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a b s t r a c t

We extend our existing hp-finite element framework for non-conducting magnetic fluids (Jin et al., 2014)
to the treatment of conducting magnetic fluids including magnetostriction effects in both two- and three-
dimensions. In particular, we present, to the best of our knowledge, the first computational treatment of
magnetostrictive effects in conducting fluids. We propose a consistent linearisation of the coupled system
of non-linear equations and solve the resulting discretised equations by means of the Newton–Raphson
algorithm. Our treatment allows the simulation of complex flow problems, with non-homogeneous per-
meability and conductivity, and, apart from benchmarking against established analytical solutions for
problems with homogeneous material parameters, we present a series of simulations of multiphase flows
in two- and three-dimensions to show the predicative capability of the approach as well as the impor-
tance of including these effects.
� 2015 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Magnetohydrodynamics (MHD) studies the behaviour of elec-
trically conducting fluids under the existence of a magnetic field
[6,15,30]. Since it was established by Hannes Alfvén in 1942, the
field of MHD has grown rapidly and is now widely established
and used in a variety of research fields, such as in geophysics
(e.g. [3]), space weather forecasting (e.g. [33]), plasma physics
(e.g. [22]), nuclear fusion reactors (e.g. [31]), metal casting (e.g.
[14]) and in the Lorentz force flowmetre [28], to name but a few.

MHD can be viewed as a particular case of coupling between
magnetic fields and fluids. In general, time independent
magneto-fluid coupled problems can be described by the coupling
between the steady incompressible Navier–Stokes equations

qðrvÞv �r � ½½rF �� ¼ f ; ð1aÞ
r � v ¼ 0; ð1bÞ

which govern the fluid flow, and the time independent Maxwell
equations

r�H ¼ J ext þJ ohm; ð2aÞ
r � E ¼ 0; ð2bÞ
r � B ¼ 0; ð2cÞ
r �D ¼ qv ; ð2dÞ

which govern the electromagnetic fields. In (1), q is the fluid den-
sity, v is the fluid velocity, ½½rF �� is the Cauchy stress tensor and f
is total body force. Furthermore, in (2), B is the magnetic flux den-
sity vector,D is the electric flux intensity vector,J ext is the external
current source, J ohm is the Ohmic current, qv is the volume current
density and E and H are the electric and magnetic field intensity
vectors, respectively.

From the fluid perspective, we shall consider it to be Newto-
nian, with constitutive law

½½rF �� ¼ �p̂½½I�� þ 2l̂½½e��; ð3Þ

where ½½I��; ½½e�� are the identity and strain rate tensors, respectively.
Furthermore, p̂ is the pressure and l̂ is the dynamic viscosity. From
the electromagnetic perspective, we consider constitutive laws of
the form

B ¼ lH; J ohm ¼ RE; D ¼ �E; ð4Þ

where l is the permeability of the material, which describes the
extent of magnetisation, R is its conductivity and � is its permittiv-
ity. Note that residual magnetism will be ignored and that, in gen-
eral, l;R and � are tensors, in which case we denote them as
½½l��; ½½R�� and ½½���, respectively. For a discussion on different classes
of diamagnetic, paramagnetic and non-magnetic fluids, we refer to
[26].

Intrinsic to simulating MHD problems is the coupling mecha-
nism. The existence of a magnetic field applies a magnetic body
force f EM (ponderomotive force) (as a contribution to f ) onto the
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fluid domain, which affects the fluid flow. There are several differ-
ent expressions for this magnetic body force, which can be found in
the literature [10–12,29,38]. All in all, the magnetic body force con-
sists of the Lorentz force, the magnetostrictive force and the
dimagnetophoretic force [10]. We follow Stratton [38] and call
the combination of dimagnetophoretic and magnetostrictive forces
magnetostriction. In previous research on MHD, the electromag-
netic constitutive relations are usually selected as (2), with a scalar
constant permeability and conductivity. Furthermore, dielectric
effects and the magnetostrictive (and dimagnetophoretic) forces
are neglected and only the Lorentz force is considered [1,29]. This,
in turn, leads to the standard governing equations for MHD stated
in Moreau [30], Davidson [6] and Armero and Simo [1]. However,
when considering problems with different fluid phases [16,41],
as well as problems where the induced strain rate alters the distri-
bution of ½½l��, which in turn changes the magnetic field distribu-
tion, magnetostrictive effects become important [26,27]. This
coupling mechanism is illustrated in Fig. 1. In order to include
magnetostrictive effects with ease, it makes sense to revisit the
governing equations for MHD and instead express the ponderomo-
tive force f EM in terms of the divergence of a stress tensor ½½rEM��

f EM ¼ r � ½½rEM��; ð5Þ

which, in turn, permits more general coupling mechanisms to be
considered. In order to solve MHD problems cost-effectively, vari-
ous finite element methodologies have been applied thus far. Guer-
mond and Minev [19,20] dealt with a decoupled linear MHD
problem involving electrically conducting and insulating regions
by using a mixed finite element approach with nodal (H1ðXÞ con-
forming) finite elements for the magnetic field. It was observed that
in non-convex domains with sharp edges and corners, a nodal finite
element approach may fail to capture the singularities associated
with these domains. Therefore, Schneebeli and Schötzau proposed
a new mixed finite element for stationary incompressible MHD
based on the Sobolev space Hðcurl;XÞ [34,36]. In [21], a weighted
regularisation approach was used to solve the same equation set.
In [5], Codina and Hernández-Silva present a stabilised finite ele-
ment method for the stationary magneto-hydrodynamic equations
based on a simple algebraic version of the subgrid scale variational
concept. Houston, Schötzau and Wei applied a discontinuous
Galerkin (DG) method to linearised incompressible MHD in [23].

Greif, Schötzau, Wei and Li used a DG method with divergence free
velocities for incompressible MHD [18]. A HðdivÞ conforming finite
element has been proposed to solve the MHD equations so that the
divergence-free condition on the magnetic flux intensity vector is
rigorously guaranteed [4]. However, in all of these approaches, only
a simple conducting fluid with constant permeability and conduc-
tivity was considered.

Our recent work has been devoted to the application of high-
order hp-finite element discretisations to problems involving the
coupling of electromagnetism, mechanics and fluids including
electrostricitive and magnetostrictive effects. In [17], a fixed point
algorithm was applied to the simulation of fully coupled elec-
trostrictive dielectric materials. Then, in [25,26], we extended our
methodology to account for magnetostrictive effects in both nearly
incompressible and incompressible Newtonian fluids and applied a
Newton–Raphson algorithm, which exhibits quadratic conver-
gence of the residual and exponentially fast convergence of the
unknown fields. In closely related work, [32], the hp-finite element
analysis of three-dimensional linear piezoelectric beams is also
considered.

This work continues to build on these developments and pre-
sents the following novel contributions. We extend our existing
hp-finite element framework for non-conducting magnetic fluids
to the treatment of conducting magnetic fluids including magne-
tostriction effects in both two- and three-dimensions. In particular,
we present, to the best of our knowledge, the first computational
treatment of magnetostrictive effects in conducting fluids. We pro-
pose a consistent linearisation of the resulting non-linear equa-
tions and solve the resulting discretised equations by means of
the Newton–Raphson algorithm. We once again employ the high
order hp-finite element discretisation of Schöberl and Zaglmayr
[35,40], but the computational complexity in the present contribu-
tion is considerably higher than in our previous work due to the
requirement of compatible H1; L2 and HðcurlÞ conforming discreti-
sations, which this basis set provides. The advantages of hp-finite
elements are already outlined in [7,8,17] and thus are not dis-
cussed here.

The article is broken down into the following sections. In
Section 2, the coupling approach is introduced and applied to
derive the governing equations of MHD for homogeneous
conducting fluids as well as for conducting magnetostrictive fluids.

Fig. 1. Two way coupling mechanism for magnetic fields and fluids (note that H is the scaled magnetic field intensity and v is the fluid velocity introduced in Section 2.1).
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In Section 3, the Newton–Raphson algorithm is established via a
consistent linearisation for both cases. Section 4 describes, briefly,
the main features of the hp-finite element framework employed for
the spatial discretisation of the weak form. Section 5 includes a
series of numerical examples, well known within the fluid
mechanics community, which are used to demonstrate the
accuracy and robustness of the hp-implementation. Finally, some
concluding remarks are summarised in Section 6.

2. Coupling approach

In this section we construct the boundary value problems
(BVPs) for describing the problem of stationary incompressible
MHD, beginning with the boundary value problem for homoge-
neous isotropic conducting fluids with constant scalar permeabil-
ity and conductivity and then, extending this to the treatment of
more general magnetic fluids, including magnetostrictive effects.
In the first case, following the discussion in the introduction, the
electromagnetic body force is assumed to be described entirely
using only the Lorentz force. Then, in the second case, we consider
a more general ponderomotive force, which is expressed as the
divergence of a stress tensor.

2.1. MHD for homogeneous isotropic conducting fluids

In a similar manner to [23,36], we consider a bounded Lipschitz
domain X � Rd; d ¼ 2;3;X :¼ XF [XM , where XF is the fluid
domain and XM is the magnetic domain. For simplicity, we shall
assume that X ¼ XF ¼ XM and its boundary can be described as
@X ¼ @XF

D [ @XF
N ¼ @XM

D [ @XM
N . We introduce the scaled fields as

E ¼ �1=20 E; D ¼ ��1=20 D; qv ¼ �
�1=2
0 q̂v ;

H ¼ l1=2
0 H; B ¼ l�1=20 B; J ¼ l1=2

0 J ;
ð6Þ

where �0 and l0 denote the permittivity and permeability of free
space, respectively. It can then be shown that the coupling between
(1) and (2) due to the Lorentz force, in absence of dielectric effects
and the magnetostrictive forces and with constitutive relations (4)
and (3), leads to the BVP formulation derived in [1,18,36], which
we write in the form

qðrvÞv �r � ½½rF �� ¼ f in X; ð7aÞ
r � v ¼ 0 in X; ð7bÞ

½½lr ��rr þr� c½½~r���1r� H �r� ðv � ½½lr ��HÞ ¼ g in X; ð7cÞ
r � ð½½lr��HÞ ¼ 0 in X; ð7dÞ

v ¼ vD on @XF
D; ð7eÞ

ð½½rF ��Þn ¼ t on @XF
N; ð7fÞ

n� H ¼ f D on @XM
D ; ð7gÞ

n� ðc½½~r���1r� H þ v � ½½lr ��HÞ ¼ f N on @XM
N ; ð7hÞ

where H is the scaled magnetic field intensity introduced in (6) and

g :¼ r� ðc½½~r���1JexÞ is a source term, n is unit outward normal vec-

tor. In addition, ½½~r�� :¼ l0=�0
� �1=2½½R�� is the scaled electric conduc-

tivity tensor, ½½lr�� :¼ ½½l��=l0 is the relative permeability tensor, c
is the speed of light and Jex is an external current source. Here r is
the Lagrange multiplier which is used to enforce (7d) [36].

The constitutive laws for this system are stated in (4) and (3)
where, for the scaled fields, ½½l�� becomes ½½lr �� and ½½R�� becomes
½½~r��. Furthermore, in the case of a homogeneous isotropic
conducting fluid, ½½lr �� and ½½~r�� become constant multiples of ½½I��
and l̂ adopts a constant value. Furthermore, the body force f in
this case is

f :¼ ~f þ f EM ¼ ~f þr� H � ð½½lr ��HÞ; ð8Þ

which follows from rescaling the Lorentz force J � B. In the above,
~f is the non-magnetic part of the total body force. Note that, com-
pared to the form of the stationary incompressible MHD equations
presented in [23,36], we have chosen to write the formulation in
terms of the scaled magnetic intensity H, rather than the magnetic
flux density B :¼ ½½l��H.

2.2. MHD for magnetostrictive conducting fluids

With the addition of suitable transmission conditions, (7) can
already treat problems involving subdomains in which ½½lr �� and
½½~r�� are different scalar multiples of ½½I��. However, we also wish
to include other effects. As stated in the introduction, magne-
tostrictive effects become crucial in the case of multiphase prob-
lems where the magnetic permeability exhibits changes in its
gradient. In order to include these effects, we consider a total body
force acting on the fluid domain, where we express f EM in terms of
the divergence of a stress tensor as

f :¼ ~f þr � ½½rEM��;

and, in general,

½½rEM�� :¼ ½½rE�� þ ½½rH��; ½½rE�� ¼ ½½rE��0 þ ½½rE���;
½½rH�� ¼ ½½rH��0 þ ½½rH��l:

Note that f EM expressed in this form implicitly includes the
effects described by J � B ¼ r�H � ð½½l��HÞ in the absence of
magnetostriction. In our case, only magnetic effects are important
and so ½½rEM�� ¼ ½½rH�� and the contributions ½½rH��0 and ½½rH��l are
those associated with free space and a magnetic material, respec-
tively. Specifically, in the case of a homogeneous isotropic medium
with ½½l�� ¼ l0lr ½½I��, then in the same manner as [17],

½½rH��0 ¼ l0H�H� l0

2
ðH �HÞ½½I��; ð9aÞ

½½rH��l¼l0 ðlr�1Þ�
lð1Þr

2

 !
H�H�1

2
ððlr�1Þþlð2Þr ÞðH �HÞ½½I��

 !
;

ð9bÞ
where lð1Þr and lð2Þr are as defined in [26].

Further simplifications can be made by making use of the scaled
magnetic intensity H, such that

½½rH��0 ¼ H � H � 1
2
ðH �HÞ½½I��; ð10aÞ

½½rH��l ¼ ðlr � 1Þ � l
ð1Þ
r

2

 !
H � H � 1

2
ððlr � 1Þ þ lð2Þr ÞðH � HÞ½½I��:

ð10bÞ
For a magnetostrictive conducting fluid, the stress tensor can be

expressed in a similar way to [26] to include magnetostrictive
effects as

½½rEM�� ¼ ½½rHðHÞ��

¼ lr �
lð1Þr

2

 !
H � H � 1

2
lr þ lð2Þr

� �
ðH � HÞ½½I��; ð11Þ

½½lr�� ¼ ½½lrðvÞ��
¼ lr ½½I�� þ ðr � vÞ½½I�� � 2½½eðvÞ��ð Þ þ lð1Þr ½½eðvÞ��
þ lð2Þr ðr � vÞ½½I��: ð12Þ

Using the stress tensor approach allows us to consider a more
general set of boundary conditions for (7) as
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v ¼ vD on @XF
D;

ð½½rF �� þ ½½rEM��Þn ¼ t on @XF
N;

n� H ¼ f D on @XM
D ;

n� ðc½½~r���1r� H þ v � ½½lr��HÞ ¼ f N on @XM
N ;

where @X ¼ @XF
D [ @XF

N ¼ @XM
D [ @XM

N and, in general we do not

require that @XF
D ¼ @XM

D or @XF
N ¼ @XM

N . The difference between
the homogeneous isotropic conducting fluid and a magnetostrictive
conducting fluid is that, the Neumann boundary for the fluid
domain contains the total stress tensor, which is more realistic at
describing the actual physics since, in real experiments, terms mak-
ing up the contributions to the applied traction cannot be identified
separately.

If X consists of a series of non-overlapping regions such that
X ¼ X1 [X2 [ � � � then, at the interfaces between different materi-
als, @Xi \ @Xj, the following conditions are required to hold

v j@Xi
¼ v j@Xj

ð½½rF �� þ ½½rEM��Þnj@Xi
¼ ð½½rF �� þ ½½rEM��Þnj@Xj

n� Hj@Xi
¼ n� Hj@Xj

n� ðc½½~r���1r� H þ v � ½½lr ��HÞj@Xi

¼ n� ðc½½~r���1r� H þ v � ½½lr��HÞj@Xj
:

3. The linearised schemes

In this section, we present the linearised schemes for both
homogeneous isotropic conducting and magnetostrictive
conducting fluids. Once the linearised schemes have been estab-
lished by computing directional derivatives, the Newton–Raphson
is applied and the resulting algorithms are summarised in
Algorithms 1 and 2.

3.1. MHD for homogeneous isotropic conducting fluids

We begin by following the treatment described in Section 2.1.
Associated with (7), we define for the weak solutions
ðv ; p̂;H; rÞ 2WðvDÞ � Z � Yðf DÞ � X the associated residuals
Rv ;Rp̂;RH and Rr as

Rvðvd;v ; p̂;HÞ :¼
Z
X
qðrvÞv � vddXþ

Z
X
½½rF �� : ½½eðvdÞ��dX

�
Z
X

~f � vd dXþ
Z
X
vd � ð½½lr��HÞ � r � HdX

�
Z
@XF

N

t � vdd@X; ð13aÞ

Rp̂ðp̂d;vÞ :¼
Z
X
ðr � vÞp̂ddX; ð13bÞ

RHðHd;v;H; rÞ :¼ �
Z
X
c½½~r���1r� H � r � HddX

þ
Z
X
v � ð½½lr��HÞ � r � Hd dX�

Z
X
½½lr ��rr �HddX

þ
Z
X
g �HddX�

Z
@XM

N

f N �Hdd@X; ð13cÞ

Rrðrd;HÞ :¼ �
Z
X
½½lr��H � rrddX; ð13dÞ

for all ðvd; p̂d;Hd; rdÞ 2Wð0Þ � Z � Yð0Þ � X where, following [36],
we have

WðvDÞ :¼ v 2 ðH1ðXÞÞd : v ¼ vD on @X
n o

;

Z :¼ p̂ 2 L2ðXÞ :
Z
X
p̂dX ¼ 0

� �
;

Yðf DÞ :¼ H 2 Hðcurl;XÞ : n� H ¼ f D on @Xf g;

X :¼ r 2 H1ðXÞ : r ¼ 0 on @X
n o

:

In the above H1ðXÞ; L2ðXÞ;Hðcurl;XÞ have their usual meanings (e.g.
[7]) and we denote by ðu;vÞX :¼

R
X u � v dX the standard L2 inner

product and by kukL2 :¼ ðu;uÞ
�1=2
X the L2 norm. In addition, we

associate the corresponding kukH1 :¼ ðkuk2L2 þ kruk
2
L2
Þ
1=2

and

kukHðcurlÞ :¼ ðkuk
2
L2
þ kr� uk2L2 Þ

1=2
norms.

The residuals given in (13) are obtained by weighting Eq. (7)
with the weights vd; p̂d;Hd and rd and performing integration by
parts. Notice that all boundary terms disappear for the pure Dirich-
let case.

We remark that it is necessary to add the criteria thatR
X p̂dX ¼ 0 in Z in order to ensure uniqueness of the pressure field
when dealing with pure Dirichlet boundary conditions for v [37].

With an iterative solution approach in mind, we consider possi-
ble trial solutions ðv ½m�; p̂½m�;H½m�; r½m�Þ 2WðvDÞ � Z � Yðf DÞ � X and
linearise the residuals (13) as follows

Rv ðvd;v ½m�; p̂½m�;H½m�ÞþDRv ðvd;v ½m�; p̂½m�;H½m�Þ½d½m�v �
þDRv ðvd;v ½m�; p̂½m�;H½m�Þ½d½m�p̂ �þDRv ðvd;v ½m�; p̂½m�;H½m�Þ½d½m�H � ¼ 0; ð14aÞ

Rp̂ðp̂d;v ½m�Þ þ DRp̂ðp̂d;v ½m�½d½m�v � ¼ 0; ð14bÞ

RHðHd;v ½m�;H½m�;r½m�ÞþDRHðHd;v ½m�;H½m�;r½m�Þ½d½m�H �
þDRHðHd;v ½m�;H½m�;r½m�Þ½d½m�v �þDRHðHd;v ½m�;H½m�;r½m�Þ½d½m�r � ¼0; ð14cÞ

Rrðrd;H½m�Þ þ DRrðrd;H½m�Þ½d½m�H � ¼ 0; ð14dÞ

for all ðvd; p̂d;Hd; rdÞ 2Wð0Þ � Z � Yð0Þ � X with update equations

v ½mþ1� ¼ v ½m� þ d½m�v ; ð15aÞ

p̂½mþ1� ¼ p̂½m� þ d½m�p̂ ; ð15bÞ

H½mþ1� ¼ H½m� þ d
½m�
H ; ð15cÞ

r½mþ1� ¼ r½m� þ d½m�r : ð15dÞ

The directional derivatives can be computed as

DRvðvd;v ½m�; p̂½m�;H½m�Þ½d½m�v � ¼
Z
X
l̂rd½m�v : rvddX

þ
Z
X
l̂ðr � d½m�v Þðr � vdÞdX

þ
Z
X
qðv ½m� � rd½m�v Þ � vddX

þ
Z
X
qðd½m�v � rv ½m�Þ � vddX; ð16aÞ

DRvðvd;v ½m�; p̂½m�;H½m�Þ½d½m�p̂ � ¼ �
Z
X
ðr � vdÞd½m�p̂ dX; ð16bÞ
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DRvðvd;v ½m�; p̂½m�;H½m�Þ½d½m�H � ¼
Z
X
ðvd�½½lr ��d

½m�
H Þ �r�H½m�dX

þ
Z
X
ðvd�½½lr��H

½m�Þ �r�d
½m�
H dX; ð16cÞ

DRp̂ðp̂d;v ½m�Þ½d½m�v � ¼ �
Z
X
ðr � d½m�v ÞpddX; ð16dÞ

DRHðHd;v ;H; rÞ½d½m�H � ¼ �
Z
X
c½½~r���1r� d

½m�
H � r � HddX

þ
Z
X
v ½m� � ð½½lr ��d

½m�
H Þ � r � HddX; ð16eÞ

DRHðHd;v ;H; rÞ½d½m�v � ¼
Z
X
ðd½m�v � ½½lr��H

½m�Þ � r � HddX; ð16fÞ

DRHðHd;v ;H; rÞ½d½m�r � ¼ �
Z
X
½½lr��rd½m�r �H

d; ð16gÞ

DRrðrd;HÞ½d½m�H � ¼ �
Z
X
½½lr��d

½m�
H � rrddX: ð16hÞ

where certain terms have been highlighted for later reference.
Assuming the solutions ðv ½m�; p̂½m�;H½m�; r½m�Þ to be known, and
associating the bilinear forms Cvv ; Cvp̂; CvH , Cp̂v ; CHH; CHv ; CHr and CrH
in turn with the directional derivatives stated above, the
Newton–Raphson iteration can be stated as: Find

ðd½m�v ; d½m�p̂ ; d
½m�
H ; d½m�r Þ 2Wð0Þ � Z � Yð0Þ � X such that

Cvvðvd; d½m�v Þ þ Cv p̂ðvd; d½m�p̂ Þ þ CvHðv
d; d

½m�
H Þ ¼ �Rvðvd;v ½m�; p̂½m�;H½m�Þ;

ð17aÞ

Cp̂vðp̂d; d½m�v Þ ¼ �Rp̂ðp̂d;v ½m�Þ; ð17bÞ

CHHðHd;d
½m�
H Þ þ CHvðH

d; d½m�v Þ þ CHrðH
d; d½m�r Þ ¼ �RHðHd;v ½m�;H½m�; r½m�Þ;

ð17cÞ

CrHðrd; d½m�H Þ ¼ �Rrðrd;H½m�Þ: ð17dÞ

for all ðvd; p̂d;Hd; rdÞ 2Wð0Þ � Z � Yð0Þ � X with ðv ½0�; p̂½0�;H½0�; r½0�Þ 2
WðvDÞ � Z � Yðf DÞ � X.

Note that, by neglecting terms with an underline in (16) the
simplified Picard iterative scheme can be obtained [36]. This

scheme is fully symmetric with CvHðvd; d
½m�
H Þ ¼ CHv ðd

½m�
v ;HdÞ, in addi-

tion to the already symmetric terms Cvp̂ðvd; d½m�p̂ Þ ¼ Cp̂v ðd
½m�
p̂ ;vdÞ and

CHrðHd; d½m�r Þ ¼ CrHðd
½m�
r ;HdÞ. The Newton–Raphson scheme for a

homogeneous fluid can be summarised as shown in Algorithm 1.

Algorithm 1. Newton–Raphson scheme for a homogeneous iso-
tropic conducting fluid.

Require: v ½m�; p̂½m�;H½m�; r½m�;R½m�1�v ;R½m�1�p̂ ;R½m�1�H ;R½m�1�r for

m ¼ 0 and TOL

1: while kR½m�1�v k; kR½m�1�p̂ k; kR½m�1�H k and kR½m�1�r kP TOL do

2: Solve the linear system of Eq. (17)! d½m�v ; d½m�p̂ ; d½m�H ; d½m�r

3: Record the residual for stepm!R½m�v ;R½m�p̂ ;R½m�H andR½m�r

4: Update the solution with Eq. (15)

! v ½mþ1�; p̂½mþ1�;H½mþ1�; r½mþ1�
5: m mþ 1
6: end while

7: return v  v ½mþ1�; p̂ p̂½mþ1�;H  H½mþ1�; r  r½mþ1�

3.2. MHD for magenostrictive conducting fluids

In this section we consider the extension of Section 3.1 to more
complex magnetostrictive fluids. In order to achieve this we follow
Section 2.2 and our own presentation in [26]. In this case,
associated with (7), we define for the weak solutions
ðv ; p̂;H; rÞ 2WðvDÞ � Z � Yðf DÞ � X the associated residuals
~Rv ; ~Rp̂; ~RH and ~Rr as

~Rvðvd;v ; p̂;HÞ :¼
Z
X
qðrvÞv � vd dXþ

Z
X
½½rF þ rEM��

: ½½eðvdÞ��dX�
Z
X

~f � vddX�
Z
@XF

N

t � vd d@X; ð18aÞ

~Rp̂ðp̂d;vÞ :¼
Z
X
ðr � vÞp̂d dX; ð18bÞ

~RHðHd;v ;H; rÞ :¼ �
Z
X
c½½~r���1r� H � r � HddX

þ
Z
X
v � ð½½lrðvÞ��HÞ � r � HddX

�
Z
X
ð½½lrðvÞ��rrÞ � HddXþ

Z
X
g � HddX

�
Z
@XM

N

f N � Hdd@X; ð18cÞ

~Rrðrd;H;vÞ :¼ �
Z
X
ð½½lrðvÞ��HÞ � rrd dX; ð18dÞ

for all ðvd; p̂d;Hd; rdÞ 2Wð0Þ � Z � Yð0Þ � X. Note that in the case of
non-pure Dirichlet conditions the constraint of

R
X p̂dX ¼ 0 in Z can

also be dropped.
Analogue to the previous section, with the possible trial solu-

tions ðv ½m�; p̂½m�;H½m�; r½m�Þ 2 ~WðvDÞ � Z � ~Yðf DÞ � X, the linearised
residuals (18) can be written as follows

~Rv ðvd;v ½m�; p̂½m�;H½m�ÞþD ~Rv ðvd;v ½m�; p̂½m�;H½m�Þ½d½m�v �
þD ~Rv ðvd;v ½m�; p̂½m�;H½m�Þ½d½m�p̂ �þD ~Rv ðvd;v ½m�; p̂½m�;H½m�Þ½d½m�H � ¼0; ð19aÞ

~Rp̂ðp̂d;v ½m�Þ þ D ~Rp̂ðp̂d;v ½m�½d½m�v � ¼ 0; ð19bÞ

~RHðHd;v ½m�;H½m�;r½m�ÞþD ~RHðHd;v ½m�;H½m�;r½m�Þ½d½m�H �
þD ~RHðHd;v ½m�;H½m�;r½m�Þ½d½m�v �þD ~RHðHd;v ½m�;H½m�;r½m�Þ½d½m�r � ¼0; ð19cÞ

~Rrðrd;v ½m�;H½m�ÞþD ~Rrðrd;v ½m�;H½m�Þ½d½m�v �þD ~Rrðrd;v ½m�;H½m�Þ½d½m�H �¼0;

ð19dÞ

for all ðvd; p̂d;Hd; rdÞ 2 ~Wð0Þ � Z � ~Yð0Þ � X with similar update
equations to (15).

The directional derivatives are

D ~Rvðvd;v ½m�; p̂½m�;H½m�Þ½d½m�v � ¼ DRvðvd;v ½m�; p̂½m�;H½m�Þ½d½m�v �; ð20aÞ

D ~Rvðvd;v ½m�; p̂½m�;H½m�Þ½d½m�p̂ � ¼ DRvðvd;v ½m�; p̂½m�;H½m�Þ½d½m�p̂ �; ð20bÞ

D ~Rvðvd;v ½m�; p̂½m�;H½m�Þ½d½m�H � ¼
Z
X
½½eðvdÞ�� : @½½rEM��

@H
d
½m�
H dX; ð20cÞ

D ~Rp̂ðp̂d;v ½m�Þ½d½m�v � ¼ DRp̂ðp̂d;v ½m�Þ½d½m�v �; ð20dÞ
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D ~RHðHd;v ½m�;H½m�;r½m�Þ½d½m�H � ¼ �
Z
X
c½½~r���1r� d

½m�
H �r�HddX

þ
Z
X
v ½m� � ð½½lrðv ½m�Þ��d

½m�
H Þ �r�HddX;

ð20eÞ

D ~RHðHd;v ½m�;Hm�; r½m�Þ½d½m�v � ¼
Z
X
ðd½m�v � ½½lrðv ½m�Þ��H

½m�Þ � r � HddX

þ
Z
X
v ½m� � @ð½½lr ��HÞ

@½½e�� : ½½eðd½m�v Þ��
� �

� r � HddX; ð20fÞ

D ~RHðHd;v ½m�;H½m�; r½m�Þ½d½m�r � ¼ �
Z
X
½½lrðv ½m�Þ��rd½m�r � H

d dX; ð20gÞ

D ~Rrðrd;v ½m�;H½m�Þ½d½m�v � ¼ �
Z
X
rrd � @ð½½lr ��HÞ

@½½e�� : ½½eðd½m�v Þ��dX; ð20hÞ

D ~Rrðrd;v ½m�;H½m�Þ½d½m�H � ¼ �
Z
X
½½lrðv ½m�Þ��d

½m�
H � rrddX: ð20iÞ

In the above

@½½rEM��
@H

� 	
ijk

¼ lr �
lð1Þr

2

 !
dikHj þ djkHi
� �

� lr þ lð2Þr

� �
dijHk;

@ð½½l��HÞ
@½½e��

� 	
ijk

¼ ðlr þ lð2Þr ÞdjkHi þ ðlð1Þr � 2lrÞdijHk:

Assuming the solutions ðv ½m�; p̂½m�;H½m�; r½m�Þ to be known, and
associating the bilinear forms ~CvH , ~CHH; ~CHv ; ~CHr; ~Crv and ~CrH in turn
with the new directional derivatives stated above, the Newton–

Raphson iteration can be stated as: Find ðd½m�v ; d½m�p̂ ; d
½m�
H ; d½m�r Þ 2

Wð0Þ � Z � Yð0Þ � X such that

Cvvðvd; d½m�v Þ þ Cv p̂ðvd; d½m�p̂ Þ þ ~CvHðvd; d
½m�
H Þ

¼ � ~Rvðvd;v ½m�; p̂½m�;H½m�Þ; ð21aÞ

Cp̂vðp̂d; d½m�v �Þ ¼ � ~Rp̂ðp̂d;v ½m�Þ; ð21bÞ

~CHHðHd; d
½m�
H Þ þ ~CHvðHd; d½m�v Þ þ ~CHrðHd; d½m�r Þ

¼ � ~RHðHd;v ½m�;H½m�; r½m�Þ; ð21cÞ

~Crvðrd; d½m�v Þ þ ~CrHðrd; d½m�H Þ ¼ � ~Rrðrd;H½m�Þ: ð21dÞ

for all ðvd; p̂d;Hd; rdÞ 2Wð0Þ � Z � Yð0Þ � X with ðv ½0�; p̂½0�;H½0�; r½0�Þ 2
WðvDÞ � Z � Yðf DÞ � X. Note that this reduces to (17) for a homoge-
neous isotropic conducting fluid without magnetostrictive effects.
The Newton–Raphson scheme for a magnetostrictive material can
be summarised as shown in Algorithm 2.

Algorithm 2. Newton–Raphson scheme for a magnetostrictive
fluid.

Require: v ½m�; p̂½m�;H½m�; r½m�; ~R½m�1�v ; ~R½m�1�p̂ ; ~R½m�1�H ; ~R½m�1�r for

m ¼ 0 and TOL

1: while k ~R½m�1�v k; k ~R½m�1�p̂ k; k ~R½m�1�H k and k ~R½m�1�r kP TOL do

2: Solve the linear system of Eq. (21)! d½m�v ; d½m�p̂ ; d½m�H ; d½m�r

3: Record the residual for step m! ~R½m�v ; ~R½m�p̂ ; ~R½m�H and ~R½m�r

4: Update the solution with Eq. (15)

! v ½mþ1�; p̂½mþ1�;H½mþ1�; r½mþ1�
5: m mþ 1
6: end while

7: return v  v ½mþ1�; p̂ p̂½mþ1�;H  H½mþ1�; r  r½mþ1�

4. hp-Discretisation

The hp-finite element discretisation of (17) and (21) follows
similar lines to that already discussed in [17,26], where we employ
the hp-finite element discretisation of Schöberl and Zaglmayr
[35,40]. In the following, we discuss the discretisation for an
unstructured tetrahedral discretisation for d ¼ 3, the correspond-
ing triangular discretisation for d ¼ 2 follows mostly by obvious
simplifications. For this we consider a regular simplicial triangula-
tion of X denoted by T h, with the set of vertices Vh, the set of edges
Eh and the set of faces F h and recall the low-order vertex, high-
order edge-face-cell based splitting of the hierarchic scalar H1 con-
forming finite element space

Xh;p :¼ Xh;1 �
X

edges E2Eh

XE
p �

X
faces F2Fh

XF
p �

X
cells I2T h

XI
p � H1ðXÞ;

where Xh;1 is the classical space of continuous piecewise linear hat

functions and XE
p;X

F
p;X

I
p denote its hierarchic edge, face and cell

enrichment. In the case of a uniform polynomial degree we obtain
the space of polynomials of total degree p, i.e. Xh;pjT :¼ PpðTÞ on
each element T 2 T h employed. For problems in this work we
require a discretisation of the vector HðcurlÞ conforming space,
employing the approach of Schöberl and Zaglmayr [35,40] this
results in the splitting low order edge, high order edge-face-cell
based splitting

Yh;p :¼ Yh;0 �
X

edges E2Eh

YE
p �

X
faces F2Fh

YF
p �

X
cells I2T h

Y I
p � Hðcurl;XÞ;

where Yh;0 is the classical Nédélec element with continuous con-
stant tangential components on edges and YE

p;Y
F
p;Y

I
p denote its hier-

archic edge, face and cell enrichment. In addition, we set

Wh;p :¼ fv : v 2 ðXh;pÞ3g;

Zh;p�1 :¼ Zh;0 �
X

cells I2T h

ZI
p�1 � L2ðXÞ;

where Zh;0 is the space of classical scalar finite element space of
piecewise constants. We present below the fully discretised version
of (17), which must be solved at each Newton–Raphson iteration for
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a simple conducting fluid. Then, in Section 4.2, we present the cor-
responding discretised version of (21) for the case of a conducting
magnetostrictive fluid.

4.1. Homogeneous isotropic conducting fluids

The mth step of the discrete Newton–Raphson scheme for this

fluid in d ¼ 3 is: Find ðd½m�v ;hp; d
½m�
p̂;hp; d

½m�
H;hp;d

½m�
r;hpÞ 2Wð0Þ \Whpþ2

�Z \ Zhp�1 � Yð0Þ \ Yhpþ1 � X \ Xhpþ2 such that

Cvvðvd
hp; d

½m�
v;hpÞ þ Cv p̂ðv

d
hp; d

½m�
p̂;hpÞ þ CvHðv

d
hp; d

½m�
H;hpÞ

¼ �Rvðvd
hp;v

½m�
hp ; p̂

½m�
hp ;H

½m�
hp Þ; ð22aÞ

Cp̂vðp̂d
hp; d

½m�
v;hpÞ ¼ �Rp̂ðp̂d

hp;v
½m�
hp Þ; ð22bÞ

CHHðHd
hp; d

½m�
H;hpÞ þ CHvðH

d
hp; d

½m�
v;hpÞ þ CHrðH

d
hp; d

½m�
r;hpÞ

¼ �RHðHd
hp;v

½m�
hp ;H

½m�
hp ; r

½m�
hp Þ; ð22cÞ

CrHðrdhp; d
½m�
H;hpÞ ¼ �Rrðrdhp;H

½m�
hp Þ: ð22dÞ

for all ðvd
hp; p̂

d
hp;H

d
hp; r

d
hpÞ 2Wð0Þ \Whpþ2 � Z \ Zhp�1 � Yð0Þ \ Yhpþ1

�X \ Xhpþ2. The update equations are similar to those given in
(15). It is important to note the need to use different sets of basis
functions for the different fields but, also, the need to use different
polynomial degrees. For d ¼ 2 triangular elements, the updates of

velocity d
½m�
v ;hp and pressure d½m�p̂;hp are approximated as polynomials

of degree Pp; Pp�2 in order to satisfy the LBB condition [37]. For

d ¼ 3, the updates of velocity d
½m�
v;hp and pressure d½m�p̂;hp are approxi-

mated as polynomials of degree Pp; Pp�3 in order to satisfy the LBB
condition for tetrahedral elements for this case [8,37]. The updates

of the magnetic field d
½m�
H;hp and the Lagrange multiplier d½m�r;hp are

selected to be Pp�1; Pp for both d ¼ 2 and d ¼ 3 [8].

4.2. Conducting magnetostrictive fluids

The mth step of the discrete Newton–Raphson scheme for a
conducting fluid including magnetostrictive effects in d ¼ 3 is: Find

ðd½m�v;hp; d
½m�
p̂;hp; d

½m�
H;hp; d

½m�
r;hpÞ 2Wð0Þ \Whpþ2 � Z \ Zhp�1 � Yð0Þ \ Yhpþ1 � X

\ Xhpþ2 such that

Cvvðvd
hp; d

½m�
v;hpÞ þ Cv p̂ðv

d
hp; d

½m�
p̂;hpÞ þ ~CvHðvd

hp; d
½m�
H;hpÞ

¼ � ~Rvðvd
hp;v

½m�
hp ; p̂

½m�
hp ;H

½m�
hp Þ; ð23aÞ

Cp̂vðp̂d
hp; d

½m�
v;hp�Þ ¼ � ~Rp̂ðp̂d

hp;v
½m�
hp Þ; ð23bÞ

~CHHðHd
hp; d

½m�
H;hpÞ þ ~CHvðHd

hp; d
½m�
v;hpÞ þ ~CHrðHd

hp; d
½m�
r Þ

¼ � ~RHðHd
hp;v

½m�
hp ;H

½m�
hp ; r

½m�
hp Þ; ð23cÞ

~Crvðrdhp; d
½m�
v;hpÞ þ ~CrHðrdhp; d

½m�
H;hpÞ ¼ � ~Rrðrd;H½m�Þ; ð23dÞ

for all ðvd
hp; p̂

d
hp;H

d
hp; r

d
hpÞ 2Wð0Þ \Whpþ2 � Z \ Zhp�1 � Yð0Þ \ Yhpþ1�

X \ Xhpþ2. In the above, terms with a tilde are different from those
in (22), which have been constructed in order to include magn-
tostrictive effects, but do reduce to their previous forms in the case
of a homogeneous isotropic conducting fluid. The polynomial orders
are taken as described in Section 4.1.

5. Numerical examples

A series of numerical examples are presented to benchmark our
approach by applying it to the simulation of MHD problems in
d ¼ 2;3 with known analytical solutions. Then, the predictive capa-
bility of our approach is considered by applying it to the simulation
of problems in d ¼ 2;3, which include non-homogeneous media
and magnetostrictive effects, that do not have analytical solutions.

5.1. Two-dimensional problems

In order to verify the d ¼ 2 implementation, we apply the
scheme to several well-known benchmarking problems. We start
from a simplified linearised case with smooth and singular solu-
tions. We then progress to the fully coupled problem, where a
smooth problem and the well known Hartmann flow problem
[18,9,15] are used for verification.

5.1.1. Linearised L-shape domain smooth problem
The first example consists of an L-shaped domain

X ¼ ð�1;1Þ2 n ð½0;1Þ � ð�1;0�Þ on which we consider the solution
of a linearised MHD problem [36] by considering

½½lr �� ¼ c½½~r���1 ¼ ½½I�� and q ¼ l̂ ¼ 1. For this linearised problem,
only a single step of the Picard iteration scheme is required for
which we set

v ½0� ¼
2
1

� �
; H½0� ¼

x
�y

� �
in X;

and choose ~f and g so that the analytical solution is [23]

dv ¼
�ðy cos yþ sin yÞex

y sin yex

� �
; dp̂ ¼ 2ex sin y;

dH ¼
�ðy cos yþ sin yÞex

y sin yex

� �
; dr ¼ � sinpx sinpy;

ð24Þ

in X. Then, the boundary conditions are different to those in Algo-

rithm 1 and are of the form d
½0�
v ;hp ¼ dv on @XF

D ¼ @X and

n� d
½0�
H;hp ¼ n� dH on @XM

D ¼ @X. As the analytical solution is
smooth, we consider a fixed uniform mesh consisting of 382 trian-
gular elements and apply uniform p-refinement with polynomial
degrees p ¼ 2;3;4;5;6, where p refers to the degree of the H1 con-
forming approximation and the degrees of the approximation for
the other variables are chosen to satisfy the LBB constraints (see
Section 4.1). Unless otherwise stated, we follow this convention
for naming p in each of the following examples.

In Fig. 2(a) we show the convergence of kdv � d
½0�
v ;hpkH1 and

kdH � d
½0�
H;hpkHðcurlÞ, which both indicate a downward sloping curve

confirming the expected exponential convergence of p-
refinement for this smooth problem. In Fig. 2(b) we show the com-

puted streamlines for d½0�v ;hp for the converged solution.

5.1.2. Linearised L-shape domain singular problem
We again consider the L-shaped domain described in the previ-

ous subsection for the linearised MHD problem with the same
material parameters as described above. Let us consider a single
step of the Picard iteration with

v ½0� ¼
0
0

� �
; H½0� ¼

�1
1

� �
in X;

and ~f and g selected so that the analytical solution is [23]
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dv ¼
q̂kðð1þ kÞ sinð/Þwð/Þ þ cosð/Þw0ð/ÞÞ
q̂kð�ð1þ kÞ cosð/Þwð/Þ þ sinð/Þw0ð/ÞÞ

� �
;

dp̂ ¼ �q̂k�1ðð1þ kÞ2w0ð/Þ þ w000ð/ÞÞ=ð1� kÞ;
dH ¼ rðq̂2=3 sinð2=3/ÞÞ;
dr ¼ 0;

ð25Þ

in X where

wð/Þ ¼ sinðð1þ kÞ/Þ cosðkwÞ=ð1þ kÞ � cosðð1þ kÞ/Þ
� sinðð1� kÞ/Þ cosðkwÞ=ð1� kÞ þ cosðð1� kÞ/Þ: ð26Þ

In the above ðq̂;/Þ represent the polar coordinates centred at
x ¼ 0; y ¼ 0 and, for the case where x ¼ 3

2p and
k 	 0:54448373678246, the analytical solution exhibits a strong
magnetic singularity at the origin [23]. The boundary conditions
are analogous to Section 5.1.1.

A series of meshes are constructed with geometric refinement
towards the re-entrant corner (and the location of singularity),
the geometric refinement factors are 2;3;4;5 and 6, respectively.

Illustrations of typical meshes with grading factors 3 and 6, and
176 and 308 unstructured triangles, respectively, are shown in
Fig. 3.

On these meshes we apply uniform p-refinement with polyno-
mial degrees p ¼ 2;3;4;5;6 leading to the results shown in Fig. 4

(a) where the convergence of kdv � d
½0�
v ;hpkH1 and kdH � d

½0�
H;hpkHðcurlÞ

can be observed. As expected, a family of convergence curves are
produced and each show a similar behaviour: initially p-
refinement on particular grid produces a rapid convergence of
the error, which then slows to an algebraic rate of convergence
with further increments of p. By combining both h- and p-
refinements the resulting error envelope is a downward sloping
curve, confirming the expected exponential convergence for this
problem with a strong singularity. Fig. 4(b) shows the computed

streamlines for d
½0�
v ;hp for the converged solution. In Fig. 4(c) and

(d), the computed contours for the x and y components of d
½0�
H;hp,

for the converged solution, are presented from which we can
observe the strong singularity towards the re-entrant corner.
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Fig. 3. Two-dimensional L-shape domain with a singularity showing: unstructured graded meshes with (a)176 (grading factor 3) and (b) 308 (grading factor 5) triangular
elements, respectively.
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Fig. 5. Two-dimensional square domain with smooth solution showing: (a) the quadratic convergence for updates dv ; dp̂; dH and the relative residual R for the Newton–

Raphson implementation with uniform p ¼ 5 elements and (b) the convergence of v � v ½M�hp
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Fig. 4. Two-dimensional L-shaped domain with ith a singularity showing: (a) the convergence of dv � d
½0�
v ;hp
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with hp-refinement, (b) the streamlines
d
½0�
v;hp and (c), (d) contours of the x and y components of d½0�H;hp .
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5.1.3. Fully coupled non-linear square domain smooth problem
A fully coupled non-linear MHD problem with a known smooth

analytical solution can be found in several references such as
[18,9]. We use the former for benchmarking our fully coupled
Newton–Raphson implementation summarised in Algorithm 1.

The geometry consists of a square domain X ¼ ð�1;1Þ2, and we
construct the problem by setting the parameters as

½½lr�� ¼ ½½I��; c½½~r��
�1 ¼ 104 and q ¼ l̂ ¼ 1. The source terms ~f ; g are

chosen so that the analytical solution is

v ¼ y2

x2

 !
; p̂ ¼ x;

H ¼ 1� y2

1� x2

 !
; r ¼ ð1� x2Þð1� y2Þ:

ð27Þ

in X and the Dirichlet boundary conditions v ½0�hp ¼ v on @XF
D ¼ @X

and n�H½0�hp ¼ n�H on @XM
D ¼ @X are applied. From (27), we can

deduce that, of the different fields, r is of the highest polynomial
degree being bi-quadratic and, for triangular elements, this means
that p ¼ 4 H1 conforming elements are required to fully capture this
field. Although H and v are quadratic functions, which can be cap-
tured with p ¼ 2 H1 conforming and p ¼ 2 HðcurlÞ conforming ele-
ments, respectively, we expect that, due to the coupled nature of
the problem, these fields will not be fully resolved until the degree
is p ¼ 4 (using our earlier naming convention).

For the fully coupled smooth problem, we consider performing
hp-refinement with elements of uniform size h ¼ 0:6;0:3;
0:15;0:075, the finest mesh having 2048 unstructured triangular
elements. Uniform p-refinement is applied with polynomial
degrees p ¼ 2;3;4;5, where the last p increment represents an
intentional overkill to test the implementation.

In Fig. 5(a) we show the computed quadratic convergence

for updates d
½m�
v ;hp; d

½m�
H;hp and d½m�p̂;hp and the relative residual

R ¼ kR½m�v ;R½m�p̂ ;R½m�H ;R½m�r k=kR½0�v ;R½0�p̂ ;R½0�H ;R½0�r k for p ¼ 5 elements,
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Fig. 6. Two-dimensional rectangular domain with Hartmann flow with Ha ¼ 10, showing: (a) the typical quadratic convergence for updates dv ; dp̂ and dH and the relative

residual R for the Newton–Raphson implementation for uniform p ¼ 7 elements and (b) the convergence of v � v ½M�hp




 



H1

and H �H½M�hp




 



HðcurlÞ

for Newton–Raphson and

dv � d
½0�
v ;hp




 



H1

and dH � d
½0�
H;hp




 



HðcurlÞ

for one-step Picard.

Table 1

Two-dimensional rectangular domain with Hartmann flow showing: the convergence with Ha ¼ 10 for h ¼ 0:25. Here EðvÞH1 ¼ v � v ½M�hp




 



H1
; EðvÞL2 ¼ v � v ½M�hp




 



L2
;

�

Eðp̂ÞL2 ¼ p̂� p̂½M�hp




 



L2
; EðHÞHðcurlÞ ¼ H � H½M�hp




 



HðcurlÞ

Þ.

p Dofs in Hhp=rhp=vhp=p̂hp EðvÞH1 EðvÞL2 Eðp̂ÞL2 EðHÞHðcurlÞ

3 2880/1681/3454/1200 7.64E�02 2.45E�02 1.22E�03 4.34E�03
4 5440/3041/6206/2400 1.46E�02 2.09E�03 2.17E�04 1.11E�03
5 8800/4801/9758/4000 2.43E�03 2.13E�04 3.34E�05 2.25E�04
6 12,960/6961/14,110/6000 3.46E�04 2.45E�05 4.82E�06 3.77E�05
7 17,920/9521/19,262/8400 4.42E�05 2.65E�06 7.98E�07 5.39E�06

Table 2
As Table 1 but for h ¼ 0:125.

p Dofs in Hhp=rhp=vhp=p̂hp EðvÞH1 EðvÞL2 Eðp̂ÞL2 EðHÞHðcurlÞ

3 12,900/7645/15,478/5256 1.12E�02 1.92E�03 1.43E�04 1.26E�03
4 24,208/13,697/27,646/10,512 1.03E�03 6.18E�05 1.38E�05 1.58E�04
5 39,020/21,501/43,318/17,520 8.43E�05 3.54E�06 1.31E�06 1.55E�05
6 57,336/31,057/62,494/26,280 6.46E�06 2.21E�07 1.57E�07 1.28E�06
7 79,156/42,365/85,174/36,792 5.51E�07 1.51E�08 2.15E�08 9.21E�08
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which implies the correct implementation of the Newton–Raphson
method. Then, in Fig. 5(b) we show the convergence of hp-

refinement for kv � v ½m�hp kH1 ; kp̂� p̂½m�hp kL2 and kH �H½m�hp kHðcurlÞ with

m ¼ M, such that R 6 10�10, which indicate a downward sloping
curve confirming the expected exponential convergence of p-
refinement for each of the meshes considered. Note that, unless
otherwise stated, this Newton–Raphson convergence criteria will
be used in the following. As the analytical solution for r is bi-
quadratic, the p-refinement should converge to machine precision
with p ¼ 4 for this problem, which is exactly exhibited in the
figure.

5.1.4. The two-dimensional Hartmann flow problem
The description of the d ¼ 2 Hartmann flow problem can be

found in [18,9] and this allows us to further benchmark our full
Newton–Raphson scheme as the resulting solution satisfies both
the linearised and the non-linear MHD equations. For this problem,
the domain is set to be X ¼ ð0; LÞ � ð�1;1Þ with L
 1, for which
we choose L ¼ 10. The analytical solution corresponds to an
unidirectional flow under constant pressure gradient �G in the

x-direction with ~f ¼ g ¼ 0. In order to apply our scheme to
the reference non-dimensional Hartmann flow problem, we set the
parameters as ½lr �

� �
¼ ½½I��;m¼ l̂=q¼ 0:1; ½½~r�� ¼ ~r½½I��; ~r�1c=q¼ 0:1;

Ha ¼ 10;G ¼ 0:5;q ¼ 1; p0 ¼ 10. The analytical solution to this
problem then corresponds to

v ¼
G

lmHa tanhðHaÞ 1� coshðyHaÞ
coshðHaÞ


 �
0

 !
; ð28Þ

H ¼
G
q

sinhðyHaÞ
sinhðHaÞ � y

 �

1

 !
; ð29Þ

p̂ ¼ �Gx� G2

2q
sinhðyHaÞ
sinhðHaÞ � y

� �2

þ p0; ð30Þ

r ¼ 0: ð31Þ

in X. We set @XF
D to be the boundaries corresponding to

ð0; yÞ; y 2 ð0;1Þ and ðx;�1Þ; x 2 ð0; LÞ and here we prescribe

v ½0�hp ¼ v and we set @XM
D ¼ @X and n�H½0�hp ¼ n�H, while on

@XF
N ¼ @X n @XF

D, we prescribe thp ¼ t ¼ ½½rEM��n (free velocity
boundary), based on the above analytical solution.

As the analytical solution is smooth for this low Hartmann
number, a single mesh consisting of 400 triangular elements is

employed. On this mesh we consider both the linearised one step
Picard [23] and the fully coupled non-linear Newton–Raphson
schemes. For the one-step Picard scheme we solve the linearised
problem, as described in [23], and for the Newton–Raphson
scheme we apply Algorithm 1. In both cases, we apply uniform
p-refinement with polynomial degrees p ¼ 3;4;5;6;7 and
show, in Fig. 6(a), the typical quadratic convergence of the
relative residual R ¼ kR½m�v ;R½m�p̂ ;R½m�H ;R½m�r k=kR½0�v ;R½0�p̂ ;R½0�H ;R½0�r k for
the Newton–Raphson iterations when uniform p ¼ 7 elements
are used. In Fig. 6(b), we show the convergence of kv � v ½M�hp kH1

Fig. 7. Two-dimensional rectangular domain with Hartmann flow showing: Centreline profiles for (a) vx and (b) Hx for Ha ¼ 1;10;10
ffiffiffiffiffiffi
10
p

on an unstructured mesh of 400
triangular elements and uniform polynomial degree p ¼ 7.

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

Fig. 8. Two-dimensional multiphase duct flow problem showing: geometry and
mesh with 2910 unstructured triangular elements for duct flow problem.

Table 3
Two-dimensional multiphase duct flow problem showing: parameters for inside and
outside MHD fluids.

Parameters Inner fluid Outer fluid

q ðkg m�3Þ 2700 1000

l̂ ðN s m�2Þ 0.3 0.1

c~r�1ðA V kg�1 s2Þ 10l0 0:1l0

lr 1.002 0.99

lð1Þr
0.01 0.01

lð2Þr
0.01 0.01
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Fig. 9. Two-dimensional multiphase duct flow problem showing: (a), (c), (e) the quadratic convergence for updates dv ; dp̂ and dH and the relative residual R of the Newton–
Raphson implementation for uniform p ¼ 5 elements with H ¼ 0:1;0:2;0:4, respectively, and (b), (d), (f) the corresponding streamlines.
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Fig. 10. Three-dimensional lid-driven cavity problem showing: (a), (c), (e) the typical quadratic convergence for dv ; dp̂ and R for Newton–Raphson implementation for
Re ¼ 100;400;1000 with p ¼ 6;6;8, respectively, and (b), (d), (f) the centreline profiles of vxð0:5; y;0:5Þ for 0 6 y 6 1 for Re ¼ 100;400;1000 with p-refinement, respectively,
and comparisons with the reference solutions [39].
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and kH �H½M�hp kHðcurlÞ where M denotes the iteration of the con-

verged solution for Newton–Raphson scheme and kdv � d
½0�
v ;hpkH1

and kdH � d
½0�
H;hpkHðcurlÞ for the one-step Picard. Fig. 6(b), indicates

that both schemes converge exponentially fast with p-refinement
to the analytical solution.

Subsequently, we have considered the convergence of updates

kv � v ½M�hp kL2 ; kv � v
½M�
hp kH1 ; kp̂� p̂½M�hp kL2 and kH � H½M�hp jjHðcurlÞ for Hart-

mann numbers Ha ¼ 0:01;1;10;10
ffiffiffiffiffiffi
10
p

under hp-refinements.
These tabulated results are presented in full in [24], here we show
only the case for Ha ¼ 10 for h ¼ 0:25 and h ¼ 0:125 in Tables 1

Fig. 11. Three-dimensional lid-driven cavity problem showing: (a), (b) the streamlines for Re ¼ 100 with p ¼ 6, (c), (d) the streamlines for Re ¼ 400 with p ¼ 6, (e), (f) the
streamlines for Re ¼ 1000 with p ¼ 8.
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and 2, respectively, which we compare with the convergence of the
error stated in references [18,9].

Although the results shown in [18,9] are obtained with a differ-
ent method and are presented for h-refinement only, we can com-
pare the accuracy of the solutions with respect to the number of
degrees of freedom (DOFs). Our hp-finite element scheme shows
a significant improvement in terms of accuracy when compared
to the reference solution. In particular, we can use much fewer
DOFs yet still achieve the same level of accuracy, which indicates
the high efficiency and high accuracy of the current approach.
However, we also acknowledge that, ideally, if the data is available,
the computational cost should not only be measured in terms of
degrees of freedom as a hp-approach does result in matrices that

are not as sparse as in pure h-refinement and there are additional
computation costs associated with the generation of the basis
functions and the evaluation of the elemental contributions.
Nonetheless, these can be minimised by a careful implementation,
see e.g. [24]. From the tables of convergence behaviour in [24], we
also can conclude that, for higher Hartmann number, more DOFs
are needed. This indicates that a high Hartmann number intro-
duces strong coupling, steeper gradients as well as non-linearity
into the system, which makes the flow behaviour much more chal-
lenging to capture.

The numerical solutions for the centreline profiles for x-
component of the velocity and x-component of the magnetic field
are illustrated in Fig. 7 with different Hartmann numbers. It tran-
spires that, on the chosen mesh, the degree of the elements needs
to be chosen as p ¼ 7 to fully capture the behaviour of the strong
coupling and the non-linearity of the MHD problem. The compar-
ison between numerical and analytical solutions, which shows a
good agreement, indicates the accuracy of the implementation.
From the results, we can also see that, a high Hartmann number
results in steeper gradients near the boundary, which are well cap-
tured by our hp-refinements.

Table 4
Three-dimensional lid-driven cavity problem with a magnetic field applied showing:
the parameters for the problem with Hartmann number Ha ¼ 10.

Ha m mm j lr

10 0:0025 0:025 0:00625 1

(a) (b)

(c) (d)

Fig. 12. Three-dimensional lid-driven cavity flow problem with a magnetic field showing: (a), (c) the typical quadratic convergence of updates dv ; dp̂ and dH and relative
residual R for Ha ¼ 10 with HD ¼ ð1;0;0Þ and HD ¼ ð0;1;0Þ, respectively, for uniform p ¼ 4 elements and (b), (d) the centreline profiles of vxð0:5; y;0:5Þ for 0 6 y 6 1
compared with a reference solution in absence of the magnetic field [39].
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5.1.5. Two-dimensional duct flow with cylinder shaped different media
inside

After verifying our implementation, and in order to show the
applicability of our approach to capture complex flow patterns,
we now consider applying Algorithm 2 to solve a multiphase
MHD flow, which consists of two different fluids. The geometry
and mesh are shown in Fig. 8. The mesh is refined near the inner
droplet as we are interested in the behaviour between two differ-
ent fluids.

The domain consists ofX ¼ ð0;2Þ � ð�1;1Þwith 9 droplets, each
being a circle with radius rin ¼ 0:1 and equally separated inside the
squared domain at positions ð0:5;�0:5Þ; ð0:5;0Þ; ð0:5;0:5Þ;
ð1;�0:5Þ; ð1;0Þ; ð1;0:5Þ; ð1:5;�0:5Þ; ð1:5;0Þ and ð1:5;0:5Þ. The Neu-
mann boundary for the fluid part is @XF

N ¼ ð2; yÞ; y 2 ð�1;1Þ with
condition thp ¼ t ¼ ½½rEM��n and the Dirichlet boundary for the fluid

part @XF
D ¼ @X n @XF

N with condition v ½0�hp ¼ ðvð1� y2Þ;0Þ. For the
magnetic field, the Dirichlet boundary conditions

n�H½0�hp ¼ n�HD are applied on @XM
D ¼ @Xwhere HD ¼ ð0;HÞ. Note

that v is the amplitude of input velocity and H is the amplitude of
the magnetic field. In order to investigate the influence of the mag-
netic field on the multiphase problem, the amplitude H of the mag-
netic field is increased. The parameters for the inner and outer
fluids are taken from [13,15] and shown in Table 3. Here v can
be obtained by the relation v ¼ Re� l̂=ð2rinÞ, where Re ¼ 0:01 is
the Reynolds number without the magnetic field and in absence
of the droplets.

With a mesh of 2910 unstructured triangular elements, we
found, by uniformly incrementing the polynomial degree, that
p ¼ 5 is required in order to fully capture the complex fluid pat-
tern. Several different magnetic amplitudes are applied, namely
H ¼ 0:1;0:2;0:4, and the results of the streamlines for the multi-
phase problem and the quadratic convergence curve for the differ-
ent magnetic fields are shown in Fig. 9. The results shown in Fig. 9
(a), (c), and (d) indicate the correct implementation of the New-
ton–Raphson scheme and in Fig. 9(b), (d), and (e) the influence of
the magnetic field over the fluid flow pattern is illustrated. In par-
ticular, we see that as the magnitude of the magnetic field is
increased, the flow pattern is substantially effected creating
regions of low and high velocities in the vicinity of the conducting
cylinders. This complex flow pattern would be impossible to be
captured without the use of a higher order discretisation. Fig. 9 also
indicates that the contrast of the magnetic permeability for the two
different fluids could result in a complex flow pattern under a large
magnetic field.

5.2. Three-dimensional problems

Next, we verify the d ¼ 3 implementation by applying the
scheme to several well-known benchmarking problems. As we
have already established the benefits of the Newton Raphson over
the Picard iteration we consider only the former and use it to
benchmark a lid-driven cavity with and without a magnetic field,
a three dimensional extension of the Hartmann flow problem
and, to finish, we show the predicative capability of the scheme
by applying it to a multiphase MHD flow problem.

5.2.1. The three-dimensional lid-driven cavity problem
We first consider the standard lid-driven cavity problem for

pure Navier–Stokes flow in the absence of a magnetic field on

the cubic domain X ¼ ð0;1Þ3. We define the surface

ðx; y;1Þ; x; y 2 ð0;1Þ as @XFð1Þ
D and the other boundary faces as

@XFð2Þ
D ¼ @X n @XFð1Þ

D . We impose the boundary conditions

v ¼ ðv;0Þ on @XFð1Þ
D ;

v ¼ 0 on @XFð2Þ
D :

where v is the constant amplitude of the applied of the driving
velocity. For this problem an unstructured mesh of 756 tetrahedral
elements is generated on which uniform order p ¼ 3;4;5;6 ele-
ments are applied for Re ¼ 100;p ¼ 4;5;6 are applied for Re ¼ 400
and p ¼ 6;7;8 are applied for Re ¼ 1000.

Initially, we consider the flow pattern in the absence of a mag-
netic field. Fig. 10(a), (c), and (e) shows the quadratic convergence
of a suitably simplified version of the Newton–Raphson procedure
given in Algorithm 1 to the previously stated criteria where

R ¼ kR½m�v ;R½m�p̂ k=kR
½0�
v ;R½0�p̂ k and the convergence of the updates

variables dv and dp̂ are also presented for completeness. We can
observe that, with an increasing Reynolds number, we need more
iterations to converge. For Re ¼ 1000, an incremental approach

Table 5
Three-dimensional rectangular domain with Hartmann flow showing: the parameters
for Hartmann flow problem with various Hartmann numbers Ha ¼ 0:01;1;10;10

ffiffiffiffiffiffi
10
p

.

Ha m mm j G

0:01 1 1e4 1 0:5
1 1 10 10 0:1
10 0:1 1 10 0:1

10
ffiffiffiffiffiffi
10
p

0:01 1 10 0:1

Fig. 13. Three-dimensional lid-driven cavity flow problem with a magnetic field showing: (a) and (b) the streamlines for Ha ¼ 10 with HD ¼ ð1;0;0Þ and HD ¼ ð0;1;0Þ,
respectively, for uniform p ¼ 4 elements.
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using 2 increments has also been applied (see [24] for details).
Note that the convergence shown in Fig. 10(e) is for the final incre-
ment for Re ¼ 1000 with p ¼ 8. In Fig. 10(b), (d), and (f), the centre-
line profiles for vxð0:5; y;0:5Þ for 0 6 y � 1 for Re ¼ 100;400;1000
with p-refinement are presented and in Fig. 11 the corresponding
streamlines are shown. The results show that as the degree of
the polynomial order is increased, the solution converges to the
reference solution. For the lower Reynolds number Re ¼ 100 we
can see that, with p ¼ 4, we can already accurately capture the
fluid behaviour. For Re ¼ 400; p ¼ 6 is needed to fully solve the
problem. For Re ¼ 1000, even with p ¼ 8, our computed solution
is still slightly away from the reference solution. In this case local
mesh refinement, combined with p-refinement could be applied, if
desired, to improve the accuracy.

Secondly, we consider the case of the coupled MHD problem
where, in addition to the fluid boundary conditions, we apply

n�H½0�hp ¼ n�HD on @XM
D ¼ @X where we choose HD ¼ ð1;0;0Þ

and HD ¼ ð0;1;0Þ, in turn, as uniform magnetic fields. Here, in
order to adapt our framework to the dimensionless schemes, we
set the parameters as ½lr �

� �
¼ ½½I��;j ¼ q; m ¼ l̂=q ¼ 0:1; ½½~r�� ¼

~r½½I��; mm ¼ ~r�1c=q;Ha ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j=mmm

p
. The fluid parameters are sum-

marised in Table 4 for the Hartmann number Ha ¼ 10 with
Re ¼ 1=m ¼ 400 and Rem ¼ 1=mm ¼ 40 as [2]. The mesh of 6048
unstructured tetrahedra is employed and uniform p ¼ 4 elements
are used throughout. In Fig. 12(a) and (c) we show the quadratic
convergence of the Newton–Raphson procedure given in Algo-
rithm 1 to the previously stated criteria and in Fig. 12(b) and (d),
the centreline profiles of vxð0:5; y;0:5Þ for 0 6 y 6 1 for Ha ¼ 10
when HD ¼ ð1; 0;0Þ and HD ¼ ð0;1;0Þ are shown. In the latter cases,
we also include the corresponding reference solution for the
Navier–Stokes lid driven cavity problem with Re ¼ 400 as a com-
parison. Illustrations of the computed streamlines for this problem
are presented in Fig. 13. Note that, for further increases in Hart-
mann number, we see an even greater departure of the flow field
for the MHD problem from the flow field of the standard lid driven
cavity problem [24].

5.2.2. The three-dimensional Hartmann flow problem
The description of this problem can be found in [18,9] and con-

sists of a rectangular duct given by X ¼ ð0; LÞ � ð�y0; y0Þ � ð�z0; z0Þ
with y0; z0 
 L. The source terms are ~f ¼ g ¼ 0 and the analytical
solutions is in the form of

v ¼
vðy; zÞ

0
0

0
B@

1
CA; H ¼

bðy; zÞ
1
0

0
B@

1
CA;

p̂ ¼ �Gxþ p̂0ðy; zÞ; r ¼ 0:

in X where

vðy; zÞ ¼ �1
2
Gm�1ðz2 � z20Þ þ

Xþ1
n¼0

vnðyÞ cosðknzÞ;

bðy; zÞ ¼
Xþ1
n¼0

bnðyÞ cosðknzÞ;

p̂0ðy; zÞ ¼ �
jbðy; zÞ2

2
þ 10;

and

kn ¼
ð2nþ 1Þp

2z0
;

bnðyÞ ¼
m
j

An
k2n � p2

1

p1
sinhðp1yÞ þ Bn

k2n � p2
2

p2
sinhðp2yÞ

 !
;

Fig. 14. Three-dimensional rectangular domain with Hartmann flow showing: (a) the centreline profiles of vxð5; y;0Þ and (b) Hxð5; y;0Þ for �2 6 y 6 2 for Hartmann numbers
Ha ¼ 0:01;1 and 10 with uniform p ¼ 6 elements.

Fig. 15. Three-dimensional multiphase duct flow problem showing: the geometry.
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p2
1;2 ¼ k2n þ

Ha2

2
� Ha

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þ

Ha2

4

s
;

An ¼
�p1ðk2n � p2

2Þ
Dn

unðy0Þ sinhðp2y0Þ;

Bn ¼
�p2ðk2n � p2

1Þ
Dn

unðy0Þ sinhðp1y0Þ;

Dn ¼ p2ðk2n � p2
1Þ sinhðp1y0Þ coshðp2y0Þ � p1ðk2n � p2

2Þ sinhðp2y0Þ
� coshðp1y0Þ;

vnðy0Þ ¼
�2G
mk3nz0

sinðknz0Þ;

In order to again adapt our framework to the dimensionless
Hartmann flow problem, we set the parameters as ½lr �

� �
¼ ½½I��;

j ¼ q; m ¼ l̂=q ¼ 0:1; ½½~r�� ¼ ~r½½I��; mm ¼ ~r�1c=q;Ha ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j=mmm

p
. The

fluid parameters for the three-dimensional Hartmann flow prob-
lem for different Hartmann numbers of Ha ¼ 0:01;1;10;10

ffiffiffiffiffiffi
10
p

are shown in Table 5. Then, following the literature [18,9,13], we

consider the solution of this problems for the dimensionless quan-
tities L ¼ 10; y0 ¼ 2 and z0 ¼ 1. The fluid Neumann boundary @XF

N

is set as the face ð10; y; zÞ; ðy; zÞ 2 ð�y0; y0Þ � ð�z0; z0Þ and the fluid
Dirichlet boundary @XF

D as @XF
D ¼ @X n @XF

N and, for the magnetic

field, we set @XM
D ¼ @X. Introducing HD ¼ ð0;1;0Þ the boundary

conditions can be summarised as

v ½0�hp ¼ 0 on @XF
D;

thp ¼ ð½½rF �� þ ½½rEM��Þn ¼ p̂0nþ ½½rEM��n on @XF
N;

n� H½0�hp ¼ n� HD on @XM
D :

The benchmarking is performed on an unstructured grid of 125
elements by performing uniform p-refinement. By uniformly
increasing p until convergence was reached, it was deduced that
using p ¼ 6 on a mesh of 125 elements can capture the Hartmann
flow pattern accurately for the Hartmann number up to Ha ¼ 10.
By applying Algorithm 1 the Newton–Raphson procedure exhibits
quadratic convergence similar to that shown in the previous cases,
although, for higher Hartmann numbers, the number of iterations
required to reach the aforementioned convergence criteria
increases.

Fig. 16. Three-dimensional multiphase duct flow problem showing: (a) and (b) centreline profiles for vxð�1:5; y;0Þ;vxð2:5; y;0Þ, respectively, for �2 6 y 6 2 when
lrin ¼ 0:01;0:1;1;10 and (c), (d) centreline profiles for Hxð�1:5; y;0Þ and Hxð2:5; y;0Þ, respectively, for the same problem.
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The centreline profiles of vxð5; y; 0Þ and Hxð5; y;0Þ for
�2 6 y 6 2 are illustrated in Fig. 14 for the Hartmann numbers
Ha ¼ 0:01;1 and 10. The comparison between the numerical solu-
tions and the analytical solutions show a good agreement for the
presented cases. For higher Hartmann numbers the flow patterns
exhibit increasingly sharp gradients in the flow field close to the
boundaries and, as discussed in [24] performing p-refinement
alone on a coarse mesh of 125 tetrahedra is not sufficient to cap-
ture the flow pattern. In this case, h- and p-refinements must be
combined.

5.2.3. The three dimensional multi-phase MHD flow problem
The geometry of the multiphase MHD flow is shown in Fig. 15,

which is a rectangular duct given by X ¼ ð0; LÞ � ð�y0; y0Þ �
ð�z0; z0Þ with dimensionless coordinates y0 ¼ 2; z0 ¼ 1; L ¼ 8
containing a sphere with radius 0:3 at the point of ð2;0;0Þ. The
source terms are such that ~f ¼ g ¼ 0 and the fluid Neumann
boundary condition thp ¼ t ¼ ½½rEM��n (free stream velocity) is
applied at the face ð8; y; zÞ with ðy; zÞ 2 ð�y0; y0Þ � ð�z0; z0Þ and

the fluid Dirichlet boundary conditions v ½0�hp ¼ vD where
vD ¼ ð0:001ð2þ yÞð2� yÞ;0;0Þ is a Poiseuille flow distribution in
the x-direction. For the magnetic field, the boundary condition

n�H½0�hp ¼ n�HD is imposed on @XM
D ¼ @X where HD ¼ ð0;H;0Þ.

The parameters are taken to be same as those previously provided
in Table 5, except that we assign the background fluid such that, in
absence of the inclusion, the Hartmann number would be Ha ¼ 1
and in absence of the background the Hartmann number would
be Ha ¼ 10

ffiffiffiffiffiffi
10
p

. We fix the relative permeability of the background
fluid to be lrout ¼ 1 whilst varying the relative permeability of the

inner fluid droplet according to lrin ¼ 0:01;0:1;1;10, in turn. For

both fluids we set lð1Þr ¼ lð2Þr ¼ 0.
By uniformly incrementing p on an unstructured grid of 1765

tetrahedral elements it was found that convergence is reached
with p ¼ 4 elements. As in previous cases, the application of Algo-
rithm 2 results in a Newton–Raphson scheme that converges
quadratically exhibiting a behaviour similar to that shown in ear-
lier plots. In Fig. 16 we also present the centre line profiles for
vxð�1:5; y;0Þ;vxð2:5; y;0Þ;Hxð�1:5; y;0Þ and Hxð2:5; y;0Þ, for
�2 6 y 6 2, such that they represent the x-components of the
flow field and magnetic field just before and just after the inclu-
sion with lrin ¼ 0:01;0:1;1;10, in turn. Fig. 16(a) and (b) shows
the centreline profiles for vx and Fig. 16(c) and (d) shows the cen-
tre line profile for Hx. In these plots, the effects of including the
sphere droplet and increasing permeability contrast can clearly

be observed. Note that despite that lð1Þr ¼ lð2Þr ¼ 0 in both fluids
the distribution of ½½lr �� is still dependent on the strain rate for
this problem.

The streamlines, which show the influence of the magnetic
fields on the fluid pattern, are shown in Fig. 17 for different values
of lrin. From Fig. 17(c), when there is no contrast between the inner
and background fluid, the flow pattern tends to that of the pre-
scribed Poiseuille flow. However, with the presence of a permeabil-
ity contrast, the flow pattern around the droplet is greatly affected
by the magnetic field. This simple example illustrates that the gra-
dient of the permeability, which forms an important role in magne-
tostriction, also plays a major role for the multiphase MHD
problem. In order to resolve these complex flow patterns an hp-
finite element scheme is essential without it such complex phe-
nomena observed in this simulation cannot be recovered.

Fig. 17. Three-dimensional multiphase duct flow problem showing: (a)–(d) streamlines for different material properties for inside sphere: lrin ¼ 0:01;0:1;1;10, respectively.

D. Jin et al. / Computers and Structures 164 (2016) 161–180 179



6. Conclusions

In this paper, we have extended our previous work [25,26] on
the numerical simulation of two-dimensional non-conducting
magnetostrictive fluids to the simulation of two- and three-
dimensional conducting magnetostrictive fluids as well as multi-
phase MHD problems. The coupled formulation is implemented in
a monolithic manner and solved by means of a Newton–Raphson
strategy in conjunction with consistent linearisation. A finite
element discretisation employing hp-finite elements conforming
to the spaces HðcurlÞ;H1 and L2 has been used leading to a non-
trivial implementation. By the application of p-refinement,
exponential convergence for problems with smooth benchmark
solutions has been obtained, and by combining h- and p-refinements,
exponential convergence for benchmark solutionswith singularities
due to sharp corners and edges has also been demonstrated. We
have included further problems that show the predictive capability
of the approach and the complex flow patterns that result in
the presence of non-homogenous materials and the presence of
magnetostrictive effects. Further work will include reducing the
computational cost of our approach aswell as exploring the role that
magnetostriction plays in three dimensional MHD problems in
greater detail.
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