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Meta-analysis of real-time fMRI neurofeedback studies: how 

is brain regulation mediated? 
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Abstract 

An increasing number of studies using real-time fMRI neurofeedback have 

demonstrated that successful regulation of neural activity is possible in various 

brain regions. Since these studies focused on the regulated region(s), little is 

known about the underlying neuronal mechanisms associated with 

neurofeedback-guided control of brain activation, i.e. the regulating network. 

While the specificity of the activation during self-regulation is an important 

factor, no study has effectively determined the overarching network involved in 

self-regulation. In an effort to detect regions that are responsible for the act of 

brain regulation itself, we performed a meta-analysis of data involving different 

target regions based on studies from different research groups. 

We included twelve suitable studies that examined eight different target regions 

amounting to a total of 175 subjects and 899 neurofeedback runs. Data analysis 

included a standard first- (single subject, extracting main paradigm) and second-

level (single subject, all runs) general linear model (GLM) analysis of all 

participants taking into account the individual timing. Subsequently, at the third 

level, a random effects model GLM included all subjects of all studies, resulting in 

an overall mixed effects model. 

Since four of the twelve studies had a reduced field of view (FoV), we repeated 

the same analysis in a subsample of eight studies that had a well-overlapping  

FoV to obtain a more global picture of self-regulation. 

The GLM analysis revealed that the anterior insula as well as the basal ganglia, 

notably the striatum were consistently active during the regulation of brain 

activation across the studies. The AIC has been implicated in interoceptive 

awareness of the body and cognitive control. BG are involved in procedural 

learning, visuomotor integration and other higher cognitive processes including 

motivation. The larger FoV analysis yielded additional activations in the anterior 

cingulate cortex, the dorsolateral and ventrolateral prefrontal cortex, the 

temporo-parietal area and the visual association areas including the temporo-

occipital junction.  

In conclusion, we demonstrate that several key regions, most importantly the 

anterior insula and the basal ganglia, are consistently activated during self-

regulation in real-time fMRI neurofeedback independent of the targeted region-



of-interest. Our results imply that if the real-time fMRI neurofeedback studies 

target regions of this regulation network, such as the AIC, care should be given 

whether activation changes are related to successful regulation, or related to the 

regulation process per se. Furthermore, future research is needed to determine 

how activation within this regulation network is related to neurofeedback 

success. 

 

Keywords: Neurofeedback, real-time fMRI, brain regulation. 

 

 

  



 

Introduction 

Neurofeedback using real-time functional magnetic resonance imaging (rt-fMRI) 

enables participants to obtain voluntary control over multiple brain regions. 

Studies using this technique have demonstrated that it may be possible to 

successfully manipulate brain areas including the anterior cingulate cortex (ACC, 

Weiskopf et al., 2003), the posterior cingulate cortex (Brewer and Garrison, 

2014), the anterior insular cortex (AIC, Caria et al., 2007;Caria et al., 

2010;Berman et al., 2013), posterior insular cortex (PIC, Rance et al., 2014), 

amygdala (Posse et al., 2003;Bruhl et al., 2014), primary motor and 

somatosensory cortex cortices (Yoo and Jolesz, 2002;Berman et al., 2012), 

premotor area (Johnson et al., 2012), visual cortex (Shibata et al., 2011), auditory 

cortex (Yoo et al., 2006;Haller et al., 2013), substantia nigra/ventral tegmental 

area (Sulzer et al., 2013), nucleus accumbens (Greer et al., 2014) and inferior 

frontal gyrus (Rota et al., 2009; for a review see Ruiz et al., 2014).  

 

Real-time fMRI neurofeedback has also been explored as a supplementary 

treatment for various neurological disorders. For instance, real-time fMRI 

neurofeedback has shown positive benefits for diseases such as schizophrenia 

(Ruiz et al., 2013), depression (Linden et al., 2012), tinnitus (Haller et al., 2010), 

Parkinson’s disease (Subramanian et al., 2011) and nicotine addiction 

(Canterberry et al., 2013;Hartwell et al., 2013;Li et al., 2013). However, the 

neural mechanisms of neurofeedback as used for self-regulation of bodily 

functions are not well understood, which may be a roadblock to achieving 

consistent outcomes between studies and successful translation into clinics. 

 

One of the most important but least understood characteristics of neurofeedback 

is the specificity of activation during self-regulation. Previous investigations in 

real-time fMRI neurofeedback have attempted to control for specificity of the 

self-regulation using feedback from another region (deCharms et al., 2005), 

subtracting the mean activity of a reference slice that does not contain involved 

brain regions (Caria et al., 2007;Rota et al., 2009), or using post-hoc statistical 

methods (Blefari et al., 2015). In contrast, we are here interested in the regions 



that are additionally activated during self-regulation, that is, regions that are 

involved in the cognitively demanding task of neurofeedback regulation. 

 

In their landmark study, deCharms et al. reported that reduced pain perception 

via ACC regulation may have resulted from the contribution of a higher order 

region despite efforts to control them (deCharms et al., 2005).  If so, exactly 

which regions would be responsible for effects of self-regulation?   Studies using 

a single region of interest suggest involvement of the dorsolateral prefrontal 

cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC, Haller et al., 2010) 

and the anterior mid-cingulate cortex (Lee et al., 2012) to dorsal anterior 

cingulate cortex (Lawrence et al., 2013) in the regulation process per se. 

However, these studies did not explicitly explore the brain network responsible 

for feedback regulation. Indeed, a number of feedback studies show activation of 

the posterior ACC (pACC,), although this area was not targeted (e.g. Caria et al., 

2007;Rota et al., 2009;Lee et al., 2012;Veit et al., 2012;Lawrence et al., 2013). 

Similarly, several studies reported activation of the insula during neurofeedback 

runs (e.g. Rota et al., 2009;Haller et al., 2010;Lee et al., 2012;Paret et al., 2014). 

 

In the current investigation, we specifically assess the brain network mediating 

regulation in real-time fMRI neurofeedback. We hypothesized that regardless of 

the target region used, a common brain network is involved in the regulation 

process itself. Consequently, we performed a meta-analysis across multiple 

previously reported rt-fMRI neurofeedback studies with different target regions 

in order to cancel out target-region-specific effects and identify those activations 

commonly related to the regulation process. Our results suggest the existence of 

a self-regulation network consisting of the anterior insula, basal ganglia, dorsal 

parts of the parietal lobe extending to the temporo-parietal junction, ACC, dlPFC, 

ventrolateral prefrontal cortex (vlPFC) and visual association areas including the 

temporo-occipital junction. 

  



 

Materials and Methods 

Study selection 

Studies were selected based on a Web of Knowledge 

(https://apps.webofknowledge.com) search for the keywords: “real time fMRI”, 

"real time functional” or “rtfMRI” (in January 2014) as well as studies indicated 

in the real-time community (rtfmri@sympa.ethz.ch) literature updates. This 

search provided us with a total of 316 publications. Next, we used the following 

selection criteria, 1) rt-fMRI neurofeedback, 2) 1.5 or 3.0 T static field strength, 

3) at least four healthy participants, and 4) at least three neurofeedback runs. 

Twenty-eight studies were aggregate based on these criteria. Subsequently, we 

contacted the corresponding authors, and 12 of these corresponding authors 

agreed to provide us with the raw data of 12 studies that were used for the 

analysis. 

 

Included studies 

We were able to obtain 12 studies targeting nine different regions of interest, 

notably the insula (5), amygdala (2), primary motor cortex (1), premotor cortex 

(1), auditory cortex (1), visual cortex (1), anterior cingulate cortex (1), 

substantia nigra/ventral tegmental area (1) and the ventrolateral prefrontal 

cortex (1). Overall, a total of 175 subjects performed 899 neurofeedback runs. 

The studies are summarized in Table 1. 

 



Study Target area N Sessions 

Runs 

per 

Session 

Regulation 
External 

stimuli 

Blocks 

per 

run 

Length 

of 

block 

[s] 

Type of 

localizer 

 

1) 

Berman 

et al. 

(2012) 

Primary 

Motor 

Cortex 

10 1 3 UP - 5 20 functional 

2) 

Berman 

et al. 

(2013) 

Rostral 

Insula 
13 1 4 UP - 4 30 functional 

3) Bruhl 

et al. 

(2014) 

Amygdala 6 4 

2-3, 

total: 

8-11 

runs 

DOWN, NO 
visual 

(pictures) 
10 20 functional 

4) Hui et 

al. (2014) 

Premotor 

Cortex 
12 1 4 UP - 7 30 functional 

5) 

Johnston 

et al. 

(2011) 

VLPFC, IC, 

others 
17 1 3 UP - 12 20 functional 

6) Paret 

et al. 

(2014) 

Amygdala 16 1 3 DOWN 
visual 

(pictures) 
15 26 functional 

7) 

Robineau 

et al. 

(2014) 

Visual 

Cortex 

(interhem. 

balance) 

14 3 4 

UP (one 

hemisphere 

stronger 

than other 

one) 

- 3 30 functional 

8) Sulzer 

et al. 

(2013) 

SN/VTA 15 1 3 UP - 9 20 anatomical 

9a) 

Emmert et 

anterior 

Insula 
14 1 4 DOWN pain 4 30 functional 



Table 1: Studies included in the current post-hoc analysis. In addition to the 

analysis across all studies, the analysis was repeated using the first eight studies 

(highlighted in bold) with a larger field of view. 

 

Analysis of MRI data 

A standard mixed effects general linear model (GLM) analysis was conducted in 

FMRIB Software Library (FSL 5.0.6, FMRIB, Oxford, UK) (Smith et al., 2004). 

Preprocessing was performed using standard parameters (motion correction, 

co-registration, normalization to Montreal Neurological Institute (MNI) space, 

smoothing using a 5 mm Gaussian kernel). 

The first level analysis used the individual study’s block design as a regressor to 

model neurofeedback blocks. At the second level, all runs per subject were 

combined in a fixed effects analysis. Finally, a third level FMRIB’s local analysis 

and mixed effects (FLAME1, (Woolrich et al., 2004)) analysis was conducted to 

combine all subjects of all studies resulting in an overall mixed effects analysis. 

At the third level, the analysis was performed including coding for the different 

studies as co-regressors. 

al. (2014)-

AIC 

9b) 

Emmert et 

al. (2014)-

ACC 

ACC 14 1 4 DOWN pain 4 30 functional 

10) Frank 

et al. 

(2012) 

anterior 

Insula 
21 2 3 UP - 7 30 anatomical 

11) Haller 

et al. 

(2013) 

Auditory 

Cortex 
12 4 4 DOWN auditory 4 58 functional 

12) Veit et 

al. (2012) 

anterior 

Insula 
11 1 3 

UP, DOWN, 

NO 

visual 

(pictures) 
6 9 functional 



Due to the restricted brain coverage of some studies, we performed this analysis 

two times. The first analysis used the entire data set and the restricted 

overlapping field of view (FoV) covered by all 175 subjects (see Supplementary 

Figure 1 for FoV and regions of interest). In order to provide insight into regions 

outside of this small overlapping FoV, the analysis was repeated with a 

subsample of 8 studies and 103 subjects (first 8 rows of Table 1, see 

Supplementary Figure 2 for FoV) with a larger overlapping FoV. All resulting 

activations were family wise error (FWE) multiple-comparison corrected using 

voxel-based thresholding at p<0.05. 

  



Results 

 

Figure 1: Main effect of the third level mixed effects analysis. (A) Results from 

the main analysis using all 12 studies with a restricted field of view (FoV) (B) 

Results from the subsample analysis of eight studies with a larger FoV. The light 

grey area indicates the overlapping FoV, areas in red-yellow indicate regions that 

are active during regulation, while areas in dark-light blue depict areas with 

reduced activation during regulation. 

 

The third level mixed effects analysis of all 12 studies yielded two main regions 

that are consistently activated during neurofeedback: the bilateral anterior 

insula and the basal ganglia. Considering the subsample analysis with a larger 

field of view (n=8 studies) additional significant areas include the posterior ACC 

(pACC), the bilateral ventrolateral prefrontal cortex (vlPFC) and an area in the 

bilateral dorsolateral prefrontal cortex (dlPFC) extending to the premotor cortex 

(PMC), a large temporo-parietal area bilaterally, and lateral occipital areas 

including visual association areas and the temporo-occipital junction bilaterally. 

In addition, the analysis with 8 studies showed additional brain areas that are 

deactivated during neurofeedback, including the posterior cingulate cortex 

(PCC), the precuneus and bilateral transverse temporal area. 

 

Activations  

Cluster Area MNI coordinates t-stat 

value 

z-stat 

value X Y Z 

1 pACC 6 20 36 10.57 8.58 

2 AIC R 32 26 4 12.30 9.49 



  AIC L -36 20 -2 13.66 10.14 

3 

  

 

  

vlPFC R 54 12 14 9.79 8.12 

vlPFC L -50 8 4 11.00 8.81 

dlPFC/PMC R 42 0 42 10.05 8.27 

dlPFC/PMC L -34 -4 40 11.42 9.04 

4 

  

  

  

Temporo-parietal R 62 -34 34 6.73 6.07 

Temporo-parietal L -58 -32 32 7.64 6.73 

Parietal R 30 -48 40 5.42 5.05 

Parietal L -30 -48 38 7.78 6.82 

5 

  

Occipital R 46 -58 12 7.62 6.71 

Occipital L -46 -70 8 7.82 6.85 

6 Basal Ganglia (BG) & 

Thalamus 

Strong activation with several local maxima throughout 

BG (putamen, caudate nucleus, nucleus accumbens, 

globus pallidus) and thalamus. 

 

20 0 10 11.04 8.83 

-20 0 12 11.07 8.85 

Deactivations   

Cluster Area MNI coordinates   

X Y Z   

1  Precuneus 0 -68 24 7.59 6.70 

PCC 8 -56 38 6.44 5.85 

2  Temporal Transverse L -36 -20 16 9.72 8.08 

Temporal Transverse R 38 -14 18 8.34 7.21 

3  Parietal R 46 -68 36 6.71 6.06 

Table 2: MNI coordinates of the local maxima of all reported clusters of 

subsample analysis (n=8) using a larger field of view. 

 

 

  



Discussion 

The meta-analysis of rt-fMRI neurofeedback studies with a variety of target 

regions identified a regulation network that includes notably the anterior insula, 

the basal ganglia, the temporo-parietal area, the ACC, the dlPFC, the vlPFC and 

the visual association area including the temporo-occipital junction (see Figure 

2). 

 

 

Figure 2: Schematic display of main brain areas involved in self-regulation. This 

network includes the ACC (yellow), the dorsolateral PFC extending to PMC (dark 

green), the ventrolateral PFC (light green), the anterior insula (red), part of the  

inferior and superior parietal lobule extending to the temporo-parietal junction 

(violet) and the lateral occipital cortex extending to the temporo-occipital 

junction (blue). 

 

Anterior insula activation is known to occur during interoceptive cognition and 

self-awareness processes (Craig, 2002;Critchley et al., 2004). Additionally, 

specifically the right AIC and the adjacent vlPFC are implicated in cognitive 

control tasks such as motor inhibition, reorienting and action updating (Levy and 



Wagner, 2011) using fronto-basal-ganglia connections. Similarly, basal ganglia 

are involved in interoceptive processes (Schneider et al., 2008) and also 

motivational processing (Lehericy and Gerardin, 2002;Arsalidou et al., 2013), as 

needed in feedback tasks. Moreover, the basal ganglia are essential for learning; 

whereas the dorsomedial striatum is known to be involved in declarative 

learning, the dorsoventral striatum is a key region mediating procedural learning 

(Yin and Knowlton, 2006;Balleine and O'Doherty, 2010). Interestingly, in their 

review Aron et al. pointed out that cognitive control tasks often employ a fronto-

basal-ganglia network, which might explain our observation of both AIC/vlPFC 

and BG activation (Aron et al., 2014). 

 

The temporo-parietal activation could be related to integration of the visual 

feedback and feedback related processes involving recall of memories (Zimmer, 

2008) as well as self-processing and multisensory integration of body-related 

information (Arzy et al., 2006). PACC activation might reflect motivational 

aspects of the neurofeedback such as the rewarding effect of positive feedback 

and avoidance of negative feedback (Amiez et al., 2005;Magno et al., 2006;Posner 

et al., 2007). The dlPFC and premotor areas are implicated in the imagination of 

action, which likely relates to the mental imagery used during neurofeedback 

(Hanakawa et al., 2003;Lotze and Halsband, 2006). Finally, visual association 

area activation and the temporo-occipital junction activation may reflect visual 

imagery (D'Esposito et al., 1997;Zimmer, 2008) as well as processing of the 

visual feedback. 

 

In addition, our analysis showed some brain areas that were deactivated during 

neurofeedback including the PCC as well as the precuneus. These areas are part 

of the default mode network (Raichle et al., 2001;Greicius et al., 2003;Raichle 

and Snyder, 2007), which is consistently deactivated during cognitively 

demanding tasks. Additionally, the transverse temporal area shows 

deactivations, possibly reflecting a shift of the focus away from scanner noise 

during the task i.e., a decrease of auditory activation due to visual feedback 

(Laurienti et al., 2002) and/or the task performance. 

 



As most studies included in our meta-analysis involved participants attempting 

to up-regulate a target brain area, the effect of regulation and the areas involved 

in the regulation process per se cannot be distinguished in these studies. One 

study aiming at down-regulation of the auditory cortex (Haller et al., 2010) 

found that the dlPFC and vmPFC were simultaneously up-regulated, suggesting 

that these areas might be involved in the regulation process. In accordance with 

this study, we found an up-regulation of the dlPFC. Additionally, we detected 

pACC activation that is close to the vmPFC area. Due to our restricted FoV we 

have no data available to validate the vmPFC activation itself. Another study 

suggested that the anterior mid-cingulate cortex (region between the ACC and 

middle cingulate cortex (MCC) that we called pACC) is involved in brain 

regulation (Lee et al., 2012). This result is also confirmed by our analysis. 

However, for the studies using a single ROI we cannot exclude the possibility that 

the shown effect was a result of the brain regulation (i.e., the activation was 

caused by the target region activation change) rather than the regulation process 

itself.  

 

One study used several different visual regions of interest within the same 

subjects (Harmelech et al., 2015) and showed that some of the higher-level visual 

areas and the inferior parietal lobe (IPL) are easier to regulate than lower-level 

areas such as V1. Our study showed involvement of part of the IPL during self-

regulation in general. This observation implies that the observed activation 

change in the IPL in this study might in fact be a mix between activation change 

due to successful neurofeedback and activation related to the cognitively 

demanding process of regulation per se. Note however, that this study employed 

auditory feedback, whereas all studies in our meta-analysis used visual feedback. 

Unfortunately, this study does not report about common activation outside of 

their chosen target regions.  

 

Other studies that assessed processes related to self-regulation including 

meditation, mental imagery and sham neurofeedback reported activations that 

are partly overlapping with our results. For example, an involvement of the 

lateral PFC and the insula was observed in experienced meditators during 



mindfulness meditation (Farb et al., 2007) underlining the importance of these 

areas for self-awareness in the present.  

 

Additionally, some of the reported regions, especially the parietal and prefrontal 

areas, are implicated in mental imagery (McNorgan, 2012), which could be one 

cognitive component involved in neurofeedback regulation. Temporo-occipital 

activation can be observed specifically during visual imagery of form and motion 

(McNorgan, 2012).  

 

Interestingly, another study assessing sham neurofeedback reported very 

similar activations (Ninaus et al., 2013). The authors reported the involvement of 

the bilateral insula, dorsomedial and lateral PFC, supplementary motor area, left 

ACC, right superior parietal lobe, right middle frontal activation, left 

supramarginal gyrus and left thalamus during attempted brain regulation with 

sham feedback in comparison to a passive viewing condition. This suggests that, 

independent of the outcome of the neurofeedback, a wide network of areas 

involved in cognitive control and sensory processing is recruited during 

attempted self-regulation. When looking at the comparison of viewing of moving 

bars and viewing of static bars, they found, among others, a strong activation in 

the middle occipital gyrus, very similar to the temporo-occipital activation found 

in this study, confirming that this activation is likely induced by the visual 

stimulation during feedback delivery.  

 

However, Ninaus et al. do not report a significant activation of the basal ganglia 

that showed strong activation in our meta-analyses. This difference might either 

result from the difference in contrast (comparison against rest vs. comparison 

against passive viewing of moving bars) or might reflect a learning process 

specific to neurofeedback, that is not present in the sham feedback condition. 

 

In order to test for neurofeedback specific effects, some rt-fMRI studies include a 

transfer run without feedback presentation (e.g. Haller et al., 2013;Sulzer et al., 

2013). These transfer runs can help to disentangle learning effects from the 

actual regulation process. In the future, when more studies using a transfer run 



will be available, a novel meta-analysis could be run that includes a contrast of 

transfer runs in comparison to normal feedback runs to more specifically 

identify the neuronal mechanisms underlying visually-guided neurofeedback. 

 

Limitations 

It should be noted that there currently is no gold standard for the measurement 

of regulation success in healthy subjects. This could be either a neuroimaging 

variable (e.g. decrease of beta value) or a behavioral measurement (performance 

in a task relevant for the targeted area). When such a gold standard is 

established in the field, further investigation into correlations of activation with 

regulation success would be desirable to assess in detail regions related to 

successful neurofeedback regulation. 

 

Further limitations include the limited field of view due to the individual slice 

positioning that was intended to include the individual region of interest and not 

necessarily whole brain coverage. We included only studies with visual feedback. 

Therefore, our results also reflect visual processing of the feedback. In all rt-fMRI 

studies, including those used for our analysis, learning processes could confound 

the regulation process as the subjects learn to self-regulate by watching the 

feedback. 

 

The presented findings may be somewhat limited by the relatively low number 

of studies included (8 for large FoV, 12 for small FoV) due to the rather small 

number of suitable studies available in this field in general and the fact that this 

meta-analysis looked at the data itself requiring permission to use the original 

data.  On the other hand the procedure of unifying the analysis steps using 

original data instead of comparing activation clusters reported in the literature 

should enhance the transparency and thus interpretability of results. 

 

 In addition, this analysis is retrospective and the design of the studies was not 

optimized for the meta-analysis. Therefore, data acquisition parameters and 

paradigm (blocks, runs, sessions, up or down regulation, stimuli, instructions) 

vary considerably across studies. On the other hand, this can also be considered 



as strength as it indicates the general validity of our results as the data covers a 

range of different experimental setups and designs.  

 

Conclusion 

Brain regulation during rt-fMRI neurofeedback involves a complex regulation 

network, including notably AIC, BG, dlPFc, vlPFC, part of the temporo-parietal 

area and visual association areas including the temporo-occipital junction. 

Taking into account the limitation that the current investigation is a 

retrospective meta-analysis of rt-fMRI studies, which were not specifically 

designed for this purpose, our results suggest that some target regions of rt-fMRI 

studies (notably insula and ACC) are also implicated in the process of regulation 

per se. This may therefore represent a potential confound for the regulation of 

these areas. 
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Supplementary Material 

Supplementary Figure 1: 

 

Overlap of field of view for all studies. The regions of interest are indicated in 

green. MNI coordinates: upper row: 2 -18 2; lower row: Z=18, Z=-6, Z=54. 

  



Supplementary Figure 2: 

 

Overlap of field of view for all studies included in the subsample analysis. MNI 

coordinates: 2 -18 2. 


