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distributions
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Abstract

Vegetation patch-size distributions have been an intense area of study for
theoreticians and applied ecologists alike in recent years. Of particular inter-
est is the seemingly ubiquitous nature of power-law patch-size distributions
emerging in a number of diverse ecosystems. The leading explanation of the
emergence of these power-laws is due to local facilitative mechanisms. There
is also a common transition from power law to exponential distribution when
a system is under global pressure, such as grazing or lack of rainfall. These
phenomena require a simple mechanistic explanation. Here, we study vege-
tation patches from a spatially implicit, patch dynamic viewpoint. We show
that under minimal assumptions a power-law patch-size distribution appears
as a natural consequence of aggregation. A linear death term also leads to
an exponential term in the distribution for any non-zero death rate. This
work shows the origin of the breakdown of the power-law under increasing
pressure and shows that in general, we expect to observe a power law with
an exponential cutoff (rather than pure power laws). The estimated param-
eters of this distribution also provide insight into the underlying ecological
mechanisms of aggregation and death.
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1. Introduction1

Vegetation patch-size distributions have been under intense study in re-2

cent years [1, 2, 3, 4, 5]. It has been shown that a power-law provides a3

good fit to the patch-size distribution under a robust range conditions, how-4

ever there are marginal cases to this. Kéfi et al. [6] analysed patch-size5

distributions in semi-arid vegetation in the Mediterranean and found that6

there was not only a power-law distribution evident in the patch-size distri-7

bution, but also a truncated exponential term, when the system was under8

increased grazing pressure. Similar power-law distribution phenomena have9

also been detected in a number of other ecosystems including mussel beds10

[7] and marine benthic diatoms [8]. This phenomena of a power-law distri-11

bution transitioning to an exponential distribution under increasing stress12

has recently shown to be robust, where diverse ecological models are able to13

reproduce these results [2].14

The leading explanation of this power-law pattern formation in ecology15

is due to local interactions driving the large-scale behaviour [9, 10]. Scanlon16

et al. [11] supported through the use of numerical simulation of spatially-17

explicit models of vegetation growth combined with a global effect on the18

population density interpreted as the amount of rainfall or other global pro-19

cesses. The local positive feedback process driving the patch formation is20

through facilitation of neighbourhood sites that increase the birth rate and21

decrease the death rate [5]. This explanation does not answer how a power-22

law forms at the patch level, whether it is due to a competition effect between23

larger clusters dominating the landscape or an aggregation of smaller clus-24

ters. There is also an open question of how patches aggregating together25

drives these observed patterns.26

Models of aggregation and fragmentation have been considered in other27

areas in ecology such as the size of fish schools [12] and marine diatoms [13].28

Aggregation phenomena has been more generally studied in the Physical sci-29

ences [14], including processes such as polymerisation [15], coagulation of30

aerosols [16] and flocculation [17]. Although these examples include clusters31

that may diffuse, aggregation phenomena may also be considered in the case32

where clusters are immobile [18]. Aggregation of vegetation clusters, how-33

ever, has not been previously considered as an explicit driving force of the34

evolution of the patch-size distribution. Our novel contribution here is to35

apply established theory of aggregation dynamics to the system of vegeta-36

tion clusters and derive a new model of aggregation with global death that37
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is applicable to vegetation dynamics.38

In this article, spatially implicit models of vegetation clusters are investi-39

gated by considering how patches form and aggregate. The general conditions40

under which a power-law distribution is expected to emerge are explored as41

well as when there is a breakdown of the power law distribution due to an ex-42

ponential truncation. By adopting a patch-centric viewpoint, the impact of43

aggregation on the resulting distribution along with other processes may be44

studied directly. This represents a powerful new approach to understanding45

the origin of these distributions, by explicitly modelling the patch-size dy-46

namics without the need to infer the patch-size distribution from a spatially47

explicit model [5].48

Further, the connection between the power-law exponent and the persis-49

tence of the distribution in this model is explored. We begin by defining a50

novel model of aggregation with linear death and then deriving an asymp-51

totic solution when the death rate is small.This analytic result is compared52

to a simulation study of vegetation with local and global growth properties53

subjected to a global disturbance. For small disturbance, the power law ex-54

ponent closely matches the exponent expected from the model. The conclu-55

sion is that the power-law clustering observed in many vegetation ecosystems56

may simply be an aggregation effect and the exponential truncation observed57

when there is increased stress is due to an increase in the linear death rate58

of clusters.59

2. Theory60

The idea developed here is to model the patches themselves as opposed61

to an individual spatial site as is done in probabilistic cellular automata62

[19, 20]. We denote ck(t) as the density of patches of size k at time t, where63

time is taken to be continuous. A continuous model of patch-sizes can be64

studied, however for the present k shall take positive integer values only,65

k ∈ {1, 2, . . .}. A kernel of aggregation gives the rate at which patches of66

size i and j aggregate together to form a patch of size i + j, this kernel67

is denoted K(i, j). Finally it is assumed there is a constant rate at which68

patches of size 1 or monomers enter the system. These assumptions are69

general and can include many different phenomena, including static clusters70

and diffusing monomers [18]. The governing master equation, also known as71
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the Smoluchowski equation [21] is then72

d

dt
ck =

1

2

∑
i+j=k

K(i, j)cicj −
∑
j≥1

K(j, k)cjck + δk,1, (1)

where δk,1 is the Kronecker-delta function that is 1 when k = 1 and 0 other-73

wise. For convenience, time has been re-scaled such that the rate at which74

aggregation occurs is 1. It is instructive to imagine a single unit or monomer75

coming into contact with a cluster and calculating the rate at which this oc-76

curs for larger as opposed to smaller clusters. If a > 0 then, assuming the size77

of the monomer is negligible, the monomer rate equation is K(i) = i−a. This78

means smaller clusters are favoured and the growth rate reduces as clusters79

grow larger in size. An ecological explanation of this could be due to the80

self-limitation through competition a larger cluster experiences with itself,81

thus reducing its potential for growth. Smaller clusters have more space and82

thus can grow at a quicker rate.83

When a < 0, larger clusters are favoured for growth compared with84

smaller clusters, this can be seen as a form of the Allee effect [22]. In the85

regime when a < 0, small clusters are more susceptible to environmental86

perturbation and as such, have a lower propensity for growth. At the other87

length scale, larger clusters of vegetation are able to regulate their environ-88

ment more and thus have greater resources for growth (An example species89

where this holds is ribbed mussels [23], where larger clusters provide protec-90

tion and shelter for new mussels). This example of an Allee effect can be91

demonstrated by again considering the rate at which single units of vegetation92

aggregate to a cluster. If a i > j, then K(1, i) = 1 + i−a > 1 + j−a = K(1, j)93

i.e. the rate at which a larger patch recruits new growth is greater than for a94

smaller patch. A value for a then can give an indication of whether there is95

strong small cluster growth at the expense of large clusters forming or if the96

converse holds.97

An alternative explanation of the aggregation exponent a is due to the98

edge effects of a cluster. A single individual vegetation unit aggregates to a99

cluster proportional to the edge of that cluster. If all clusters are non-fractal100

then it would be expected that a vegetation unit aggregates at rate i1/2, since101

the length of a non-fractal object scales as a square root with its area. For102

a general fractal cluster with boundary dimension d, it would be expected103

that an individual unit scales as i1/d.104

Various properties are desirable for the kernel. Firstly symmetry, where105

the rate at which patches of size i and j aggregate does not depend on the106
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ordering of the patches i.e. K(i, j) = K(j, i). Secondly, scaling homogeneity,107

where the rate at which patches of a certain size aggregate scales by some108

factor K(mi,mj) = mλK(i, j). The simplest kernel that satisfies these con-109

ditions is the constant kernel K(i, j) = 1, corresponding to the case where110

λ = 0. When this form of kernel is assumed, the tail-solution (for large k)111

has the simple form [24]112

ck ∼
1√
4π

1

k3/2
. (2)

The tail of the patch-size distribution is a power law with exponent 3/2,113

where the power law nature of the solution is a consequence of the injection114

term ( where births of patch size one enter the system ) and the non-linear115

aggregation term in the equation. The equation can be solved analytically116

for more general kernels of the type117

K(i, j) = i−a + j−a. (3)118

This type of kernel also admits an analytic solution in the large patch-size119

limit [25, 26] with a steady state distribution of the form where120

ck ∼ Ck−τ (4a)

τ =
3− a

2
, C =

√
1− a2

4π
cos
(πa

2

)
. (4b)

For a steady state to exist we require −1 < a < 1 and hence the scaling121

exponent can be found on the interval τ ∈ (1, 2). The dynamics of the122

equation can be assessed by defining the cross-over time, which is the time123

taken for a density of patches of a certain size to reach its asymptotic value.124

The cross-over time for a patch of size k∗ to the steady state solution ck∗125

is found to take the form t = (k∗)
z where z = (1 + a)/2. The scaling of126

the cross-over time and the patch-size exponent can be related by the simple127

linear equation τ = 2− z. This gives a linear relationship between the static128

exponent at stationarity and its dynamic exponent.129

A real vegetation system is not purely defined by an aggregation process130

however. In particular in the previous example there is no death either of131

single vegetation units or patch clusters. Death may lead to changes in the132

exponent of the stationary distribution and so it is important to include in133

any model of vegetation clustering. It is also assumed that a death event does134

not lead to fragmentation of the cluster. A modified Smoluchowski equation135
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with a linear death term can then be produced as136

d

dt
ck =

1

2

∑
i+j=k

K(i, j)cicj −
∑
j≥1

K(j, k)cjck + µ(k + 1)ck+1 − µ(k)ck, (5a)

d

dt
c1 = −

∑
j≥1

K(j, 1)cjc1 + 1 + µ(2)c2 − µ(1)c1. (5b)

The general additive aggregation kernel is again taken to be of the form137

K(i, j) = i−a + j−a, where a represents the scaling parameter of the rate at138

which aggregates of a certain size join. If it is equally likely for a cluster139

of a certain size to aggregate with a cluster of any other size then the scale140

parameter a = 0. For a pure aggregation system with no fragmentation, this141

leads to a cluster scaling of 3/2. µ(k) defines the death rate, which is the142

rate at which individual units are lost from a patch, where a patch of size k143

transitions to a patch of size k − 1 due to exogenous or endogenous factors.144

A number of different forms of this death rate may be considered dependent145

on the biological details of the system. For example if each individual has a146

constant rate of death regardless of the size of patch its contained, such as due147

to lack of rainfall or grazing, is then µ(k) = µk. If death occurs at the edge148

of a patch then the death rate is µk1/d, where d is the boundary dimension149

of the patches. The simplest form of the death rate is where µ(k) = µ for150

all k. In order to gain insight into the effect of a death rate on the resulting151

patch-size distribution, we assume the final form of the death rate.152

In order to gain analytic tractability on the model a constant aggregation153

kernel is assumed (a = 0, K = 2) together with a constant death rate for each154

individual within a patch. The strategy for deriving a solution is similar to155

the strategy in Krapivsky et al. [26]. A constant kernel K(i, j) = 2 is used.156

Eq. (5) is rewritten as157

d

dt
ck =

∑
i+j=k

cicj − 2ck
∑
j≥1

cj + µck+1 − µck, (6a)

d

dt
c1 = −2c1

∑
j≥1

cj + 1 + µc2 − µc1. (6b)

The asymptotic tail of the resulting patch-size distribution is then sought158

in order to gain an understanding of how the linear death rate affects the159

stationary distribution. By using the asymptotic approximation and assum-160

ing k is large, the k-th coefficient in this expansion and hence the density of161
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patches of size k is162

ck = k−3/2 exp(−Λk), (7)

where Λ = log(1 +µN) and N is the total population size (See Appendix A163

for a derivation). The solution is therefore a power law with an exponential164

truncation of factor Λ. When the death rate is 0, Λ = 0 and hence the patch-165

size distribution is a pure power law as is expected. A large death rate will166

lead to a solution that is dominated by an exponential decay term, hence the167

patch-size distribution is expected to have a smooth transition from a pure168

power law to an exponential distribution. A dimensionality argument of Eq. 6169

[27] also leads to a power law exponent of the form 3/2. This solution can170

be compared to the general power-size distribution with exponential cut-off171

N(k) given by172

N(k) = Ck−α exp(−k/kx), (8)173

where kx is the patch-size above which N(s) decreases faster than power-law174

[2]. Matching terms and assuming µN is small gives the following simple175

relationship between the cross-over patch size kx and death rate µ as176

kx =
1

Nµ
. (9)177

The model therefore predicts an inverse relationship between patch-size cross-178

over and death rate. This also predicts that when the death rate is small179

enough, the cross-over patch-size kx may be larger than the system size and180

as such the exponential tail may not be observed in empirical distributions.181

3. Results182

In order to compare the model predictions of patch formation in an aggre-183

gation system with a constant death rate to the prediction of the patch-size184

distribution obtained in Eq. 7 is compared to a simple probabilistic cellu-185

lar automata model of vegetation growth. The cellular model is similar to186

the one discussed in [11], the model is defined on a toroidal lattice where187

each site can exist in one of two states: occupied (1) and empty (0). The188

occupied state propagates through nearest neighbour growth at rate β, as189

well as through a background constant birth probability γ. The alive sites190

transition to a dead site with a constant death probability µ. Hence if nx is191

the number of alive sites in the neighbourhood of site x, the transitions can192
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be summarised as193

Px(0→ 1) = εmin{1, γ + βnx/4}, (10a)

Px(1→ 0) = εµ, (10b)

where ε sets the total reaction rate of the system and was implemented to194

reduce the probability of multiple events occurring within the same neigh-195

bourhood. The minimum function is used here to guarantee the probability196

of transitioning to an alive state is one in the rare case when the sum of the197

two probabilities increases above one.198

Simulations were conducted for constant local growth, birth rate and199

reaction rate β = 0.2, γ = 0.01, ε = 0.1 and over a range of death rates.200

Simulations were ran for lattice length L = 500 and for 1000 replicates of each201

parameter set. The patch-size distribution was recorded for each simulation202

run after 600 time-steps. This was chosen so that when µ = 0, the lattice203

is approximately 50% occupied. The following power-law with exponential204

truncation was fitted to the distribution using a maximum likelihood method205

f(K = k) = Ck−α exp(−Λk), (11)

for some normalising factor C. The resulting maximum likelihood estima-206

tors were found using a downhill simplex method implemented in Matlab207

R2014a [28]. The approximate solution to the aggregation equation predicts208

a constant power-law exponent α of 3/2. This is close to the inferred value209

from simulation for the range of µ values studied (Fig. 1a). The exponential210

factor Λ is zero when the death rate is zero (Fig. 1b), as predicted. For211

increasing death rate, Λ increases again as predicted. Overall there is an212

increase in the exponential factor for increasing death rate as is predicted,213

however the functional form of the increase is not fully captured by the mean214

field approximation.215

4. Discussion216

Changing the focus away from explicit spatial modelling of vegetation217

patch formation and instead focusing on the dynamics of patch-sizes gives a218

unique insight into the underlying aggregation-fragmentation processes. Here219

we have primarily focused on solutions to equations where the aggregation220

kernel that governs the rate at which patches of two sizes will aggregate by221
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Figure 1: Exponents of patch-size distribution compared to simulations. Theoretical values
shown as red dashed lines, while simulation calculated values are given as black dots with
95% confidence intervals. The theoretical values for the power-law exponent α and the
exponential factor Λ are derived in Eq. 7. As predicted for small values of the death
rate the power-law component of the patch-size distribution is constant whilst there is an
increase in the exponential component for increasing death rate.

either a constant or power law kernel. For a system where there is aggrega-222

tion only the resulting patch-size distribution is that of a pure power law,223

with exponent that is dependent on the exponent of the power law aggrega-224

tion kernel. The introduction of a linear death term, where an individual is225

lost from a patch at rate µ/k gives rise to a power law with exponential tail226

distribution of the form ck ∼ k−α exp(−Λk). This solution holds generally227

when there is a linear death term and power-law aggregation kernel, even228

when the kernel is composed of a sum of two power-laws. Further, α is de-229

pendent on the specifics of the aggregation term alone and Λ is dependent on230

the death rate alone. This separation of the aggregation and fragmentation231

term implies, in principle, the ability to infer aggregation and death processes232

through observing the converged patch-size distribution alone, hence this is233

applicable to inferring process from a single spatial snapshot.234
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Kéfi et al. [6, 2] predicts that a power-law distribution in the patch-size235

distribution occurs when a global environmental death rate is small. This236

transitions to an exponential distribution when there is greater stress on the237

system through this global death rate term. The model used is a spatially-238

explicit one with a local growth term and a background death rate. The239

model proposed in this article can be seen as a deterministic equivalent of240

this spatially-explicit model. Through the derived solution in this article it is241

observed that there should always be an exponential tail to the distribution242

if the death rate is non-zero. Similar arguments have also been made recently243

[29], but notably none have explained the origin of a power law with exponen-244

tial tail observed in vegetation systems. The derived model then, provides a245

theoretical origin to the observed spatial patterns in vegetation ecosystems246

that are under a pressure that can be considered constant throughout space247

(rainfall, grazing etc.). As an example, if all sites had the same death rate248

regardless of its neighbourhood, such as for a grazer, the death rate would249

be µk for a patch of size k. The model also suggests that a power-law with250

exponential tail is a more accurate description of the patch-size distribution,251

although when the death rate is small, the exponential tail may not be ob-252

served directly. This approach would be able to provide further insights into253

the nature of the patch-size distribution for other systems where disturbance254

may be spatially distributed.255

The model also gives insight into how there can be a continuous array256

of power-law exponent observed in nature. The aggregation with no death257

model predicts that power-laws exponents in the range (1, 2) are physically258

possible, which is what has been observed in a number of ecosystems [7, 6, 8].259

The model predicts that a change in the exponent of a patch-size distribu-260

tion is related to a change in the power-law exponent of the aggregation261

kernel. A simple dimensionality argument can be used to show that in the262

aggregation and death model with a kernel that has a general power law263

scaling as described in Eq. 3, the resulting stationary distribution will have264

the same exponent as that in the model with no death [27]. The conclusion265

of how to relate the patch-size distribution to the system dynamics is that266

both the power-law exponent and the presence of an exponential cut-off does267

give an indication of the underlying dynamics. More complex fragmentation268

processes than the one discussed would alter these conclusions however, as a269

non-linear fragmentation process will also lead to self-similar solutions and270

thus the two processes are confounded when only the stationary state is ob-271

served [30], such processes include storms and other strong weather events272
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that could split a single cluster of vegetation into multiple clusters. The size273

of the system where the dynamics occur, such as in the lattice model, may274

also have an impact on the exponents of the patch-size distribution due to275

finite-size effects [31].276

Other possible extensions to the model could include multi-species sys-277

tems, where patches are formed of multiple species each with their own in-278

trinsic death rates. Multi-species systems have already been considered in279

the physical sciences and as such this would make for an interesting avenue of280

future research [32]. Where the aggregation process is indistinguishable be-281

tween two different species, this leads to similar results laid out in this article282

[33]. However, more complex interactions such as inter-specific competition283

would inevitably lead to a more complex relationship between the exponent284

death term and the underlying death rates. The model equations were scaled285

such that the rate of aggregation and rate at which single vegetation units286

are created is one. This was done for convenience since we were interested in287

studying the scaling alone, whereas these parameters change the constant of288

the patch-size distribution only. Another extension then would be to explic-289

itly calculate the constant for the patch-size distribution and study how this290

changes as the other system rates change.291
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Appendix A. Derivation of asymptotic solution295

A moment-generating function is used to find the steady state solution296

to this equation in a similar fashion to the one described in Krapivsky et al.297

[26]. Firstly define the total number of all patches as N =
∑

k≥1 ck and then298

sum Eq. (6a-b) in order to obtain299

dN

dt
=
∑
k≥1

∑
i+j=k

cicj − 2
∑
k≥1

ck
∑
j≥1

cj + 1 +
∑
k≥1

µck+1 −
∑
k≥1

µck, (A.1)

dN

dt
= N2 − 2N2 + 1− µc1, (A.2)

dN

dt
= −N2 + 1− µc1. (A.3)
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Dynamically, consider when N is at equilibrium. If µ = 0 then the stationary300

solution is N = 1. If µ > 0 then the equilibrium solution is necessarily301

bounded between one and zero as N and c1 are always positive.302

The moment-generating function C(z, t) =
∑∞

k=1 ckz
k is now considered.303

Multiplying Eq. (6) by zk and summing over all k gives the following304

d

dt
C = C2 − 2NC + z + µ

∑
k≥1

zkck+1 − µ
∑
k≥1

zkck

= C2 − 2NC + z +
µ

z
C − µC − µc1. (A.4)

The C2 term is derived using the relationship305 (∑
k≥1

ak

)2

=

(∑
i≥1

ai

)(∑
j≥1

aj

)
=
∑
k≥1

∑
i+j=k

aiaj. (A.5)306

The new moment generating function defined as A(z, t) = C(z, t)−N(z, t) is307

considered in order to derive the final stationary solution. The time derivative308

is calculated by combining Eq. A.4 with Eq. A.3309

d

dt
A(z, t) =

d

dt
C(z, t)− d

dt
N(t)

= C2 − 2NC +
µ

z
C + z − µC − µc1 − 1 +N2 + µc1

= A2 +
µ

z
C − µC + z − 1

= A2 + µ
1− z
z

A+ µ
1− z
z

N + z − 1. (A.6)

Note that the right-hand side is quadratic in terms of A. Setting the time-310

derivative to zero gives the steady-state solution of the moment-generating311

function as312

A = µ
z − 1

z
+

√
µ2

(1− z)2

z2
− 4

(
µ

1− z
z

N + z − 1

)
. (A.7)

In order to proceed it is assumed that the death rate µ is small and only the313

leading order term is kept. Hence314

A ≈ 2

√
1− z − µ1− z

z
N. (A.8)
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The strategy is to find A in terms of the power series
∑∞

k=1 ckz
k, where ck is315

a function of µ. Assuming z is sufficiently close to one such that z + µ(1 −316

z)N/z < 1, the expansion of
√

1− x is used to obtain317

Aapprox = 2
∞∑
k=0

Γ(3/2)

Γ(3/2− k)Γ(k + 1)
(1 + µN)1/2−k (−z − µN/z)k . (A.9)

Using the relationship Γ(z)Γ(1− z) = π
sin(πz)

, cancelling the (−1)k terms and318

absorbing all constants into a constant c term319

Aapprox = c

∞∑
k=0

Γ(k − 1/2)

Γ(k + 1)
(1 + µN)1/2−k (z + µN/z)k . (A.10)

Using the binomial expansion, this becomes320

Aapprox = c
∞∑
k=0

k∑
i=0

Γ(k − 1/2)

Γ(k + 1)

Γ(k + 1)

Γ(i+ 1)Γ(k − i+ 1)
(1+µN)1/2−k(µN)k−iz2i−k.

(A.11)321

In order to find the k-th coefficient as k � 1 the leading order of the i term322

in the binomial is considered. Given that µN � 1, the i dependent terms323

are dominated by i = k. Hence the kth term of the expansion where k is324

large is325

c
Γ(k − 1/2)

Γ(k + 1)
(1 + µN)1/2−kzk. (A.12)326

By using the asymptotic approximation Γ(n + a)/Γ(n) ∼ na and assuming327

k is large, the k-th coefficient in this expansion and hence the density of328

patches of size k is329

ck = ck−3/2 exp(−Λk), (A.13)330

where Λ = log(1 + µN).331
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