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ABSTRACT  
 

The famous quotes of a former Chairman, president and 

CEO of Texas Instruments and Chairman of HP “if only 

we knew what we know” are very much applicable to the 

foundry industry. Despite the fact that many advances 

have been made in the field of foundry technologies 

relating to simulation software, moulding machines, 

binder formulation and alloy development,  poor quality 

still remains a major issue that affects many foundries  not 

only in terms of lost revenues but also contributing to 

negative environmental impacts. On an annual casting 

production of 95 million tonnes, assuming that on average 

5% defective castings are produced with a production cost 

of 1.2€ per kg for ferrous alloys, the foundry industry is 

losing 5.7 billion €, producing landfill waste well in 

excess of two million tonnes and releasing just under two 

million tonnes of CO2 emissions. Foundries have vast 

proportion of knowledge that is waiting to be tapped, 

documented, shared and reused in order to realise the 

saving potential of 5.7 billion € per year.  This ambitious 

goal can only be achieved by developing effective 

knowledge management strategies to create, retain and re-

use foundry and product specific process knowledge 

whilst supporting a smart and sustainable growth strategy. 

This is the focus of 7Epsilon (7ε), an innovative 

methodology led by Swansea University along with a 

consortium of European universities and research 

organisations. At the core of 7ε capabilities is casting 

process optimisation which is defined as a methodology 

of using existing casting process knowledge to discover 

new process knowledge by studying patterns in data 
1
.  

 

According to the 7ε  terminology, casting process 

knowledge is actionable information in the form of a list 

of measurable factors and their optimal ranges to achieve 

a desired business goal 
1, 2

. In this paper a penalty matrix 

approach is described for discovering main effects and 

interactions among process factors and responses by 

analysing data collected during a stable casting process. 

Through a practical cases study it is shown how this 

technique can be used as an effective tool in the root 

cause analysis of nonconforming products in the 

implementation of ISO9001:2008 requirements for 

continual improvement. In addition some practical aspects 

concerning the development of a knowledge management 

repository to store and retrieve foundry process 

knowledge are discussed.  A template to document and 

structure foundry and product specific process knowledge 

is proposed so that knowledge can be stored and retrieved 

more efficiently by process engineers and managers with 

the final aim to improve process operations and reduce 

defects rates, taking a significant step towards achieving 

zero defect manufacturing. 

 

 

Keywords: Continual Process Improvement, Zero Defect 

Manufacturing, Quality, Process Knowledge, Data 

Analysis, Casting Optimisation, Six Sigma, 8D, 7Epsilon, 

7ε,  FMEA. 

 

 



INTRODUCTION 
 

Metal casting process is a complex manufacturing process 

with several sub-processes such as patternmaking, 

molding, coremaking, melting and pouring, heat 

treatment, welding and finishing.  It is also energy 

intensive process. On average foundries lose a minimum 

of 5% of their revenue in scrap (rejected castings) and 

rework.  On an annual casting production of 95 million 

tonnes, with a production cost of 1.2€ per kg for ferrous 

alloys, the foundry industry is losing 5.7 billion €
1
. This 

indicates that there is a scope for improvement in metal 

casting process and its sub-processes.  ISO 9000 quality 

management standards have gone evolution ever since 

their inception in 1987 and presently have ISO 

9001:2008.  This quality management system standard 

focuses on ‘Process Approach’ and ‘Continual 

Improvement’ and these are highly relevant to the 

foundries to be profitable.  

 

In the foundry context, process knowledge is described as 

actionable information, in terms of the optimal tolerance 

limits and target values for continuous factors and optimal 

levels for discrete factors, in order to achieve desired 

process response(s)
1
.  Reducing rejection rates from 5% 

to 2-3% and then further to 0% requires understanding of 

product specific process knowledge that also happens to 

be foundry specific.  The metal casting process is 

considered as a complex process not only because it has 

several sub-processes but, for most sub-processes, it is 

difficult to assign variability in process responses to the 

tolerance limits or levels of one or more measurable 

factors.  Each foundry has its own product specific local 

optimum for various measurable factors and it is normally 

not possible to reproduce the same process variability in 

two foundries – even if the foundries are owned by the 

same management. This makes foundry managers wonder 

whether manufacturing zero defect castings is an ‘art’ or 

‘science’. If it was just ‘art’ then experienced foundry 

operators would have developed the skill of 

manufacturing zero defect castings without the need of 

continuous professional development, access to technical 

peer reviewed literature and any formal qualifications. If 

it was just ‘science’ then foundry engineers would have 

solved the zero defect rejection problem by answering 

‘exam style questions’ correctly. One of the challenges 

that the foundry industry is facing is the capture, storage 

and reuse of both skills; the ‘art’ and the ‘science’, in 

order to continually improve the process. The next 

generation of foundry engineers are growing up in the 

Google and Wikipedia age who rely on internet for 

instantaneous access to structured knowledge and may not 

have the privilege of receiving formal foundry training 

during their undergraduate degree training. Most of the 

foundry departments across many prestigious Universities 

have lost their identities over the last 15-20 years. In order 

to remain sustainable and avoid the risk of rediscovering 

the wheel, the foundry trade associations, suppliers and 

foundry experts also need to embrace a cultural change in 

the way knowledge is disseminated.  

Foundries have vast proportion of knowledge that is 

waiting to be tapped, documented, shared and reused in 

order to realize the saving potential of 5.7 billion € per 

year.  This indicates that foundries do not have the 

technology and/or the culture to produce castings without 

incurring these costs that could affect their profitability. 

We have a serious problem of ‘Technology Gap’ in our 

foundry industry. The gap in technology lies in the lack of 

process knowledge in foundries and lack of adequate 

personnel trained in process control. 

 

Process knowledge can be obtained by developing a 

sound understanding of the relationship between process 

factors and responses for a specific casting. Process 

engineers can learn product specific process characteristic 

by re-using past experiences and analysing patterns in 

data. In order to discover improvement opportunities 

engineers need to be able to analyse sometimes weak 

patterns in noisy data. At the same time, it is critical that 

past knowledge is made available at the right time to 

verify hypothesis and support decision making. In modern 

foundries, knowledge is stored in the form of electronic 

documents or databases but it is often underutilised due to 

the fact that knowledge is scattered in heterogeneous 

systems and difficult to be retrieved. Usually there is not a 

single entry point to access process knowledge so a lot of 

effort is spent in knowledge retrieval.  

 

The 7Epsilon (7ε) (www.7epsilon.org) approach is 

designed to address this gap. The 7ε term was coined by 

Dr. Patricia Caballero at Tecnalia in Spain and the 7 steps 

of 7ε to ERADICATE defects were introduced by Dr. 

Rajesh Ransing at Swansea University, UK who is also 

leading the initiative along with a consortium of European 

research institutions and trade associations. The approach 

is similar to Six Sigma initiatives in that it has the usual 

‘Define, Measure, Analyse, Improve and Control’ steps.  

However, it focuses on foundry and product specific 

continual process improvement and knowledge discovery 

by analyzing in-process data and recommends a 

knowledge repository concept to reuse the knowledge in 

order to stimulate a culture of innovation.  In other words, 

it also helps foundry CEO’s and chairpersons to share the 

famous quotes of a former Chairman, president and CEO 

of Texas Instruments and Chairman of HP “if only we 

knew what we know …”.  



Between July 2013 and October 2013, Drs Rajesh and 

Meghana Ransing, have personally trained over 150 

foundry engineers from UK, Spain, Poland, Sweden and 

India on the 7ε approach. An on-demand internet based 

course, given by Dr Roshan, is also available from the 

American Foundrymen Society. Almost all engineers 

have said that they would recommend the course to their 

colleagues. The feedback comments are available on the 

7ε website (www.7epsilon.org). A need was identified for 

a prescriptive template that any process engineer can use 

for the root cause analysis and developing a corrective 

action plan for ISO9001:2008. It was decided to formalize 

the 7ε template for continuous process improvement 

studies and present it in this paper as a ‘use case’.   

 

PROCESS APPROACH 
 

Any activity, or set of activities, that uses resources to 

transform inputs to outputs are considered as a ‘Process’ 

according to ISO 9001:2008.  In order to be profitable, 

organizations need to initially identify all the relevant 

processes and their interrelationships.  The output of one 

process will be input into the next process. The systematic 

identification and management of the processes employed 

within a foundry and the interactions between such 

processes is considered as the “PROCESS APPROACH”. 

An example of process in foundries is shown in Fig. 1.  

The sub-processes that are potential candidates for 

continuous process improvements studies in individual 

foundries will be specific to the foundries and need not be 

the same in all foundries. The first step to become 

profitable is to identify the sub-processes specific to the 

foundry. 

 

PROCESS EFFECTIVENESS 
 
ISO 9001:2008 emphasizes the importance of process 

effectiveness.  Performance metrics for each of the sub-

processes need to be identified and monitored.  There 

needs to be an evidence of continual improvement in the 

performance metrics of the processes in the foundry.  This 

indicates that ISO 9001:2008 is not only a Quality 

Management System, but also a Business Management 

System to improve the bottom line of foundries. Process 

effectiveness is related to process optimization.  Process 

optimization is the identification and control of input 

process parameters (Factors) to achieve the desired output 

(Response) in any process. 

 

Optimizing foundry processes is not a trivial task because 

both the factor response relationships and the optimal 

conditions are process and part specific. 

Even for the same foundry a set of parameters can 

produce acceptable casting for one part but not for 

another
2
. Available literature can often help process 

engineers in achieving process improvement objectives, 

but in most cases trends leant from the literature are too 

generic to drive process optimisation. Improvement can 

usually be achieved by performing small adjustments to 

the process, ultimately leading to significant savings in 

terms of cost reduction and waste minimisation.  

 

  

Fig. 1 – The systematic identification of processes in the 
foundry industry is shown in a Product Realization 
diagram. 



THE 7ε METHODOLOGY 
 

The 7ε methodology adds an innovation layer over Six 

Sigma’s DMAIC processes. It is a novel approach to 

process improvement that focuses on knowledge retention 

and reuse as well as knowledge discovery in order to 

stimulate a culture of innovation. Although the 

methodology has been developed in the context of the 

foundry industry can be applied to other fields. 7ε 

introduces 7 Steps to ERADICATE Defects:  

 

Knowledge Retention and Reuse 
1. Establish process knowledge  

2. Refine process knowledge by compiling explanations 

for factor-response relationships. 

 

Knowledge Discovery 

3. Analyse In-process data using penalty matrix approach.  

4. Develop hypotheses for new product specific process 

knowledge.  

5. Innovate using rootcause analysis and conducting 

confirmation trials.  

 

Culture of Innovation 

6. Corrective actions and update process knowledge. 

7. Build Aspiring Teams and Environments by 

monitoring performance. 

 

7ε recognises the importance of discovering product 

specific process knowledge to find optimal ranges of 

process factors to achieve well defined business goals. It 

differs from other process improvements methodologies 

like Six Sigma because it focuses on analyzing in-process 

data, introduces a knowledge refinement step and 

repository concept which support root cause analysis and 

decision making. Knowledge retention is also promoted 

through the knowledge repository. The 7ε repository 

plays an essential role to ensure knowledge is retained 

and readily accessed. An overview of the 7ε methodology 

is provided in Fig. 2. 

 

Fig. 2 - The 7ε methodology includes seven steps to achieve process improvement objectives required by 
ISO9001 standard. Central to the methodology is a knowledge repository concept to facilitate knowledge re-use. 
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CASE STUDY 
 

Professional organizations related to foundries all over the 

world can contribute by communicating the importance of  

continual improvement of foundry sub-processes and 

promote the dissemination of information relating to these 

processes.  This would in turn assist foundries to be more 

profitable than they are today and hopefully the foundries 

will contribute to the less utilization of energy than what 

it is today.  The following paragraphs will illustrate a case 

study on how to achieve continual improvement in one of 

the sub-processes namely melting in a low alloy steel 

foundry. For continual improvement, one needs to 

identify one product at a time and improve the process 

specific to the product.  A process is considered to be 

‘EFFECTIVE’ if there is no scrap or rework attributable 

to the sub-process.   

 

It is necessary to have the skills of identifying all the 

responses and factors for the process, collect and analyze 

the data and take appropriate actions for continual 

improvement.  The analysis should be able to provide 

actionable information, so the necessary actions can be 

taken. This will also satisfy the requirement of AS 9100 

that requires Process Validation.  Process validation is 

carried out by determining the process capability of 

identified responses and the factors relevant to the 

process.  In general, the customer specifications will have 

the requirements on product such as they need to meet the 

dimensional tolerances, freedom from casting defects 

both internal and external.  It is the responsibility of the 

foundries to determine the specifications for process 

parameters to achieve the product specifications. In this 

case study a step by step procedure to discover 

PRODUCT SPECIFIC PROCESS KNOWLEDGE’
1, 2

 is 

provided.  

 

PROBLEM STATEMENT 
 

A low alloy steel foundry has a product specification that 

has the requirement of carrying out a fracture test on the 

test block and having 0% of fractured surface area with 

conchoidal nature.  The chemistry of the product is 

considered to play a significant role in the incidence of 

conchoidal fracture. The product material specification is 

described in Table 1. Although the chemistry of the heats 

for the products was within the material specification, the 

fracture tests were failing in conchoidal fracture
3
. This is 

also referred as rock candy fracture or intergranular 

fracture. A simple scatter plot of the percentage of 

conchoidal fractured surface out of the unit fractured 

surface (1 in x 1 in) for each observation shows variability 

of values across the process (Fig. 3). 

 
Table 1 - Product Specifications 

Element Concentration 

C 0.20-0.25 

Mn 0.90-1.0 

Si 0.40-0.60 

S 0.015 max 

P 0.015 max 

Ni 1.70-1.90 

Cr 0.90-1.2 

Mo 0.40-0.50 

Cu 0.30 max 

Al 0.06 max 

Ti 0.025 max 

Zr 0.025 max 

Ca 0.006 max 

 

The foundry decided to perform root cause analysis 

following the 7ε methodology. A step by step description 

of the methodology will be described in the next sections. 

 

STEP1 – ESTABLISH PROCESS KNOWLEDGE 
 

The first step of the 7ε methodology is a preliminary 

phase where engineers acquire knowledge about the 

process, its factors and responses as well as causal 

relationships. This phase is similar to the “Define” step of 

Six Sigma projects. A team of people is formed and the 

team starts to gather process knowledge which is then 

externalised and codified using pictorial diagrams such as 

Process Maps, SIPOC Diagrams and Cause and Effect 

Diagrams. This phase enables to capture team member 

knowledge and is considered crucial to the success of 

process improvement activities
4
.  

  

Fig. 3 - The scatter plot of %Conchoidal Fractured 
Surface shows variation of responses in different 
batches. 



An example of Process Map for Melting and Pouring 

process is shown in Fig. 4.  

 

 

 

 

SIPOC (suppliers, inputs, process, outputs, customers) 

diagrams are also used to identify all the relevant 

elements of process improvement including suppliers, 

customers, input and output of the process. An example of 

SIPOC diagram is given in Fig. 5. 

 

Finally causal relationships between process inputs and 

outputs are also visualised by using Cause and Effect 

diagrams as shown in Fig. 6.

 

 

 
STEP 2 – REFINE PROCESS KNOWLEDGE BY 
COMPILING EXPLANATIONS FOR FACTOR-
RESPONSE RELATIONSHIPS 
 

Process knowledge is obtained by knowing that process 

responses Y are functions of process factors X. An 

understanding of the type of functional relationship and 

how the variability of factors affects responses is an 

essential prerequisite to develop a sound process 

approach. Generic knowledge about input/outputs 

relationships can come from experience after observing 

the process over the time or by referring to findings from 

published literature. However the knowledge acquired by 

foundries in not systematically collected and made 

available for future references. Foundries often rely on 

“process experts” but issues may arise when “experts” are 

not available.  
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Fig. 5 – The SIPOC Diagram for Melting and Pouring is an 
high level description of the all the process components. 
Effectiveness measures are also identified.  

Fig. 6 – A Cause and Effect Diagram shows causal 
relationship between process inputs and outputs. It is 
often used in root cause analysis. 

Fig. 4 – The Process Map for Melting and Pouring is a 
flowchart that indentifies all the process steps.    



The 7ε methodology extends traditional process 

improvement approaches since it introduces a “knowledge 

refinement” step. During this phase process engineers 

systematically research about process factors and 

responses to find out: 

 how factors are related to responses and how 

they can be measured; 

 Importance of factors in relation to responses. 

 

Knowledge acquisition at this stage is supported and 

facilitated by means of a knowledge repository which 

indexes and stores process knowledge created by 

academia or during past process improvement activities. 

The outcome of this phase is a written description of 

process factors’ characteristics with respect to one or 

more responses.  

 

As part of this case study on conchoidal fracture the 

following descriptions were created. 

 

X1: Carbon Drop: In the basic melting practice of steel, 

charge carbon is so adjusted that during the Oxygen blow 

there is a minimum carbon drop of 30 points.  During the 

Oxygen blow the extra carbon is oxidized and the 

resulting CO bubbles essentially remove N and H from 

the melt.   

X2: Tap temperature: Higher tap temperatures have been 

found to result in the retention of harmful gases in the 

liquid metal. 

X3: Pouring Temperature: Higher pouring temperature 

than the optimum also have been found to be undesirable 

in the production of sound castings. 

X4: Argon Stirring: Argon stirring is found be very useful 

in removing the harmful gases N and H through the 

bubbling action and also maintain uniformity in 

temperature in the ladle. 

X5: %C: Higher C than the optimum is found to have 

undesirable effect in increasing the propensity of defects 

resulting from quenching. 

X6:%Mn
6
: Optimum range of Mn is necessary to 

minimize the harmful effects of S in the melt and to 

produce sound castings. 

X7: %S: S in the melt plays a significant role in the 

incidence of brittle fracture in steel castings
5, 6

. Although 

0.015% is the upper limit in the specification, lower 

percentages can cause brittle fractures.  It is essential to 

determine the optimum range of S to minimize incidence 

of brittle fracture such as Conchoidal Fracture 

X8: %P: P in the melt plays a significant role in the 

incidence of brittle fracture in steel castings
5, 6

. Although 

0.015% is the upper limit in the specification, lower 

percentages can cause brittle fractures.  It is essential to 

determine the optimum range of P to minimize incidence 

of brittle fracture such as Conchoidal Fracture 

X9: %Si: Si steel mainly influences the castability and it 

has less significant role compared to S, P and Mn. 

X10:%Ni: Ni plays a significant role in the properties of 

steel castings, specifically in impact properties, enhancing 

significantly to higher properties.  Generally higher Ni 

steel castings are preferred in applications requiring 

higher Charpy values at low temperatures of -40F. 

However, these higher percentages of Ni in low alloy 

steels have disadvantages making the steel as a long-

freezing range alloy with tendency towards micro-

porosity and the resulting poor properties.  Also, care 

needs to be taken during heat treatment to prevent the 

formation of retained austenite. 

X11: %Cr: Cr provides hardness and hardenability to steel 

castings.  However, care needs to be exercised in 

controlling the range of this element, as this can adversely 

affect the impact properties. 

X12: %Mo: Mo is very desirable element in steel 

castings, as it increases the hardenability, enables to have 

higher tempering temperatures without adversely 

affecting the hardness, resulting in desirable impact 

properties. 

X13: %Cu: Cu is an undesirable element in low alloy 

steel castings, and it is desirable to control the range of 

this element. 

X14: %Al: Al in steel castings comes from the deoxidizer.  

In low strength steel castings, Al can be tolerated up to 

0.08%, however higher strength steel castings need to 

have lower percentages to prevent brittle fractures 

resulting from Aluminum Nitride
7
. A minimum 

percentage of Al of about 0.02% is necessary to prevent 

the propensity for pinholes in steel castings. 

X15:%Ti: Ti in steel castings is added as a deoxidizer to 

enable having low percentages of Al thus preventing the 

formation of Aluminum Nitride.  Titanium is a more 

powerful deoxidizer compared to Aluminum and will tie 

up Nitrogen more effectively.  However percentage of Ti 

should be carefully controlled to prevent the formation of 

excessive titanium carbonitrides. Titanium
8
 also acts as a 

grain refiner in steel castings. 

X16: Mn/S Ratio: Mn/S ratio is helpful to control the 

propensity of steels for cracking tendency.  Although 

individual elements Mn and S need control, this ratio 

needs to be high to reduce the tendency for brittle 

fracture. 

X17: %Zr: Similar to Ti, Zirconium
9
 will stabilize the 

nitrogen and helps to reduce the formation of brittle 

fracture due to Aluminum Nitride. 

X18: %Ca: the purpose of calcium treatment in steels 

after aluminum deoxidation is to modify the composition 

of alumina inclusions and form low melting point calcium 



aluminates that float at a faster rate and produce cleaner 

liquid steel
10

. 

X19:Ca/Al Ratio: Calcium is added to molten steel to 

modify the morphology of inclusions formed due to 

aluminum deoxidation.  The relative percentages of Ca 

and Al are essential to the formation of clean steel and 

Ca/Al ratio determines the optimum ratio to provide clean 

steel with minimal tendency for brittle fracture.  

 

A factor-response table is also created. The table contains 

a list of factors and measurement methods as shown in 

Fig. 7.  

 

 

 

Subsequently a Cause and Effect matrix is used to 

quantify and rank the importance of factors with respect 

to a given response. For instance the Cause and Effect 

Matrix in Fig. 8 shows all the five performance metrics 

indicated in the SIPOC diagram (Fig. 5), as Y1 toY5.  The 

scores given in the row titled “Importance Score” indicate 

the relative importance of each of the Ys to the process 

performance.  Conchoidal fractures can lead to the 

scrapping of the castings and the monthly returns from 

customers are not acceptable and as such these are given a 

score of nine.  % Red lights are given a score of only four, 

as this involves the correction of the heat to bring the heat 

into specification limits to become a green light heat.  

Number of remakes and pigged heats are given a score of 

six as these costs will be high, but as not critical as 

conchoidal fractures and customer returns. For each of 

these Ys, Xs are given appropriate scores based their 

association.  These scores are subjective based on domain 

expertise.  Only a data collection on each of the Xs and 

the corresponding Ys will be able to identify the Xs that 

are indeed associated with the corresponding Ys.   

 

 
Fig. 8 - The Cause and Effect Matrix shown in this 
picture quantifies the rank and importance of factors 
with respect to a number of process responses. 

 

As will be shown later in this papers a Penalty Matrix 

approach is capable of identifying the Xs that are indeed 

related to the Ys.   Also, it is not sufficient to identify the 

mere name of the factor, it is essential to determine the 

range of the factor that minimizes the harmful effects of 

Ys.   

 

STEP 3 – ANALYZE IN-PROCESS DATA USING 
PENALTY MATRIX APPROACH 
 

After process engineers have gained an understanding of 

important factors that might affect process responses data 

retrieval strategies can be devised. Typically in a foundry 

data are routinely being collected as part of 

ISO9001:2008 implementation. Otherwise new data 

collection strategies need to be implemented. Information 

about measurement methods discovered during the 

previous phase can assist engineers in the implementation 

of data collection strategies. 

 

In the case study data on 35 different heats were collected 

as shown in Appendix A.  The data matrix contains 19 

factors and one response, namely percentage of 

Conchoidal Fractured Surface (or Conchoidal Fracture). 

The input data file is formatted in Microsoft Excel format 

with the values for each batch or heat being stored in the 

corresponding row and columns representing responses 

and factors.  

Factor (X)
Method of 

Measure
Units

Continuous/

Discrete

Frequency 

of Data 
Response (Y)

Carbon drop (X1) Melt/Pour Log Number Continuous Every heat %Conchoidal (Y1)

Tap Temperature (X2) Melt/Pour Log Deg F Continuous Every heat %Conchoidal (Y1)

Pouring Temperature (X3) Melt/Pour Log Deg F Continuous Every heat %Conchoidal (Y1)

Argon Stir Time (X4) Melt/Pour Log Deg F Continuous Every heat %Conchoidal (Y1)

% Carbon (X5) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

% Mn (X6) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

% Sulfur (X7) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

% Phosphorus (X8) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

% Silicon (X9) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

% Nickel (X10) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

% Chromium (X11) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

% Molybdenum (X12) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

% Copper (X13) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

% Aluminum (X14) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

% Titanium(X15) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

Mn/S Ratio (X16) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

% Zirconium (X17) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

% Calcium (X18) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

Ca/Al Ratio (X19) Melt Sheet % Continuous Every heat %Conchoidal (Y1)

Output Variables (Y's):

% 0f 

Conchoidal 

fractures     (Y1)

% Red 

Lights 

(Y2)

Number of 

Pigged 

heats (Y3) 

Number of 

Remakes 

(Y4)

% of Monthly 

Customer 

Returns (Y5)

Weighted 

Score

Importance Score (1-10): 9 4 6 5 9

Input/Process Variables 

(X's)

Carbon Drop (X1) 8 1 1 1 8 159

Tap Temperature, F (X2) 7 1 1 1 7 141

Pouring Temperature (X3) 7 1 1 1 7 141

Argon Stir Time (X4) 7 1 1 1 7 141

% Carbon (X5) 8 8 3 3 8 209

% Manganese (X6) 7 8 3 3 7 191

% Sulfur (X7) 9 8 8 8 9 282

% Phosphorus (X8) 9 8 8 8 9 282

% Silicon (X9) 4 6 3 3 4 129

% Nickel (X10) 6 7 7 7 6 213

% Chromium (X11) 7 7 7 7 7 231

% Molybdenum (X12) 6 5 5 5 6 228

% Copper (X13) 7 8 8 8 7 246

% Aluminum (X14) 8 6 4 4 8 212

% Titanium (X15) 8 7 4 4 8 216

Mn/S ratio(X16) 8 7 4 4 8 216

% Zirconium (X17) 8 7 4 4 8 216

% Calcium (X18) 8 8 4 4 8 220

Ca/Al Ratio (X19) 8 8 4 4 8 220

Association Multiplier: 0: No association; 1: Weak; 3: Moderate; 9: Strong

Association Scores (X's to Y's)

Output variables are on a scale of 1 to 10 : 1: Least important and 10: Most important to customer

Fig. 7 - The Factor-response table for Melting and 
Pouring shows the list of relevant factor and their 
measurement methods. 



 

A Penalty Matrix approach is adopted to perform root 

cause analysis 
1
 and discover product specific process 

knowledge. The Penalty Matrix algorithm
1, 11

 discovers 

product specific optimal and avoid ranges by visualizing 

patterns in data. It uses a simple but novel idea of 

associating penalty values to responses and displaying 

data using bubble diagram and penalty matrices.  

Penalty values are calculated by performing a 

transformation of response values that assigns a zero 

penalty value to the best performing observations and 100 

penalty value to the worst performing observations.  

Intermediate values are linearly scaled between zero and 

100. Lower and upper thresholds to determine best and 

worst performing observations are chosen by the analyst 

based on experience and previous domain knowledge. In 

addition to domain knowledge some heuristic rules can be 

also used to determining upper and lower thresholds such 

as: 

 penalizing the worst 10-15% observations or at 

least 5-10 bad points (whichever is higher) while 

giving a penalty value 0 to the best 30-40% or 

10-20 good points (whichever is higher);  

 plot the scatter of responses values in ascending 

(or descending) order and find by visual 

inspection two points where the curvature of the 

plot changes.  

 

In this case study the second rule is used (examination of 

the curvature of scatter plot), leading to a lower threshold 

value for the conchoidal fracture of  0% and upper 

threshold value of 10%. Any value between 0% and 10% 

is linearly scaled to give a corresponding penalty value 

between 0 and 100.  The scatter plot of responses with 

corresponding threshold values is shown in Fig. 9. 

 

Penalty values can be displayed in bubble diagrams to 

help process engineers to identify regions of desired, 

undesired and intermediate response values. Fig. 10 

shows scatter and bubble diagrams for %Ti.  

 

(a)

(b)  

In the bubble diagram (Fig. 10 (b)) the radius of the circle 

represents the corresponding Conchoidal Facture penalty 

value. The penalty values combined with Importance 

Scores described in Fig. 8 can help in estimating cost 

saving opportunities. From a visual inspection of the 

bubble diagram it can be found that values of %Ti below 

the median (0.011) are desirable since they are associated 

with low penalty values. A limitation of bubble diagrams 

is that, in the presence of overlapping observations, it 

might be difficult to find optimal regions. In this case the 

same data can be visualised using penalty matrices. 

 

In  penalty matrices rows correspond to five penalty bins 

(0-20, 20-40, 40-60, 60-80, 80-100) and columns 
Fig. 9- The scatter plot of responses shows the upper 
and lower thresholds for penalty values.  

Fig. 10 - Scatter (a) and bubble (b) diagrams for %Ti 
are shown in the picture.  



correspond to factor quartile ranges (Q1 to Q4). Using 

penalty matrices it possible to find optimal and avoid 

ranges based on quartiles.  An example of penalty matrix 

of Conchoidal Fracture for %Ti is shown in Fig. 11. 

 

 
 
Fig. 11 – The Penalty Matrix of Conchoidal Fracture for 
%Ti helps in identifying regions of desired and 
undesired response. It can be seen that Bottom 50%  
of %Ti (Q1 and Q2) is an optimal range since it has a 
high proportion of low penalty values. 
 

A study of this figure shows that nine data points lie in 

Bottom 50%  range (quartiles Q1 and Q2) with a penalty 

value of 0-20, four data points lie in Bottom 50% with a 

penalty value of 20-40 and one data point lies in Bottom 

50% with a penalty value of 80-100.  Bottom 50% range 

of %Ti corresponds to an optimal range since it has a 

higher proportion of response values with low penalties. 
 

This method can be further extended to analyze 

interactions between any two factors.  Fig. 12 shows 

respectively the bubble diagram and penalty matrix of 

interactions between %Carbon Drop and Ca/Al ratio. In 

the example, process conditions when Ca/Al ratio is in the 

Bottom 50% range (F1) and Carbon Drop in the Top 50% 

range (F2)  are considered optimal due to higher number 

of good batches (0-20 penalty values) compared to bad 

ones.  

 

STEP 4 - DEVELOP HYPOTHESES FOR NEW 
PRODUCT SPECIFIC PROCESS KNOWLEDGE  
 

The results of the analysis conducted with the Penalty 

Matrix approach are used during Quality Improvement 

meetings to develop new hypothesis on possible root 

causes of defects. This step is crucial for the 

implementation of the 7ε methodology. Although it may 

be perceived very similar to other process improvement 

approaches, 7ε recommends that hypothesis formulation 

does not happen only as a result of data driven analysis.  

 

 

Firstly correlations and patterns found using the Penalty 

Matrix approach needs to be prioritised. The calculation 

of penalty matrices for main effects (i.e. single factor) and 

interactions can become quite cumbersome in the 

presence of large number of factors. In the case study, the 

P-Matrix software (http://www.p-matrix.com) has been 

used to calculate penalty matrices. In addition the 

software provides strength values to prioritize 

optimal/avoid ranges. Another possible way of ranking 

strength is using Principal Component Analysis
1
.  

 

Following the study five factors have been identified as 

those that have a significant effect on the process 

response, namely the incidence of Conchoidal Fracture.  

These are: %Ti, %S, Mn/S Ratio, %Ca/%Al ratio and 

Carbon Drop. Also the following optimal ranges were 

found: 

 %Ti: 0.0009 to 0.011 

 %S: 0.007 to 0.009 

 Mn/S Ratio: 104 to 134 

 %Ca/%Al ratiox1000: 6.67 to 57.5 

 Carbon Drop: 47 to 84 

Q1 Q2 Q3 Q4

Minimum Median Maximum

0.0009 0.0075 0.011 0.0135 0.016

Q1 & Q2: Optimal; Range: Bottom 50%, [>=0.0009 & <=0.011];

Q1: Optimal; Range: Bottom 25%, {>=0.0009 & <=0.0075}; 

Q3 & Q4: Avoid; Range: Top 50%, [>0.011 & <=0.016]; 

Penalty Q1 Q2 Q3 Q4

80-100 1 4 5

60-80

40-60 4 2 3

20-40 2 2 1

0-20 6 3 2

Fig. 12 - Bubble diagram and penalty matrix can be 
used to find out optimal and avoid ranges due to 
interactions of two factors. Bottom50% of Ca/Al ratio 
(F1) and Top 50% of Carbon Drop (F2) is considered 
optimal. 

F1: %Ca/%Al ratiox1000, Range:Bottom 50%,[>=6.667 & <=57.5]; Strength: 1.5

F2: Carbon Drop, Range:Top 50%,[>47 & <=84]; Strength: 1.9

Strength of Optimal Interaction: 2.9

Penalty F1:F2 F1:¬F2 ¬F1:F2 ¬F1:¬F2

80-100 0 4 3 3

60-80 0 0 0 0

40-60 3 1 2 3

20-40 0 2 1 2

0-20 6 2 2 1



In addition, one avoid range was found: 

 %Ti: 0.011 to 0.016 

 

The optimal and avoid ranges are compared with trends 

found during the “knowledge refinement” phase (step 2) 

accessed via the knowledge repository. Causation is then 

inferred if the results of the analysis are supported by the 

knowledge base, otherwise it is suggested that 

correlations should be dropped. For example, the ranges 

for Carbon Drop, %P and %Ca/%Al ratio x1000 for the 

in-process data used in this case study are such that the 

individual correlations of each factor with Conchoidal 

Fracture are very weak however, the interactions of 

Carbon Drop and %P as well as Carbon Drop and  

%Ca/%Al ratio x1000 (Fig. 12) are relatively strong. The 

current literature, as well as the domain knowledge, does 

not support any relationship between Carbon Drop and 

%P that can jointly influence the occurrence of 

Conchoidal Fracture. As a result, this relationship is 

ignored. However, this is not true for the Carbon Drop 

and %Ca/%Al ratio relationship.  A minimum Carbon 

Drop of 30 points (preferably 50 points) is necessary to 

remove Nitrogen and Hydrogen from the melt. 

Conchoidal Fracture occurs due to the formation of 

Aluminium Nitride. Hence, it was decided to maintain 

higher Carbon Drop as suggested by the penalty matrix 

analysis.  

 
STEP 5 - INNOVATE USING ROOT CAUSE 
ANALYSIS AND CONDUCTING CONFIRMATION 
TRIALS 
 

Innovation is generated when new root causes that are 

supported by trends in the literature are found. Based on 

the results of previous phase, foundries are expected to 

determine the optimum ranges for all the process 

variables (Xs) and carry out confirmation trials to validate 

the hypothesis. In this case study only one Y, namely % 

Conchoidal fracture response or defect has been selected 

as a representative case study.  Foundries are expected to 

identify all the potential defects related to the parts they 

manufacture and determine the product specific process 

parameters that give sound castings.   

 
 
STEP 6 – CORRECTIVE ACTIONS AND UPDATE 
PROCESS KNOWLEDGE 
 

Upon successful completion of Confirmation Trials, the 

new knowledge obtained in the previous steps can be then 

be stored in tabular form and consists of a list of values 

with their new specifications. It must be noted that the 

new specification ranges are specific for a given part and 

process. The product specific process knowledge 

discovered as part of this case study is summarized in 
Table 2.  

 

The new knowledge acquired contributes to devise 

preventive and corrective action plans to achieve 

reduction of Conchoidal Fracture defects as required by 

ISO9001:2008 standard. Following a successful trial plan 

FMEA (Failure Mode Effect Analysis) tables are also 

updated to include the new specification ranges in the 

recommended action field. The updated FMEA table is 

shown in Fig. 13. 

 

In addition operators need to be trained on the new 

process specifications. The 7ε methodology also requires 

updating the knowledge base so that the new specification 

ranges can be stored and indexed for future use in the 7ε 

repository. 

 

STEP 7 – BUILD ASPIRING TEAMS AND 
ENVIRONMENTS BY MONITORING 
PERFORMANCE 
  
Once the new process specifications have been 

implemented, foundries must continually monitor the 

responses of defects so that continually improvement on 

the processes can be made to meet the requirements of 

ISO 9001:2008.  

 
Table 2 - Product specific process knowledge  

 

Sub-
Process 

Process 
Variable 

(CTQ) 

Specification 
Range 

Frequency 
of data 

collection 

Melting and 
Pouring 

Carbon 
Drop (X1) 

47-84 Every Heat 

Melting and 
Pouring 

% Sulfur 
(X7) 

0.007-0.009 Every Heat 

Melting and 
Pouring 

%Titanium 
(X15) 

0.0009-0.011 Every Heat 

Melting and 
Pouring 

Mn/S Ratio 
(X16) 

104-134 Every Heat 

Melting and 
Pouring 

%Ca/%Al 
Ratiox1000 

(X19) 
6.67-57.5 Every Heat 

 

  



 

 

KNOWLEDGE REPOSITORY 
 

The 7ε methodology introduces the concept of a 

knowledge repository to store and index foundry process 

knowledge. Typically during process improvement 

activities process engineers need to access proprietary 

foundry knowledge as well as knowledge from a variety 

of sources, including trade associations, academia or 

suppliers. This knowledge is usually scattered throughout 

the organisation or over the World Wide Web and 

knowledge retrieval can become a cumbersome task due 

to the lack of efficient retrieval methods.  

 

The 7ε repository provides a single entry point to access 

and re-use foundry knowledge. It also links product 

specific process knowledge discovered with data driven 

methodologies to generic foundry knowledge acquired by 

academia and trade associations. In order to demonstrate 

the knowledge repository concept a prototype system has 

been build. Although a detailed description of the 

technologies used for building the knowledge repository 

prototype system is outside the scope of this paper, a brief 

overview is given below.  

 

The 7ε repository has been developed by using DSpace, a 

web based open source software package to store and 

manage a wide range of digital content, including word 

processing files, pictures, videos and data files.  

 

 

DSpace is widely used by academia and it can perform 

searches using metadata or full text search. Metadata are 

description of items which are stored by the system and 

help to retrieve digital artefacts more efficiently. Secure 

access to the repository is provided using login 

credentials. Submission of papers or other documents to 

the repository is performed following a submission 

workflow which involves approval given by the 7ε 

Editorial Board before the digital item is made available 

to registered users. In addition to indexing of generic 

knowledge, the repository can be customised to securely 

store foundry specific knowledge which will then only be 

accessed within each foundry environment.  

New knowledge discovered through 7ε case studies can 

also be stored and made available for future projects. 

 

In order to improve search precision DSpace standard 

search capabilities have been enhanced by using the 

Controlled Vocabulary software adds-on that allows 

specifying metadata from a fixed taxonomy 
12

. In 

information technologies, taxonomies are hierachical 

calssifications of terms to describe concepts in a specific 

domain. They are typically used to enable efficent 

retrieval and sharing of knowledge.  As part of the 7ε 

repository a Foundry Taxonomy is being developed to 

enhance the retrieval of foundry knowledge. An overview 

of DSpace capabilities in provided in Fig. 14. 

 

Fig. 13- Failure Mode Effect Analysis (FMEA) is updated after the discovery of product specific process knowledge. 
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CONCLUSION  
 

A novel methodology, called 7ε, to support the 

implementation of ISO9001:2008 continual process 

improvement requirements is described in this paper. The 

7ε methodology addresses the “Technology Gap” in the 

foundry industry due to the lack of process knowledge. A 

concept of product specific process knowledge is 

introduced in this paper and this is defined as actionable 

information which consists of a list of factors and their 

optimal ranges to achieve well defined business 

objectives.  Compared to Six Sigma’s DMAIC process, 7ε 

adds an innovation layer by introducing a knowledge 

repository concept to re-use generic and product specific 

process knowledge created by foundries, academia, trade 

associations and suppliers.  

 

By means of an industrial case study it is demonstrated 

how the systematic implementation of the7ε steps to 

ERADICATE defects leads to improvements in managing 

foundry sub-processes and reducing existing level of 

losses due to scrap and rework.  Innovation is achieved 

when the product specific process knowledge discovered 

using a Penalty Matrix approach is supported by trends in 

the literature and confirmed during confirmation trials. 

 

Although the case study focuses only on reducing 

Conchoidal Fracture of a typical low alloy steel casting 

during Melting and Pouring process, it is expected that the 

format will be used by foundries across their sub-

processes to identify and reduce all types of defects. This 

paper provides a template for foundries to effectively 

implement the 7ε methodology not only to achieve 

compliance to ISO: 9001:2008 but also to assist foundries 

in becoming more profitable and less energy intensive 

organizations. 
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APPENDIX A 
Data on 35 different  heats analyzed during Step3. 

 

 


