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Abstract

Genetic toxicity testing has traditionally been used for hazard identification, with dichotomous 
classification of test results serving to identify genotoxic agents. However, the utility of genotoxicity 
data can be augmented by employing dose–response analysis and point of departure determination. 
Via interpolation from a fitted dose–response model, the benchmark dose (BMD) approach estimates 
the dose that elicits a specified (small) effect size. BMD metrics and their confidence intervals can 
be used for compound potency ranking within an endpoint, as well as potency comparisons across 
other factors such as cell line or exposure duration. A recently developed computational method, the 
BMD covariate approach, permits combined analysis of multiple dose–response data sets that are 
differentiated by covariates such as compound, cell type or exposure regime. The approach provides 
increased BMD precision for effective potency rankings across compounds and other covariates 
that pertain to a hypothesised mode of action (MOA). To illustrate these applications, the covariate 
approach was applied to the analysis of published in vitro micronucleus frequency dose–response 
data for ionising radiations, a set of aneugens, two mutagenic azo compounds and a topoisomerase 
II inhibitor. The ionising radiation results show that the precision of BMD estimates can be improved 
by employing the covariate method. The aneugen analysis provided potency groupings based on 
the BMD confidence intervals, and analyses of azo compound data from cells lines with differing 
metabolic capacity confirmed the influence of endogenous metabolism on genotoxic potency. 
This work, which is the first of a two-part series, shows that BMD-derived potency rankings can 
be employed to support MOA evaluations as well as facilitate read across to expedite chemical 
evaluations and regulatory decision-making. The follow-up (Part II) employs the combined covariate 
approach to analyse in vivo genetic toxicity dose–response data focussing on how improvements 
in BMD precision can impact the reduction and refinement of animal use in toxicological research.
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Introduction

Genetic toxicology testing plays an essential role in the safety assess-
ment of new and existing compounds, with the aim to ensure that 
the risk of adverse human health effects mediated by genetic dam-
age are minimised. Genetic toxicity testing has traditionally been 
used only for hazard identification, with dichotomous groupings 
(i.e. positives versus negatives) being used to separate the genotoxic 
agents from those compounds that are unable to elicit a significant 
positive response in selected in vivo and/or in vitro assays. However, 
there is increasing recognition of the limitations of the qualitative 
paradigm currently employed for genetic toxicity assessment, and 
moreover, the need to develop a quantitative framework for the anal-
ysis and interpretation of genotoxicity test results (1, 2). An alterna-
tive, quantitative paradigm necessitates dose–response analysis and 
the determination of point of departure (PoD) metrics that can be 
used to determine margins of exposure and/or exposure limits below 
which the risk of adverse effect is considered to be acceptable.

To facilitate the transition from qualitative to quantitative anal-
yses, there is an urgent need to develop rigorous methods for the 
analysis of genetic toxicity dose–response data, and determine PoD 
values that can subsequently be reviewed, interpreted, compared and/
or ranked (1–3). Recent publications, including those by Gollapudi 
et  al. (4) and Johnson et  al. (5), have considered and evaluated 
numerous approaches for quantitative analysis of genetic toxicity 
dose–response data and the determination of PoD metrics (1, 2, 4, 5). 
A major conclusion by these authors, as well as MacGregor et al., (1) 
is that there are distinct advantages to the benchmark dose (BMD) 
approach that employs computational algorithms to fit mathematical 
functions to dose–response data (6, 7) and subsequently interpolate 
the dose that corresponds to a predefined increase in response above 
the control (e.g. 10%). Figure 1 illustrates the BMD concept and how 
the range delineated between the upper (BMDU) and lower (BMDL) 
confidence bounds defines the precision of the estimated BMD.

 Recent work conducted by researchers at the Dutch National 
Institute of Public Health and the Environment (RIVM) has shown 
that appropriate use of BMD estimates and their confidence intervals 
has applications for compound potency ranking within an endpoint, 
as well as empirical potency comparisons across endpoints (8–11). 
Furthermore, novel computational algorithms developed at the RIVM 
(e.g. the BMD covariate approach) permit combined analysis of mul-
tiple dose–response data sets for a shared endpoint. These algorithms 
permit multiple BMDs to be defined for dose–response relationships 
differentiated by a covariate (i.e. factor defining the subgroups) included 
in the analysis (e.g. compound, tissue, cell type, sex, exposure duration/
regime, genotype, etc.), and importantly, have the potential to yield 
more precise BMD estimates in instances where the shapes of the nor-
malised dose–response curves are the same at each covariate level (12).

Several of the aforementioned researchers have proposed the use 
of quantitative analyses of in vivo genetic toxicity dose–response 
data to determine PoD metrics (e.g. BMDL) that are in turn used to 
establish human exposure limits for regulatory decision-making (e.g. 
tolerable daily intake, permissible daily exposure (1–3, 5)). In con-
trast in vitro data are, at least for the time being, better suited to sub-
stance ranking and/or mode of action (MOA) determination. More 
specifically, the aforementioned MacGregor et al. publications, which 
were prepared under the auspices of the International Workgroup on 
Genetic Toxicology (IWGT), note that interpretation of in vitro results 
in a human health risk assessment context is hindered by, among other 
things, issues pertaining to toxicokinetics and in vivo tissue-specific 
metabolism (1, 2). Advanced computational methods (i.e. in vitro to 
in vivo extrapolation or IVIVE) will be required to reliably use in vitro 
dose–response data to determine human exposure limits (13, 14), 

and although such methods are currently under development, further 
refinement and validation will be required (15, 16).

In this work, which is Part I of a two-part series, we use previously 
published data for the in vitro micronucleus (MN) frequency end-
point to examine the utility of the BMD covariate method to increase 
the precision of BMD estimates and permit statistically rigorous 
examinations of relative potencies across compounds and/or other 
covariates that pertain to MOA. The former is illustrated by com-
parative analysis of a series of radiation exposures, whilst the latter 
employs examination of dose–response data for a set of mitotic spin-
dle poisons (i.e. aneugens), as well as metabolically activated DNA-
reactive substances and DNA replication inhibitors. The selected 
data sets represent responses for well-studied agents where the MOA 
underlying the dose–responses has previously been investigated and 
characterised (17). The follow-up publication (i.e. Part II) expands on 
the use of the BMD covariate method to examine study reproducibil-
ity, sex-specific differences and compound MOA in vivo; focussing on 
how improvements in BMD precision can impact the reduction and 
refinement of animal use in toxicological assessments and research.

Materials and methods

In vitro MN frequency dose–response data sets were obtained from 
the published literature. The collected data were then subjected to 
combined, covariate BMD analyses through combination of dose–
response relationships for a series of compounds or other covariates, 
with study types/protocols matched as far as possible within an anal-
ysis (i.e. same laboratory or at least analogous protocols). The radia-
tion data were collected in human lymphocytes (HL) (18). The MN 
data for well-characterised aneugens were combined from studies 
using Chinese hamster ovary (CHO-K1) cells, primary human lym-
phocyte (HL) cells and the human lymphoblastoid cell line AHH-1 
(19–23). MN data for the clastogenic azo dyes Sudan-1 and Para Red 
were generated using AHH-1 cells and the transgenic daughter cell 
line MCL-5 that expresses five human drug metabolising enzymes 
(24). Finally, the DNA replication inhibition data in mouse lym-
phoma L5178Y cells were collected following time-dependent expo-
sures to the clastogen etoposide (25).

PROAST version 50.9 was used to conduct the dose–response 
analyses (http://www.proast.nl). As necessary, dose–response data 
were analysed using one (exponential) or both (exponential and 
the Hill) nested model families that have been recommended by the 
European Food Safety Authority (EFSA) for the analysis of continu-
ous data (26). For each analysis, combined data sets were analysed 
using the factor discriminating the data sets (e.g. study, compound, 
cell type) as a covariate. PROAST uses the likelihood ratio test to 
assess whether inclusion of additional parameters resulted in a sta-
tistically significant improvement in model fit (9, 10). Models with 
additional parameters are only accepted if the difference in log-
likelihood exceeds the critical value at P < 0.05 (12). In this way, 
it can be established which model parameters need to be estimated 
for each subgroup, and which parameters may be considered as con-
stant among the subgroups of a combined data set. In general, it 
was assumed that the maximum response (parameter c) and log-
steepness (parameter d) (i.e. the two shape parameters) were equal 
for all response curves, while parameters for background response 
(parameter a), potency (parameter b) and var (i.e. within group vari-
ation) were examined for being covariate dependent (12). PROAST 
outputs designate potency (i.e. the BMD) as CED or critical effect 
dose, and the metrics BMDL and BMDU are designated CEDL and 
CEDU, respectively. The CED (two-sided) 90% confidence interval 
(CEDL, CEDU) is calculated for each level of the covariate (if they 
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are found to significantly differ). Fits of the model to the data sets of 
each subgroup are presented in supplementary Figures S1–S4, avail-
able at Mutagenesis Online, and were used to visually evaluate the 
validity of the assumed constant shape parameters. This approach 
was preferred over evaluating the assumption by statistical testing, 
since statistical tests on the shape parameters are highly sensitive to 
non-random errors in the data that are ubiquitous in experimen-
tal data, and the effect of which may even be amplified by leverage 
effects in dose–response data (12). Furthermore, minor non-random 
errors in the data might lead to rejection of the constancy of the 
shape parameter assumption (i.e. given the relatively high power in a 
combined data set), while small differences among the shape param-
eters would only have a small impact on the coverage of the BMD 
confidence interval (12). Visual inspection of the fitted curves was 
therefore considered a better way to determine whether any differ-
ences in parameters c and d between covariates were small enough 
to be ignored.

The benchmark response (BMR), also known as critical effect 
size (in PROAST notation), employed in the presented analyses was 
set at various values depending on the data available. This is justified 
since the aim of the analyses was to examine differences in potency 
rather than derive a PoD for risk assessment. Thus, the BMR can be 
adjusted to higher values in situations where a BMR such as 10% is 

deemed to be low compared to the magnitude of the observed effects 
in the data set, and choosing a higher value may have a favourable 
effect on the width of the BMD confidence intervals. The BMDL and 
BMDU values represent the lower and upper bounds of the two-sided 
90% confidence interval of the BMD (27), with the BMDU–BMDL 
ratio defining the width of the confidence interval and therefore its 
precision. Confidence interval plots, arranged using the geometric 
midpoint of the BMDL–BMDU interval were employed to visually 
compare potencies across levels of examined covariates while taking 
estimation uncertainty into account (28).

Results and discussion

Use of combined BMD-covariate analyses to 
increase BMD precision
In their 2014 review, Slob and Setzer (12) showed that fitting a 
dose–response model to combined data sets related to the same 
endpoint/study type has the potential to yield more precise BMD 
estimates (i.e. the BMDU:BMDL ratio is reduced). This increase 
in precision is a consequence of conserved dose–response shape 
after correcting each constituent dose–response for background 
(i.e. y-axis scaling, making parameter a covariate dependent) 

Figure 1. Schematic representation of the benchmark dose (BMD) approach for analysing dose–response data. The BMD is an estimate of the dose that will 
elicit the benchmark response (BMR), and is estimated by interpolation from the fitted curve. The BMR is usually defined as a percentage increase in response 
(e.g. 10%) relative to control; with this BMR adjustable to any desired response level. The uncertainties in the data can be taken into account by calculating 
a confidence interval for the BMD. Conceptually, one may imagine that, by varying the parameters in the model, different curves can be generated, and for 
those that are considered compatible with the data (dashed curves) BMDs could be established. Together, they comprise values that make up the confidence 
interval for the BMD. As an approximate conceptual illustration, the horizontal black line segment intersecting the range of plausible curves results in the BMDL 
and BMDU, the lower and upper 90% confidence bounds of the BMD estimate, respectively. The width of this interval (expressed as the ratio BMDU to BMDL) 
therefore represents the BMD precision.

Empirical analysis of BMD metrics in genetic toxicology 3
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and potency (i.e. x-axis scaling, making parameter b covariate 
dependent). Therefore, after scaling, the individual dose–response 
curves included in a combined analysis may be regarded as hav-
ing highly similar shapes if they can be adequately described 
using constant model values for the maximum response param-
eter (c) and the log-steepness parameter (d). In turn, this pro-
cess improves the precision of the resulting BMD estimates as 
all dose–response data sets included in the combined analysis 
contribute information on the common shape parameters in the 
dose–response model (12).

To demonstrate this principle, the ‘combined covariate’ analysis 
approach was used to observe whether increased BMD precision 
could be achieved for in vitro analyses of neutron, X- and gamma-
ray radiation exposures of HL (18). For each of the exposure sub-
groups, the use of conserved exponential model shape parameters 
resulted in acceptable model description of the dose–response data 
(supplementary Figure S1, available at Mutagenesis Online). The 
data were also subjected to independent BMD analyses carried out 
individually for each of the constituent dose–response data sets. As 
Figure  2 shows, the combined analysis assuming conserved dose–
response shape resulted in substantially better precision in the BMD 
estimates, indicated by the smaller BMD confidence intervals. The 
plotted confidence intervals, here ordered by log-midpoint, provide 
a visually intuitive way to assess BMD precision. At the same time, 
they may be used to assess differences in potency across the sub-
groups included in an analysis (Figures 3–5). Importantly, as confi-
dence intervals should represent the range in which the true BMD 
lies, alleged potency differences are only statistically defensible when 
there is no apparent overlap between intervals. The improvement in 
BMD precision resulting from the use of the combined, covariate 
analysis is thus extremely useful for effective BMD comparisons. The 
narrower confidence intervals resulting from the covariate approach 
confers an improved ability to observe existing differences in BMD 
values across levels of a covariate (i.e. lower probability of a Type 
II error).

Use of combined BMD-covariate analysis to permit 
robust potency ranking of genotoxic substances 
with the same MOA
In 2002 the UK Committee on Toxicity put forward a proposal (29), later 
reviewed by the Committee on Mutagenicity (30), to conduct combined 
risk assessments for selected genotoxic substances that act via a com-
mon MOA. In this proposal, the benzimidazoles were used as archetypal 
compounds since they are known to cause aneugenic effects through an 
MOA that involves mitotic spindle polymerisation (i.e. mitotic spindle 
poisons (31, 32)). This type of multi-substance risk assessment, which 
has also been conducted for substances such as chlorinated dibenzo-
dioxins and polycyclic aromatic hydrocarbons, requires quantitative 
information on relative potency for the endpoint under consideration to 
generate equivalency factors [i.e. relative potency factors (RPFs), potency 
equivalence factors (PEFs), toxicity equivalence factors (TEFs)] that scale 
the potency of each compound to one of the compounds in that group, 
used as a reference compound (33–35). Here we demonstrate that the 
BMD approach employing compound as covariate can provide a rig-
orous potency ranking for a series of aneugens examined in vitro. The 
results are presented for the exponential model only since the Hill model 
resulted in virtually identical BMD confidence intervals.

The combined aneugen analysis yielded finite confidence inter-
vals for all compounds except rotenone, diethylstilboestrol and thia-
bendazole (Figure 3), for which the underlying data were insufficient 
to determine an upper BMD confidence bound. Infinite BMD upper 
bounds indicate that there might not be any dose-related response 
for these chemicals (see supplementary Figure S2, available at 
Mutagenesis Online for the dose–response data of each compound 
and the fitted model). In these instances, the fact that the lower BMD 
confidence bounds could be calculated highlights one of the benefits 
of the BMD approach. More specifically, although the dose–response 
trend is non-significant, which is an inconclusive result, the BMDL 
provides conclusive information. It indicates that, if there is in reality 
a dose-related effect (e.g. at elevated doses compared to those exam-
ined), effects larger than the BMR (i.e. here, 10%) will most likely 

Figure  2. BMD (two-sided) 90% confidence intervals of the BMD50 calculated from the fitted exponential model for MN frequency responses in human 
lymphocytes exposed to low doses of ionising radiation (18). The left panel illustrates the results obtained when each of the seven dose–response data sets were 
analysed independently and sequentially. The right panel illustrates the results obtained when the data sets were combined and analysed using the covariate 
‘radiation type’. For the combined analysis, parameters for maximum response (c) and log-steepness (d) were assumed to be equal for all response functions, 
while parameters for background response (a), potency (b) and var (within group variation) were covariate dependent. The right panel shows that the combined 
covariate analysis yields increased BMD precision (i.e. narrower confidence intervals) for all estimates. The underlying dose–response data and fitted model 
curves are shown supplementary Figure S1, available at Mutagenesis Online.
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occur at doses higher than the established BMDL. Furthermore, a 
BMD confidence interval indicates how much information regarding 
the BMD is provided by the dose–response data. For most of the 

aneugens analysed, the BMD confidence intervals spanned a factor 
of ~2, showing that the information in the dose–response data exam-
ined was quite good.

The results of this potency ranking can be subsequently 
scrutinised in relation to chemical structure and the proposed 
mechanism(s) of action. For example, oxibendazole, flubendazole 
and mebendazole, which have large moieties in the 5-position 
that are absent in benomyl and carbendazim, are benzimidazole 
derivatives known to competitively inhibit colchicine binding 
(31, 32, 37). These moieties might account for the higher potency 
observed for the former three compounds relative to the latter 
two, which are known to bind to a different site than that of col-
chicine (37) but still act by inhibiting microtubule assembly and 
microtubule depolymerisation (38). Diethylstilboestrol also acts 
at the colchicine-binding site but in a non-specific way (39) and 
the structurally related compound bisphenol-A promotes spindle 
polymerisation through stabilisation of the microtubule (40), 
suggesting possible reasons for their reduced potency. Although 
albendazole oxide and thiabendazole act at the colchicine-binding 
site in a similar way to the other benzimidazoles (36), they were 
also determined to have lower potency, emphasising the need to 
consider both mechanism of action and potency for successful 
multi-substance assessments.

Interestingly, the choice of CHO-K1 cells or HL did not appear to 
substantially impact the aforementioned potency estimates, as illus-
trated by the results for mebendazole and carbendazim, which were 
studied in both cell systems. For mebendazole, the small BMD con-
fidence intervals largely overlapped implying the difference can only 
be small. For carbendazim they did not overlap, but as the results in 
Figure 3 indicate, the difference in BMDs between cell systems could 
be very small, or at most differ by a factor of ~2.5 (0.4 log units). 
Here it is worth noting that replication error in the same cell system 
(and compound) might affect the potency estimates since the study 
replication error is currently unknown (i.e. only single replicate data 
set available).

Figure 3. Illustration of the BMD covariate approach to rank the potency of selected aneugens. The panel shows the (two-sided) 90% confidence intervals 
for the BMD10 for each substance based on exponential model covariate BMD analyses of MN dose–response data. Overlapping confidence intervals mean 
that BMDs cannot be distinguished due to the uncertainties in the underlying dose–response data. Flubendazole, oxibendazole, mebendazole, albendazole, 
benomyl, carbendazim and albendazole oxide were tested in Chinese hamster ovary (CHO-K1) cells (36). Nocodazole, mebendazole, colchicine, carbendazim, 
diethylstilboestrol and thiabendazole were tested in human lymphocytes (HL) (19–21). Oestradiol, rotenone and bisphenol-A were tested in human lymphoblastoid 
(AHH-1) cells (22, 23). Individual dose–response data and fitted model curves are shown in supplementary Figure S2, available at Mutagenesis Online.

Figure  4. BMD (two-sided) 90% confidence intervals for the BMD50 
(BMR  =  50%) resulting from a covariate analysis of micronucleus dose–
response data for the azo dyes Sudan-1 (S1) and Para Red (PR) in human 
lymphoblastoid cell lines MCL-5 and AHH-1 (24). For each subgroup, the 
upper interval relates to the fitted exponential model, the lower to the Hill 
model. The underlying dose–response data and fitted model curves are 
shown in supplementary Figure S3, available at Mutagenesis Online.
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The plotted confidence intervals (Figure  3) also permit com-
prehensive potency ranking across the complete family of similarly 
acting aneugens, revealing that nocodazole is most potent, with 
bisphenol-A, diethylstilboestrol and thiabendazole, also potentially 
rotenone, being least potent (note that for the compounds with infi-
nite BMD upper bounds, potency cannot be concluded to be zero). 
This information could also readily be used to generate hypotheses 
related to the mechanistic phenomena that underlie the observed 
potency differences. For example, one might hypothesise that the 
observed differences relate to toxicokinetic variations across cell 
types (i.e. differences in uptake and elimination rates), differences 
in compound-specific metabolic requirements and metabolic capac-
ity across cell types (i.e. rate of formation and destruction of reac-
tive metabolites), differences in repair capacity across cell types and 
differences in the nature and consequence of toxicodynamic phe-
nomena at the site of action (i.e. affinity of compound or reactive 
metabolites for the site of action) (2, 41–43).

The aforementioned potency rankings derived from BMD covar-
iate analyses might be more generally employed to provide a link 
between substance potency and chemical structure or physical–chem-
ical properties. Although similar analyses with more compounds 
would be needed to substantiate links between potency and com-
pound properties, it is reasonable to assert that this type of analysis 
could provide rationales for assigning substances to sub-groupings 
based on evidence of potency similarity. Chemical categorisation and 
sub-grouping could, in turn, contribute to data gap filling via read 

across, trend analysis and quantitative structure-activity relationship 
(QSAR) modelling. Interestingly, the Organisation for Economic 
Cooperation and Development (OECD), the European Chemicals 
Agency (ECHA) and the European Commission Join Research 
Centre (JRC) recently published guidance documents and case study 
reports on the importance of establishing chemical categories to 
enhance hazard/risk assessment and regulatory decision-making 
(44–49). Categorisation permits the establishment of substance 
groups and/or subgroups whereby ‘physicochemical and human 
health and/or ecotoxicological properties and/or environmental fate 
are likely to be similar or follow a regular pattern as a result of struc-
tural similarity’ (44). Where sufficient justification can be found for 
the formation of categories, regulatory agencies such as those listed 
advocate the use of read across, either qualitative or quantitative, 
to fill data gaps (i.e. data for tested compounds are applied to simi-
lar untested compounds and/or analogous endpoints for the same 
compounds). For establishing empirically defined potency groups we 
therefore suggest the combined covariate BMD approach presented 
herein is an appropriate tool since it is an effective means of assess-
ing and ranking chemical potencies.

Use of combined BMD-covariate analysis for 
potency comparisons between cell lines with 
different metabolic competencies
In addition to establishing robust potency rankings, the BMD covar-
iate approach might also provide, as already suggested, information 
to support mechanistic hypotheses. To demonstrate this, in vitro MN 
data for the azo dyes Sudan-1 and Para Red (24) were used to com-
pare responses across two cell lines that differ with respect to endog-
enous metabolic capacity. These substances and their metabolites are 
known to generate DNA adducts through reactive oxygen species 
(e.g. 8-oxo-7,8-dihydro-2′-deoxyguanosine or 8-oxo-dG) and bulky 
adducts that form via a reactive intermediate [i.e. benzene diazonium 
ion (BDI) adducts] (50). Thus, the metabolic capacity of an in vitro 
test system is an important consideration in the determination of 
genotoxic potency for these compounds. The dose–response analyses 
conducted herein used compound and cell line as covariates to exam-
ine relative potency and the influence of each cell lines’ endogenous 
metabolic capacity (Figure 4). The analyses were highly similar using 
either exponential or Hill models, and revealed that both Para Red 
and Sudan-1 are more potent in the transgenic MCL-5 cell line, which 
expresses five human drug metabolising enzymes (i.e. CYP1A1, 1A2, 
2A6, 2E1 and 3A4) that are absent in the parent AHH-1 cell line. 
This indicates that endogenous metabolism is an important determi-
nant of genotoxic potency for these compounds. Further, the analysis 
showed significant differences in potency between the two azo dyes 
within cell lines. While the paucity of information on the metabo-
lism of the structurally similar compounds prohibits any definitive 
statements regarding the cause of the observed potency pattern, the 
differences in potency between Para Red and Sudan-1 likely reflect 
differential formation of DNA-reactive metabolites such as BDI, as 
well as reactive oxygen species (24, 51, 52).

Use of combined BMD-covariate analysis to 
examine the impact of exposure duration
Disruption of DNA replication has been shown to induce chromo-
somal damage, with one of the best examples provided by Lynch 
et al. (25) who examined the effect of topoisomerase II inhibition on 
the clastogenicity (i.e. MN frequency) of etoposide in vitro. One of 
the main findings of the Lynch et al. study was that etoposide-induced 

Figure  5. BMD (two-sided) 90% confidence intervals for the BMD200 
(BMR  =  200%) resulting from a covariate analysis of micronucleus dose–
response data for the DNA replication inhibitor etoposide in mouse L5178Y 
lymphoma cells (25). For each exposure duration the upper confidence 
interval relates to the fitted exponential model, the lower to the Hill model. 
The underlying dose–responses data and fitted model curves are shown in 
supplementary Figure S4, available at Mutagenesis Online
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clastogenicity was both concentration- and time-dependent; how-
ever, the authors were not able to successfully employ bilinear dose–
response modelling to evaluate their time dependency hypothesis 
since the dose–response data did not follow a bilinear dose–response 
relationship.

In contrast, our BMD reanalysis of the Lynch et  al. etoposide 
data shows that the dose–response data, which are suitable for BMD 
analysis, accurately describe the effect of exposure duration. Using 
the combined BMD approach with exposure duration as the covari-
ate, the exponential and Hill BMD confidence intervals showed a 
consistent decrease with exposure time (Figure  5), supporting the 
assertion of increasing potency for increased exposure duration. 
This analysis substantiates the work of Lynch et al. (25) by provid-
ing a quantitative analysis confirming the expected time- and dose-
dependency of MN frequency.

Conclusions

The analyses presented herein show that in vitro data can be used for 
more than hazard identification and qualitative binning of genotox-
icity test results. More specifically, they illustrate that quantitative 
dose–response analyses, and moreover, considerations of BMD con-
fidence intervals, in particular when established by combined covari-
ate dose–response analyses, permit robust potency determinations 
and potency rankings. In addition, they illustrate that rigorous com-
parisons of potency across compound-cell combinations can provide 
support for MOA hypotheses. Finally, they illustrate that BMD rank-
ing would be the appropriate tool for developing substance catego-
ries and/or sub-categories, which in turn can be used to facilitate 
quantitative read across to compensate for data gaps encountered 
during regulatory reviews of chemicals in commerce. When suffi-
ciently validated, the various applications illustrated here could also 
be employed in the development of other chemical assessment tools 
and procedures based on in vitro test results; e.g. establishment and 
scrutiny of key event relationships in AOPs (adverse outcome path-
ways (53)), and, in combination with IVIVE approaches (42), the 
establishment of human exposure limits.

We offer the following concluding statements regarding the util-
ity of the combined covariate approach presented here, and more 
generally, comparison of in vitro BMDs:

1. Quantitative dose–response analysis of in vitro MN data using 
the BMD approach provides quantitative information on the 
potency of a compound, which is more informative than just 
concluding whether a given compound has genotoxic potential 
or not.

2. The precision of individual BMD estimates from genetic toxicity 
tests can be improved by covariate analysis of combined data sets 
for a shared endpoint when the dose–response data at each level of 
the covariate can be adequately described by a model that assumes 
constant shape parameters. Increased BMD precision affords an 
improved ability to rank and group potency values across covari-
ate levels (e.g. compounds, exposure durations, cell lines, etc.).

3. Comparison of potencies requires consideration of BMD confidence 
intervals: plotting BMD confidence intervals provides an approach 
whereby both the magnitude of potential differences in BMDs and 
the uncertainty in the BMD estimates can be taken into account.

4. BMD confidence intervals can be employed to identify differences/
similarities in potency that may be associated with a hypothesised 
MOA or cell line property (e.g. increased potency associated with 
increased metabolic capacity).

5. BMD confidence intervals would be the appropriate starting 
point in developing equipotent chemical groupings and/or sub-
groupings when supported by mechanistic information or struc-
tural similarities, thereby facilitating read across and data gap 
filling that could expedite regulatory evaluations and decision-
making.

Supplementary data

Supplementary Figures S1–S4 are available at Mutagenesis Online. 
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