
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

Computer Graphics Forum

                                         

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa24692

_____________________________________________________________

 
Paper:

Frits, H., Benjamin, V., Helwig, H., Robert, S. & Helmut, D. (2003).  The State of the Art in Flow Visualisation: Feature

Extraction and Tracking. Computer Graphics Forum, 22(4), 775-792.

http://dx.doi.org/10.1111/j.1467-8659.2003.00723.x

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

http://cronfa.swan.ac.uk/Record/cronfa24692
http://dx.doi.org/10.1111/j.1467-8659.2003.00723.x
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

Volume 22 (2003), Number 4 pp. 1–17

The State of the Art in Flow Visualisation:
Feature Extraction and Tracking

Frits H. Posta, Benjamin Vrolijka, Helwig Hauserb, Robert S. Larameeb and Helmut Doleischb

a Computer Graphics Group, Delft University of Technology, The Netherlands
b VRVis Research Center, Vienna, Austria

{F.H.Post,B.Vrolijk}@ewi.tudelft.nl, {Hauser,Laramee,Doleisch}@VRVis.at

Abstract
Flow visualisation is an attractive topic in data visualisation, offering great challenges for research. Very large
data sets must be processed, consisting of multivariate data at large numbers of grid points, often arranged in
many time steps. Recently, the steadily increasing performance of computers again has become a driving force
for new advances in flow visualisation, especially in techniques based on texturing, feature extraction, vector field
clustering, and topology extraction.
In this article we present the state of the art in feature-based flow visualisation techniques. We will present numer-
ous feature extraction techniques, categorised according to the type of feature. Next, feature tracking and event
detection algorithms are discussed, for studying the evolution of features in time-dependent data sets. Finally,
various visualisation techniques are demonstrated.

Categories and Subject Descriptors (according to ACM CCS): I.3 [Computer Graphics]: visualisation, flow visuali-
sation, feature-based flow visualisation

1. Introduction

Flow visualisation is one of the traditional subfields of data
visualisation, covering a rich variety of applications, ranging
from automotive, aerospace, and turbomachinery design, to
weather simulation and meteorology, climate modelling, and
medical applications, with many different research and engi-
neering goals and user types. Consequently, the spectrum of
flow visualisation techniques is very rich, spanning multiple
dimensions of technical aspects, such as 2D and 3D tech-
niques, and techniques for steady and time-dependent data.

In this article we present the state of the art in flow visuali-
sation techniques. These techniques can be categorised into
four groups:

• Direct flow visualisation: The data is directly visualised,
without much pre-processing, for example by color-
coding or drawing arrows. These techniques are also
called global techniques, as they are usually applied to
an entire domain, or a large part of it.

• Texture-based flow visualisation: Texture-based tech-
niques apply the directional structure of a flow field to ran-
dom textures. These are mainly used for visualising flow

in two dimensions or on surfaces. The results are compa-
rable to the experimental techniques like windtunnel sur-
face oil flows. This group has some characteristics of the
previous and the next approaches.

• Geometric flow visualisation: Geometric objects are first
extracted from the data, and used for visualisation. Ex-
amples are streamlines, stream surfaces, time surfaces, or
flow volumes. These geometric objects are directly re-
lated to the data. The results of these techniques can be
compared to experimental results such as dye advection
or smoke injection into the flow.

• Feature-based flow visualisation: The last approach lifts
the visualisation to a higher level of abstraction, by ex-
tracting physically meaningful patterns from the data sets.
The visualisation shows only those parts that are of in-
terest to the researcher, the features. Both the definition
of what is interesting, and the way these features are ex-
tracted and visualised are dependent on the data set, the
application, and the research problem.

The approaches are not entirely distinct. For example, the
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second and third approaches can be combined into dense
flow visualisation.

In this article, we survey the last approach, feature-based
flow visualisation.

Features are phenomena, structures or objects in a data set,
that are of interest for a certain research or engineering prob-
lem. Examples of features in flow data sets are shock waves,
vortices, boundary layers, recirculation zones, and attach-
ment and separation lines.

There are a number of factors motivating the feature-based
approach to visualisation. First, by extracting only the in-
teresting parts, and ignoring the rest, we can increase the
information content. Furthermore, by abstracting from the
original data, the researcher is able to focus more on the rel-
evant physical phenomena, which is better related to his con-
ceptual framework. A large data reduction can be achieved
(in the order of 1000 times), but because the reduction is
content-based, no (important) information is lost. So far, this
is one of the few approaches that is truly scalable to very
large time-dependent data sets. Finally, the objects or phe-
nomena extracted can be simplified and described quantita-
tively. This makes the visualisation easy, using simple ge-
ometries or parametric icons. Also, quantification facilitates
further research, comparison and time tracking.

The paper is structured as follows: in the next section, we
will discuss some fundamentals for flow visualisation, which
are necessary for understanding the rest of the paper. In Sec-
tion 3 an introduction to feature extraction is given, with a
categorisation of the general approaches to feature extrac-
tion. In Section 4 feature extraction techniques are discussed,
for several different types of features. Section 5 discusses
feature tracking and event detection, that is, the study of
the evolution of features in time-dependent data sets. Sec-
tion 6 presents different iconic representations of features
and the visualisation of features and events. Finally, in Sec-
tion 7 some conclusions and further prospects are presented.

2. Flow visualisation fundamentals

For a proper understanding of the rest of the article, it is
necessary to discuss a number of fundamentals for flow vi-
sualisation, mainly from vector algebra.

2.1. Gradients

In three dimensions, a scalar p has three partial derivatives.
The partial derivative of p with respect to x is ∂p

∂x . The gra-
dient of a scalar field is the vector of its partial derivatives:

gradp = ∇p = [
∂p
∂x

∂p
∂y

∂p
∂z

]. (1)

The gradient of a vector field v is found by applying the gra-
dient operator to each of the components [u v w] of the vec-
tor field. This results in a 3× 3 matrix, called the Jacobian

of the vector field, or the matrix of its first derivatives:

∇v =







∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z






(2)

This matrix can be used to compute a number of derived
fields, such as the divergence, curl, helicity, acceleration, and
curvature. The curl of a velocity field is called the vorticity.
This derived vector field indicates how much the flow lo-
cally rotates and the axis of rotation. These quantities are all
used in different feature extraction techniques, which will
be discussed later. The exact definitions can be found else-
where 19, 39. For the understanding of this article, it is suf-
ficient to know that the Jacobian, or gradient matrix, is an
important quantity in flow visualisation in general and in fea-
ture extraction in particular.

2.2. Eigenanalysis

Another indispensable mathematical technique is eigenanal-
ysis. An eigenvalue of a 3 × 3 matrix M is a (possibly
complex) scalar λ which solves the eigenvector equation:
Mx = λx. The corresponding non-zero vector x is called an
eigenvector of M. The eigenvectors and eigenvalues of a Ja-
cobian matrix indicate the direction of tangent curves of the
flow, which are used, for example to determine the vector
field topology, see Section 3.2.

2.3. Attribute calculation

As a part of the feature extraction process, characteristic at-
tributes of the features have to be calculated. One concep-
tually simple and space efficient technique, is the computa-
tion of an ellipsoid fitting. An ellipsoid can give a first-order
estimation of the orientation of an object. The axes can be
scaled to give an exact representation of the size or volume
of the object. Furthermore, an ellipsoid is a very simple icon
to visualise. The computation of an ellipsoid fitting involves
eigenanalysis of the covariance matrix of the object’s grid
points. For a detailed description, see Haber and McNabb 8,
Silver et al. 50 and De Leeuw 19.

Another technique that can be used for attribute calculation
of features is center line extraction. As an example, a skele-
ton, or Medial Axis Transform, reduces an object to a single
center line, or graph, while preserving the original topology
of the object. Using this graph, an icon can be constructed
from cylinders and hemispheres, to construct an approxima-
tion of the original shape of the object 32. This is a useful
representation, especially when the topology is an important
characteristic of the features.

3. Feature extraction approaches

Feature-based flow visualisation is an approach for visual-
ising the flow data at a high level of abstraction. The flow
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data is described by features, which represent the interest-
ing objects or structures in the data. The original data set
is then no longer needed. Because often, only a small per-
centage of the data is of interest, and the features can be de-
scribed very compactly, an enormous data reduction can be
achieved. This makes it possible to visualise even very large
data sets interactively.

The first step in feature-based visualisation is feature extrac-
tion. The goal of feature extraction is determining, quantify-
ing and describing the features in a data set.

A feature can be loosely defined as any object, structure or
region that is of relevance to a particular research problem.
In each application, in each data set and for each researcher,
a different feature definition could be used. Common exam-
ples in fluid dynamics are vortices, shock waves, separation
and attachment lines, recirculation zones and boundary lay-
ers. In the next section a number of feature-specific detection
techniques will be discussed. Although most feature detec-
tion techniques are specific for a particular type of feature, in
general the techniques can be divided into three approaches:
based on image processing, on topological analysis, and on
physical characteristics.

3.1. Image Processing

Image processing techniques were originally developed for
analysis of 2D and 3D image data, usually represented as
scalar (greyscale) values on a regular rectangular grid. The
problem of analysing a numerical data set, represented on a
grid, is similar to analysing an image data set. Therefore, ba-
sic image processing techniques can be used for feature ex-
traction from scientific data. A feature may be distinguished
by a typical range of data values, just as different tissue
types are segmented from medical images. Edges or bound-
aries of objects are found by detecting sharp changes in the
data values, marked by high gradient magnitudes. Thus, ba-
sic image segmentation techniques, such as thresholding, re-
gion growing, and edge detection can be used for feature
detection. Also, objects may be quantitatively described us-
ing techniques such as skeletonisation or principal compo-
nent analysis. However, a problem is, that in computational
fluid dynamics simulations, often grid types are used such
as structured curvilinear grids, or unstructured tetrahedral
grids. Many techniques from image processing cannot be
easily adapted for use with such grids. Furthermore, many
digital filtering techniques are defined only for scalar data.
Adaptation to vector fields is not always straightforward.

3.2. Vector Field Topology

A second approach to feature extraction is the topological
analysis of 2D linear vector fields, as introduced by Helman
and Hesselink 10, 11, which is based on detection and classi-
fication of critical points.

The critical points of a vector field are those points where

the vector magnitude is zero. The flow in the neighbourhood
of critical points is characterised by eigenanalysis of the ve-
locity gradient tensor, or Jacobian of the vector field. The
eigenvalues of the Jacobian can be used to classify the criti-
cal points as attracting or repelling node or focus, as saddle
point, or center. (See Figure 1.) The eigenvectors indicate the
directions in which the flow approaches or leaves the criti-
cal point. These directions can be used to compute tangent
curves of the flow near the critical points. Using this infor-
mation, a schematic visualisation of the vector field can be
generated. (See Figure 7.) Helman and Hesselink have also
extended their algorithm to 2D time-dependent and to 3D
flows.

Repelling  Focus
R1, R2 > 0
I1, I2 <> 0

Attracting  Focus
R1, R2 < 0
I1, I2 <> 0

Center
R1, R2 = 0
I1, I2 <> 0

Attracting Node
R1, R2 < 0
I1, I2 = 0

Repelling Node
R1, R2 > 0
I1, I2 = 0

Saddle Point
R1 * R2 < 0

I1, I2 = 0

Figure 1: Vector field topology: critical points classified by
the eigenvalues of the Jacobian 10.

Tricoche et al. recently presented a topology-based method
for visualising time-dependent 2D vector fields 53. They per-
form time tracking of critical points and closed streamlines
by temporal interpolation. They are able to find and charac-
terise topological events or structural changes (bifurcations),
such as the pairwise annihilation or creation of a saddle point
and an attracting or repelling node.

Scheuermann et al. presented an algorithm for visualising
nonlinear vector field topology 46, because other known al-
gorithms are all based on piecewise linear or bilinear inter-
polation, which destroys the topology in case of nonlinear
behaviour. Their algorithm makes use of Clifford algebra for
computing polynomial approximations in areas with nonlin-
ear local behaviour, especially higher-order singularities.

De Leeuw and Van Liere presented a technique for visual-
ising flow structures using multilevel flow topology 21. In
high-resolution data sets of turbulent flows, the huge num-
ber of critical points can easily clutter a flow topology im-
age. The algorithm presented attempts to solve this problem
by removing small-scale structures from the topology. This
is achieved by applying a pair distance filter which removes
pairs of critical points, that are near each other. This removes
small topological structures such as vortices, but does not af-
fect the global topological structure. The threshold distance,
which determines which critical points are removed, can be
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adapted, making it possible to visualise the structure at dif-
ferent levels of detail at different zoom levels.

Tricoche et al. also perform topology simplification in 2D
vector fields 52; they simplify not only the topology, but also
preserve the underlying vector field, thereby making it pos-
sible to use standard flow visualisation methods, such as
streamlines or LIC, after the simplification. The basic princi-
ple of removing pairs of critical points is similar to the tech-
nique of De Leeuw and Van Liere 21, but in this algorithm the
vector field surrounding the critical points is slightly modi-
fied, in such a way that both critical points disappear.

3.3. Physical characteristics

The third approach is feature extraction based on physical
characteristics. Often, features can be detected by charac-
teristic patterns in, or properties of, physical quantities, for
example by low pressure, high temperature, or swirling flow.
These properties often follow directly from the feature def-
initions used. Most of the feature extraction techniques dis-
cussed in Section 4 are based on this approach, sometimes in
combination with topological analysis or image processing
techniques.

3.4. Selective Visualisation

A generic approach to feature extraction is Selective Visu-
alisation, which is described by Van Walsum 55. The feature
extraction process is divided into four steps (see Figure 2).

Data
Generation

Selection Clustering
Attribute

Calculation
Iconic

Mapping
Display

Raw Data
Selected
Nodes

Regions of 
Interest

Attribute
Sets Icons

Selection
Expression

Connectivity
Criteria

Calculation
Method

Mapping
Function

Scientist's knowledge and
conceptual model

Figure 2: The feature extraction pipeline 36.

The first step is the selection step. In principle, any selection
technique can be used, that results in a binary segmentation
of the original data set. A very simple segmentation is ob-
tained by thresholding of the original or derived data values;
also, multiple thresholds can be combined. The data set re-
sulting from the selection step is a binary data set with the
same dimensions as the original data set. The binary val-
ues in this data set denote whether or not the corresponding
points in the original data set are selected. The next step in
the feature extraction process is the clustering step, in which
all points that have been selected are clustered into coher-
ent regions. In the next step, the attribute calculation step,
these regions are quantified. Attributes of the regions are cal-
culated, such as position, volume and orientation. We now

speak of objects, or features, with a number of attributes, in-
stead of clusters of points. Once we have determined these
quantified objects, we don’t need the original data anymore.
With this, we may accomplish a data reduction factor of
1000 or more. In the fourth and final step, iconic mapping,
the calculated attributes are mapped onto the parameters of
certain parametric icons, which are easy to visualise, such as
ellipsoids.

4. Feature extraction techniques

In this section, a number of feature extraction techniques will
be discussed that have been specifically designed for certain
types of features. These techniques are often based on physi-
cal or mathematical (topological) properties of the flow. Fea-
tures that often occur in flows are vortices, shock waves and
separation and attachment lines.

4.1. Vortex extraction

Features of great importance in flow data sets, both in theo-
retical and in practical research, are vortices. (See Figure 3.)
In some cases, vortices (turbulence) have to be impelled, for
example to stimulate mixing of fluids, or to reduce drag.
In other cases, vortices have to be prevented, for example
around aircraft, where they can reduce lift.

Figure 3: A vortex in water. WL | Delft Hydraulics.

There are many different definitions of vortices and like-
wise many different vortex detection algorithms. A distinc-
tion can be made in algorithms for finding vortex regions and
algorithms that only find the vortex cores.

Other overviews of algorithms are given by Roth and Peik-
ert 40 and by Banks and Singer 2.

There are a number of algorithms for finding regions with
vortices:

• One idea is to find regions with a high vorticity magni-
tude. Vorticity is the curl of the velocity, that is,∇×v, and
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represents the local flow rotation, both in speed and direc-
tion. However, although a vortex may have a high vorticity
magnitude, the converse is not always true 59. Villasenor
and Vincent present an algorithm for constructing vortex
tubes using this idea 54. They compute the average length
of all vorticity vectors contained in small-radius cylinders,
and use the cylinder with the maximum average for con-
structing the vortex tubes.

• Another idea is to make use of helicity instead of vortic-
ity 22, 58. The helicity of a flow is the projection of the vor-
ticity onto the velocity, that is (∇× v) · v. This way, the
component of the vorticity perpendicular to the velocity is
eliminated.

• Because swirling flow often swirls around areas of low
pressure, this is another criterion that can be used to locate
vortex cores 37.

• Jeong and Hussain define a vortex as a region where two
eigenvalues of the symmetric matrix S2 +Ω2 are negative,
where S and Ω are the symmetric and antisymmetric parts
of the Jacobian of the vector field, respectively 12: S =
1
2 (V +V T ), and Ω = 1

2 (V −V T ). This method is known
as the λ2 method.

The above methods may all work in certain simple flow data
sets, but they do not hold, for example, in turbomachinery
flows, which can contain strongly curved vortices 40.

There are also some algorithms specifically for finding vor-
tex core lines:

• Banks and Singer use streamlines of the vorticity field,
with a correction to the pressure minimum in the plane
perpendicular to the vortex core 2.

• Roth and Peikert suggest that a vortex core line can be
found where vorticity is parallel to velocity 40. This some-
times results in coherent structures, but in most data sets
it does not give the expected features.

• In the same article, Roth and Peikert suggest that, in linear
fields, the vortex core line is located where the Jacobian
has one real-valued eigenvector, and this eigenvector is
parallel to the flow 40. However, in their own application
of turbomachinery flows, the assumption of a linear flow
is too simple. The same algorithm is presented by Sujudi
and Haimes 51.

• Recently, Jiang et al. presented a new algorithm for vortex
core region detection 13, which is based on ideas derived
from combinatorial topology. The algorithm determines
for each cell if it belongs to the vortex core, by examining
its neighbouring vectors.

A few of these algorithms will be reviewed in more detail.

Sujudi and Haimes developed an algorithm for finding the
centre of swirling flow in 3D vector fields and implemented
this algorithm in pV3 51. Although pV3 can use many types
of grids, the algorithm has been implemented for tetrahedral
cells. When using data sets with other types of cells, these
first have to be decomposed into tetrahedral cells. This is

done for efficiency, because linear interpolation for the ve-
locity can be used in the case of tetrahedral cells. The algo-
rithm is based on critical-point theory and uses the eigenval-
ues and eigenvectors of the velocity gradient tensor or rate-
of-deformation tensor. The algorithm works on each point
in the data set separately, making it very suitable for par-
allel processing. The algorithm searches for points where
the velocity gradient tensor has one real and two complex-
conjugate eigenvalues and the velocity is in the direction of
the eigenvector, corresponding to the real eigenvalue. The
algorithm results in large coherent structures when a strong
swirling flow is present, and the grid cells are not too large.
The algorithm is sensitive to the strength of the swirling flow,
resulting in incoherent structures or even no structures at all
in weak swirling flows. Also, if the grid cells are large, or
irregularly sized, the algorithm has difficulties finding co-
herent structures or any structures at all.

Kenwright and Haimes also studied the eigenvector method
and concluded that it has proven to be effective in many ap-
plications 16. The drawbacks of the algorithm are that it does
not produce contiguous lines. Line segments are drawn for
each tetrahedral element, but they are not necessarily contin-
uous across element boundaries. Furthermore, when the el-
ements are not tetrahedra, they have to be decomposed into
tetrahedra first, introducing a piecewise linear approxima-
tion for a nonlinear function. Another problem is that flow
features are found that are not vortices. Instead, swirling
flow is detected, of which vortices are an example. How-
ever, swirling flow also occurs in the formation of boundary
layers. Finally, the eigenvector method is sensitive to other
nonlocal vector features. For example, if two axes of swirl
exist, the algorithm will indicate a rotation that is a combi-
nation of the two swirl directions. The eigenvector method
has successfully been integrated into a finite element solver
for guiding mesh refinement around the vortex core 4.

Roth and Peikert have developed a method for finding core
lines using higher-order derivatives, making it possible to
find strongly curved or bent vortices 41. They observe that
the eigenvector method is equivalent to finding points where
the acceleration a is parallel to the velocity v, or equivalently,
to finding points of zero curvature. The acceleration a is de-
fined as:

a =
Dv
Dt

, (3)

where the notation D f
Dt is used for the derivative following a

particle, which is defined, in a steady flow, as ∇ f ·v. There-
fore:

a =
Dv
Dt

= ∇v ·v = J ·v, (4)

with J the Jacobian of v, that is the matrix of its first deriva-
tives.

Roth and Peikert improve the algorithm by defining vortex
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cores as points where

b =
Da
Dt

=
D2v
Dt2 (5)

is parallel to v, that is, points of zero torsion. The method
involves computing a higher-order derivative, introducing
problems with accuracy, but it performs very well. In com-
parison with the eigenvector method, this algorithm finds
strongly curved vortices much more accurately. Roth and
Peikert also introduce two attributes for the core lines: the
strength of rotation and the quality of the solution. This
makes it possible for the user to impose a threshold on the
vortices, to eliminate weak or short vortices. Peikert and
Roth have also introduced a new operator, the “parallel vec-
tors” operator 28, with which they are able to mathematically
describe a number of previously developed methods under
one common denominator. Using this operator they can de-
scribe methods based on zero curvature, ridge and valley
lines, extremum lines and more.

Jiang et al. recently presented a new approach for detecting
vortex core regions 13. The algorithm is based on an idea
which has been derived from Sperner’s lemma in combi-
natorial topology, which states that it is possible to deduce
the properties of a triangulation, based on the information
given at the boundary vertices. The algorithm uses this fact
to classify points as belonging to a vortex core, based on
the vector orientation at the neighbouring points. In 2D, the
algorithm is very simple and straightforward, and has only
linear complexity. In 3D, the algorithm is somewhat more
difficult, because it first involves computing the vortex core
direction, and next, the 2D algorithm is applied to the ve-
locity vectors projected onto the plane perpendicular to the
vortex core direction. Still, also the 3D algorithm has only
linear complexity.

The above described methods all use a local criterion for de-
termining on a point-to-point basis where the vortices are
located. The next algorithms use global, geometric criteria
for determining the location of the vortices. This is a conse-
quence of using another vortex definition.

Sadarjoen and Post present two geometric methods for ex-
tracting vortices in 2D fields 42. The first is the curvature
centre method. For each sample point, the algorithm com-
putes the curvature centre. In the case of vortices, this would
result in a high density of centre points near the centre of the
vortex. The method works but has the same limitations as
traditional point-based methods, with some false and some
missing centres. The second method is the winding-angle
method, which has been inspired by the work of Portela 29.
The method detects vortices by selecting and clustering
looping streamlines. The winding angle αw of a streamline
is defined as the sum of the angles between the consecu-
tive streamline segments. Streamlines are selected that have
made at least one complete rotation, that is, αw ≥ 2π. A sec-
ond criterion checks that the distance between the starting
and ending points is relatively small. The selected stream-

lines are used for vortex attribute calculation. The geometric
mean is computed of all points of all streamlines belonging
to the same vortex. An ellipse fitting is computed for each
vortex, resulting in an approximate size and orientation for
each vortex. Furthermore, the angular velocity and rotational
direction can be computed. All these attributes can be used
for visualising the vortices. (See Figure 4.)

Figure 4: Flow in the Atlantic Ocean, with streamlines and
ellipses indicating vortices. Blue and red ellipses indicate
vortices rotating clockwise and counterclockwise, respec-
tively 43.

4.2. Shock wave extraction

Shock waves are also important features in flow data sets,
and can occur, for example, in flows around aircraft. (See
Figure 5.) Shock waves can increase drag and cause struc-
tural failure, and therefore, are important phenomena for
study. Shock waves are characterised by discontinuities in
physical flow quantities such as pressure, density and veloc-
ity. Therefore, shock detection is comparable to edge detec-
tion, and similar principles could be used as in image pro-
cessing. However, in numerical simulations, the discontinu-
ities are often smeared over several grid points, due to the
limited resolution of the grid.

Ma et al. have investigated a number of techniques for de-
tecting and for visualising shock waves 24. Detecting shocks
in two dimensions has been extensively investigated 18, 25, 38.
However, these techniques are in general not applicable to
shocks in three dimensions. They also describe a number
of approaches for visualising shock waves. The approach of
Haimes and Darmofal 9 is to create isosurfaces of the Mach
number normal to the shock, using a combined density gra-
dient/Mach number computation. Van Rosendale presents
a two-dimensional shock-fitting algorithm for unstructured
grids 38. The idea relies on the comparison of density gradi-
ents between grid nodes.

Ma et al. compare a number of algorithms for shock extrac-
tion and also present their own technique 24:
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Figure 5: A shockwave around an aircraft. (H.-G. Pagen-
darm)

• The first idea is to create an isosurface of the points where
the Mach number is one. However, this results in the sonic
surface, which, in general, does not represent a shock.

• Theoretically, a better idea is to create an isosurface of the
points where the normal Mach number is equal to one.
However, if the surface is unknown, it is impossible to
compute the Mach number, normal to the surface.

• This problem can be resolved, by approximating the
shock normal with the density gradient, since a shock is
also associated with a large gradient of the density. There-
fore, ∇ρ is (roughly) normal to the shock surface. Thus,
the algorithm computes the Mach number in the direc-
tion of, or projected onto, the density gradient. The shock
surface is constructed from the points where this Mach
number equals one. This algorithm is also used by Lovely
and Haimes 23, but they define the shock region as the re-
gion within the isosurface of Mach number one, and use
filtering techniques to reconstruct a sharp surface.

• Pagendarm presented an algorithm that searches for max-
ima in the density gradient 26. The first and second deriva-
tives of the density in the direction of the velocity are
computed. Next, zero-level isosurfaces are constructed of
the second derivative, to find the extrema in the density
gradient. Finally, the first derivative is used to select only
the maxima, which correspond to shock waves, and dis-
card the minima, which represent expansion waves. This
can be done by selecting only positive values of the first
derivative. However, the second derivative can also be
zero in smooth regions with few disturbances. In these re-
gions the first derivative will be small, therefore, these re-
gions can be excluded by discarding all points where the
first derivative is below a certain threshold ε. Of course,
this poses the problem of finding the correct ε. When the
value is too small, erroneous shocks will be found, but if
the value is too large, parts of the shocks could disappear.
This algorithm can also be used for finding discontinu-
ities in other types of scalar fields, and thus for finding
other types of features.

• Ma et al. present an adapted version of this algorithm,
which uses the normal Mach number to do the selection
in the third step 24. Again, in the first and second step,

the zero-level isosurfaces of the second directional deriva-
tive of the density are constructed. But for discriminat-
ing shock waves from expansion waves and smooth re-
gions, the normal Mach number is used. More precisely,
those points are selected where the normal Mach number
is close to one. Here also, a suitable neighbourhood of one
has to be chosen.

4.3. Separation and attachment line extraction

Other features in flow data sets are separation and attach-
ment lines on the boundaries of bodies in the flow. These
are the lines where the flow abruptly moves away from or
returns to the surface of the body. (See Figure 6.) These are
important features in aerodynamic design because they can
cause increased drag and reduced lift 39, and therefore, their
occurrence should be prevented or at least minimised.

Figure 6: Separation and attachment lines on a delta wing
(D. Kenwright).

Helman and Hesselink use vector field topology to visualise
flow fields 11. In addition to the critical points, the attach-
ment and detachment nodes on the surfaces of bodies deter-
mine the topology of the flow. (See Figure 7.) The attach-
ment and detachment nodes are not characterised by a zero
velocity, because they only occur in flows with a no-slip con-
dition, that is, all points on the boundaries of objects are con-
strained to have zero velocity. Instead, they are characterised
by a zero tangential velocity. Therefore, streamlines imping-
ing on the surface terminate at the attachment or detachment
node, instead of being deflected along the surface.

Globus et al. designed and implemented a system for
analysing and visualising the topology of a flow field with
icons for the critical points and integral curves starting close
to the critical points 6. The system is also able to visualise
attachment and detachment surfaces and vortex cores.

Pagendarm and Walter 27 and De Leeuw et al. 20 used skin-
friction lines for visualising attachment and detachment lines
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Figure 7: Vector field topology: a topological skeleton of a
flow around a cylinder 11.

in the blunt fin data set. For visualising these lines, the wall
shear τw is computed, which is the flow velocity gradient
perpendicular to the wall. Next, a standard streamline al-
gorithm is used to integrate the skin-friction lines from the
shear vector field. These skin-friction lines show the loca-
tion of separation and attachment of the flow at the wall.
(See Figure 8.)

Figure 8: Skin-friction on a blunt fin from a flow simulation
at Mach 5, visualised with spot noise 20.

Kenwright gives an overview of existing techniques for vi-
sualising separation and attachment lines and presents a
new automatic feature detection technique for locating these
lines, based on concepts from 2D phase plane analysis 15.
Some common approaches are:

• Particle seeding and computation of integral curves, such
as streamlines and streaklines, which are constrained to
the surface of the body. These curves merge along separa-
tion lines.

• Skin-friction lines can be used, analogous to surface oil
flow techniques from wind tunnel experiments 27.

• Texture synthesis techniques can be used to create contin-
uous flow patterns rather than discrete lines 20.

• Helman and Hesselink can generate separation and attach-
ment lines from their vector field topology 11. These lines
are generated by integrating curves from the saddle and
node type critical points on the surface in the direction of

the real eigenvector. However, only closed separations are
found, that is, curves that start and end at critical points.

Open separation does not require separation lines to start
or end at critical points, and is therefore not detected using
flow topology. Open separation has been observed in exper-
iments, but had not previously been studied in flow simula-
tions. However, the algorithm presented by Kenwright does
detect both closed and open separation lines. The theory for
this algorithm is based on concepts from linear phase plane
analysis. It is assumed that the computational domain on the
surface can be subdivided into triangles and the vector com-
ponents are given at the vertices. The algorithm is executed
for each triangle, making it suitable for parallelisation. For
each triangle, a linear vector field is constructed satisfying
the vectors at the vertices. If the determinant of the Jacobian
matrix is nonzero, the algorithm continues by calculating the
eigenvalues and eigenvectors of the Jacobian. Every triangle
has a critical point somewhere in its vector field. The linear
vector field is translated to this critical point and the coordi-
nate system is changed so that the eigenvectors are orthogo-
nal. This (x,y) plane is also referred to as the Poincaré phase
plane. (See Figure 9.) By computing tangent curves in the
phase plane, we obtain the phase portrait of the system. For
a saddle, the tangent curves or streamlines converge along
the x and y axes. For a repelling node, they converge along
the y axis and for an attracting node, they converge along the
x axis. If the phase portrait is a saddle or a repelling node, the
intersection of the y axis with the triangle is computed. If it
intersects, the line segment will form part of an attachment
line. If the phase portrait is a saddle or an attracting node,
the intersection of the x axis with the triangle is computed,
and if it does intersect, the line segment will form part of a
separation line.

A problem with this algorithm is that disjointed line seg-
ments are computed instead of continuous attachment and
separation lines. Other problems occur when the flow sepa-
ration or attachment is relatively weak, or when the assump-
tion of locally linear flow is not correct.

Kenwright et al. present two algorithms for detecting sep-
aration and attachment lines 17. The first is the algorithm
discussed above, the second is the parallel vector algorithm.
Both algorithms use eigenvector analysis of the velocity gra-
dient tensor. However, the first is element-based and results
in disjointed line segments, while the second is point-based
and will result in continuous lines.

In the parallel vector algorithm, points are located where one
of the eigenvectors ei of the gradient ∇v is parallel to the
vector field v, that is, points where the streamline curvature
is zero, or in formula:

ei ×v = 0. (6)

The velocity vectors and the eigenvectors can be determined
at the vertices of the grid and interpolated within the ele-
ments. At the vertices, ei × v is calculated for both eigen-

c© The Eurographics Association and Blackwell Publishers 2003.



Post, Vrolijk, Hauser, Laramee, Doleisch / The State of the Art in Flow Visualisation:Feature Extraction and Tracking

Figure 9: Three phase portraits, for a saddle, repelling node and attracting node. The intersections of the triangles with the
axes contribute line segments to attachment or separation lines 15.

vectors, but only if both eigenvectors are real, that is, the
classification of ∇v at the vertex is either a saddle or a node.
If the cross product ei ×v changes sign across an edge, that
means an attachment or separation line intersects the edge.
The intersection point can then be found by interpolation
along the edge. The attachment and separation lines can be
constructed by connecting the intersection points in each el-
ement. The distinction between attachment and separation
can be made easily, because attachment will occur where v
is parallel to the smallest ei and separation where v is par-
allel to the largest ei. Another set of lines is detected with
this algorithm, the inflection lines, where one of the eigen-
vectors is locally parallel to the velocity vector, but the line
itself is not an asymptote of neighbouring streamlines. (See
Figure 10.) These inflection lines can easily be filtered out
by checking if:

∇(ei ×v) ·v = 0. (7)

This will not be true for inflection lines.

Figure 10: The vector field in the left figure contains a sepa-
ration line; the field in the right figure contains an inflection
line 17.

Both algorithms discussed by Kenwright et al. correctly
identify many separation and attachment lines, but may fail
in identifying curved separation lines 17. The parallel vector
algorithm will result in continuous lines, whereas the phase
plane algorithm results in discontinuous line segments. Both
algorithms do detect open separation lines, which do not
start or end at critical points.

5. Feature tracking and event detection

In time-dependent data sets, features are objects that evolve
in time. Determining the correspondence between features
in successive time steps, that actually represent the same ob-
ject at different times, is called the correspondence prob-
lem. Feature tracking is involved with solving this corre-
spondence problem. The goal of feature tracking is to be able
to describe the evolution of features through time. During
the evolution, certain events can occur, such as the interac-
tion of two or more features, or significant shape changes
of features. Event detection is the process of detecting such
events, in order to describe the evolution of the features even
more accurately.

There are a number of approaches to solving the correspon-
dence problem. Features can be extracted directly from the
spatio-temporal domain, thereby implicitly solving the cor-
respondence problem. Or, when feature extraction is done in
separate time steps, the correspondence can be solved based
on region correspondence, or based on attribute correspon-
dence.

5.1. Feature extraction from the spatio-temporal
domain

It is possible to perform feature extraction in 3D or 4D
space-time. Tricoche et al. present an algorithm for track-
ing of two-dimensional vector field topologies by interpo-
lation in 3D space-time 53. Bajaj et al. present a general
technique for hypervolume visualisation 1. They describe an
algorithm to visualise arbitrary n-dimensional scalar fields,
possibly with one or more time dimensions. Weigle and
Banks extract features by isosurfacing in four-dimensional
space-time 57. This is conceptually similar to finding over-
lapping features in successive time steps. See also the next
Section (5.2), about region correspondence. Bauer and Peik-
ert perform tracking of features in (4D or 5D) scale-space 3.
The idea is that the original data is smoothed using a Gaus-
sian kernel. The standard deviation σ of this kernel can be
any positive number, and is represented on the scale axis.
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Together with the normal 3D spatial axes, and possibly one
time axis, this scale axis spans the scale-space. In the arti-
cle, the focus is on line-type features, and specifically vortex
cores, but that is just their main application, and not inher-
ent to the algorithm. In 5D scale-space, it is possible to track
features not only along the time axis, but also along the scale
axis.

5.2. Region correspondence

Region correspondence involves comparing the regions of
interest obtained by feature extraction. Basically, the binary
images from successive time steps, containing the features
found in these time steps, are compared on a cell-to-cell ba-
sis. Correspondence can be found using a minimum distance
or a maximum cross-correlation criterion 7 or by minimising
an affine transformation matrix 14. It is also possible to ex-
tract isosurfaces from the four-dimensional time-dependent
data set 57, where time is the fourth dimension. The cor-
respondence is then implicitly determined by spatial over-
lap between successive time steps. This criterion is simple,
but not always correct, as objects can overlap but not corre-
spond, or correspond but not overlap. Silver and Wang ex-
plicitly use the criterion of spatial overlap instead of creat-
ing isosurfaces in four dimensions 48, 49. They prevent corre-
spondence by accidental overlap, by checking the volume of
the corresponding features and taking the best match. This is
also the idea of attribute correspondence, which is discussed
next. By using spatial overlap, certain events are implicitly
detected, such as a bifurcation when a feature in one time
step overlaps with two features in the next time step. Event
detection is also discussed more extensively later, in Sec-
tion 5.4.

5.3. Attribute correspondence

With attribute correspondence, the comparison of features
from successive frames is performed on the basis of the at-
tributes of the features, such as the position, size, volume,
and orientation. These attributes can be computed in the fea-
ture extraction phase, (see Section 3.4,) and can be used for
description and for visualisation of the features, and also for
feature tracking, as described here. The original grid data is
not needed anymore. Samtaney et al. use the attribute values
together with user-provided tolerances to create correspon-
dence criteria 45. For example, for position the following cri-
terion could be used:

dist(pos(Oi+1), pos(Oi)) ≤ Tdist , (8)

where pos(Oi) and pos(Oi+1) are the positions of the ob-
jects in time steps i and i + 1, respectively, and Tdist is the
user-provided tolerance. For scalar attributes, the difference
or the relative difference could be used. For example, to test
the relative difference of the volume, the following formula

can be used:

vol(Oi+1)− vol(Oi)

max(vol(Oi+1),vol(Oi))
≤ Tvol , (9)

where vol(Oi) and vol(Oi+1) are the volumes of the features
in the two time steps, and Tvol is the tolerance given by the
user. Events such as a bifurcation can also be tested. If a
feature in time step i splits into two features in time step
i+1, the total volume after the event has to be approximately
the same as before the event. The same formula can be used
as for the normal volume test, except that vol(Oi+1) in this
case equals the sum of the volumes of the separate features.
The position criterion in case of a bifurcation event could
involve the weighted average of the individual positions after
the event, where the positions are weighed with the volume:

dist(pos(Oi),
∑(vol(Oi+1) · pos(Oi+1))

∑(vol(Oi+1))
) ≤ Tdist , (10)

where Oi+1 now represents all objects in time step i + 1 that
are involved in the event.

Reinders et al. describe an algorithm for feature tracking,
that is based on prediction and verification 33, 34. This algo-
rithm is based on the assumption that features evolve pre-
dictably. That means, if a part of the evolution of a feature
(path) has been found, a prediction can be made into the next
time step (frame). Then, in that next time step, a feature is
sought, that corresponds to the prediction. (See Figure 11.) If
a feature is found that matches the prediction within certain
user-provided tolerances, the feature is added to the evolu-
tion and the search is continued to the next time step. When
no more features can be added to the path, a new path is
started. In this manner, all frames are searched for starting
points, both in forward and backward time direction, un-
til no more paths can be created. A path is started by try-
ing all possible combinations of features from two consecu-
tive frames and computing the prediction to the next frame.
Then, the prediction is compared to the candidate features
in that frame. If there is a match between the prediction and
the candidate, a path is started. To avoid any erroneous or
coincidental paths, there is a parameter for the minimal path
length, which is usually set to 4 or 5 frames. A candidate
feature can be defined in two ways. All features in the frame
can be used as candidates, or only unmatched features can be
used, that is, those features that have not yet been assigned to
any path. The first definition ensures that all possible combi-
nations are tested and that the best correspondence is chosen.
However, it could also result in features being added to more
than one path. This has to be resolved afterwards. Using the
second definition is much more efficient, because the more
paths are found, the fewer unmatched features require test-
ing. However, in this case, the results depend on the order in
which the features are tested. This problem can be solved by
starting the tracking process with strict tolerances and relax-
ing the tolerances in subsequent passes.

The prediction of a feature is constructed by linear extrapola-
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Figure 11: One step during feature tracking. A path is shown
with its prediction, and three candidates in the next time
step 34.

tion of the attributes of the features from the last two frames.
Other prediction schemes could also be used, for example, if
a priori knowledge of the flow is available.

The prediction is matched against real features using corre-
spondence criteria, similar to the ones used by Samtaney et
al. as discussed above 45. For each attribute of the features, a
correspondence function can be created, which returns a pos-
itive value for a correspondence within the given tolerance,
with a value of 1 for an exact match, and a negative value
for no correspondence. Each correspondence function is as-
signed a weight, besides the tolerance. Using this weight,
a weighted average is calculated of all correspondence func-
tions, resulting in the correspondence factor between the two
features. For this correspondence factor, the same applies as
for the separate correspondence functions, that is, a positive
value indicates a correspondence, with 1 indicating a perfect
match. A negative correspondence factor means no match.

5.4. Event detection

After feature tracking has been performed, event detection is
the next step. Events are the temporal counterparts of spatial
features in the evolution of features. For example, if the path
or evolution of a feature ends, it can be interesting to deter-
mine why that happens. It could be that the feature shrinks
and vanishes, or that the feature moves to the boundary of
the data set and disappears, or that the feature merges with
another feature and the two continue as one. Samtaney et
al. introduced the following events: continuation, creation,
dissipation, bifurcation, amalgamation 45. (See Figure 12.)
Reinders et al. developed a feature tracking system that is
able to detect these and other events 34. The terminology
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Figure 12: The different types of events as introduced by
Samtaney et al. 45.

they use is birth and death instead of creation and dissipa-
tion, and split and merge for bifurcation and amalgamation.
Furthermore, they can detect entry and exit events, where a
feature moves beyond the boundary of the data set. Finally,
for a specific, graph-type feature, the system is able to de-
tect changes in topology. It discriminates loop and junction
events. (See Figure 13.) Many other types of events can be

Figure 13: A loop event has occurred. In the top figure, the
feature contains a loop, in the bottom figure, the next frame,
the loop has disappeared 31.

envisioned, but for each type specific detection criteria have
to be provided.

For event detection, just as for feature tracking, only the fea-
ture attributes are used. Analogous to the correspondence
functions, for event detection, event functions are computed.
For example, to detect a death event, two conditions must
hold. First, the volume of the feature must decrease. And
second, the volume of the prediction must be very small or
negative. The event function for this event returns a posi-
tive value if the volume of the prediction is within the user-
provided tolerance, and is equal to one if the volume of the
prediction is negative. If the volume is not within the toler-
ance, the returned value will be negative. The event functions
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for the separate attributes are combined into a single factor,
which determines if the event is a death event. A birth event
can be detected by doing the same tests in the backward time
direction.

Similarly, the tests for split and merge events, and for entry
and exit events are each other’s reverse in time.

6. Visualisation of features and events

The final step in the feature extraction pipeline is, of course,
the visualisation of the features. A number of techniques will
be covered in this section. The most straightforward visual-
isation is to show the nodes in the data set, that have been
selected in the first step of the feature extraction pipeline.
This step results in a binary data set, with each value indi-
cating whether the corresponding node has been selected or
not. This binary data set can be visualised, for example, with
crosses at the selected nodes. In Figure 14, such a visualisa-
tion is shown. The visualisation is of a simulation of the flow
behind a backward-facing step. The feature that is visualised
here is a recirculation zone, behind the step. The points were
selected with the criterion: normalised helicity H > 0.6.

Figure 14: Visualisation of the selected points in the
backward-facing-step data set 44.

Another simple visualisation technique is to use isosurfaces.
This can be done on the binary data set, resulting from the se-
lection step, or, if the selection expression is a simple thresh-
old, directly on the original data set. This results in isosur-
faces enclosing the selected regions.

Also, other standard visualisation techniques can be used in
combination with the Boolean data set resulting from the se-
lection step. For example, in a 3D flow data set, using the
standard methods for seeding streamlines or streamtubes,
will not provide much information about the features and
will possibly result in visual clutter. However, if the selected
points are used to seed streamlines, both backward and for-
ward in time, this can provide useful information about the
features and their origination. See Figure 15, for an example,
where two streamtubes are shown in the backward-facing-
step data set. The radius of the tubes is inversely propor-

tional to the square root of the local velocity magnitude, and
the colour of the tubes corresponds to the pressure.

Figure 15: Visualisation with streamtubes of the recircula-
tion in the backward-facing-step data set 56.

If, instead of the separate selected points, the attributes are
used, that have been computed in the feature extraction pro-
cess, then parametric icons can be used for visualising the
features.

If an ellipsoid fitting of the selected clusters has been com-
puted, there are three attribute vectors: the centre position,
the axis lengths, and the axis orientations, which can be
mapped onto the parameters of an ellipsoid icon. This is a
simple icon, but very efficient and accurate. It can be repre-
sented with 9 floating-point values, and is therefore space-
efficient. Furthermore, it can be very quickly visualised, and
although it is simple, it gives an accurate indication of the
position and volume of a feature. In Figure 16, an ellipsoid

Figure 16: An ellipsoid fitting computed from the selected
points in the backward-facing-step data set 44.

fitting is computed from the selected points in Figure 14. In
Figure 17, vortices are shown from a CFD simulation with
turbulent vortex structures. The features have been selected
by a threshold on vorticity magnitude. They are being vi-
sualised with isosurfaces and ellipsoids. It is clearly visible
that, in this application, with the strongly curved features,
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Figure 17: Vortices in a data set with turbulent vortex struc-
tures, visualised using isosurfaces and ellipsoids 31.

the ellipsoids do not give a good indication of the shape of
the features. But, as mentioned above, the position and vol-
ume attributes of the ellipsoids will be accurate, and can be
used for feature tracking.

Figure 18: Vortices behind a tapered cylinder. The colour of
the ellipsoids represents the rotational direction 42.

In Figure 18, the flow past a tapered cylinder is shown.
Streamlines indicate the flow direction, and rotating stream-
lines indicate vortices. The vortices are selected by lo-
cating these rotating streamlines, using the winding-angle
method 42. Ellipses are used to visualise the vortices, with
the colour indicating the rotational direction. Green means
clockwise rotation, red means counterclockwise rotation.
The slice is coloured with λ2, which is the second-largest
eigenvalue of the tensor S2 + Ω2. (See Section 4.1.) The ta-
pered cylinder data set consists of a number of horizontal
slices, such as the one in Figure 18. Figure 19 shows an im-
age of the three-dimensional vortices, which have been con-
structed from the ellipses extracted in each slice. 35.

Figure 19: 3D Vortex structures behind a tapered cylin-
der 35. The number and curvature of the spokes indicate the
rotational speed and direction, respectively.

For the 3D vortices in Figure 17, an other type of icon has to
be used, if we want to visualise the strongly curved shape of
the features. Reinders et al. present the use of skeleton graph
descriptions for features, with which they can create icons
that accurately describe the topology of the features, and ap-
proximately describe the shape of the features 32. Compare
the use of ellipsoid icons with the use of skeleton icons in
Figure 20.

For visualising the results of feature tracking, it is of course
essential to visualise the time dimension. The most obvious
way is to animate the features, and to give the user the op-
portunity to browse through the time steps, both backward
and forward in time. Figure 21 shows the player from the
feature tracking program, developed by Reinders 34. On the
left of the figure, the graph viewer is shown, which gives
an abstract overview of the entire data set, with the time
steps on the horizontal axis, and the features represented by
nodes, on the vertical axis. The correspondences between
features from consecutive frames are represented by edges
in the graph, and therefore, the evolution of a feature in time,
is represented by a path in the graph. On the right of the fig-
ure, the feature viewer is shown, in which the feature icons
from the current frame are displayed. Also, a control panel
is visible, with which the animation can be started, paused,
and played forward and backward.

The graph viewer can also be used for visualising events 31.
For each event, a specific icon has been created, which is
mapped onto the nodes of the graph, so that the user can
quickly see which events occur where, and how often they
occur. In Figure 22, the graph viewer is shown, with a part
of the graph, containing a number of events. Each event is
clearly recognisable by its icon. In Figure 23, two frames
are shown, between which a split event has occurred. In
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Figure 20: Turbulent vortex structures represented by ellipsoid icons (left) and skeleton icons (right) 31.

Figure 23: A split event, before (left) and after (right). The features are visualised with both an ellipsoid and a skeleton icon 31.

Figure 21: Playing through the turbulent vortex data set.

both frames, the features are shown with both ellipsoid and
skeleton icons. The advantage of the use of skeleton icons in

Figure 22: Events are visualised in the graph viewer with
special, characteristic icons.

this application is obvious. Because the shape of the features
is much more accurately represented by the skeleton icons,
changes in shape and events such as these are much more
easily detected.
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7. Conclusions and future prospects

Feature extraction is selection and simplification based on
content: extracting relevant high-level information from a
data set, visualising the data from a problem-oriented point
of view. This leads to a large reduction of the data size, and
to fully or semi-automatic generation of simple and clear im-
ages. The techniques are generally very specific for a certain
type of problem (such as vortex detection), the relation with
the original raw data is indirect, and the reduction is achieved
at the cost of loss of other information, which is considered
not relevant for the purpose. But the techniques generalise
well to analysis of time-dependent data sets, leading to con-
densed episodic visual summaries.

A good possibility is combining feature extraction tech-
niques with direct or geometric techniques. For example, se-
lective visualisation has been used effectively with stream-
line generation (Figure 15), to place seed points in selected
areas, and show important structures with only a small num-
ber of streamlines. Combining simple advection-based tech-
niques with iconic feature visualisation can also clarify the
relation between the raw data and the derived information
used in feature detection (Figure 18). The work of visuali-
sation and simulation experts will become inseparable in the
future: the distinction between simulation and visualisation
will be increasingly blurred. A good example is the tracking
of phase fronts (separation between two different fluids in
multifluid flows) using level set methods 47, where the fea-
ture extraction is a part of both simulation and visualisation.

How about practical application? Feature-based techniques
have been incorporated in commercial visualisation sys-
tems †. The practical use of flow visualisation is most ef-
fective when visualisation experts closely cooperate with
fluid dynamics experts. This is especially true in feature-
based visualisation, where developing detection criteria is
closely connected to the physical phenomena studied. But
also other disciplines can contribute to this effort: mathe-
maticians, artists and designers, experimental scientists, im-
age processing specialists, and also perceptual and cognitive
scientists 30.

In feature-based visualisation, the following areas need ad-
ditional work:

• interactive techniques to support extraction and tracking
of features 5;

• detection and tracking of new types of features, such as re-
circulation zones, boundary layers, phase fronts, and mix-
ing zones, and detection of new types of events;

• comparative visualisation based on quantitative feature
comparison;

• topological analysis: extension to finding separation sur-
faces in 3D and to time-dependent flows;

† http://www.ensight.com/products/flow-
feature.html

• image processing: adaptation of image segmentation and
filtering techniques to irregular grids and use with vector
fields;

• online steering of large simulations based on feature ex-
traction and event detection.

Overlooking the whole landscape of flow visualisation tech-
niques, we can say that visualisation of 2D flows has reached
a high level of perfection, and for visualisation of 3D flows
a rich set of techniques is available. In the future, we will
concentrate on techniques that scale well with ever increas-
ing data set sizes, and therefore simplification, selection, and
abstraction techniques will get more attention.
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