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1. Future Challenges and Unsolved Problems (in
Human-Centered Visualization)

Robert S. Laramee and Robert Kosara

Abstract

The visualization community is currently in a phase of sgHleation and retrospec-
tion. Almost 20 years after the publication of the Nationaelehce Foundation (NSF)
report entitled, “Visualization in Scientific Computinddy McCormick, DeFanti, and
Brown (1987), visualization researchers are looking batgatifying those visualiza-
tion problems that have been solved, and looking forwarchéodhallenges and un-
solved problems in the next 20 years. In light of this shiftlirection, we survey and
present a selected list of future challenges and top undg@blems in visualization
with an emphasis on human-centered visualization. Thelégented here surveys and
categorizes what we consider the most important futureainges into three classes:
human-centered, technical, and financial. The result ifuLif® gaining insight into
both past and future directions in visualization research@ovides a provocative fo-
rum for discussion.

Keywords: human-centered visualization, information visualiaatitop challenges,
unsolved problems, survey

1.1 Introduction

Self-criticism, evaluation, solved and unsolved problemrsd future directions are
wide-spread themes pervading the visualization communitay. The top unsolved
problems in both scientific and information visualizatioasathe subject of an IEEE
Visualization Conference panel in 2004 [48]. The future i@hics hardware was an-
other important topic of discussion the same year [25]. Aaczi evaluation of usability
and utility of visualization software was also the focus oéeent panel discussion [17].
The topic of how to evaluate visualization came up again twary later [20, 66].
Chris Johnson recently published his list of top problemsdientific visualization
research [22]. This was followed up by report of both pasteaments and future
challenges in visualization research as well as financigdst recommendations to the
National Science Foundation (NSF) and National Institditdealth (NIH) [23]. That
report is the result of two workshops that took place in thik 872004 and Spring of
2005 on visualization research challenges and also insling@t from the larger visual-
ization community. C. Chen recently published the firstdigibp unsolved information
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visualization problems [5]. Future research directionsopblogy-based visualization
was also a major theme of a workshop on topology-based me{i8¢50].

These pervasive themes are the result of shift in visuadizaesearch. They co-
incide roughly with the20*" anniversary of what is often recognized as the start of
visualization in computing as a distinct field of researcB][4Consensus is growing
that some fundamental problems have been solved and agrevednt including new
directions is sought. This shift is characterized by raptéases in computing power
with respect to both the CPU and the GPU as well as swift deessia the cost of com-
puting hardware. Advances in display technology and ndtingrhave also made vi-
sual computing more ubiquitous. Cell phones, personalaligssistants (PDAS), other
hand-held devices, as well as flat panel displays are now amplace.

In accordance to this redirection, we present a more coreps#e list of top un-
solved problems and future challenges in visualizatiornait emphasis on human-
centered visualization. Our list draws upon and summapregous related literature,
previous chapters, discussions in the visualization conityyuas well as our own first
hand experiences. We recognize the subjective nature edpieand thus our presen-
tation aims to survey and complement previous related relsess well as introduce
some of our own personal view points. Our survey of relateddiure identifies several
future challenges and then classifies each into one of tlategaries: human-centered,
technical, and financial, as follows:

Human-Centered Challenges.

— Interdisciplinary Collaboration Communication and knowledge transfer between
the visualization community and application domain expé&tvery important (and
currently lacking, Section 1.2.1).

— Evaluation of Usability Human-centered evaluation of interfaces, metaphors, and
abstractions that appeal best from an HCI perspective \Wlf pn important role
(Section 1.2.1).

— Finding Effective Visual Metaphar#\ssigning an intuitive geometry to non-spatial
data promises to remain an important challenge (Sectiaf)1.2

— Choosing Optimal Levels of AbstractioRrom an implementation point of view,
choosing an optimal level of data abstraction is arbitr&igding the optimal level
of abstraction from a user’s point of view is non-trivial (Gen 1.2.1).

— Collaborative VisualizationThe art and science of sharing interaction and visualiza-
tion between multiple user simultaneously is still in itéimcy, rich with unsolved
problems and future challenges (Section 1.2.1).

— Effective Interaction Much work still remains in developing intuitive interaamti
techniques, especially in the field of virtual reality.

— Representing Data QualityNot all data is equal. The quality of data can vary accord-
ing to several different factors. Such variance provokeersé research challenges
(Section 1.2.1).

Technical Challenges.
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— Scalability and Large Data Managemerithe size of data sets continues to grow
faster than the software used to handle it, a trend that gesrtio continue in the
future (Section 1.2.2).

— High Data Dimensionality and Time-Dependent Dathe complexity posed by data
with many attributes is a challenge that every visualizatesearcher is familiar with
(Section 1.2.2).

— Data Filtering: Ever growing data sets demand more methods and technslogie
needed to filter out subsets of the data that are deemedstiteyéy the user (Sec-
tion 1.2.2).

— Platform Independent VisualizatioAlthough we may want to show the same image
to several different people, very rarely do two users hageettact same hardware
and software setup (Section 1.2.2).

Financial Challenges.

— Evaluating Effectiveness and Utilitilot all visualizations and interaction method-
ologies are equally effective and useful. Deciding in whiebhnologies to invest
both time and money will certainly challenge researchetiserfuture (Section 1.2.3).

— Introducing Standards and BenchmarWghile many other branches of computer sci-
ence feature standards, e.g., networking protocols amatbdse designs, visualization
is still lacking standards at many different levels (Sattlo2.3).

— Transforming Research Into Practica order to contribute to society at large, suc-
cessful research results must find their way into practigplieations (Section 1.2.3).

This is the first such list in visualization to present finahchallenges in such an ex-
plicit manner—in a category on their own. Our survey of topaived problems attempts
to provide more depth than previous, related articles. \&fe @b not abide by the com-
mon, arbitrary restriction of limiting the number of unsetiyproblems and future chal-
lenges based on the number of fingers we have.

1.2 Classification of Future Challenges and Unsolved Probies in
Human-Centered Visualization

Before going into depth with respect to related researcthendpics of unsolved prob-
lems and future challenges in information visualizatior,wovide a brief overview of
important and influential related literature and events.

For a look back at human-centered visualization researehrefer the reader to
Tory and Mbller [60]. Related literature describing unsolved profedates back over
100 years in other disciplines. David Hilbert's list of uhsm problems in mathemat-
ics ! was presented at the Second International Congress indtaAsigust 8, 1900.
Lists of unsolved problems more closely related to visadilin date back to 1966 with
Ivan Sutherland’s list of unsolved problems in computerpbies [56]. Another list
of unsolved problems in computer graphics was presentednbylinn at the ACM
SIGGRAPH conference in 1998 [2].

! Available online at:
http://mat hwor |l d. wol fram coni Hi | bert sProbl ens. ht m
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In 1994, Al Globus and Eric Raible published one of the fir¢tsgticisms of the
visualization community [15]. We feel that such criticismdlosely related to chal-
lenges and unsolved problems because common visualizdiwa are highlighted.
The identification of non-ideal practices must occur befareh problems can be cor-
rected. Multiple themes occurring in this list serve as prsers to material that later
appears in visualization challenges literature. Setfeisim is also presented by Bill
Lorensen [40].

The first list of future challenges in visualization speeifig, was published in 1999
by Bill Hibbard [19]. In fact, Hibbard'’s list is very humarentered. The two major
themes throughout his presentation are: (1) the interfabeden computer and people
and (2) the interface between people and other people drégte combination of
computer networking and visualization. Challenges aredbas) adapting computer
capabilities to correspond as closely as possible to hurapabilities and perception.

Fifteen years later, Chris Johnson published his list of wigpalization research
problems in scientific visualization [22]. His work inclugleopics such as: more inter-
disciplinary knowledge transfer, quantifying effectiess, representing error, percep-
tion, utilizing novel hardware, global vs. local visualime, multi-field visualization,
feature extraction, time-dependent visualization, digted visualization, visual ab-
stractions, and visualization theory. These themes angghtaip again and elaborated
on in the follow-up NIH/NSF Visualization Research Chatjes report [23] published
in 2005 and 2006.

Chaomei Chen published the first list (to our knowledge) pfuasolved informa-
tion visualization problems [5] in 2005. Themes includeahifity, knowledge of other
domains, education, evaluation of quality, scalabiligsthetics, and changing trends.
Many of these topics are discussed in more detail in a bookdgame author [4].

Thomas and Cook have also recently published a book desgtibé future agenda
in the emerging field of visual analytics [59]. Chapter onegants the “Grand Chal-
lenges” for researchers in visual analytics. Themes ireclahta filtering, large data
sets, multiple levels of scale, cross-platform visual@atcollaborative visualization,
visual metaphors, evaluation, and system interopenabilitese grand challenges were
presented in Jim Thomas’ Keynote Address: “Visual Analitie Grand Challenge in
Science-Turning Information Overload into the Opportyrif the Decade”, at the
IEEE Information Visualization Conference 2005 in Minneli@ Minnesota.

For completeness, we also note that University of North apCharlotte is host-
ing a “Symposium on the Future of Visualization”, which tqulace 1-2 May, 2006.

Each literature source or event mentioned here influenaesupvey of future chal-
lenges and unsolved problems. Many issues pervade eakbwster terminology may
differ. We incorporate not only previously published lgarre but also our personal ex-
periences, view points, discussions with other reseasclagid reviewer feedback. In-
deed our list of grand challenges both overlaps and divdrgesprevious view points.
Diverging on some topics serves to spark further discussnahthought.

1.2.1 Human-Centered Challenges

Here we elaborate on the literature and events addresginfutore challenges and
unsolved problems in visualization research, startindh whitose focused on human-
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. il ' . |
Fig. 1.1. The visualization of CFD simulation data from a cooling jacket: (left) textuagekl
flow visualization applied to the surface, (middle) semi-automatic extractidnvesualization
of vortex core lines using the moving cutting plane method [61] and, (righ®ature-based,
focus+context visualization showing regions of near-stagnant floegied interactively. Each
snap-shot is accompanied by a close-up. This work was the resultalfadboration between
visualization researchers and mechanical engineers [34].

centered themes. The literature survey is organized byutee challenges and un-
solved problems themselves. For each topic, the readermnefierences to previous
literature that addresses it. We note that most of the futhadlenges contain elements
from all three categories we have chosen for our groupingh{iman-centered with
a focus on people, (2) technical with a focus on computing, @) financial with a
focus on money. Thus we have classified the top unsolvedgrabivhere we feel the
challenge mainly lies.

Challenge #1: Interdisciplinary Collaboration. Visualization research is not for the
sake of visualization itself. In other words visualizatigrultimately meant to help a
user, i.e., someone normally outside the visualizationmamity, gain insight into the
problem they are trying to solve or the goal being sought.afteus visualization re-
searchers must communicate with practitioners in othasiglines such as business,
engineering, or medicine in order to understand the problrat other professionals
are trying to solve. This requires communication acrossentioein one discipline. The
disciplines may even be closely related, e.g. informatiod scientific visualization.
Johnson called this problem “thinking about the science].[2 is also an opinion
expressed strongly by Bill Lorensen [40]. As a concrete gamif a visualization
researcher is writing software to visualize computatidhgd dynamics (CFD) simula-
tion results, it is best if the researcher collaborates wi@FD expert or a mechanical
engineer. A CFD practitioner generally has s set of expectafrom their CFD simula-
tion results. Understanding these expectations requitesdisciplinary communication
(Figure 1.1).
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Any researcher who has attempted to collaborate with aificeetr in another dis-
cipline knows how difficult this challenge can be. Enginedixtors, business people,
etc., are neither paid nor required to communicate with aalisation researcher. If a
professional is not interested in visualization, they rmeackImotivation to collaborate.
Also, differences in domain-specific terminology must bergeme. Researchers at the
VRVis Research Center have a considerable amount of exyperigith this problem.
The VRVis Research Center, conceptually, acts as a transfarowledge bridge be-
tween the university and industry sectors in Austria. Ttsowi of their research center
is to bridge the gap between universities and industry byirspanowledge and collab-
orating. Recently, they have been conducting interdisw@py research with engineers
from the CFD community [34, 38]. The results of their work w@resented to both the
visualization community at the IEEE Visualization Confazes and to the CFD and
engineering analysis community at the NAFEMS World Cong(88]. When talking
to the engineers at the NAFEMS conference, the attendegspizke with were not
aware of the existence of a visualization community. Thezeawno other visualization
researchers that they were aware of at the conference. Argteiéew practitioners
visiting the IEEE Visualization of IEEE InfoVis Confererse

Interdisciplinary collaboration can be very challengi@gnerally, the motivation
for such communication with practitioners could be straeged. However, we do see
signs of progress in this area. More quality, applicati@ack papers have been pub-
lished in recent years. We also note the emergence of theAfiyglied Visualization
Conference (AppliedVis 2005) that took place in AsheviNierth Carolina in April of
2005 (more information available att p: / / ww. appl i edvi s. or g ). This topic was
also a subject discussed in a recent panel discussion [58¢lhsis a recent research
paper [66]. The Topology-Based Methods in Visualizationrigbop 2005, (more in-
formation can be found &it t p: / / www. VRVi s. at / t opo-i n-vi s ) had participants
from both industry and academia.

Challenge #2: Evaluation of Usability. Software usability is a top challenge on most
lists of future research directions, e.g., see Chen, agdlewumber 1-"Usability” [5]
and Johnson, challenge number 2—"Quantify Effectivengg; including Ivan Suther-
land’s list from 1966 [56]. Usability and evaluation arentes featured on virtually ev-
ery visualization conferences’ call for participation @FEvaluation, perception, and
usability are often topics featured in visualization coafee panels [13, 17, 20, 43].
The ACM conference on Human Factors in Computing Systems)(iSkvell known
and attracts thousands of visitors every year. Yet, themagbrity of visualization re-
search literature does not the address human-computeadtiten. New visualization
techniques and systems rarely undergo any usability stuBig user-centered software
design is central to the wide-spread use and success of aligajon (Figure 1.2).

In our experience, visualization researchers are ofteptiled with respect to the
topic of human-centered evaluation. Some factors coritriguo this perception may
include:

— Time Consumptiarser studies are viewed as very time consuming and erroepro
— Design ChallengesThose with experience can agree that designing an eféegtier
study can be very challenging [29, 37]. Visualization sysecan be very complex
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courtesy of Alfred Kobsa.

and designing a user-study that isolates individual ictégzas and variables in an
effective manner is difficult.

— Design Literature Literature addressing effective user study design, afjhoex-
ists [29, 68], is generally lacking, especially in visuatinn.

— ImplementationVisualization techniques are generally difficult to implent. Thus,
implementing more than one algorithm in order to evaluatétipie approaches is
problematic.

The usability challenge has a long history and promisesrt@ire an unsolved problem
for the foreseeable future. Thus we consider this area tahenith future research.

Challenge #3: Finding the Most Effective Visual Metaphors.Assigning a geome-
try to inherently non-spatial, abstract data can be probta(see Figure 1.3). (See
also challenge number 9 on Hibbard’s list [19], challengsber 14, “Visual Abstrac-
tions” on Johnson’s list [22], and Chapter 3-"Visual Repreations and Interaction
Techniques from Thomas and Cook [59]) A wide range of infdramavisualization
techniques have been introduced over the years to addiesshtillenge. Some ex-
amples include: focus+context methods like fisheye viev#$, fthe use of hyperbolic
trees [30, 31], perspective walls [41], table lenses [4&tapel coordinates [21], cone
and cam trees [49], collapsible, cylindrical trees [6]etreaps [53], and Beamtrees [64].
For a more comprehensive overview, see Kosara et al. [28cInone could argue that
the entire field of information visualization is the pursefithis challenge. Obstacles to
overcoming this problem include:

7
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Watr irtern

Fig. 1.3.The InfoSky system uses the night sky as a visual metaphor for viswpalarge num-
bers of documents [16]. It was also the subject of a usability stneyge courtesy of Michael
Granitzer et al.

— Cognition creating visual metaphors that are intuitive from a usaspective,

— Scalability engineering abstract geometries that can representdangents of data,

— High Dimensionalitydiscovering visualizations that are able to encode naliftien-
sional data in an intuitive manner.

It is difficult to imagine one visual metaphor that is able gmtlle all of these aspects.
Thus we expect a range of tools and visual metaphors in irdtiom applications. One
important point to note with this challenge is that the ckod¢ most effective visual

metaphors may depend on user expectations and goals.

Challenge #4: Choosing Optimal Levels of Visual Abstractia. This is very closely

related to the challenge of finding effective visual metaphBill Hibbard also stressed
the importance of defining, “effective abstractions for #isualization and user inter-
action process” [19]. Thomas and Cook also describe thikecitge in Chapter 4—"Data
Representations and Transformations” [59]. Essentiallyisualizations that assign a
geometry to abstract, non-spatial data are forced to chemse level of abstraction
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in order to represent the underlying information. What dyatie optimal level of ab-
straction is requires serious consideration. Scattes @t an example of a fine level
of abstraction. There is a one-to-one correspondence batdata sample and visual
representation. However, representing data sets withrbedaaf thousands or millions
of data samples causes problems with perception and tedlulifficulties. Many data
samples may overlap in image space and using a one-to-orn@ngagf points to data
samples implies that the finest resolution that can reptedemaithfully is bound to
the resolution of the display being used. Raising the lefrabstraction to something
coarser is required to represent so many data samples\edfecthis could be accom-
plished with a clustering technique for example. Tree datectires are a natural choice
for arbitrary levels of abstraction since parent nodes repyasent multiple child nodes
and trees may contain a more-or-less arbitrary number efdetHowever, the higher
the level of abstraction, the more difficult cognition antkipretation can be.

One of the central, fundamental challenges implicit withiropl levels of visual
abstraction is the fact that “optimal” depends on the usemé&users want a simple,
high-level of abstraction with maximal ease-of-use. Oth&ers desire, as-closely-as
possible, a direct representation of the underlying daitly & many options as pos-
sible for interaction, exploration, and analysis of theaddnplied here is the ability
to provide a smooth and intuitive transition between midtipyers of abstraction ei-
ther with one visual metaphor or with multiple views of thealat different levels of
abstraction. Another popular viewpoint is that users fellbgeneral path in the visu-
alization process: (1) start with an overview of the datys@ect a region of interest,
(3) focus on the region of interest by showing more detal®ifgew first, zoom and
filter, then details-on-demand [54]). In other words, ofatinevels of abstraction must
show details on demand. These are tasks that focus+consenlizations address as
well as software systems using multiple, linked views [7, 8]

In the end, finding the optimal level of visual abstractios@mpasses several other
challenges—the solutions to which promise to remain edufsivyears to come.

Challenge #5: Collaborative Visualization. This challenge is identified by Hibbard [19]
(see challenge number 8 under “Interactions”) and disclagain in detail by Thomas
and Cook [59], see the topic “Collaborative Visual AnalgticAs hardware becomes
less expensive, as display technologies advance, and gsutiog devices become
more and more ubiquitous, the demand for collaborativealisation (both co-located
and distributed visualization) technology will also inase. The idea is simple, one user
investigating some data would like to share their visuéitimawith another user(s)—in
a different location. The practice, however, is difficuldamll of challenges. If the vi-
sualization is static, then the problem reduces to simptglisgy an image(s) from one
location to another—a problem already solved. The futunkwies in interaction.

What happens if multiple users in disparate locations wakidtb explore, analyze,
or present their data in an interactive, collaborative neaPiThere are many related
questions that require consideration here:

— Control: Who steers the visualization? In other words, who conttodsibteraction
and visualization parameters?

— Coordination How is control passed from one person to another duringlootative
visualization? Can multiple users share control simulbaisé/?
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— CommunicationWhat is the best way for viewers to communicate observatiotis
each other during synchronized visualization?

— Network LatencyWhat are the bottlenecks introduced by network latency? Etmw
network latency be minimized? What is the best way to handlgipteiusers, each
with different network bandwidth?

— Display TechnologyChances are, each user will have different display tedyyol
How can we ensure that each user is actually seeing the samge th

— Security Should the visualization environment have permissioss@ated with it?
Are some subsets of the visualization private? or public? iththe best way to
establish viewing permissions?

Many questions provoked by collaborative visualizatioggest a large amount of fu-
ture research is needed to solve this problem. Protocotktod®e engineered that estab-
lish coordination during synchronized visualization. ther words, modification of vi-
sualization parameters must be done in some coordinatebfasvith pre-established
rules. Presumably, each user should be able to speak ostskral messages to each
other during the collaboration. What is the best way to estalierbal or written com-
munication with multiple users during the visualization?

Although the speed of networks continues to increased Isapideems it can never
be fast enough. And certainly each viewer cannot be expéctealve exactly the same
network bandwidth. Should the visualization parameterddiermined by the lowest
common denominator, i.e., the person with the slowest méta@nnection? Users can-
not be expected to have the exact same set of hardware, imgldigplay technology.
The choice of display technology, in theory, should not prena user gaining the same
insight into the data as the other users. Of course there ang technical issues asso-
ciated with this that we discuss in another challenge. Ity fae list of open questions
is so long that it is almost daunting. Bill Hibbard was alsm@erned about this topic
in 1999 [19]. Thomas and Cook describe this topic again irb289a grand (future)
challenge [59]. How much progress have we made in this arez $i999? We refer
the reader to Brodlie et al. [3] as well as the chapter on boHative visualization for a
comprehensive overview of distributed and collaboratigeialization research.

Challenge #6: Effective Interaction. The challenge of interaction is mentioned sev-
eral times in related research literature including Hibltsalist, item number 7 under
“Interactions” [19], in the future work section of Kosaraadt[28], Johnson'’s list, item
number 6, “HCI” [22], as well as by Van Dam [62, 63]. Two clas®é interactions are
important here: interaction using the traditional keyloband mouse and interaction
technigues that go beyond the keyboard and mouse.

We mention the first class of interaction techniques bectngsleeyboard and mouse
have been around for many, many years now without signifieasiution and we be-
lieve they are here to stay for many years to come because argefamiliar with them.
Nonetheless, much work remains in providimgre interaction to the user of visual-
ization tools andntuitive interaction. It seems that no matter how much interaction
is provided to the user, the user will always want more with passage of time and
experience. This has been our first-hand experience workisgftware development
alongside mechanical engineers. It is also a theme echoethhy researchers in our
field. And with the coming of new visual metaphors come newriattion techniques.
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Fig. 1.4.The visualization of uncertainty in fluid flow resulting from different stréiamtracing
algorithms [39]. Different streamline integration schemes result inréiffepaths, even in the
same vector fieldlmage courtesy of Alex Pang et al.

Providing intuitive interaction techniques will be a cleage as long as new visual
metaphors are introduced. For example, it is not obvioud Wieamost effective inter-
action tools are for those wishing to control the visual pseters of a BeamTree [26].

In the other class of interaction, those technigques whiabhdeyond the keyboard
and mouse, developing intuitive interaction techniquessiiisin the early stages. Direct
interaction will be central for users immersed in a virtuarid. Much work needs to
be done in the areas of voice recognition, gesture recogniind 3D user interfaces.
Clearly, communication with the voice and physical gestsmauch more natural and
intuitive from a human-centered point of view than using auseand keyboard to
interact with an arbitrary 2D GUI. Users want to work with ithieands as they do in
the physical world. Many questions remain to be answeredismgrowing field. For
example, what is the most effective way of drawing a line ir?3D

Challenge #7: Representing Data Quality.This topic comes up often in the visual-
ization community and hence is often cited as a top futurdlege [5, 22, 59]. In the
scientific visualization literature, this topic is oftensgtebed using the terms “error”
and “uncertainty” visualization [22, 24]. Statisticiansynuse the term “probability”.
Information visualization literature may address thisntieeas assessing the “intrinsic
quality” of data [5]. Whatever the term(s) used, there is a mom notion being de-
scribed. Not all data is equal. Data has varying accuradighbibty, probability of
correctness, confidence, or quality.

In scientific visualization, most data sets have an assatiateasure of error or
uncertainty. This error can come from various sources, thistaften associated with
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the hardware device that generates the data, e.g., a maggsinance imaging (MRI)
scanner or some other 3D scanning device. However, thisisramly very rarely rep-
resented in subsequent visualization [47]. Also in the @dnif scientific visualization,
particle tracing integration algorithms have a certain am@f error associated with
them [36], however this uncertainty is normally not repreed in the visualization [39]
(Figure 1.4). Other examples come from multiresolution {NMRd adaptive resolution
(AR) visualization [33]. Each resolution in an MR hierardhgs some measure of er-
ror associated with it since a coarser approximation camalty not be as authentic
as original, fine resolution data. AR visualizations alsochmally contain uncertainty in
regions of coarser resolution. In both the MR and AR casés uthcertainty is usually
not included in subsequent visualizations.

Other measures of data quality are not difficult to imaginer information visual-
ization context, imagine a census collected from two distiime periods, separated by
10 years. Presumably, the more recent census data is manaigcand thus of higher
quality than its older counterpart. Does the newer censts r@ader the old data no
longer useful? Not necessarily. The older census may represslightly different geo-
graphic coverage than the latter. In other words, the phaydimmain is slightly different
for each case. This example brings up two more importanbfaathen considering
data quality: namelyemporal factorsandcoverage The age of data may influence its
quality. More recent data may be considered more relidbmmpletedata is also a
problem arising very frequently. In the case of the censtes, dlae more recent census
may be considered incomplete if it does not maintain the sgaographic coverage of
its predecessor.

Erroneous and incomplete data is often discussed in thextooft databases. Any
database derived from manual data entry is assumed to h#dvéhwman) errors and
missing items, i.e., incomplete records, sparse fields. &tibugh the data in virtu-
ally every database contains some amount of error, this ernmore often than not
left out in subsequent visualization(s). In fact, so cdrafa visualization researchers at
abstracting away problems with sources of data, that theg tieveloped terms specifi-
cally for this purpose: datsmoothingpr sometimegreprocessingWe have even heard
the term: tomassagehe data (before visualization).

Regardless, the challenge of assessing data quality peertasremain a top un-
solved problem for years to come. And we regard this a maihlyraan-centered prob-
lem. Once an intelligent decision has been made on how toureasevaluate the qual-
ity of a certain data source, we believe technical solutmrsady exist to incorporate
this information into resulting visualizations, e.g.,ngerror bars, standard deviations,
confidence intervals, color-coding etc. Essentially anytirdimensional visualization
technique could potentially incorporate this as an add#ialata dimension.

1.2.2 Technical Challenges
Here we describe the challenges we claim are centered onitatissues like the de-
velopment of novel, innovative algorithms or challengesely coupled with hardware.

Challenge #8: Scalability and Large Data ManagementA challenge identified by
Chen [5] (see problem number 6. “Scalability”), Kosara et[28] and Thomas and
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Fig. 1.5.The visualization of a large graph containing 15,606 vertices and 48@J&s at differ-
ent scales: (top,left) at the original scale, (top,right) with 4,393 vestigmttom,left) with 1,223
vertices, and (bottom,right) with 341 vertices [1#hage courtesy of Emden R. Gansner.

Cook [59], see the topic, “Visual Scalability”, most resgaers agree that the rate of

data growth always exceeds our capacity develop softwats tioat visualize it. At the

very heart of visualization research is the rapid growthaibget sizes and information.
The primary motivation for visualization research is torg@isight into large data sets.

Software programs are often composed of thousands of filésralfions of lines of

code. Simulation results are often several gigabytes i Slatabases often store data
on the terabyte scale. A popular example of data managemeiiitecterabyte scale—
generated daily, comes from the field of astrophysics [S5&fyVarge databases are the

focus of their own conferences like VLDB—-the annual VerydeaData Base confer-

ence, now meeting for over 30 years. Technical problemddiat the core challenges

are:

— Designing Scalable Visualizationgisualization algorithms that are capable of han-
dling very large data sets and scale correspondingly teiagegasing data sets sizes

(Figure 1.5)

— Limited Processing SpeeHven with Moore’s law describing the growth rate of pro-

cessing power, software growth seems to exceed the rateaiaee growth.

— Limited Memory and Storage Spacésualization technology that makes efficient

use of limited storage capacity, e.g. out-of-core alganih

13
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Fig. 1.6. Sequoia View is a very effective tool for visualizing disk space usa@g Fach file
is represented by a rectangle in the image. As of January 2006, it kasdognloaded over
500,000 timeslmage courtesy of Jarke J. van Wijk et al.

— Limited Network Bandwidthvisualization algorithms that make efficient use of lim-
ited network bandwidth

Scalability and large data visualization were themes inEteE InfoVis 2003 Contest.
The winner of the InfoVis 2003 contest, TreeJuxtaposer, [4dk able to visualize a tree
with about 500,000 elements. Clearly, there is still a mbna gap between the larger
data set sizes and visualization algorithms designed fge ldata sets. Ideally, visual-
ization algorithms can realize interactive or real-timenfie rates. But this is generally
not true when data set sizes exceed a certain thresholEsieetive visualization will
face the challenge of ever-larger data set sizes and lirpitecessing speed for many
years to come.

Note how we have used the tedimited to describe memory, storage space and
network bandwidth. The cost of memory and storage spaceroppedd dramatically
in recent years and availability has increased correspghdiBut the growth of data
still exceeds the growth of both memory and storage spacevandb not expect this
trend to change in the near future. Every practitioner waglon a daily basis has had
the experience of running out of disk space, e.g., see FigéréAnd virtually everyone
has gone through the process of finding data to delete in twdeze up more space-a
task aided by various software programs. In short, datallisated to meet disk storage
capacity.

Analogous statements hold true regarding network bantiwhieétwork speed has
increased rapidly over the last 20 years, but seeminglynitnever be fast enough. As
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Fig. 1.7.Parallel sets are targeted specifically at the visualization of high-dimexisavstract
data [1]. Parallel sets can be considered an extension of paralleicat®s. This visualiza-
tion shows the relationships between different questions in the sumage courtesy of Helwig
Hauser

Fig. 1.8.Time Histograms are able to visualize time-dependent data in a still imag€eljg® is
given a spatial dimension along one histogram axis.

an example, The VRVis Research Center participated in th& Fsualization Contest
in 2004, another contest focused at visualizing large d=ita & took two days to down-

load the 60 gigabyte contest data set—the visualizationwidane Isabel. Furthermore,

how many copies of a such data set can be made? Future vai@alialgorithms must
make effective use of both limited storage space and linmitgd/ork bandwidth if they
are to enjoy long term success.

Challenge #9: High Data Dimensionality and Time-DependenData. The chal-
lenges of high data dimensionality (also called multi-fietaulti-attribute, or multi-
variate data) and time-dependent data are continuous thémmighout the visualiza-
tion community and appear often in the literature (See Hittbachallenge number 5

15
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Fig. 1.9.Multiple, linked views are used in combination with brushing (middle) in ordéditter
out data in areas of interest (left) [9]. On the left is the scientific (or gadmview) of the data
while the scatter plot view is on the right. Here CFD simulation data is being athlysage
courtesy of Helmut Doleisch et al.

on information [19] and Johnson'’s problem number 9 on nfigtd visualization [22]).

The VRVis Research Center develops tools to visualize Chiisition data [32].
Typical CFD simulation data attributes that describe the florough a geometry in-
clude: velocity, temperature, pressure, kinetic energpgipation rate, and more. Plus
the data sets are time-dependent with possibly hundred®otikousands of time steps.
And this is a description of single phase data. The nhumbettidbates multiplies with
each phase in a multi-phase simulation.

With categorical data the problem becomes even worse. ifegtegory is treated as
a data dimension, then it's possible to have hundreds ofrkinas. An example is de-
scribed by Bendix et al. [1] who apply parallel sets—an esitamof parallel coordinates,
to an application with 99 dimensions (Figure 1.7). The césms from a questionnaire
containing information from about 94,000 households gtiémg to assess living stan-
dards. A particularly difficult challenge stems from theasttjve of trying to understand
the relationships between multiple attributes (or dimens) in the data.

Although time can be considered as another data dimensiatirdyute, is treated
separately here since time normally adds motion to a vizaiidin. Effective, time-
dependent visualization techniques promise to remainuadutsearch challenge for
several years to come. Watching objects in motion genegpatiyides more insight than
static images, but also requires more cognition on behdlfi@fviewer. The transient
nature of a dynamic visualization can make some things ngteasier to see, but also
more difficult to see, e.g., fast moving phenomena. Alsagggnting motion in a static
image generated from a time varying data set can be veryectgatig and relatively few
methods have been presented on this topic [27] (Figure @i. of the fundamental
challenges with representing time in a static image liesha length of time to be
shown-both in the past and in the future. Ultimately, thedsesf the user will play a
large role in deciding this.

Challenge #10: Data Filtering. As mentioned in our top future research challenge in
regards to assessing data quality: not all data is equaloigtis not all data of equal
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quality but not all data is of equal interest or importancestwould agree that one
of the central problems of the current digital age and pestemen of the twenty first
century centers around the fact that we have too much infitwman a 2003 study
lead by P. Lyman and H.R. Varian entitled “How Much Infornaat, it is estimated
that five exabytes5(x 10'® bytes) of data were produced world wide. And the rate
of storage is growing each year at a rate of more than 30%.eCoestly, developing
tools that filter the data, namely, techniques that sep#natelata into interesting and
uninteresting subsets is one of the major research chalfenighe future (Figure 1.9).

As an example, consider the AT&T long-distance telephoteark. AT&T main-
tains a database of all calls made using this network for a pieriod of one year [23].
The network connects 250 million telephones from which madd of millions of calls
are made each day. Analyzing and visualizing this data iaraadfind fraudulent phone
calls is a serious undertaking. Developing visualizatmwig to filter out the important
information from such data sets is challenging for at leastrieasons. Firstly, the size
of the data set makes searching more difficult and time-caimgy Secondly, filtering
the data based on importance or interest measures is aduoradtthe user. Different
users will filter the data based on different criteria.

In fact, one could view the new field of visual analytics frorpuae visual filtering
point of view [59]. The goal of visual analytics tools is topseate interesting data
from non-interesting data. Visual analytics tools allowenssto interactively search data
sources for features of interest, special patterns, ansuahactivity.

In scientific visualization, such filtering is often calleglature extraction [45] or
feature detection [22] (challenge number 11) and time-dépet feature extraction is
referred to as feature tracking. A typical example of featxtraction can be found
in flow visualization. Various algorithms have been devebbjo extract vortices from
vector fields either automatically or semi-automaticaligother approach is to inter-
actively extract features of interest using a combinatiomoltiple, linked information
and scientific visualization views [10] (Figure 1.9).

Regardless of the terminology used, software that helpsetiponer search and
find those subsets of the data deemed most interesting wiitl bery high demand in
the future. And visualization software is particularlytegi for this challenge because
it takes advantage of the high bandwidth channel betweenvisual and cognitive
systems.

Challenge #11: Cross-Platform Visualization.This problem is identified multiple
times previously [19, 22] and described in detail in Thomaa @ook [59] in the sec-
tion on “Collaborative Visual Analytics”. Two users rardiave the exact same set of
hardware. If we consider both the hardware and the softwaméigurations of a user,
the probability of an exact match is highly unlikely. For adptime, advances in display
technology were fairly slow. However, flat panel displayneclogy has made rapid ad-
vances in recent years. The cost of display technology sasfallen, making display
technology virtually ubiquitous in many countries. If wensider the range of possible
hardware configurations: from desktops and laptop computéh various combina-
tions of graphic cards and monitors, to handheld devicesd#l phones, PDAs, and

2 Available at:
http://ww. si ms. berkel y. edu/ how rnuch-i nf o
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other electronic hand-held devices, to large displaysgudigital projectors, and we
throw in various operating systems and memory resourcesdoh of those devices
then we are left with a vast array of possible hardware antvaoé combinations. And
the range of different possibilities is expanding, yet easér will demand advanced
visualization functionality. Consequently, visualizatitools that are able to cross inter-
platform bridges will remain a serious challenge in the fefust from a technical point
of view (and also from a human-centered point of view as noeseti in the challenge
concerning collaborative visualization).

Currently we are witnessing an explosion in research liteesrelated to the topic of
programmable graphic card capabilities [11]. Many visatlon algorithms have been
written that are tied to an individual graphics card and #te$programming language
capabilities that it supports. We see a rather negativecaspthis trend and we are not
in full support of this as a research direction. In fact, thésd works against the goal of
cross-platform visualization. Have you ever asked a giangr, e.g., an engineer, what
kind of graphics card their workstation has? Tying an appiin to a specific graphics
card has some negative implications: one of which is a shemease in cost. Imagine
requiring specific hardware and application software todid together. That would
imply that a user would have to buy a special workstationfiusbne visualization ap-
plication. The scenario quickly becomes infeasible if Wweasser to buy a separate set
of hardware for each software application. It is rather tite ¢f the operating system
software to be tied to the hardware and not necessarily thiecapion software. The ex-
ception to this is when cross-platform standards, like @ierare introduced—another
future research challenge found on our list.

1.2.3 Financial Challenges

Here we separate out literature on the topic of financiallehgks facing visualization
researchers. Seldom are financial challenges addressitypfi related literature. Fi-
nancial challenges certainly abound however. This is ealhetrue when one equates
investments of time with money—something reasonable gimeeis costly. Note that
this group of related work and challenges could also be meditated under the theme
of transforming research into practice.

Challenge #12: Evaluating Effectiveness and Utility in Pratice. Also identified as
a future problem by Chen [5] (see unsolved problem numben8ifisic quality mea-
sures), human-centered evaluation of visualization softws a common and old theme.
Evaluation of visualization tools from an economic stanidpis a relatively new topic.
Nonetheless it is very important. Are all research dirextiof equal worth? Proba-
bly not. Can all research directions be pursued? Againjghisost unlikely. Certainly,
problems that are considered by many to be solved, like veltendering of medical
data [40], deserve less attention than unsolved problerasal¥d consider the problem
of 2D flow visualization, both steady and unsteady, to beesb[65]. How do we as
researchers decide where to invest our time and money?

Jarke van Wijk presents, to our knowledge, the first atterhpssessing the value
of visualization from a practical and economic standpd@®]] A model is presented
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Fig. 1.10.A simple model to assess the value of a visualization [66}= data,V = visualiza-
tion, I = image,P = perception K = knowledge,S = specification . = exploration.Image
courtesy of Jarke J. van Wijk.

that summarizes the requirements and processes assowitttarieating and evaluat-
ing visualization software (Figure 1.10). Several costdexare identified. From an
economic point of view, costs include:

— An initial development cost: This includes one or more safsvengineers and may
include the acquisition of new hardware.

— An initial cost per user: The user must learn how to generatiswalization result
using the developed software. In the CFD community, thi€@se may take weeks,
even months since simulation result may take a long time topee and CFD soft-
ware can be complex and feature-rich.

— Costs per session/use: This includes the time it takes #redagenerate the required
visualization from a given algorithm or method each time g#.u

— The cost of cognition: This is the time the user needs to wtded and explore
the visualization result and thus gaining knowledge orghsinto the underlying
phenomenon.

The costs identified in this list must be multiplied by the temof developers and
users respectively. In short, the cost of development aedisiexpensive. The take
away? Careful consideration is required if we would likerteeist our time and money
properly.

Can visualization survive without customer demand? This araimportant ques-
tion raised by Bill Lorensen [40]. Lorensen argues that thezess of research in com-
puter graphics owes to the fact that there is a large custolemand—the computer
gaming industry. In order to succeed the visualization comity must establish bet-
ter contact with potential customers—a challenge disclissee previously. Part of this
must include the assessment of value. We must be able toswifeething of value to
potential practitioners. In order to do this, we need a wagdsess value of visual-
ization from an economic standpoint. This promises to remaagentral challenge for
visualization researchers for the foreseeable future.

Challenge #13: Introducing Standards and Benchmarks.Other areas of computer
science have developed standards and benchmarks. Datdizage standard normal
forms. Networking is full of standard protocols. Many stardisorting algorithms are

19
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used. Standards represent progress in the field and aretanptw future, widespread
use and success. Visualization lacks standards and berichr(taee also Thomas and
Cook [59]) This encompasses several different aspects:

— Standard Data File FormatsThe field of visualization is lacking standard data file
formats. In CFD alone, several different data file formaistein medical visualiza-
tion, much work has been done in order to establish a starfflar@rmat [55]. In
information visualization, perhaps the closest thing ttaadard file format is XML.

— Standard VisualizationsThe closest thing we have now to standard visualizations
are pie charts, bar graphs, and 2D scatter plots. Howesse tare already quite old,
generally restricted to 2D, and are generally not intevacti

— Standard Interaction TechniqueScaling (or zooming), rotation, and translation (or
panning) are simple, standard interactions in a visuatimaapplication. However,
from a users perspective their use is certainly not standizadh application has its
own way of rotating an object.

— Standard InterfacesStandard interfaces, like OpenGL, are a great contributione
field. Continued development of such interfaces is very g in order to enable
cross-application interaction.

— Standard Benchmark®enchmark tests and data sets are used in industry before a
software release. Standard benchmarks, including stdritida sets, could also be
used to demonstrate and compare new algorithms to theiepesdors.

Lacking standard data file formats makes the problems ofrghdata and comparing
algorithms more difficult. It also generates more work tHaw/gg progress. One of the
major problems is finding the proper trade-off between ud#alsind compactness for
large data sets. Identifying standard, up-to-date vigattins which have proven to be
effective would help in comparing and evaluating novel gl&ations. Trying to iden-
tify both standard visualizations and standard interadiézhniques is difficult because
of the large variety that have been introduced by the reBeammmunity. Volume ren-
dering with typical transfer functions like maximum intégrojection is established
enough now that perhaps that could be considered a stangaraization. Panning,
rotation and zooming are standard interaction techniquégdch application has its
own set of additional interaction capabilities.

Standard hardware and software interfaces are the key tensyisiteroperabil-
ity. System interoperability is one of the grand challenglestified by Thomas and
Cook [59]. Teams will be deployed to develop disparate apfithns in disparate loca-
tions, yet interoperability standards must be developeiiffiérent groups are to work
together and benefit from one another’s implementation work

We consider establishing benchmarks mainly as a financédliectge because of the
financial and temporal investments that must be carriedauifccess. For example,
who is willing to pay for a web server that hosts a collectibtaoge data sets? Who is
willing to invest the time it takes to maintain a web site drathardware and web pages
that describe and distribute standard, benchmark data Ske&simportance of standard
benchmarks and data sets is now fully recognized by the hzsiian community with
the introduction of the IEEE InfoVis and IEEE Visualizatioontests. The motivation
behind these contests is to introduce community-wide albdity to challenging data
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sets that can be used to test any visualization techniquéhdfudevelopment of stan-
dards and benchmarks will certainly remain a financial emajé for a long time to
come because developing such standards requires a langrezstment of time and
labor.

Challenge #14: From Research Into Practice As mentioned previously, visualiza-
tion research is not for visualization’s sake itself just@search in general is not for
research’s sake. The long term goal of research is to makefal @nd important con-

tribution to society at large. Transforming research ideasprototypes into real appli-
cations will play a central role if we are to make a contribntto society as a whole.
This challenge also pervades the visualization commuhisydiscussed by Thomas
and Cook [59] (See the chapter entitled, “Moving Researtthinactice”.) and was the
topic of multiple, recent, discussion panels [51, 58]. Weesthis future challenge for
last because it encompasses so many other challengeddegoreviously:

— Interdisciplinary Communicatianturning research into practice will require collab-
oration with professionals from other disciplines (Settlo2.1).

— Evaluation of Usability Building software that supports a wider user audience{Sec
tion 1.2.1).

— Scalability and Large Data Managemeruilding software that is supports a wide
variety of real-world, multi-scale, possibly incomplete sparse data sets (Sec-
tion 1.2.2).

— Cross-Platform VisualizatiarDeploying applications that run on more than one soft-
ware and hardware platform (Section 1.2.2).

Another area key to the success of bringing research intdipesincludes educating
users. That means more pedagogic literature needs to bshpedhlBringing knowledge
to public both written and verbally will play a vital role.

We consider this mainly a financial challenge because thavletge necessary
for building an industry-grade software product is alreastgilable. The main ques-
tion is finding the required man-power, e.g., the time and egamecessary to build a
real-world software application. Considerable progress &lready been made in this
area. Many commercial applications have been built usiegMiK [52]. Advantage
Windows from GE and Vitrea from Vital Images are also exampiesuccessful visu-
alization applications used in industry [40]. Howeveruékzation applications are still
not generally known as success stories. The gap betweearchees and the needs of
application scientists is well known. Bringing more resggprototypes into the hands
of real users will remain a challenge for the foreseeableréut

1.3 Discussion, Comments on the Future, and Conclusions

We have presented a literature survey of selected futuréeagas and unsolved re-
search problems in visualization, with an emphasis on hucemtered aspects. We
note that our survey did not cover every single topic memtibim the literature, but
concentrated on those themes that were mentioned in neudtipirces and where some
(at least minimal) level of consensus was reached. Someafrtholved problems and
future challenges that we did not list specifically include:
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— Improving Visual Quality: Producing hardware displays which are indistinguish-
able from physical reality (see challenge number 1 on Vispadlity from Hib-
bard [19]).

— Integrating Virtual with Physical Reality: Solving this problem would involve
eliminating head mounted displays, special gloves or glasand embedding dis-
plays directly into the physical environment (see challengmber 2 on Visual Qual-
ity from Hibbard [19]).

— Integrating Problem Solving Environments: This is also sometimes referred to as
computational steering and means allowing the user tosotisely steer a computa-
tion in progress (see challenge number 8, “Integrated Broldolving Environments
(PSEs)” from Johnson [22]).

— Developing a Theory of Visualization:Some researchers feel that visualization as
a discipline does not contain enough fundamental theoryltiohthe premise itself
(see challenge number 15, “Theory of Visualization” frorhdgon [22]).

— A Priori Knowledge: Building visualization tools that take into account thesally
existing amount of application domain knowledge the usey have. (see challenge
number 3. “Prior Knowledge” of Chen [5]).

— Improving Aesthetics: Improving the resulting appearance of a visualization is an
important future problem identified by Chen [5] (see chalemumber 7. “Aesthet-
ics” [5]).

— Privacy and Security: Producing software which is capable of data anonymization,
audit trails, and access controls to protect privacy or igeinformation security
is a grand challenge identified by Thomas and Cook [59] (sespt@h 6, “Moving
Research into Practice”).

— Reducing Complexity: Although this problem is not stated and described expficitl
in the related literature, we feel that tools and technighes focus on reducing
complexity, especially from an implementation point ofwjevill be important and
pose a difficult challenge to future visualization researsh

Concerning the future of future challenges and unsolvedlpros in human-
centered visualization, an outlook is difficult to predieerhaps 20 years from now
the visualization community will again go through a simifdrase of evaluation, self-
criticism, and retrospection—seeking new directions. Wirahd new problems re-
searchers will face is intriguing. We can, with caution aathe margin of error, how-
ever, guess what problems here might be solved 20 years foam n

Solved Challenges in 20 Years.

— Interdisciplinary CollaborationWe think this is a solvable problem within (less than)
the next 20 years.

— Finding Effective Visual Metaphar$his problem also has the potential to be solved
before the next phase shift.

— Representing Data QualityVe are optimistic and believe this will fall under the list
of solved problems.

— Transforming Research Into PracticEhe knowledge necessary to solve this prob-
lem already exists.
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(Still) Unsolved Challenges in 20 Years.

— Evaluation of Usability Research in this area is still in the early stages. We think i
will be only partially solved in 20 years.

— Choosing Optimal Levels of Abstractiofhis problem is complex enough that we
think it will still require more work in 20 years.

— Collaborative VisualizationThe complexity here combined with the lack of progress
in the last five years makes us confident that this problemstifliremain unsolved
in 20 years.

— Effective InteractionWe expect effective interaction to be solved in the tradil
desktop environment, but not in environments beyond thktdpse.g., virtual reality
environments.

— Scalability and Large Data Managemerithis problem has been around for more
than 20 years. Maybe this problem will be even worse in 20sear

— High Data Dimensionality and Time-Dependent Dafhis one is difficult to predict.
We error on the side of caution and categorize it as unsolv@ iyears.

— Data Filtering: Again, the complexity here combined with the ever-expagdiata
set sizes leads us to believe that this problem will not beesbby then.

— Platform Independent Visualizatiowill remain unsolved.

— Evaluating Effectiveness and Utilityt is not clear that this problem can ever be
solved given its subjective nature.

— Introducing Standards and BenchmarWge predict that this will be a partially solved
problem in 20 years.

The list of solved problems is shorter than the list of unsdlproblems. However, the
list of unsolved problems contains partially solved chadles.

We recognize the subjective nature of the topic and realiae o such list will
appeal entirely to all readers. Hopefully our descriptioill provide readers with a
starting point and overview of both solved and unsolved jgmks in visualization. We
also aim at sparking thought provoking discussion. We titustreader will conclude
that many unsolved problems and thus much future reseanchims. Correspondence
is solicited. To contribute feedback to this survey of fetahallenges and unsolved
problems in visualization research, please contact R&drarameé.

3 The authors thank all those who have supported to this work including AVL
(www. avl . com) and the Austrian research program Kplusvwiw. kpl us. at ). The first
author may be contacted at: s. | ar anee@wansea. ac. uk.
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