ
v2

Ĉ
F, kð Þ

11

 !2

+ 4
Î

A, kð Þ
v2

Ĉ
F, kð Þ

11

vuut
vuuut

The associated boundary conditions are given as

F 0ð Þ= 0,
∂F 0ð Þ
∂x

= 0,
∂2F Lð Þ
∂x2

= 0 and
∂3F Lð Þ
∂x3

+
Î

C, kð Þ
v2

Ĉ
F, kð Þ

11

∂F Lð Þ
∂x

= 0 ð2Þ

Combining equations (20) and (21), the coefficients
C1 to C4 can be determined according to the equation
below

F 0ð Þ=C1 +C3 = 0

∂F 0ð Þ
∂x

=mC2 + nC4 = 0

∂2F Lð Þ
∂x2

=m2 coshmLC1 +m2 sinhmLC2 � n2 cos nLC3 � n2 sin nLC4 = 0

∂3F Lð Þ
∂x3

+
Î

C, kð Þ
v2

Ĉ
F, kð Þ

11

∂F Lð Þ
∂x

= m3 sinhmL+
Î

C, kð Þ
v2

Ĉ
F, kð Þ

11

m sinhmL

 !
C1 + m3 coshmL+

Î
C, kð Þ

v2

Ĉ
F, kð Þ

11

m coshmL

 !
C2

+ n3 sin nL� Î
C, kð Þ

v2

Ĉ
F, kð Þ

11

n sin nL

 !
C3 � n3 cos nL� Î

C, kð Þ
v2

Ĉ
F, kð Þ

11

n cos nL

 !
C4 = 0 ð22Þ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

In order to obtain a nontrivial value of C1 to C4, the
determinant of coefficient matrix should be equal to
zero, and thus, the values for natural frequencies vi can
be determined in numerical methods. Based on the
obtained result, it is easy to derive the mode shape
function as equation (23)

F xð Þ=C1 coshmx� a
n

m
sinhmx� cos nx+ a sin nx

� �
ð23Þ

where

a=
m2 coshmL+ n2 cos nL

mn sinhmL+ n2 sin nL

Multimode frequency response of the
unimorph cantilever beam

If Ritz method is utilized to represent the transverse dis-
placement, the solution form can be expressed as

wrel x, tð Þ=
Xm

r = 1

crFr xð Þeivt ð24Þ

where cr is the unknown Ritz coefficients that can be
determined by eigenfunction

Xm

r = 1

Kqr � v2Mqr

	 

cr = 0, q= 1, 2, . . . ,m ð25Þ

As the values of v can be determined by equation
(22), each value of v can determine a corresponding
eigenvector of fcrg based on equation (25). Therefore,
the arbitrary Ritz mode shapes can conversely be
expressed in terms of both eigenvector ckr and trun-
cated mode shapes Fk(x)

Fr xð Þ=
Xm

k = 1

ckrFk xð Þ r = 1, 2, . . . ,m ð26Þ

If Fr(x) is normalized with respect to the mass
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F̂r xð Þ= Fr xð ÞÐL
0

Î
A, kð Þ

F2
r xð Þdx+

ÐL
0

Î
C, kð Þ ∂Fr xð Þ

∂x

� �2

dx

� �1=2

r = 1, 2, . . . ,m ð27Þ

Then, equation (24) can be rearranged as

wrel x, tð Þ=
Xm

r = 1

F̂r xð Þwr tð Þ ð28Þ

By substituting equation (28) into equations (17) and
(18), the dynamic equations can be rewritten as

€wr + 2§rvr _wr +v2
r wr � P̂rv= � Q̂r €wbase ð29Þ

Xm

r = 1

P̂r _wr +PD _n +RLn= 0 ð30Þ

where

2§rvr =a+bv2
r

P̂r =

ðL
0

R̂
H , kð Þ

31

∂2F̂r xð Þ
∂x2

dx

Q̂r =

ðL
0

Î
A, kð Þ

F̂r xð Þdx

If Laplace transforms are applied into equations
(29) and (30), the transfer functions of wabs(x, t) and
_wabs(x, t) related to input acceleration of €wbase(t) will be
deduced as equations (31) and (32)

Habs
1 x, jvð Þ=

Xm

r = 1

F̂r xð Þ
v2

r � v2 + j2zrvrv

P̂r

Pm
r= 1

jP̂rQ̂rv

v2
r�v2 + j2zrvrv

jvPD +RL +
Pm

r= 1

jvP2
r

v2
r�v2 + j2zrvrv

� Q̂r

0
BB@

1
CCA

2
664

3
775� 1

v2

ð31Þ

Habs
4 x, jvð Þ= jv

Xm

r = 1

F̂r xð Þ
v2

r � v2 + j2zrvrv

P̂r

Pm
r= 1

jP̂rQ̂rv

v2
r�v2 + j2zrvrv

jvPD +RL +
Pm

r= 1

jvP2
r

v2
r�v2 + j2zrvrv

� Q̂r

0
BB@

1
CCA

2
664

3
775+

1

jv

ð32Þ

The time-dependent dynamical responses of voltage
and power outputs are deduced as equations (33) and
(34), respectively

v tð Þ= � v2wbaseejvt

Pm
r = 1

jvP̂rQ̂r

v2
r�v2 + j2zrvrv

jvPD +RL +
Pm

r = 1

jvP̂2
r

v2
r�v2 + j2zrvrv

ð33Þ

P tð Þ= v4w2
baseej2vt

Rload

Pm
r= 1

jvP̂rQ̂r

v2
r�v2 + j2zrvrv

jvPD +RL +
Pm

r = 1

jvP̂2
r

v2
r�v2 + j2zrvrv

2
664

3
775

2

ð34Þ

Correspondingly, the frequency response functions
(FRFs) of v(t) and P(t) related to input acceleration of
€wbase(t) will be deduced as

H2 jvð Þ=

Pm
r = 1

jvP̂rQ̂r

v2
r�v2 + j2zrvrv

jvPD +RL +
Pm

r = 1

jvP̂2
r

v2
r�v2 + j2zrvrv

ð35Þ

H3 vð Þ= 1

Rload

Pm
r= 1

jvP̂rQ̂r

v2
r�v2 + j2zrvrv

jvPD +RL +
Pm

r = 1

jvP̂2
r

v2
r�v2 + j2zrvrv

2
664

3
775

2

ð36Þ

From equation (34), the optimal harvested power
will be determined by setting the external load resis-
tance Rload as

Rload =Pm
r = 1

vP̂2
r 2zrvrvð Þ

v2
r�v2ð Þ2 + 2zrvrvð Þ2

� j vPD +
Pm

r= 1

v2
r�v2ð ÞvP̂2

r

v2
r�v2ð Þ2 + 2zrvrvð Þ2

� �����
����

Pm
r = 1

vP̂2
r 2zrvrvð Þ

v2
r�v2ð Þ2 + 2zrvrvð Þ2

� �2

+ vPD +
Pm

r= 1

v2
r�v2ð ÞvP̂2

r

v2
r�v2ð Þ2 + 2zrvrvð Þ2

� �2

ð37Þ

The optimal resistance is obtained by differentiating
equation (36) with respect to Rload and setting the differ-
entiation function to be zero.

Case study of piezoelectric unimorph
cantilever scavenger in bending mode

Analytical simulation

In order to prove the feasibility of the model, the basic
unimorph cantilever structure for the vibration energy
harvesting device is proposed. Piezoelectric material of
PZT-5H10,11 is used in the top layer where the polarized
direction is set upward in the vertical direction.
Parameters for PZT-5H including stiffness constant c11,
mass density rp, piezoelectric coupling coefficient d31,
and relative permittivity z33 are 126GPa, 7500 kg=m3,
�274:8 pm=V, 3200 z0, and 8:854 3 10�12 F=m, respec-
tively. The material for elastic substrate is selected to be
45 steel whose Young’s modulus, Poisson’s ratio, and
mass density are 205GPa, 0.28, and 7850 kg=m3,
respectively. The dimension of the geometric structure
and its corresponding inertial moment of mass are
listed in Table 1.

Mei et al. 5
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Since the order of Î (C, k) is small compared with other
parameters, the value of Î (C, k) can be treated as 0.
Therefore, the determinant of coefficient matrix of
equation can be reduced as

1+ coshmL cosmL= 0 ð38Þ

Through the numerical calculations, the first three
resonant frequencies are determined to be 162.0125,
1015.3149, and 2842.9110Hz, respectively. The first
three bending mode shapes can be obtained and they
are plotted as shown in Figure 2.

By further substitution of these parameters and nor-
malized mode shapes into equation (35), the FRF of
output voltage is determined. From the results shown
in Figure 3(a), the highest output voltages around the
first three modes are 0.526V/g, 0.00437V/g, and
0.1944mV/g in open circuit. With the load resistance
being decreased, the output voltage monotonically
diminishes and finally reaches a minimum value of
0.00471V/g at 100O. However, when it comes to power
output response, the maximum power output at 162Hz
is 13.6mW/g2, where the impedance of the piezoelectric
energy harvester is matched with a resistance of
11.043 kO. Similarly, the output power generated
across the load resistances at 100O, 679O, 1.9 kO, and
30kO all present peak values at 160Hz, while for peak
value of output power at 10MO, the corresponding fre-
quency is shifted to 162.5Hz. This frequency shift is
due to the fact that the response functions of voltage
and power are related to load resistance and piezoelec-
tric power; the frequency of the peak value of output
power is shifted according to formulas (35) and (36).
For second mode at 1015Hz, the maximum power out-
put is 5.13 nW/g2, where the optimum load resistance
of 1.9 kO is proved. The resonant frequencies for
devices with load resistances of 100O, 679O, and
1.9 kO are 1015Hz, while for that of 11.043 kO, 30 kO,
and 10MO, the frequencies are shifted to be 1014.5Hz.
In the third mode, the maximum power output is
27.614 pW/g2 at the load resistance of 679O. The

resonant frequencies for the load resistance of 100O,
679O, and 1.9 kO are 2824, 2817.5, and 2811.5Hz,
respectively. The third resonant frequencies in other
cases are all 2810Hz. The effective factors to the reso-
nant frequency include the geometric dimensions,
Young’s modulus, stiffness, and mass densities, which
can be found from the combination of formula (38),
expression for m, and I (A, k) and C

(F, k)
11 . As the resonant

frequency is determined, the effective factors to the
response function of voltage and power are PD, Rload ,
zrP̂r, and Q̂r, which are related with mass densities of
substrate layer and piezoelectric layer, piezoelectric
coupling coefficient, geometric dimensions, and shape
functions. As equation (20) expresses, the coefficients
of the shape function depends on the boundary
conditions.

Numerical analysis

In this section, we use the finite element analysis pack-
age ANSYS 12.0 to validate the proposed analytical
method. Although the geometric structure dimensions
are still the same as described in section ‘‘Multimode
frequency response of the unimorph cantilever beam,’’
there are some differences on material constants that
need to be clarified. Finite element method (FEM) has
been widely used in modeling mechanical energy har-
vesting devices.12 In the analytical method, as the beam
model is simplified to Euler–Bernoulli type and only
transverse displacement is considered, beam width plays
no effect on the whole device output performance.
Therefore, the geometric model can be built in a two-
dimensional domain in ANSYS software. Here, plane

Table 1. Dimensions of geometric structure and
corresponding coefficients.

Geometric properties Piezoelectric layer Elastic substrate

Length, L (mm) 40 40
Thickness, t (mm) 0.11 0.24
Width, b (mm) 8 8
zs(mm) 0.1915
Î A, kð Þ 2:1672310�2

Î C, kð Þ 4:0769310�10

Ĉ
F, kð Þ

11 4:6504310�3

R̂
H, kð Þ

31 �7:098310�6

Ŝ
kð Þ

33 2:06057310�6

Figure 2. Bending mode shapes of the cantilever beam at
162.0125, 1015.3149, and 2842.9110 Hz.
The values of a and b are set to be 0 and 7:87310�6, respectively. The

damping ratios of z1, z2, and z3 are then solved to be 0.004, 0.0251, and

0.073, respectively. The meaning of the x-axis denotes the coordinate

along the length direction of the rectangular cantilever energy harvester.
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elements plane223 and plane82 are used for modeling
the piezoelectric and substrate layers. Since plane223 is
used in a piezoelectric-coupled field analysis, it works
either in a plane stress or plane strain condition, where
more material constants such as c22, c33, and c44 should
be considered for the positive definite matrix of ½cE�.
Piezoelectric material constants of z11 and e33 should
also be considered in the FEM for proper calculations.
It is noted that since the coupling effect among the
strain components is not considered in the analytical
assumption, the terms c12 and c13 are treated to be 0 in
½cE�. The geometric dimensions are exactly the same as
shown in Table 1. Additional material parameters that
are defined in the FEM are shown in Table 2.

In the modal analysis, the composite beams are mod-
eled by two glued rectangles where one end is fixed and
the other end is kept free. On the top and bottom sur-
faces of piezoelectric layer, the electrodes are modeled
using the coupled commands. The mode shapes of the
geometric structure in displacement contour are shown
in Figure 4. The mode shape of the rectangular cantile-
ver beam in FEM is the same as that in analytical simu-
lation, which can be proved by the calculated resonant
frequencies and the shapes. Although the shapes at
mode 2 between analytical and FEM methods are in
opposite directions, they are attributed to the negative
value of coefficient ckr been chosen in equation (23).
The calculated resonant frequencies of 162.26, 1015.53,
and 2841.02Hz coincide well with analytical results of
162.0125, 1015.3149, and 2842.9110Hz, respectively.

As the first three mode shapes and resonant frequen-
cies are determined, the dynamic response of output
voltage and power should be characterized as well. In
analytical method, the optimum resistance around the
first three resonant modes is determined to be
11.043kO, 1.9 kO, and 679O according to equation
(37). In FEM, we calculate the optimum external load
resistance according to

Rload =
1

2pfrC
ð39Þ

where fr and C denote the resonant frequency and
piezoelectric capacitance, respectively. The capacitance
of piezoelectric layer is determined by the extracted
charges in the static analysis by setting a voltage of 1V
across the electrodes. Here, as the geometric structure is
in two-dimensional domain, the obtained value of capa-
citance is 1:218791812 3 10�5 F=m. Correspondingly,
the optimum load resistances at resonant frequencies of
162.26, 1015.53, and 2841.02Hz are solved to be
80.481, 12.859, and 4.597Om, respectively. In actual
three-dimensional models, the beam width should be
considered. The optimum resistances are calculated to
be 10.06 kO, 1.607 kO, and 574.565O by dividing
80.481, 12.859, and 4.597Om with the beam width of
8mm. In addition, the resistances of 100O, 30 kO, and

Table 2. Material parameters for PZT-5H.

Elastic
stiffness (GPa)

Coupling
coefficients (c/m2)

Dielectric
constants (c/m2)

c22 = 126 e31 = � 6:5 z31 = 3200
c33 = 117 e32 = � 6:5 z32 = 3200
c44 = 23:3 e33 = 23:3

Figure 3. Frequency response functions (FRFs) of (a) output voltage and (b) power.

Figure 4. Mode shapes of the rectangular cantilever beam in
FEM.
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10MO are also included for a direct comparison with
analytical output results. In Figure 5(a), the output vol-
tage is characterized by sweeping the driven frequency
from 0 to 3000Hz with a step of 1Hz. From the results,
it is found that the output voltage is decreased from
mode 1 to mode 3, but increased when the external load
resistance varies from 100O to 10MO. The peak output
voltages across 10MO resistor around the three reso-
nant modes are 0.93739, 0.04958, and 0.00606V/g at
162, 1015, and 2829Hz, respectively, which are all a bit
overestimated compared with analytical results. The
reason to this phenomenon is that the coupling effect of
e32 and e33 on the output voltage is considered.
However, the predicted varying trends of the output
voltage responses are still similar with each other
between analytical and finite element models.

The maximum power output at 162Hz is
35.4697mW/g2, where the optimum resistance of
10.06 kO is matched to the piezoelectric energy har-
vester. The generated peak output power at 162Hz
across 100O, 574.565O, 1.607 kO, 30 kO, and 10MO
are 0.98979, 5.49292, 14.0783, 22.6027, and
0.008787mW/g2, respectively. For the second mode at
1015Hz, the maximum power output is 743.688 nW/g2,
where the optimum resistance is changed to be
1.607 kO. Correspondingly, the induced power across
100O, 574.565O, 10.06 kO, 30 kO, and 10MO are
93.7168, 474.044, 236.42, 81.4825, and 0.24578 nW/g2,
respectively. In the third mode, the peak output power
is 31.0336 nW/g2 at 2836Hz, where the matched exter-
nal load resistance is 574.565O. Similar to previous
analytical results, the resonant frequencies across
100O, 1.607 kO, 10.06 kO, 30 kO, and 10MO are
shifted to be 2843, 2831, 2830, 2829, and 2829Hz,
respectively. Through the comparison of the results
between analytical method and FEM, the power output
around the first resonant mode is comparable with each
other, while the difference in the outputs at second and
third modes is quite large. The reason to this result is
attributed to the assumption of plane strain in FEM.

In FEM, not only c11, z11, and e33 are considered but
also the coefficients c22, c33, c44, z11, and e33 are taken
into account in calculating the values of Kqr, Mqr, Qq,
Pq, Pr, and PD. Regarding the simulation in ANSYS
software, the two-dimensional simulation of the bend-
ing mode cantilever energy harvester is based on the
plane strain assumption, where the constitutive equa-
tion is expressed as the following formula

s1 = c11 �
c2

13

c33

� �
e1 + c12 �

c13c32

c33

� �
e2

+ e13 �
c13

c33

e33

� �
E3

ð40Þ

s2 = c21 �
c23c31

c33

� �
e1 + c22 �

c23c32

c33

� �
e2

+ e23 �
c23

c33

e33

� �
E3

ð41Þ

s44 = c44e4 ð42Þ

Comparing the modified constitutive equations with
formulas (11) and (12), the terms c12, c13, c23, and c32

and e13, e23, and e33 play important roles in the dynamic
responses. Although the terms c12, c13, c23, and c32 are
treated to be 0, the coefficients c22, c33, c44, z11, and e33

still make extra impact on the output voltage and power
responses at corresponding resonant modes compared
with the analytical method. However, c11, z11, and e33

are dominant coefficients in this calculation in the first
resonant mode. While for higher modes, the effects of
c22, c33, and c44 should not be neglected. When the dri-
ven frequency is increased up to higher resonant fre-
quencies, the deviation of the output voltage and power
with respect to the analytical results can be augmented
according to equations (35) and (36).

Transient analysis of the dynamic response

In the transient analysis using FEM, we focus on the
dynamic response at the first mode, where the external

Figure 5. Frequency response functions (FRFs) of (a) output voltage and (b) power in FEM.
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driving frequency is set constant at 162.26Hz. The
vibration displacement amplitude at the fixed end is set
with a value of 3.96mm, which means that the accelera-
tion amplitude is defined to be 0.104m/s2 (approxi-
mately 0.01 g). External load resistor of 10.06 kO is
connected to the piezoelectric layer. When the device is
working, the fixed end of the cantilever vibrates rigidly
with the external excitation. But for the free end, it will
induce relative transverse displacement with respect to
the rigid moving base because of the transverse bending
motion. Through the finite element analysis, the displa-
cement response of the tip is shown in Figure 6(a) and
(b). From the sinusoidal wave, it is found that the dis-
placement oscillates cyclically around the equilibrium
point with a time period of 6.16ms. Initially, the tip
motion is in a transient status in 0.72152 s. After it
transcends this time period, the oscillation is kept stable
at amplitude of 0.543mm, which can be observed in
the zoomed out Figure 6(b).

The transient dynamic response of the output vol-
tage across the load resistor is shown in Figure 7(a)
and (b), where the output voltage response enters a sta-
ble state from 0.72383 s. The amplitude of the output
voltage is 0.9669V with a frequency of 162.26Hz.
However, when it comes to the generated instantaneous
power across 10.06 kO, the frequency is double of
162.26Hz, as the instantaneous power is calculated by
P=(1=2)(V 2=R), where both the positive and negative
voltages could be utilized to power the external electric
load. This can be observed in Figure 8(b). The dynamic
response of the generated power is shown in Figure
8(a), where the maximum instantaneous output power
of 92.828mW is first reached at 0.68069 s. In the time
period of 2 s, the induced energy from the bending
mode motion can be calculated. Figure 9 shows the
relationship between the induced electric energy and
the external excitation. When the base is excited with
an acceleration of 0.001 g, the dissipated energy across

Figure 6. (a) Transient dynamic response of tip displacement in 2 s and (b) zoomed out figure of transient dynamic response of the
tip displacement at stable state.

Figure 7. (a) Transient dynamic response of output voltage in 2 s and (b) zoomed out figure of transient dynamic response of the
output voltage at stable state.
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the external load resistance is 0.817mJ. With the excita-
tion increased from 0.001 to 0.27 g, the maximum con-
verted energy of 59.6mJ can be obtained. As for the
amplitude of output voltage response, it is almost in a
linear relationship with the output excitation.

Conclusion

In this article, the analytical model of piezoelectric unim-
orph cantilever energy harvester has been provided based
on Euler–Bernoulli’s beam theory. By expressing the
Hamiltonian form of the total energy equation into
strong form and weak form, the mode shape functions
and electromechanical dynamic equations have been
obtained. Utilizing the Ritz method and Laplace trans-
forms, the FRFs of output voltage and generated power
across load resistor are provided. To prove the validity
of analytical model, a specific unimorph piezoelectric
energy harvester has been studied. By substituting the
related parameters in the derived formulations, bending
mode shapes as well as first three resonant frequencies of
162, 1015, and 2842Hz are obtained. In order to

characterize the dynamic behavior of the device, the
varying trends of output voltage and generated power
versus driven frequencies are predicted. In this way, the
optimum load resistances at corresponding resonant
modes are determined. For confirming the effectiveness
of analytical model, the proposed piezoelectric energy
harvester is also simulated in commercial finite element
software ANSYS. Through the specified definition of
the material property and modeling elements, the calcu-
lated first three bending mode resonant frequencies—
162, 1015, and 2841Hz—coincide well with analytical
results. Through the static analysis of piezoelectric
energy harvester, the resistance of the optimum power
output corresponding to each mode is found to be com-
parable with analytical results as well. By conducting the
harmonic analysis, the varying trends of FRFs of output
voltage and generated power also agree well with each
other. Only one issue that should be noted is that the
output values at second and third modes are overesti-
mated compared with the analytical model. This phe-
nomenon is attributed to the fact that the additional
coefficients c22, c33, c44, z11, and e33 have been taken into
account. When the swept frequency is increased from the
first mode to higher modes, the minor difference between
the two methods around the first mode is amplified by
the increased driving frequency. However, the results at
first mode matched well with each other. Finally, the
transient dynamic behavior of the cantilever energy har-
vester has been examined in FEM. As the external exci-
tation is increased from 0.001 to 0.27 g, the output
voltage across the external load is linearly increased. The
maximum converted energy of 59.6mJ can be derived in
2 s under the vibration amplitude of 0.27 g.
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Figure 8. (a) Transient dynamic response of output power in 2 s and (b) zoomed out figure of transient dynamic response of the
output power at stable state.

Figure 9. Open voltage and dissipated electrical energy versus
base excitation.
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