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Abstract: We calculate frequency space holographic correlators in an asymptotically AdS

crunching background, dual to a relevant deformation of the M2-brane CFT placed in de

Sitter spacetime. For massless bulk scalars, exploiting the connection to a solvable super-

symmetric quantum mechanical problem, we obtain the exact frequency space correlator

for the dual operator in the deformed CFT. Controlling the shape of the crunching surface

in the Penrose diagram by smoothly dialling the deformation from zero to infinity, we ob-

serve that in the large deformation limit the Penrose diagram becomes a ‘square’, and the

exact holographic correlators display striking similarities to their counterparts in the BTZ

black hole and its higher dimensional generalisations. We numerically determine quasinor-

mal poles for relevant and irrelevant operators, and find an intricate pattern of these in the

complex frequency plane. In the case of relevant operators, the deformation parameter has

an infinite sequence of critical values, each one characterised by a pair of poles colliding

and moving away from the imaginary frequency axis with increasing deformation. In the

limit of infinite deformation all scalar operators have identical quasinormal spectra. We

compare and contrast our strongly coupled de Sitter QFT results with strongly coupled

thermal correlators from AdS black holes.
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1 Introduction

Quantum field theories (QFTs) in de Sitter (dS) spacetime are known and expected to

exhibit certain features characteristic of field theories at finite temperature [1, 2]. Whilst

such physical aspects of de Sitter space QFTs have long been the subject of exploration

in free or weakly interacting limits, the strong coupling limit throws up entirely new and

fascinating questions. Correlators of certain classes of large-N thermal field theories at

strong coupling in d-dimensions are computed holographically by black hole geometries

in Anti-de Sitter (AdS) spacetimes in d + 1 dimensions [3, 4]. Such Green’s functions

then exhibit frequency space non-analyticities in the form of simple poles at (complex)

frequencies associated to quasinormal modes of the dual black hole geometries [5, 6]. A

remarkable feature of such strongly coupled thermal correlators is that they encode subtle

signatures of the dual black hole singularity [7–9] in the complex frequency plane.

It is natural to ask whether QFTs in de Sitter spacetimes share the above features

of thermal correlators at strong coupling. Crucially, AdS/CFT duality relates strongly

interacting non-conformal theories at large-N and on (fixed) de Sitter spacetime to asymp-

totically AdS backgrounds with spacelike big crunch singularities [10, 11]. These crunches

occur behind a horizon in the FRW patch of dS-sliced, asymptotically AdS geometries. A
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conformal transformation in the boundary QFT relates such setups to the so-called “de-

signer gravity” models [12, 13] where the boundary QFT on the Einstein static universe is

dual to an asymptotically global AdS geometry which evolves to a big crunch singularity

in finite global time [14, 15].

Unlike the thermal CFT/black hole duality, the correspondence between crunching

AdS backgrounds and de Sitter space QFTs requires the field theories to be non-conformal

i.e. obtained via relevant deformations of a conformal fixed point. The undeformed CFT

on de Sitter space is dual to a non-singular geometry (AdS written in dS-sliced coordi-

nates). Interesting physical phenomena can still ensue when one of the CFT coordinates

is compactified and the bulk geometry exhibits phase transitions [16–18]. Holographic

correlators in these situations are relatively simple and exhibit some interesting features

including thermal properties which closely resemble thermal effects in weakly interacting

de Sitter QFTs. However, the really interesting situations arise when CFT deformations

are switched on and the bulk geometry has a curvature singularity. Various investigations

of classes of such models have been undertaken with the goal of identifying holographic

signatures of the bulk singularity and its potential resolution [22–25].1

Generally speaking, analytically tractable models of deformed CFTs are difficult to

come by, and this is particularly important if the questions of interest involve analytic

properties of correlation functions. In recent work [26] we pointed out that a particular,

single scalar truncation of N = 8 supergravity in four dimensions, with a known Eu-

clidean solution [27–30], provides (upon appropriate analytic continuation) an analytically

tractable example of a gravity dual of a strongly coupled QFT in de Sitter spacetime. The

theory in question is the large-N limit of the CFT on M2-branes [3, 31] which is intrinsically

strongly coupled, placed in three dimensional de Sitter space and deformed by a relevant

operator with conformal dimension ∆ = 1 at the conformal fixed point. The resulting

gravity dual has several attractive features worthy of detailed exploration, some of which

were already pointed out in [26]. One of the properties of this system, which also happens

to be a general feature of these types of crunching AdS models, is that geodesic probes

which compute boundary correlators (of high dimension operators) stay away from, and

therefore do not probe the bulk singularity2 [32–35].

The fact that geodesic limits of boundary correlators stay away from the bulk singular-

ity provides sufficient motivation to go beyond the limit of large dimension QFT operators.

In particular, it may be argued that subtle signatures of black hole singularities are encoded

in the locations of quasinormal poles in the complex frequency plane [8, 37], since the wave

equation in the bulk, analytically continued into the FRW patch (where the crunch resides),

should be sensitive to the geometry behind the horizon. With this motivation, we initiate

a detailed study of frequency space correlators in the analytically tractable deformation

of the M2-brane CFT, described above. It is already quite interesting that the notion of

a frequency space correlator can be made precise [16] in the de Sitter space QFT where

time translation invariance is not manifest. In fact, for s-waves (or ` = 0 harmonics on the

spatial sphere on the boundary), the temporal modes in dS3 are simple exponentials and

1Related ideas have been explored in [19–21].
2A very interesting way around this has recently been argued in [36].
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a frequency space Fourier transform is natural. We explore the frequency space analytic

structure for relevant, irrelevant and marginal operators as a function of the CFT defor-

mation parameter, and find several intricate features in each case, some of which provide

tantalising hints of a signal of the bulk singularity. Our main results include the exact

computation of the retarded Green’s function for the ∆ = 3 operator for any value of the

CFT deformation, and numerical determination of quasinormal poles in frequency space

Green’s functions for relevant and irrelevant boundary operators with arbitrary values of

the deformation parameter. For the relevant operators (in particular ∆ = 5/2) we uncover

an extremely intricate behaviour of the quasinormal poles: poles collide and move off the

imaginary axis in pairs as the CFT deformation is increased smoothly, resulting in an infi-

nite (discrete) sequence of critical values for the deformation parameter, each associated to

a particular pair of poles. For large enough deformations, the line of poles in the complex

plane makes an angle whose value could be linked with the location of the crunch singu-

larity in tortoise coordinates. Curiously, in the limit of infinite deformation we find that

the quasinormal spectra of all scalar operators appear to coincide.

The paper is organised as follows: in sections 2 and 3, we summarise certain general

aspects of crunching backgrounds, and basic features of the wave equation and associated

potentials relevant for the holographic calculations of correlation functions. Section 4

provides a concise review of the deformed AdS4 background which we study in this paper.

Section 5, which forms the bulk of the paper contains all our results on quasinormal poles

and correlation functions, and finally in section 6, we compare and contrast various aspects

of the crunching AdS setup to the situation with AdS black holes. In appendix A we

provide a brief derivation of the frequency space signals of the black hole singularity from

the holographic viewpoint.

2 Crunching backgrounds and AdS deformations

Crunching AdS cosmologies dual to strongly coupled field theories in de Sitter spacetime

can be obtained as Lorentzian continuations of gravity duals of non-conformal field theories

on spheres. A smooth asymptotically (Euclidean) AdSd+1 geometry can be characterised

by a metric of the form,

ds2 = dξ2 + a(ξ)2 dΩ2
d , 0 ≤ ξ <∞ , (2.1)

where a(ξ) ∼ eξ near the conformal boundary (ξ →∞) which is the d-dimensional sphere

Sd. Smoothness at the origin requires a(ξ) to vanish as a(ξ) ' ξ near ξ = 0. Upon Wick

rotation of the polar angle of the Sd slice, the metric describes an asymptotically AdS

geometry with de Sitter (dSd) slices:

ds2 = dξ2 + a(ξ)2
(
−dt2 + cosh2 t dΩ2

d−1

)
. (2.2)

The origin ξ = 0 is now a horizon. The spacetime behind the horizon can be accessed by

analytically continuing the coordinates ξ and t:

ξ → iσ , t → χ− iπ

2
, (2.3)

– 3 –
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with σ, χ ∈ R. In this region the metric describes an FRW geometry with hyperbolic (Hd)

spatial slices, and an FRW scale factor given by

ã(σ) ≡ −ia(iσ) . (2.4)

The scale factor increases from zero at the horizon at σ = 0, attains a maximum and

vanishes a second time at σ = σc where curvature invariants diverge and the point can

be identified as a big crunch singularity. In the vicinity of the crunch, the scale factor

vanishes as

ã(σ) ∼ (σ − σc)γ , (2.5)

with γ < 1 generically. In two related works [26, 38] in the case of three specific microscopic

models with d = 3 and 4 we find that the exponent γ = 1/d. In this article we will focus

our attention on the AdS4 deformation (discussed in [26]) which happens to be analytically

tractable. Certain qualitative features of this model, however, appear to be generic.

3 Scalar wave equation

The correlator of a scalar operator O∆ in the boundary de-Sitter-space field theory is

obtained by examining the solutions to the wave equation for a dual bulk field of mass

mϕ, with the standard relationship between mϕ and the conformal dimension ∆ of the

(UV) CFT operator, ∆ = 3
2 +

√
m2
ϕ + 9

4 (assuming m2
ϕ > −2). The isometries of the de

Sitter slices allow a natural separation of variables. Following the line of reasoning adopted

in [16, 26], we may expand the (probe) bulk field ϕ in terms of temporal de Sitter harmonics

T`(ω, t), and spatial spherical harmonics on Sd−1:

ϕ(ξ, t,Ω) ∼
∑
`,m

A`mY`m(Ω)

∫
dω

2π
ϕω(ξ) T`(ω, t) . (3.1)

The harmonics T` are solutions to a temporal differential equation with a Pöschl-Teller

potential and can be chosen so that the late time and/or high frequency limits yield plane

wave type solutions T`(ω, t) → e−iωt. This depends on whether d is even or odd, as

discussed in more detail in the appendix of [26].

Below, we choose to focus attention on harmonics with ` = 0 or s-waves, and for this

reason we suppress the `-index entirely. The equations of motion for the harmonics ϕω
with ` = 0 can then be used to compute s-wave correlators of the boundary operator O∆.

After a field rescaling,

ψω ≡ a(d−1)/2 ϕω , (3.2)

and transforming to tortoise coordinates,

z =

∫ ∞
ξ

dζ

a(ζ)
, (3.3)

the harmonics ψω(z), satisfy a Schrödinger-like wave equation

− d2ψω
dz2

+ V (z)ψω(z) = ω2 ψω(z) . (3.4)

– 4 –
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Figure 1. The effective Schrödinger potential in the probe scalar wave equation in the FRW region

(Im(z) = − iπ2 ) for sufficiently small (left) and large (right) CFT deformation.

The Schrödinger potential V (z) can be expressed in terms of the scale factor a(z) and its

derivatives,

V (z) = V0(z) + V1(z) , V0 = m2
ϕ a

2 , (3.5)

V1(z) = (d− 1)
a′′

2a
+ (d− 1)(d− 3)

(
a′

2a

)2

− 1

4
(d− 1)2 .

The potential has certain generic features and some specific ones which have been found to

hold across different examples [38]. On general grounds V (z) decays exponentially whilst

approaching the bulk horizon, z →∞ and diverges as V (z) ∼ z−2 near z = 0, the conformal

boundary.

Continuing to the FRW region behind the horizon, which is achieved by z → w − iπ
2

with w ∈ R, the potential diverges at the crunch (z = zc) as V (z) ∼ (z − zc)−2. When the

exponent in (2.5) satisfies γ < 2/(d + 1), the potential term is driven to negative infinity.

This is the case for examples studied in [26, 38].

For the AdS4 deformation that we focus on in this paper [26], γ = 1/3 and the

Schrödinger potential diverges as V (z) ∼ −1
4(z − zc)

−2 at the crunch singularity. The

potential has two additional features stemming from a competition between V0 and V1.

Since the scale factor increases and then decreases to zero in the FRW patch, the con-

tribution V0 is non-monotonic behind the horizon and vanishing at the crunch whilst V1

diverges at the singularity. This competition implies that the shape of the potential in the

FRW patch depends on the strength of the CFT deformation, as illustrated in figure 1.

As the magnitude of the CFT deformation is increased, the Schrödinger potential con-

tinued into the FRW patch undergoes a qualitative transition from being non-monotonic

with two extrema prior to the crunch, to a monotonically decreasing function diverging at

the crunch.

4 An AdS4 deformation

The exact solution for the deformation of Euclidean AdS4 which we make use of can be

found in the works [27–30]. It arises from a particular single scalar truncation of N = 8

gauged supergravity in four dimensions, distinct from the truncation considered in [12, 13].

– 5 –
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The boundary quantum field theory is most naturally viewed as a relevant deformation of

the M2-brane CFT formulated on S3. Setting the AdS radius to unity, the system has a

one-parameter3 family of regular solutions with S3 slices:

ds2 =
(
1− f(u)2

) [ du2

u2(1 + u2)
+

1

u2
dΩ2

3

]
, (4.1)

Φ =
√

6 tanh−1 f(u) ,

f(u) =
f0 u√

1 + u2 + u
√

1 + f2
0

.

The scalar Φ has mass squared M2 = −2 in units of the AdS radius. As this lies within the

window −9/4 < M2 < −5/4, there exist two interpretations of the associated deformation,

determined by choice of boundary conditions [39]. The constant f0 controls the strength of

the deformation and can naturally be interpreted as a deformation by a relevant operator

of dimension ∆ = 1, which is one of the viewpoints suggested for instance in [10]. The

asymptotic expansion of Φ(u) near the boundary u = 0 yields,

1√
6

Φ(u) = f0u− f0

√
1 + f2

0 u
2 + . . . (4.2)

which allows us to read off the strength of the ∆ = 1 deformation (f0) and its VEV from

the coefficients of u2 and u, respectively.

Upon analytic continuation to Lorentzian signature, the background describes a

strongly interacting quantum field theory placed in dS3 spacetime whose gravity dual

has a bulk horizon at u = ∞. As is customary, it is useful for this exercise to pass to

the tortoise coordinate which is non-singular at the horizon (u = ∞) in the Lorentzian

continuation of (4.1):

z = sinh−1 u , f0 = cosech z0 , (4.3)

ds2 = a2(z)
(
dz2 − dt2 + cosh2 t dΩ2

2

)
,

a2(z) = sinh−2 z − sinh−2(z + z0) ,

where the coordinate range is 0 < z < ∞ with z = 0, the conformal boundary of AdS4.

In this parametrisation, the situation with vanishing deformation (f0 → 0) corresponds to

z0 →∞ (keeping z fixed), while an infinitely large deformation is obtained as z0 approaches

the AdS boundary z0 → 0.

The spacetime behind the bulk horizon can be accessed by analytically continuing the

coordinates z and t:

z → − iπ
2

+ w , t→ χ− iπ

2
, (4.4)

with w,χ ∈ R, so that

ds2 = ã(w)2 (−dw2 + dχ2 + sinh2 χdΩ2
2) , (4.5)

3The parameter f0 in this paper differs slightly from that used in [26]: in particular, (f0)here =

(f0/
√

6)there.
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Figure 2. The shape of the FRW patch singularities for f0 = 0.02 (blue) and f0 = 20 (brown) in

the deformed AdS4 geometry. In the limit of large deformations the Penrose diagram is a square.

The radial coordinate ψ ranges between 0 and π
2 . Unlike the AdS black hole, there is only one

conformal boundary, and the diagram is really a solid cylinder with caps. The left and right sides

of the figure above should be viewed as antipodal points on the spatial S2 section of the boundary.

where iã(w) = a(z). In the FRW patch, the scale factor is vanishing at the horizon

(w →∞) and at the big crunch which occurs when

z = zc ≡ −
z0

2
− iπ

2
. (4.6)

The qualitative difference between the Penrose diagrams, specifically with regard to the

shape of the crunch, for small and large deformations, is shown in figure 2. The global

coordinates (τ, ψ) are defined via the relations

tan
τ − ψ

2
= −e−t−z , tan

τ + ψ

2
= et−z . (4.7)

For small f0, the crunching surface lies close to the null cone τ + ψ = π deviating from it

near ψ = 0, while for large f0, the crunching surface approaches τ = π
2 and the Penrose

diagram becomes a square.

5 Quasinormal modes and holographic correlators

The connection between the analytic structure of the frequency space correlator we compute

below and its real time behaviour is clearest for ` = 0 modes i.e. excitations that are

– 7 –



J
H
E
P
0
2
(
2
0
1
6
)
0
6
5

homogeneous along the spatial section of the boundary de Sitter geometry. This is because

the temporal modes T`(t) which are given by the associated Legendre polynomials,

T`(t) =
Γ(1− iω)

cosh t
P iω` (tanh t) , (5.1)

setting aside the kinematic redshift factor, become pure exponentials when ` = 0:

T0(t) =
eiωt

cosh t
. (5.2)

The redshift factor cancels against a corresponding contribution that appears in the mea-

sure of the action for the free scalar ϕ in the dS-sliced bulk. Then, following the standard

steps for calculating position-space holographic correlation functions, the retarded fre-

quency space correlator can be defined as the ordinary (temporal) Fourier transform of the

real time retarded Green’s function:

GR(t, t′) = −iθ(t− t′)
∫
dΩ

4π

∫
dΩ′

4π
〈[O∆(Ω, t),O∆(Ω′, t′)]〉 , (5.3)

G̃R(ω) =

∫ ∞
−∞

dt e−iω(t−t′)GR(t, t′) .

Importantly, the s-wave real time correlator turns out to be a function of (t − t′) only

because the temporal modes are effectively pure exponentials (see also [16]).

Singularities of frequency space Green’s functions determine the non-trivial real time

behaviour of correlation functions. At strong coupling, thermal field theory correlators

computed holographically using AdS black hole backgrounds exhibit poles in the complex

frequency plane which correspond to quasinormal modes of the black hole geometry. For

AdS black holes, it can be argued that high frequency quasinormal poles reflect the loca-

tion of the singularity behind the horizon [8, 37]. In particular, the values of the higher

quasinormal frequencies are determined by the complex Schwarzschild time taken by a

null geodesic to go from the AdS boundary to the singularity. It was argued in [37] that

this is due to null cone singularities in boundary correlators, which could be identified in

a geometrical optics or eikonal approximation as arising from null rays reflecting off the

black hole singularity and the AdS boundary, thus bouncing around the Penrose diagram.

With this motivation, we proceed to examine the quasinormal frequencies and the fre-

quency space (retarded) correlator following from the scalar wave equation in the deformed

AdS4 geometry (4.1). The wave equation for the radial mode of a bulk scalar with mass

mϕ and frequency ω in Schrödinger form is,

− ψ′′ω(z) + V (z)ψω(z) = ω2 ψω(z) , (5.4)

V (z) =
m2
ϕ + 2

sinh2 z
−

m2
ϕ − 2

sinh2(z + z0)
− 1

sinh2(2z + z0)
.

On the cylinder −π
2 ≤ Im(z) < π

2 , the potential has (regular) singular points at z = 0, the

AdS boundary, and the crunch singularity in the FRW patch at

zc = −z0

2
− iπ

2
. (5.5)

There are two additional double poles in the unphysical domain z < 0, at z = −z0 and

z = −z0/2 (see figure 3).

– 8 –
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z

0

Im(z) = iπ/2

Im(z) = -iπ/2

z = ∞
(Horizon)

-z  
0

-z /2- iπ/2 
0

-z
0 /2

Figure 3. The poles of V (z) in the domain −π2 ≤ Im(z) < π
2 in the z-plane. The physical regions

are indicated in blue: the asymptotically AdS exterior 0 < z <∞ and the interior FRW patch along

Im(z) = −π2 in the range Re(zc) < Re(z) < ∞, where zc = − iπ2 −
z0
2 is the location of the crunch

singularity. The pole at z = 0 corresponds to the AdS boundary while two other poles appear in

unphysical regions at z = −z0/2 and z = −z0.

The quasinormal poles are found by demanding a purely infalling wave at the horizon,

ψω(z) ∼ eiωz , z →∞ , (5.6)

accompanied by a normalisable boundary condition at the AdS boundary at z = 0:

ψω(z) ∼ z
1
2

+q , q ≡
√

9

4
+m2

ϕ . (5.7)

Alternatively, in analytically tractable situations, one may calculate the frequency space

retarded correlator using the Son-Starinets prescription [5] and look for its singularities

(in the lower half complex ω-plane). Our analysis will comprise of the following exact

analytical and numerical results:

• Exact analytical expression for the retarded Green’s function for vanishing deforma-

tion and any mass mϕ.

• Exact result for the retarded correlator with mϕ = 0 and arbitrary deformation.

• Numerical determination of the quasinormal frequencies for arbitrary mass and de-

formation.

5.1 Zero deformation

The undeformed geometry being AdS4 (in the dS-sliced description), all correlators can be

calculated analytically. The limit f0 → 0 corresponds to taking z0 → ∞. The retarded

Green’s function in frequency space is readily calculable as in [26] and is given by

G̃R(ω) = 4q 2−2q Γ(−q) Γ
(

1
2 + q − iω

)
Γ(q) Γ

(
1
2 − q − iω

) , (5.8)

– 9 –
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where q =
√
m2
ϕ + 9/4. It is analytic in the upper half plane and has simple poles in the

lower half plane at,

ω = −i
(

1

2
+ q + n

)
, n = 0, 1, 2, . . . (5.9)

The quasinormal poles for general mϕ are integer spaced in pure (dS-sliced) AdS4 spacetime.

The spectrum of chiral (protected) scalar operators in the M2-brane CFT with con-

formal dimensions ∆, dual to bulk scalars with masses mϕ, is given by [31]

m2
ϕ =

1

4
k(k − 6) , ∆ =

k

2
, k = 2, 3, . . . . (5.10)

Thus q is a half-integer (integer) when ∆ is integral (half-integral). A straightforward eval-

uation of (5.8) at integral or half-integral values of q can be misleading as the resulting ex-

pressions are polynomials in ω. Instead, one must obtain these via a limiting process, mak-

ing note of the fact that on R3, the frequency space Green’s function G̃R(ω) ∼ ω2∆−3 lnω2

for half-integral values of ∆ and G̃R(ω) ∼ ω2∆−3 when the conformal dimension ∆ takes

any other value (see e.g. appendix A of [5] for an analogous situation in four dimensions

where only operators with integer dimensions have G̃R(ω) ∼ ω2∆−4 lnω2).

Therefore, for example, in the case of an operator with ∆ = 5/2, we expand (5.8) in a

Taylor series about q = 1 and keep the leading non-analytic piece:

G̃R(ω) |∆→5/2 = −1

2
(4ω2 + 1) Ψ

(
−1

2
− iω

)
+ analytic . (5.11)

Here Ψ(z) = Γ′(z)/Γ(z) is the digamma function and we have omitted polynomials in ω

for the sake of clarity. The digamma function Ψ(z) has simple poles with unit residue at

z = 0 and the negative integers z = −n (with n ∈ Z). Therefore, the quasinormal poles

of (5.11) appear at ωn = −
(

3
2 + n

)
i with n = 0, 1, 2, . . .. In the high frequency limit, using

Ψ(z) ' ln z for z � 1, we immediately obtain G̃R(ω) ∼ ω2 lnω, as expected on general

grounds. On the other hand, operators with integer ∆ have regular frequency space Green’s

functions.

5.2 Massless scalar for any deformation

When the CFT deformation is non-vanishing it is not a priori obvious that the wave

equation can actually be solved analytically. For the special case of a massless bulk scalar

mϕ = 0 dual to a marginal operator (∆ = 3) in the boundary UV theory, the equation

obeyed by the radial mode ψω(z) can be solved exactly for any value of the deformation of

parameter. This is possible due to the fact that the massless radial equation is related in a

simple way to a supersymmetric quantum mechanical system. To see this, we first define

W (z) ≡ a′(z)

a(z)
, Dz ≡ ∂z +W (z) . (5.12)

Then the massless radial equation can be expressed as

DzD†z ψ+
ω = (ω2 + 1)ψ+

ω . (5.13)
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The Schrödinger potential for this equation is V +(z) = W ′(z) +W (z)2 = a′′(z)/a(z). The

solutions to this equation can be inferred from the so-called isospectral problem, namely

D†zDz ψ−ω = (ω2 + 1)ψ−ω , (5.14)

which has a completely different Schrödinger potential V −(z) = W (z)2 − W ′(z). The

associated Hamiltonians are often referred to as bosonic and fermionic partner Hamilto-

nians (see e.g. [40]) and are isospectral and further possess closely related reflection and

transmission coefficients. It follows immediately that the wave functions ψ
(±)
ω are related as

ψ+
ω ∼ Dz ψ−ω , ψ−ω ∼ D†z ψ+

ω . (5.15)

For our deformed AdS4 geometry, the original wave equation (5.4) has the Schrödinger

potential V +(z) which is not obviously integrable. However, the partner potential,

V −(z) = 1 +
3

sinh2(2z + z0)
, (5.16)

which yields the Schrödinger-like equation,[
−∂2

z + 3 cosech2(2z + z0)
]
ψ−ω (z) = ω2 ψ−ω (z) , (5.17)

is the so-called Pöschl-Teller potential and is exactly solvable in terms of associated Leg-

endre polynomials. Using this solution and the relations (5.15) we determine the exact

retarded Green’s function after implementing the Son-Starinets prescription. In terms of

the solution ψ−ω to the Pöschl-Teller problem, the holographic retarded Green’s function

can be expressed compactly in terms of the wave function for the partner potential (5.17)

G̃R(ω) = −2(ω2 + 1)
ψ−
′

ω (0)

ψ−ω (0)
, (5.18)

where we have suitably adjusted the overall multiplicative normalisation constant to match

the results of the undeformed AdS background, as explained below. Picking ψ−ω such that

it yields an infalling wave at the horizon, we have

ψ−ω (z) = P
iω/2
1/2 [coth(2z + z0)] . (5.19)

Therefore the frequency space retarded correlator for a massless probe field in the deformed

AdS4 geometry is

G̃R(ω)
∣∣∣
∆=3

= −2(ω2 + 1) ∂z ln
(
P
iω/2
1/2 [coth(2z + z0)]

) ∣∣∣
z=0

. (5.20)

5.2.1 Small deformation limit

We now examine the exact result in the limit of small deformation (f0 � 1 or equivalently

z0 � 1). In the undeformed AdS4 background the strict massless limit mϕ → 0 of the

correlator in eq. (5.8) yields

G̃R → 2i(ω3 + ω) , (5.21)
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Figure 4. The retarded Green’s function G̃R(ω) for the ∆ = 3 operator plotted (blue, dashed curve)

along the negative imaginary frequency axis for f0 = 0.45 which captures the small deformation

limit surprisingly well. The quasinormal poles are close to ωn ' −2ni for n = 1, 2, . . .. Plotted in

red is the undeformed case (f0 = 0).

which is a curious result since it is regular and therefore only yields contact terms as a

function of time. This limit is reproduced by the exact formula (5.20), which reveals a

somewhat more intricate picture. In particular, expanding for large z0 (or f0 � 1) we find

G̃R(ω) = 2i(ω3 + ω) +
3iω + coth z0

sinh2 z0

+
∞∑
n=1

cn
(ω + 2n i) + δn

(5.22)

where (using f0 = cosechz0 ) the coefficients cn and δn can each be expanded in a powers

series in f0

c1 = 9i f2
0 + . . . , c2 =

225

16
i f4

0 + . . . , cn ∼ #if2n
0 + . . . (5.23)

δ1 =
3

8
if2

0 + . . . , δ2 =
15

256
i f4

0 + . . . , δn ∼ #if2n
0 + . . .

Therefore, an infinitesimal deformation produces an infinite number of quasinormal poles

along the negative imaginary axis located at ωn ' −2ni. This is also confirmed by the

numerical plot of the correlation function shown in figure 4. It is noteworthy that the

residues of the poles at ω = ωn scale as f2n
0 for small deformations, so that the effect

of progressively higher quasinormal poles is parametrically suppressed. It would be very

interesting to understand the precise physical origin of this effect. The most interesting

finding is that an infinitesimal deformation f0 � 1 which introduces a bulk crunch singu-

larity, also simultaneously induces quasinormal pole singularities in the correlator for the

massless (minimally coupled) bulk scalar.

5.2.2 Infinite deformation

For arbitrarily large deformations (z0 = 0 or f0 →∞), the exact expression (5.20) for the

frequency space correlator of the operator with ∆ = 3 (note this is the scaling dimension

in the undeformed (UV) CFT), yields a simple limiting form in terms of the digamma

function:

G̃R(ω)
∣∣∣
f0→∞

→ (1+ω2)

[
6f0+

2i

f0
(−3ω+2i)+

3

f0
(1+ω2)

(
Ψ

(
3

2
− iω

2

)
− ln(2f0)

)]
. (5.24)

– 12 –



J
H
E
P
0
2
(
2
0
1
6
)
0
6
5

-10 -8 -6 -4 -2
ImHΩL

-4000

-2000

2000

4000

6000

G
�

R

-70-74-78-82-86
ImHΩL

-2.0´10
6

-1.5´10
6

-1.0´10
6

-500 000

G
�

R

Figure 5. Left: the retarded Green’s function G̃R(ω) for ∆ = 3 (blue, dashed curve) along the

negative imaginary frequency axis for large deformation f0 = 20. The quasinormal poles are close

to ωn ' −(2n+ 1)i for n = 1, 2, . . .. Plotted in red and practically indistinguishable from the blue

curve is the limit of infinite deformation given by eq. (5.24). Right: at high frequencies G̃R(ω) with

f0 = 20 reverts to pure AdS-like behaviour with the poles determined by even integers superimposed

on an envelope ∼ 2i(ω3 + ω) (solid red) which characterises the undeformed AdS limit.

Hence the quasinormal frequencies in the limit of infinite deformation are located at

ωn = −(2n+ 1)i , n = 1, 2, . . . , (5.25)

therefore determined by the odd integers as opposed to the small deformation limit when

the poles on the negative imaginary axis are fixed by the even integers. In contrast to the

limit of zero deformation where the strengths of the poles are parametrically suppressed,

the residues at the quasinormal poles in the limit of large deformation are of the same

order in 1/f0.

The correlator with f0 � 1 has another important feature. The leading non-analytic

term in the 1/f0-expansion (5.24), at large frequencies scales as ∼ ω4 lnω2 which is the

scaling expected from an operator with ∆ = 7/2 in three dimensions. On the other hand,

for fixed large f0, the asymptotic high frequency limit reverts to that of ordinary AdS with

G̃R ∼ ω3. This situation, clarified in figure 5, indicates a flow from the UV fixed point to

an IR scaling regime when the deformation f0 is arbitrarily large. The large-f0 geometry

is determined by the scale factor a(z)2:

a(z)2 ' 2

f0

cosh z

sinh3 z
, z � 1

f0
, f0 � 1 . (5.26)

This is not AdS spacetime, and so whilst there is no IR fixed point, high frequency corre-

lation functions display an intermediate scaling behaviour dictated by this IR geometry.

In the limit of infinite deformation the Penrose diagram is a square (see figure 2), or

more accurately, a solid cylinder with flat caps, reminiscent of the BTZ black hole and its

higher dimensional generalisations, sometimes called “topological AdS black holes” [41].

The topological AdS and BTZ black holes are locally AdS spacetimes with certain global

identifications, and their respective singularities are associated to the shrinking of a spatial

circle.4

4The field theory dual to the topological black hole in AdSd+1 spacetime is a CFT on dSd−1 × S1 for

large enough S1.
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Our setup is a deformation of AdS4 with a bulk curvature singularity and hence,

qualitatively distinct from topological AdS black holes. It is therefore extremely interesting

that when the Penrose diagram in the large deformation limit is essentially identical to BTZ

and its higher dimensional generalisations, the detailed form of the correlator (5.24) and its

singularities becomes strikingly similar to those computed in BTZ [5] and the topological

AdS black holes [16]. This similarity includes the appearance of the digamma function

with equally spaced poles along the negative imaginary axis determined by odd integers.

5.3 Quasinormal poles for m2
ϕ 6= 0

When m2
ϕ 6= 0, the scalar wave equation is not analytically solvable. Therefore we focus

our attention on the quasinormal poles which can be determined numerically. We build

the solution to the bulk wave equation in a Frobenius expansion around the horizon [42],

and then impose the requirement that the solution is normalizable near the boundary. The

numerical evaluation is performed by expressing ψω as a truncated power series in the

variable y ≡ e−2z:

ψω,N (y) = yiω/2−1

(
1 +

N∑
n=1

cn(ω) yn

)
, 0 < y < 1 . (5.27)

where N is sufficiently large (∼ 102), and the coefficients cn(ω) are completely determined

via recursion relations that follow from the Schrödinger-like equation for ψω. Here y = 0

is the horizon and y = 1, the conformal boundary.

Near the conformal boundary (y → 1 or z → 0) the mode ψω has the two possible

behaviours ∼ z
1
2
±q. We restrict our attention to the range q > 1

2 which translates to

m2
ϕ > −2, so that only the asymptotics with ψω ∼ z

1
2

+q is permitted for a normalisable

solution. In particular, for m2
ϕ > −2, requiring ψω to vanish at the conformal boundary at

y = 1 (or z = 0) automatically picks out the normalizable solution. Imposing this on the

truncated expansion ψω,N we are led to the condition

ψω,N (y = 1) = 1 +
N∑
n=1

cn(ω) = 0 . (5.28)

The equation can now be seen as an order N polynomial in ω whose roots yield the N

lowest quasinormal poles. The method gives accurate results for the lower quasinormal

modes, improving with increasing N .

Check for m2
ϕ = 0. Implementing this method for the massless case, which we solved

exactly in the previous section, serves as a quick check of the numerics. As f0 is increased

we expect to see quasinormal poles at ωn = −(2n + 1)i with n ∈ Z. In particular this

should apply for the lowest lying poles initially, whilst the high frequency poles should be

dictated by the even integers as for pure AdS. This is precisely what figure 6 shows for

f0 ' 5.45.
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Figure 6. The quasinormal poles for m2
ϕ = 0 (∆ = 3) determined numerically for f0 = 5.45.

The lowest poles are determined by odd integers, whilst the high frequency poles match the even

integers (AdS limit), as expected from the exact Green’s function.

5.4 Quasinormal poles for −2 < m2
ϕ < 0

Next, we examine the quasinormal poles associated to operators that are relevant at the

conformal fixed point, so that m2
ϕ < 0 for the dual bulk field. For simplicity, we further

restrict attention to values m2
ϕ > −2, which means that the bulk scalar has a unique

normalizable mode. This places the conformal dimension in the range 2 < ∆ < 3, and

for the M2-brane CFT, picks out ∆ = 5/2. This restriction is unnecessary if we view

the bulk scalar simply as a probe and choose any value of m2
ϕ corresponding to the range

2 < ∆ < 3. Given that there is no qualitative difference in the results, we therefore pick

m2
ϕ = −5/4 (equivalently, ∆ = 5/2) as a representative case which also fits the spectrum

of the M2-brane CFT.

Precisely at f0 = 0, i.e. in the undeformed theory, we know from eq. (5.11) that the

quasinormal poles are at

ωn = −
(

3

2
+ n

)
i , f0 = 0 , n = 0, 1, 2 . . . (5.29)

As f0 is smoothly dialled from zero we see the first signs of an interesting phenomenon which

repeats with increasing f0: the lowest quasinormal pole (originally at ω1 = −1.5i) moves

toward and eventually merges with the second lowest pole (ω2 ' −2.5i for small f0) when

the deformation parameter hits the critical value f0 ≈ 1.027. Beyond this critical value

of f0, these two poles move into the complex plane. This sequence of events is shown in

figure 7. Dialling f0 further we find that the phenomenon repeats for every successive pair

of poles. The next pair of poles ω3 and ω4, which start off at −3.5i and −4.5i, respectively,

in the undeformed theory, merge and then become complex pairs beyond f0 ≈ 2.14.

The motion of pairs of poles into the complex plane eventually yields an intricate

pattern for large f0, as shown in figure 8. The poles that remain on the imaginary axis

should revert to AdS-like behaviour at high frequencies, and this expectation is confirmed

in figure 9. At sufficiently large f0 � 1, we empirically confirm that the poles that move
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Figure 7. Merger and movement of lowest pair of quasinormal poles into complex plane beyond

f0 ≈ 1.027, for the ∆ = 5/2 operator.

off the imaginary axis have

Re(ωn) 6= 0 , Im(ωn) ' −(2n+ 1)i , n = 1, 2, . . . , f0 � 1 . (5.30)

The real parts of the quasinormal frequencies in the complex plane are not immediately

obvious, particularly due to the effects near the low end of the quasinormal spectrum and

at the higher end where the distribution of poles veers toward the imaginary axis. However

as f0 is increased, most of the poles remain away from the edges of the distribution and we

can evaluate their real parts numerically. Shown in figure 10 are the ratios of the real and

imaginary parts of the quasinormal frequencies as a function of the deformation f0. Based

on the numerical results we infer that for sufficiently large deformations the locations of the

higher quasinormal modes away from the imaginary axis is given to a good approximation

by the simple formula

ω±n ≈ (2n+ 1)
(
±z0

2
− i
)
, f0 � 1 , n� 1 , (5.31)

where n is in an integer and the superscripts ± refer to modes on either side of the imaginary

axis. A particularly tantalising aspect of this behaviour is that the location of the crunch

singularity in tortoise coordinates is given by zc = −z0/2− iπ/2, so that we may write

ω±n ≈ (2n+ 1)(±Re(zc)− i) . (5.32)

Furthermore, in the large f0 limit z0 ≈ 1
f0

. Therefore the simple poles ω±n approach the

imaginary axis in pairs and merge in the infinite deformation limit at ωn = −(2n+ 1)i.

The dependence of the quasinormal poles on the crunch coordinate zc is intriguing and

we will return to discuss the potential significance of this in the next section.

5.5 Quasinormal poles for m2
ϕ > 0

In the case of bulk modes with m2
ϕ > 0, corresponding to irrelevant operators in the UV

CFT, the numerical analysis of the quasinormal poles reveals a simple and interesting

picture. The poles are always situated on the negative imaginary axis for all values of f0.

In the limit of undeformed AdS we know the exact result from eq. (5.8). In particular, in

AdS spacetime, the lowest quasinormal frequency is at ω = −i
(√

m2
ϕ + 9

4 + 1
2

)
, which, for

large enough masses becomes ω ≈ −imϕ.
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Figure 8. The quasinormal poles corresponding to the ∆ = 5/2 operator (m2
ϕ = −5/4) determined

numerically for f0 ' 25. Upon reaching the imaginary axis, the poles rapidly revert to pure AdS

behaviour at high frequencies.

-1.0 -0.5 0.5 1.0
Re( )

-60

-55

-50

Im( )

Figure 9. The high frequency quasinormal poles corresponding to the ∆ = 5/2 operator at

f0 ' 25, gradually approaching the expected AdS-like behaviour with poles at the half-integers (see

eq. (5.11)).

As the deformation f0 is cranked up to arbitrarily large values, for any given scalar

mass mϕ, we find that poles coalesce in pairs to yield singularities at

ω = −(2n+ 1)i , n = 1, 2, . . . , (5.33)
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Figure 10. The angle made by the line of quasinormal poles (first, seventh and twentieth shown

above) with the imaginary axis approaches a limiting value at large f0, for poles located away from

the ends of the distribution in the complex plane.

independent of mϕ. This remarkable feature of the system is shown in figure 11. The

reason for different operators exhibiting the same quasinormal frequencies can be traced

back to the Schrödinger potential for the scalar wave equation (5.4). Taking the limit

z0 → 0 (equivalent to f0 →∞),

V (z) → 4

sinh2 z
− 1

sinh2 2z
, (5.34)

which is independent of m2
ϕ. It is not a priori obvious that the z0 → 0 limit should com-

mute with the z → 0 limit required for computing boundary correlators and quasinormal

frequencies. Our numerical computation of the quasinormal frequencies confirms that the

large deformation limit leads to a universal result for the Green’s functions of all scalar

operators in this background. Note that our analytical results for the case m2
ϕ = 0 and

numerical results for m2
ϕ < 0 are also consistent with this conclusion.

6 Discussions: comparison with AdS black holes

Various aspects of the retarded correlators we have found for the deformed M2-brane

CFT on dS3 are strikingly similar to holographic thermal correlators obtained from AdS

black hole geometries. The obvious similarities include the presence of quasinormal poles

responsible for exponential decay of (s-wave) excitations as a function of de Sitter time.

A somewhat more surprising feature is the quasinormal spectrum in the limit of infinite

deformation parameter and the functional form of the retarded correlators in this limit,

both of which coincide with corresponding objects in the much simpler BTZ black hole

(and higher dimensional topological AdS black holes with similar Penrose diagrams).

These results are surprising since the dual theory is a relevant deformation of an

intrinsically strongly coupled CFT, and there is no a priori reason for the large deformation
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Figure 11. Left: location of quasinormal poles for m2
ϕ = 7/4 and f0 = 10. Centre: quasinormal

poles for m2
ϕ = 475/4 in the near AdS regime with f0 = 0.18. Note that the lowest frequency is

at ω ≈ −imϕ = −10.89i. Right: poles for m2
ϕ = 475/4 with f0 = 900. The lowest mode is now at

ω ' −3i.

limit to be particularly simple. In the event, the emergence of equally spaced quasinormal

frequencies (determined by odd integers) on the imaginary frequency axis, originating from

the simple poles of the digamma function, must be seen to bear some relation to the shape

of the spacelike singularity in the Penrose diagram in this limit. In particular, the Penrose

diagrams (viewed side-on) in all these cases is a “square” and one is tempted to examine

this resemblance in light of the simple geometric optics ideas of [37]. The suggestive link

between the curvature singularity and quasinormal poles is underscored in our analysis of

the massless bulk scalar (∆ = 3) where the appearance of one seems to be tied to the

emergence of the other, even for arbitrarily small deformations. To add to this mix is the

less obvious, empirical observation following from our numerical results for the ∆ = 5/2

mode (m2
ϕ = −5/4) where the angle made by the line of quasinormal poles in the frequency

plane appears to be related to the crunch coordinate zc.

The observations above point towards a possible link between the crunching surface

in the bulk geometry and singularities in frequency space correlators. Such a link was

made precise for thermal correlators in the geodesic or WKB approximation [7–9, 37],

and the natural question is whether the same is possible for the crunching AdS models.

Below, we point out the similarities and differences between the two situations (AdS black

holes and crunching AdS duals), using the tractable AdS4 model of this paper and the

AdS5-Schwarzschild black hole as templates.

WKB and eikonal limits. Identification of interesting and subtle signatures of the

AdS black hole singularity in frequency space correlators was possible chiefly due to the

existence of nontrivial spacelike geodesics (corresponding to purely imaginary frequencies in

the boundary theory) that could probe the bulk singularity behind the horizon. Relevant

aspects of the analysis leading to this [7, 8] are summarised in appendix A. Crucially,

the Schrödinger potential (in tortoise coordinates) for a massive probe scalar in the black

hole geometry splits in two pieces, each of which is sensitive to the singularity behind the

horizon:

VBH = q2
(

1 + r2 − µ

r2

)
+Q(r) , µ = r0(1 + r2

0) , (6.1)
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where r0 is the Schwarzschild horizon radius and q =
√
d2/4 +m2

ϕ with d = 4. It is easier

to express VBH in terms of the original Schwarzschild radial coordinate rather than the

tortoise variable z. The first term in VBH survives the geodesic limit ω,mϕ → ∞, whilst

the second term Q(r) is formally subleading in the WKB limit (since it does not scale

with mϕ or ω). Note however that Q(r) is dominant near the singularity at r = 0 where

Q(r) ∼ −9µ2/4r6. In terms of the tortoise coordinate, the near singularity behaviour of

VBH is

VBH|z→zc = q2

(
− 1

9µ(z − zc)2/3
+ . . .

)
− 1

4(z − zc)2
+ . . . (6.2)

Here zc is the tortoise coordinate for the AdS5 black hole crunch singularity:

zc =
π

2(r2
0 + r2

1)
(ir0 + r1) , r1 =

√
1 + r2

0 . (6.3)

Importantly, the Schwarzschild potential in the formal WKB limit q, ω →∞ (with u = ω/q

fixed) continues to be divergent, presenting a repulsive potential for solutions with purely

imaginary frequencies (u2 < 0). Modes with large, negative u2 are thus presented with

a WKB turning point near z = zc. Therefore, whilst the leading singularity in the full

potential VBH, scaling as −1
4(z − zc)

−2, does not play any role in the WKB limit, the

subleading singular terms provide a WKB or semiclassical turning point arbitrarily close

to the singularity. It immediately follows that the WKB phase integral and therefore the

WKB Green’s function for such modes scales as

G̃wkb(u) ∼ e−2q |E| zc , u = iE , (6.4)

and leads to an exponential decay of the frequency space Green’s functions along the

imaginary frequency axis [8]. Note that zc is the complex Schwarzschild time taken by a

null geodesic to get from the AdS boundary to the singularity.

The Schwarzschild potential (5.4) for the crunching AdS geometry analysed in this

paper differs from VBH in at least one crucial aspect. Whilst it diverges at the crunch

precisely as −1
4(z − zc)−2, the formally leading piece in the WKB limit, Vwkb = m2

ϕ a
2(z),

actually vanishes at the crunch. Therefore z = zc does not present a classical turning

point to high (imaginary) frequency modes which, consequently, “fall” into the crunch. It

then becomes necessary to either go beyond the leading order WKB approximation, or

to understand precisely what boundary conditions are natural for putative high frequency

solutions at z = zc where V (z) diverges.

A possible route,5 distinct from WKB, is a straight high frequency or eikonal ap-

proximation which was employed in [37] to obtain an intriguing physical picture for the

location of the high frequency quasinormal poles of AdS black holes. In particular, the

eikonal approximation results in a ray optics description for high frequency, null waves

which breaks down in the vicinity of the singularity at z = zc. One may however, match

the eikonal solutions to the actual solutions of the wave equation in the singular potential

and consistently employ reflecting boundary conditions at the black hole singularity and

5We thank Carlos Hoyos for drawing our attention to this possibility.
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the AdS boundary. The Penrose diagram thus acts as a reflecting cavity and the complex

time delays suffered by the bouncing rays could be interpreted as light cone singularities

in boundary correlators which lead to quasinormal poles satisfying (at high frequencies)

Im(ω)

Re(ω)
=
r0

r1
=

Im(zc)

Re(zc)
. (6.5)

Whilst it is tempting to invoke a similar description to explain some of the properties of

frequency space correlators we have encountered in this paper, a key conceptual difference

between crunching AdS geometries and AdS black holes is the nature of the conformal

boundary. While black holes have two conformal boundaries with time flowing in opposite

directions, this is not the case for the crunching backgrounds. It is then unclear what

meaning, if any, can be ascribed to geodesics bouncing off the singularity and reaching

the boundary.

Nevertheless there are various concrete questions that appear to be both puzzling

and intriguing, and therefore worthy of future study. These include the nature of the

singularities in the holographic correlator for the massless bulk field (dual to a ∆ = 3

operator) at arbitrarily small deformations f0 � 1. We have found that the residue of the

n-th quasinormal pole scales as f2n
0 in the small deformation limit. This is also the limit in

which the singularity just appears, and therefore the scaling of the residues with f0 has a

potentially interesting physical origin. The behaviour of the phases of, or the angle made

by the line of quasinormal poles for m2
ϕ < 0 and its relation to the location of the crunch

singularity is perhaps the most intriguing of all questions, given what is already known

for AdS black holes. In this paper we have steered clear of two important (and related)

questions, both of which relate to the stability of the theory. We have not computed

correlators for operators with 1 ≤ ∆ ≤ 2, and in particular for fluctuations of the scalar Φ

which has a nontrivial profile and supports the solution. It would be interesting to look at

the quasinormal poles for such operators and their motion in the complex frequency plane

with increasing f0, and uncover any direct signals of dynamical instabilities. Related to

this is the fact that we have been able to dial the parameter f0 from zero to infinity with

impunity without inducing instabilities in (s-waves of) the scalar operators with ∆ > 2

since the poles reside in the lower half frequency plane. This brings us to a slightly puzzling

feature not shared by relevant deformations yielding crunches in higher dimensions. In [38],

where we analyze mass deformations of N = 4 SYM on S4, dialling the deformation beyond

a critical value forces the theory into a “gapped” Euclidean phase which results, upon

analytic continuation, in a Lorentzian geometry without a crunch. This does not appear

to be the case for the relevant deformation of the 3d theory we have analysed in this paper

and it would be interesting to understand the origin of this difference.
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A AdS-Schwarzschild revisited

It is useful to revisit the WKB analysis of holographic correlators in the Schwarzschild-

AdS geometry which was originally performed in detail in [8, 9]. The similarities and

differences with the crunching-AdS models are both interesting and instructive. The AdS5-

Schwarzschild geometry is given (in the global patch) by the metric:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3 , (A.1)

f(r) = 1 + r2 − µ

r2
,

where µ is the mass of the black hole. Following the useful notation introduced in [8]

µ = r2
0 r

2
1 , r2

1 = 1 + r2
0 , (A.2)

where r0 is the radius of the black hole horizon. In order to compute holographic corre-

lators of some probe field ϕ with mass mϕ in the limit of high frequency and high mass

(suppressing possible dependence on spatial/angular momenta), the problem is recast in

Schrödinger form in the tortoise coordinate,

z =

∫ ∞
r

dr

f(r)
, (A.3)

accompanied by a rescaling of the massive scalar field ϕ and a separation of variables:

ϕ = r−3/2
∑
`

∫
dω e−iωt Y`(Ω) ψω,`(z) . (A.4)

The wave equation for ϕ becomes a Schrödinger-like equation for the the radial mode

ψω,`(z). Suppressing the `-dependence for simplicity and focussing attention on the ` = 0

mode, we have,

− ψ′′ω(z) + VBH(z)ψω(z) = ω2 ψω(z) . (A.5)

The potential term VBH(z) is most easily understood in the original Schwarzschild radial

variable,

VBH(r) = f(r)

[
q2 − 1

4
+

9µ

4r4
− 1

4 r2

]
. (A.6)

where q =
√

d2

4 +m2
ϕ with d = 4 for AdS5. The WKB limit is viewed as a high fre-

quency and large mass limit. It is also possible to discuss a pure high frequency or eikonal

limit, but this does not coincide with the geodesic approximation in general. The geodesic

WKB limit is obtained by taking ω = qu with q � 1 whilst keeping the rescaled en-

ergy/frequency u fixed. In this limit the Schrödinger potential contains parametrically

leading and subleading pieces:

VBH = q2 f(r) +Q(r) . (A.7)
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The solution to the leading order WKB problem and the resulting holographic Green’s

function is completely determined by the WKB phase integral

G̃wkb(u) ∼ exp qZ(u) , (A.8)

where

Z(u) = −2 lim
Λ→∞

(IΛ(u)− ln Λ) , (A.9)

IΛ(u) =

∫ Λ

r∗(u)
dr

√
f(r)− u2

f(r)

The lower limit r∗(u) is the physical turning point for geodesics having real energies.

For u2 > 0, this physical turning point lies outside the horizon and approaches the AdS

boundary as u is increased. For complex u this turning point must be analytically continued

and its position carefully identified in order to distinguish it from other (complex) turning

points of the WKB potential. Of particular interest is the case with u2 < 0 when the

geodesics in question penetrate the horizon.

Let us first express the WKB phase integral in a form which makes its evaluation more

efficient. Moving to the new integration variables x = r2,

IΛ2(u) =
1

2

∫ Λ

x1(u)
dx

√
(x− x1)(x− x2)

(x+ r2
1)(x− r2

0)
, (A.10)

where x1 > 0 and x2 < 0 for u2 > 0:

x1,2 =
1

2

[
(u2 − 1)±

√
(u2 − 1)2 + 4µ

]
. (A.11)

Although the integrals can be performed analytically, in order to develop a physical intu-

ition it turns out to be very useful to consider the limit of large u, i.e. u� 1. In this limit,

we have

x1 ≈ u2 � 1 , x2 ≈ −
µ

u2
. (A.12)

Therefore, in the limit of large positive u2, the physical turning point approaches the

boundary, while there also exists a complex turning point close to the singularity (ap-

proached from imaginary values of r), but whose contribution is subdominant, and the

leading behaviour of the WKB phase integral is simply

IΛ(u) ≈
∫ Λ2

u2
dx

√
x− u2

x3/2
=

1

2
log

(
Λ2

u2

)
. (A.13)

This yields the expected high frequency behaviour G̃wkb ∼ ω2ν expected from conformal

invariance and dimensional grounds. However, the integral also contains interesting sub-

leading corrections which can be seen either by direct analytical evaluation, or by moving

to a different region in the complex u-plane where the subleading corrections also become

easy to evaluate.
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x = r  2

Im(x)

Re(x)
r

r

0

2

21

Figure 12. The WKB phase integral is performed along the branch.

For purely imaginary frequencies u2 < 0, the branch point x1 is actually a complex

turning point because x1 < 0 which yields imaginary values of r. The physical turning

point is inside the horizon and given by the branch point x2. Setting u = iE with E ∈ R,

for large imaginary frequencies we obtain

x1 ≈ −E2 , x2 ≈ +
µ

E2
. (A.14)

Now the WKB phase integral is

IΛ(u) =
1

2

∫ Λ2

x2(u)
dx

√
(x− x1)(x− x2)

(x+ r2
1)(x− r2

0)
, (A.15)

where x2 � r2
1, r

2
0 and the pole at the horizon falls on the contour of integration, and

furthermore, unlike the situation with u2 > 0, the integral does not simplify automatically

even for E2 � 1. However, given that the branch cuts of the integrand are square root

branch cuts, the phase integral IΛ can be expressed as one-half of the integral around the

branch cut emanating from x = x2, avoiding the pole at x = r2
0 as shown in figure 12. The

integrand has a simple pole at x = ∞. As is usual the integration contour shown in the

figure can be deformed smoothly so that wraps all the simple poles and the second branch

cut emerging from x = x1:

IΛ =
π

2
E ir0 − r1

r2
1 + r2

0

+
iπ

2
+

1

2
ln

(
Λ2

E2

)
. (A.16)

The first term arise from the residues at the simple poles at the horizon and in the complex

r-plane at r2 = −r2
1. There is an ambiguity in the sign of the real part of this term which

should be fixed by a physical requirement. The second term is the contribution from the

pole at infinity, while the all important last term which is required by conformal invariance,

now arises from the complex branch point at r2 ≈ −E2. This explains the exponential falloff

of frequency space correlators along the imaginary frequency axis observed by [8]. It also

explains the role played by the complex Schwarzschild time (or tortoise coordinate of the

crunch) in the frequency dependence of the correlator.
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