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Abstract

Flow visualization research has made rapid advances imrgears, especially in
the area of topology-based flow visualization. The everaasing size of scientific
data sets favors algorithms that are capable of extractimmpitant subsets of the
data, leaving the scientist with a more manageable repas@amthat may be visu-
alized interactively. Extracting the topology of a flow a&yes the goal of obtaining
a compact representation of a vector or tensor field whileiganeously retaining

its most important features. We present the state of the &mpology-based flow vi-

sualization techniques. We outline numerous topologedadgorithms categorized
according to the type and dimensionality of data on whicly thyerate and accord-
ing to the goal-oriented nature of each method. Topologgkirg algorithms are

also discussed. The result serves as a useful introduatidroeerview to research
literature concerned with the study of topology-based flsualization.

Keywords: flow visualization, feature-based flow visualization, flmapology, state
of the art report

1.1 Introduction

Research in topology-based flow visualization is makingoragvances. Helman and
Hesselink introduced the visualization community to thdoroof flow topology in
1989 [21, 23]. Classical flow oriented topology researchaisel on the detection
and classification of critical points in the vector field, aswn in Figure 1.2. What
makes topology-based methods attractive is their abiitgpresent very large data
sets in a concise and compact manner. Unlike other flow vistadn approaches

* Robert S. Laramee’s current affiliation is: The Department of Cdergcience, University
of Wales, Swansea, UK, e-mail: s. | ar amee@wansea. ac. uk
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Fig. 1.1.Visualization of flow around a critical point using texture advection andidjge-
tion [35]. In contrast to these methods, topology-based methods eatdwisualize critical
points directly.
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Fig. 1.2.Vector field topology: critical points are usually classified by the eigengadfi¢he
Jacobian [21]R represents the real components drile imaginary components of the Jaco-
bian.

(Figure 1.1), critical points of a data set are extractedthrdelationships between
those points are depicted accordingly. We refer the read&btaham and Shaw for
an introduction to topological analysis [1].

Topology-based research in flow visualization has come @ Vg since 1989
—the progress of which we will describe in Section 1.2. Yesgite the many ad-
vances, there are still many unanswered questions in tliediebpology-based re-
search. There are still topic areas completely untoucheddsarchers at the time of
this writing, e.g., vector and tensor field topology simphfion in three-dimensions,
for both steady and time-dependent (or unsteady) data.

Here, we summarize the progress that has been made up toithisrpthe field.
We introduce a novel classification of topology-based madtio flow visualization
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based on topology extraction and simplification of vectod &nsor fields (Sec-
tion 1.2). The classification points out clearly those arédsin previous work and
some areas which still remained unaddressed by the vistializcommunity.

1.2 Topology-Based Methods in Flow Visualization, The State of
the Art

In this section, we review the current state of the art in logp-based methods in
flow visualization. We start off with a description of our s&ification before describ-
ing the algorithms themselves. Our overview relates difieresearch results with
one another and highlights relative advantages and distatyes of each approach.

1.2.1 Classification

I Topology Extraction | Topology Simplification
Scalar Static Dynamic Static Dynamic
Data |[2D [19] 2D [5]]6]

2.5D [44] [26] [45] [7] 2.5D [13] [16] [61]

3D [40][62] 3D [17]
Vector Steady Unsteady Steady Unsteady
Field ||2D [55][56][87][73] [21][53][80][89] |2D [8][10][9][38]
Data [83][68] [71][72] [77][82] [76] [64]

[67] [66]
2.5D [22] [30] [32] [75] 2.5D

[84]
3D [37]v [27]. [S9]. [29].|[2]w [3]. [49]. [4].|3D  [85]
[31], [51]. [18]. [46],
[28],, [41],, [58]. [54].
[23][39] [88] [43]  |[15]
[42] [70] [41] [14]
[74] [60] [86] [33]

Tensor Steady Unsteady Steady Unsteady
Field 2D [91] [11][79] 2D [78][82][81]
Data ||2.5D 2.5D
3D [24][90][92] [93] 3D
[25]

Table 1.1. An overview and classification of topology-based methods in visualizaien.
search is divided up into topology extraction and topology simplification litezaMethodol-
ogy is further classified according to scalar vs. vector vs. tensor falahalysis. Finally, a
sub-classification is made based on data dimensionality, both spatial g sgnReferences
are listed in chronological order within each spatio-temporal dimensionhdityection 1.2.
we focus on the research wittold emphasis—topological analysis of vector field data. Refer-
ences subscripted with,adenote research related to vortex core extraction.
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Table 1.1 illustrates our classification of topology-bassethods in visualiza-
tion. At the broadest level of classification, we have dididg the literature into
work that focuses on eithextractionof topological features, i.e., topological analy-
sis orsimplificationof a given topology. Conceptually, simplification can beutgbt
of as an extension of extraction. We separate the literdtaresed on simplification
because much of it is dedicated to simplification ofaapriori topology, especially
in the area of flow visualization—the focus of this overvigMe have further divided
up the literature intwectorandtensorfield analysis. Each sub-classification is then
further classified based on the spatial and temporal diroeakty of the vector or
tensor field data to which the respective algorithm is applidne topology research
on scalar data is divided intstatic and dynamiccases rather than steady and un-
steady in order to be more general. Dynamic analysis of sdala sets can also
include a transformation from one static surface to anosiueface [7]. Within a
single spatio-temporal dimension, references are listethronological order. Our
overview focuses on those categories viathid emphasis, namely, topological anal-
ysis and extraction of vector field data. The focus on vecttd finalysis was chosen
in order to limit the scope of the review. The topics of scalad tensor field topol-
ogy can be covered in future state of the art reviews. Notewtithin the category
of 3D, vector field extraction, literature which focuses on vortex core extraction is
denoted with subscript,J. We now describe the literature in increasing order of di-
mensionality, grouped together by topic. Another oveniggiven by Scheuermann
and Tricoche [57].

Although the topology ofcalar fieldsserves as a third category of research,
our review of the literature does not focus on the topoldgasalysis of scalar
fields [19, 26, 62] which includes the extraction of featusash as ridge and val-
ley lines and extremal features. Our survey of scalar tapobkmalysis is also not
exhaustive, but supplies the reader references for furdeating. Here we briefly
mention some research in the field. Monga et al. [44] comgdtgerlines on isoin-
tensity surfaces in 3D volume data and use them for datatratijish and automatic
atlas generation. Interrante et al. [26] use ridge andyétes in order to perceptu-
ally, enhance the visualization of multiple, transparemfaces in 3D. Szymczak and
Vanderlyde describe an algorithm that extracts topoldlyisample isosurfaces [61].
Morse theory has been applied to extract the topology ofraryisurfaces by Ni et
al. [45].

1.2.2 Topology Extraction of Vector Field Data
2D, Steady

Extraction of Higher-Order Critical Points: Most critical point detection algo-
rithms are based on piecewise linear or bilinear approxanafrhese methods do
not properly represent local topology if nonlinear behawégresent. Scheuermann
et al. [55, 56] choose a polynomial approximation in area$ wonlinear behav-
ior and apply a suitable visualization—streamlines seedelde critical points with
additional annotations.
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Extraction of Closed Streamlines:Wischgoll and Scheuermann [87] present
an algorithm for detecting closed streamlines in planar dlo@osed streamlines
are of interest because they may indicate regions of rdatrng flow. It is based
on monitoring streamlines as they enter, exit, and re-ergls of the vector field
domain. We urge the reader to use caution when interprétangisualization results.
This is because an spatial dimension inherent to the apgtiethin has been left out
of the analysis.

The first approach to detecting closed streamlines in pl#ioar was based
on monitoring polygon-based entrance and exit events ofearsiline during in-
tegration [87], This approach is extended to time-depenfiens by Wischgoll et
al. [89]. At each time step, closed streamlines are extacMterwards, a time-
dependent correspondence between individual streamiBne@mputed. Theisel et
al. [73] present an alternative approach to computing daseamlines. A 2D vec-
tor field is transformed into a 3D vector field. This can be doypeepresenting time
as a third spatial dimension. Then streamsurfaces are géetlee 3D domain. Fi-
nally, closed streamlines are detected by intersectimgstsurfaces. The difference
to previous work is that this approach avoids mesh-baseendigmcy, e.g., examin-
ing and testing individual mesh polygons.

Vector Field Design: Theisel presents a novel method that allows the user to
design higher order vector fields of arbitrary topology [6Pfe technique is based
on control polygons that let the user specify the charasttesiof critical points. This
enables a mechanism by which to test topology extracticorisitgns. The result can
also be used for compression purposes. We note that tharchsgoes not fit cleanly
into our classification partially because it spans more thanarea.

2D, Unsteady

Detection and Classification of Critical Points:Helman and Hesselink introduced
the visualization community to flow topology [21]. Their dysis included the de-
tection, classification, and visualization of critical pts in planar flows (Figure 1.3).
They applied their algorithms to both steady-state andeaast flow. They represent
time as a third spatial dimension for the case of time-depetigblanar flow.

Vortex Detection Based on Streamline Geometry: Sadarjoen and Post [53]
present two methods for detecting vortex structures in 2&8orefields. They are
both based on an analysis of streamline geometry. The firdtadeuses local cu-
mulations of curvature that may indicate a group of vorticegery close proximity
to one another. The second method looks at the curvatureinfle streamline and
computes a winding angle—a metric of geometric curvaturee @dvantage of this
technique is that it detects weak vortices because it daetepend on velocity mag-
nitude at a single point. A disadvantage, however, is ttgelaumber of streamlines
that must be seeded and computed in order to maintain caenpdeerage of the
flow.

Detection of Topological Transitions: A novel topology-based method for the
visualization of time-dependent 2D flows is given by Triceeh al. [80]. Extending
the work of Helman and Hesselink [21, 23], they identify aiglalize topological
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Fig. 1.3.Here, the topology of a hurricane is visualized and depicted with the Sim¥¥is sy
tem [12].

transitions—the qualitative change of topology structuwen one stable state to an-
other over time. Three types of transitions are investiygt® a Hopf-like transition—

a transition of a singular point from an attracting focus.(sink) to a repelling focus
(i.e. asource), (2) a fold-like transition—the pairwisaituilation or creation of a sad-
dle and a source or sink, (3) a basin transition—the case twesaddle points start
independent of one another, join briefly, and again sepafatain we caution the

reader when interpreting these results. A spatial dimenisiberent to the original

domain has been omitted from the analysis.

Critical Point Tracking: Theisel and Seidel introduce an alternative critical
point tracking method for 2D, unsteady flow based on stre@sl{68]. The tem-
poral dimension of the planar flow is represented as a thiatiapdimension and
streamlines are traced along critical points as they evdités space-time repre-
sentation is called a feature flow field. In addition to vis&ial the path of critical
points over time, events such as fold bifurcations are Vize@

Streamline and Pathline Oriented Topology:Topological methods often seg-
ment vector fields using curves based on streamlines, eggyatrices or stream-
surfaces such as separating streamsurfaces. In additsreomline oriented topol-
ogy, Theisel et al. [71, 72] also consider pathline oriertegablogy. In the study
of streamline oriented topology, they propose new appreath detect bifurcations
like saddle connections and cyclic fold bifurcations. Sadsbnnections are bifur-
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cations that appear when two separatrices originating gaddle points coincide.
A cyclic fold bifurcation is the case of when two closed stndiaes collapse and
disappear. The also propose a novel approach to detectankdclosed streamlines
in 2D, time-dependent vector fields. In the study of pathtinented topology, they
segment the vector field into regions where pathlines shtnacting, repelling, or

saddle-like behavior.

Vector Field Comparison: Although it does not fit cleanly into our classifica-
tion, we briefly mention a closely related topic—vector fiettmparison. Theisel et
al. [65] introduce a topology-based metric by which vectelds can be compared
or related to one another. Preliminary approaches basedroparison metrics (i.e.,
distance measures) were based on local deviations ofidineaatd magnitude of flow
vectors [20, 63]. These previous distance functions yidakacomparison of vector
fields, but do not take into account any structural infororatLevin et al. [36] intro-
duce the first topology-based approach to vector field nsatvith the Earth Mover's
Distance (EMD [52]), a technique from image retrieval. Tingitiations of this algo-
rithm are that: (1) it's critical point coupling strategyetonot consider the location
of critical points in the vector fields and (2) all criticalipts are compared to one
another which can lead to a worst case complexity(afl) wheren is the number
of critical points. To overcome these critical point couglilimitations, Theisel et
al. [65] introduce a comparison metric that uses feature fields [68].

2.5D, Steady

Separation and Attachment Lines: Separation and attachment lines correspond
to loci where flow leaves or converges at a surface. Prior towKight [30], the
only algorithm that could automatically detect separatiod attachment lines was
presented by Helman and Hesselink [22]. Previous appreagbee generally based
on observations. Helman and Hesselink’s technique is b@asgdctor field topology.
Their algorithm detects closed separation lines, thairisslthat begin at a saddle or
node and end at another saddle or node. Kenwright's algorétlso detects open
separation, i.e., lines that do not always start or end #tafipoints in the vector
field. This algorithm is based on phase plane analysis.

Kenwright et al. [32] expand the work of Kenwright [30] byiiatlucing another
algorithm, the parallel vector algorithm, for detectingeopseparation and attach-
ment lines. The parallel vectors algorithm is based on tisedation that one of the
eigenvector directions was always parallel to the locaestines in regions where
streamlines asymptotically converged. The advantagei®bftproach is that it pro-
vides a local test that may be performed at any point in theovdield. Kenwright et
al. show that the parallel vectors algorithm is slightly etipr to their previous algo-
rithm (called the phase plane algorithm), however, it isendifficult to implement.
The phase plane algorithm uses self-contained analydignvetich triangle, making
it well suited for unstructured meshes. The parallel veelgorithm requires cal-
culation of vector gradients on irregular triangulatioBsit for curvilinear meshes,
the parallel vector algorithm is best because vector gnasliean be calculated using
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central differences. The parallel vector algorithm alswmhees the line discontinuity
problem associated with the phase plane algorithm.

Tricoche et al. [75] propose a method for the detection ofssjon of attach-
ment lines in 2D flows defined over arbitrary surfaces in 3Deyrhuild primarily
on the work of Kenwright and Haimes [30, 32] by improving penhance. They do
so by using both local flow properties and global structunébrimation such that
feature searching and extraction is fast and accurate.

Boundary Switch Connectors:Weinkauf et al. [84] extend the work of Theisel
et al. [70] with the introduction oboundary switch connectqgra topological ele-
ment that complements saddle connectors. Theisel et dlcfrBidered separation
surfaces emanating from saddle points only. Weinkauf ¢84].extend this work to
include separating surfaces starting from boundary switoles. The intersection
of separating surfaces emanating from boundary switchesurgsults in boundary
switch connectors.

3D, Steady

Vortex Core Line Extraction: Sujudi and Haimes [59] present a line-based vortex
core extraction algorithm that locates points that satiké/following two criteria:
(1) the velocity gradient tensor contains complex eigaregland (2) the velocity
in the plane perpendicular to the real eigenvector is zehe. ifidividual points are
then connected to form the vortex core line. The disadvankege is that it is not
always possible to form a continuous line. This problem idraglsed by Haimes
and Kenwright [18] who present adapt the algorithm to be -faased rather than
cell-based.

\ortices can cause many undesirable effects for aircnaét) &s reduced lift and
noise. They can lead to structural fatigue and even premaitframe failure in se-
vere cases. Kenwright and Haimes [29, 31] applied the e@gavmethod of Sujudi
and Haimes to flow analysis around an aircraft.

Roth and Peikert build on the work of Sujudi and Haimes [59]riyoducing a
higher-order method for vortex core line extraction. White eigenvector method
of Sujudi and Haimes [59] is correct for linear vector field$ails to detect curved
vortex core lines, especially in the case of turbomachidats sets. Roth and Peikert
demonstrated this limitation previously [50]. Their medhmvercomes the previous
limitations stemming from the use of a linear vector fieldortex core line extrac-
tion by introducing higher-order derivatives that can bedut detect bent vortex
cores.

This vortex core line extraction algorithm is later formteld at a higher level of
abstraction, namely as a parallel vectors operator by Reikd Roth [46]. The basic
idea behind the parallel vectors approach is to derive tvetovdields from a given
3D vector field such that vortex core lines are locations whiee two derived vector
fields are parallel.

Some vortex core extraction methods, like that from JeordyHmssain [27],
can be described as Galilean invariant, i.e., they areigmvewhen a constant vector
field is added. This is because their computation uses omiyatiges of the vector
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field. Many vortex core line extraction algorithms are Gadit variant because they
depend on a certain reference [2, 3, 46, 59]. Sahner et lpfBdent an approach to
extracting vortex core lines that is Galilean invariard,,ithe result does not depend
on the frame of reference. The extracted features remaihamged when adding
a constant vector field. They do so by considering ridge deydines of Galilean
invariant vortex region guantities.

Vortex Core Region Extraction: A general problem with vortex core line ex-
traction algorithms is their computational complexity ahdt they may generate
more than one vortex core line within a vortex core regionhMas et al. [41]
present a vortex core region detection based on Spernerade-adapting a notion
from combinatorial topology. The approach analyzes theabieh of a vector field
based on the vectors found at the boundaries of each gridveddicity vectors ex-
hibit characteristic patterns in the neighborhood of aesarThe algorithm searchers
for these patterns.

In our overview, we focus on vortex core line extraction eatithan vortex
core region extraction. Thus the method of Jeong and Huskagown as the\,
method [27] is not described in detail here (Stegmaier atigpErsent a GPU-based
implementation of the., method [58]). Similarly, we do not focus on vortex core ex-
traction based on isosurface extraction in a scalar field 8more general overview
of vortex analysis from a feature-based flow visualizatiompof view is given by
Post et al. [47].

Separating Surfaces:Helman and Hesselink build on their previous work [21]
and extract surface topology and separating surfaces ofifi&D [23]. A surface
topology skeleton is extracted and visualized by projectire 3D vector field in the
neighborhood of the surface onto the plane tangent to the dod applying a 2D de-
tection algorithm. They also compute streamsurfaces wdaplarate 3D vector fields
into disparate regions of flow. Included is a description @ilthese streamsurfaces
are tessellated in an efficient manner. They also uses icmtsas arrows and disks
to display critical points in 3D.

Mahrous et al. [41, 42] present an algorithm for efficient poation of sepa-
ratrices in 3D vector fields. They present methods that ecatd the extraction of
separatrices. Enhancements are made to reduce the numéemple streamlines
and their length. Streamlines are seeded in a more meahangda efficient matter
rather than using a brute-force approach of seeding stieesrat all cell locations.
Texture advection is applied to stream surfaces by Laramald #4].

Dynamical SystemsLoffelmann and Giller [39] visualize the topology of dy-
namical systems. Dynamical systems provide a mathematiodel comprised of
a set of state variables whose goal is to characterize redd \ywhenomena, e.g., a
stock market, a chemical reaction, or a food chain. Theiraligation couples char-
acteristic streamlines emanating from fixed points in thmaia with a thread of
streamlets. The characteristic streamlines play the rbkeed points for a thread
of streamlets. The large number of streamlets provide mdmemation about the
behavior of the dynamical system in the neighborhood itsatharistic trajectories.
Thus a trade-off between domain coverage and perceptilsiliealized in 3D.
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Fig. 1.4.Visualization of flow past a circular cylinder using critical points and saddieec-
tors [70].Image courtesy of H. Theisel et al.

Detection of Closed StreamlinesWischgoll and Scheuermann [88] extend their
previous work [87] of detecting closed streamlines to 3Dteefields. The algo-
rithm is based on preventing infinite cycling during streiamlintegration.Saddle
Connectors: Theisel et al. [70] introduce a new topological element aftoefields
called asaddle connectorA saddle connector is a streamline that joins two sad-
dle points in a vector field (Figure 1.4). A saddle connecidiouind essentially by
computing the intersection of the separation surfaces ofgaddle points. These
topological structures achieve a visually sparser, mormapaxt topological repre-
sentation of the vector field, thus avoiding the visual camijty associated with
showing too many separating streamsurfaces.

Hybrid Visualization and Vortex Breakdown: Tricoche et al. [74] use a com-
bination of 3D volume rendering of a vector field’s scalardgelvith vector field
topology projected onto a moving cutting plane. The goabigdin insight into the
behavior of vortex breakdowns with this novel hybrid viseation (Figure 1.5).

Critical Point Modeling and Classification: Weinkauf et al. [85] extend the
work of Theisel [64] for designing vector fields. In partiauithey: (1) model 3D
vector fields of arbitrary topology. Previously, only firstler points and the index
of higher order critical points were considered [43], (Zydaluce a complete classi-
fication of 3D critical points and (3) adapt the notion of dadwbnnectors in order to
model the intersection curves of separation surfaces., Theproblem of modeling
a vector field is reduced to the problem of modeling the togickl skeleton using
control polygons.
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v @ 2004 X. Tricoche, C. Garth
Fig. 1.5.The visualization of a vortex breakdown bubble. Flow topology is depici#dsiag-

nation points in red, singularity paths in yellow and streamlines in blue [¥ge courtesy
of X. Tricoche et al.

Weinkauf et al. [86] extend the work of Tricoche et al. [77]3D. They intro-
duce an extraction and classification scheme for highemrandtécal points in 3D.
The approach is based on enclosing a critical point, or derlu critical points by
a bounding surface. The properties of the vector field at thenary surface are
then examined in detail, i.e., subsets of the surface aidetlwp into inflow, out-
flow, hyperbolic, and elliptic regions of flow. The classifica of critical points in
3D is then determined by the corresponding regions on thading surface. The
simplified structure of the flow within the bounded regionthisn visualized with an
appropriate icon(s).

Applications of Topology-Based Flow Visualization:Sun et al. [60] apply a
topological analysis to visualize the power flow through alaped nano-aperture.
Such an aperture may be very effective at power transmisgitbnapplications in-
cluding data storage, particle manipulation, and nantegaaotonic devices. Their
topological analysis of this data set results in a heigidemelerstanding of the crit-
ical factors affecting power transmission of these apestncluding: polarization
effects, efficiency, the size of interaction regions, resdrtransmissions, and more.

Laramee et al. [33] apply topology-based flow visualizatmethods in order
to gain insight into the behavior of flow through a coolingiet This application is
discussed in more detail in a following chapter. Other aggpions of topology-based
flow visualization are discussed by Garth et al. [15] anddafe et al. [74].

3D, Unsteady

Vortex Core Line Extraction and Tracking: Banks and Singer [2, 3] developed
an algorithm for vortex tube reconstruction based on therapion that a vortex
core is a vorticity line—a streamline in the vorticity fielthd pressure is a minimum
in the core. The algorithm consists of four basic steps: (ihgute the vorticity
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® 2004 X. Tricoche, C. Garth

Fig. 1.6. The visualization of vortex breakdown using transparent separatifeces origi-
nating at stagnation (saddle) points [1Bhage courtesy of C. Garth et al.

along a vortex core line (seeded based on threshold vgrtititgnitude and pres-
sure), (2) predict the next point along the core line by stepmn the vorticity vec-
tor’s direction, (3) compute the vorticity at the new preddt point, and (4) update
(or correct) the point to the location of minimum pressuréhim plane perpendicular
to the core.

Reinders et al. [49] present an application which deteadstiatks vortex tubes
in flow past a tapered cylinder. First, they apply the windamgle method [53] is
used to detect the vortices on a number of horizontal sl8éesond, the 3D vortex
tubes are constructed from the 2D vortices by applying aagaature tracking pro-
cedure based on attributes of the vortices [48]. The sameréeracking algorithm
is then applied in the temporal domain for vortex core tragki

Theisel et al. [69] describe a novel method to extract palraéictors [46] based
on the use of feature flow fields [68]. They derive appropnaietor fields such that
vortex core lines appear as streamlines (in the feature fiddsii. Thus, the extrac-
tion of vortex core lines is reduced to a well-known streamlintegration computa-
tion. They also introduce a novel classification of transisi (or events) associated
with time-dependent vortex core lines as well as the metloggoused in tracking
core lines. The classification includes: (1) saddle traorsst (2) closed collapse tran-
sitions, (3) and inflow and outflow boundary transitions.

Singularity Tracking and Vortex Breakdown: Garth et al. [15] present a
method to efficiently track singularities in 3D, unsteadwfldhe method also ap-
plies to data defined on unstructured grids. Conceptuallg, an extension of the
work of Tricoche et al. [83]. The concept of a singularity éxds discussed and ex-
tended from the well known 2D case to the more complex 3D domidie results
are particularly insightful for the study of vortex breakdo Occurrences are vortex
breakdown (or bursting) are correlated with local extremghysical quantities and
visualized with corresponding views from information \asimation (Figure 1.6).

1.2.3 Discussion and Future Prospects

Table 1.1 clearly illustrates those areas with a heavy atnaton of topology-based
research, e.g., 3D steady-state, and those areas withtéittho work. In fact, Ta-
ble 1.1 highlights areas that remain untouched up to thistotime, e.g., topology
simplification in 3D tensor fields. Other areas still requirresearch work include:
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e Interactive techniques to support topology extraction adking: At present,
topology-based techniques are, in general, still slowlative to traditional flow
visualization techniques such as particle tracing or texadvection methods.

e Extraction and analysis of new types of topological streetu Surely, not all
important topological structures have been clearly idiesstiand studied.

e Integration of topology-based methods with other flow vigadion techniques
such as texture advection: A topological skeleton by ifsglinetimes leaves out
other important properties of the flow such as downward arstregam direction.

e The practical application of topological methods outsite ¥isualization com-
munity: Still, much work remains to be done in the applicatd topology-based
flow visualization to data sets from industry or some apgiticadomain area in
order to demonstrate their utility in a convincing manner.

e More theoretical development to support cognition of rssdlopological anal-
ysis still leaves open questions with respect to intergimtaof the results. For
example, how do we interpret pathline-oriented topology&téttheory may be
needed to aid such cognition.

Thus, the field of topology-based methods in visualizatestill rich in unsolved
problems.

However, there may be reasons why so much of the spatio-taingomain in
our classification remains virtually unexplored in the ersh literature. Reasons
may include high levels of complexity and applicability waf-world problem do-
mains. We discuss possible reasons for this in a later chapte
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