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Abstract: We study a simple effective field theory incorporating six heavy vector bosons

together with the standard-model field content. The new particles preserve custodial sym-

metry as well as an approximate left-right parity symmetry. The enhanced symmetry of the

model allows it to satisfy precision electroweak constraints and bounds from Higgs physics

in a regime where all the couplings are perturbative and where the amount of fine-tuning

is comparable to that in the standard model itself.

We find that the model could explain the recently observed excesses in di-boson pro-

cesses at invariant mass close to 2 TeV from LHC Run 1 for a range of allowed parameter

space. The masses of all the particles differ by no more than roughly 10%. In a portion of

the allowed parameter space only one of the new particles has a production cross section

large enough to be detectable with the energy and luminosity of Run 1, both via its decay

to WZ and to Wh, while the others have suppressed production rates. The model can be

tested at the higher-energy and higher-luminosity run of the LHC even for an overall scale

of the new particles higher than 3 TeV.
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1 Introduction

Recent analyses of 8-TeV data by the ATLAS and CMS collaborations show a 2 − 3σ

excess in the production of high-mass, WW , WZ, ZZ as well as Wh pairs at about 2-

TeV invariant mass [1, 2]. Inspired by these tentative signals of resonant production, we

examine a simple effective field theory (EFT) that combines the standard model (SM) with

a minimal set of spin-one states at the 2-TeV scale. It describes the coupling of these states

to the longitudinal W and Z gauge bosons and the Higgs boson with a strength that can

range from electroweak upward, leading to total resonance widths ranging from tens of GeV

to a few hundred GeV. The coupling to the heavy states is then limited to a perturbative

range by precision measurements of standard-model parameters, for example the Higgs-W -

W coupling. This restriction, in turn, insures that the fine tuning required to keep the

Higgs mass light is no worse than in the standard model itself.

EFTs of this type have been examined before [3–5]. They can arise in various contexts,

including little-Higgs theories [6], extra-dimensional theories [7], and possibly walking tech-

nicolor theories [8] and theories of extended hidden local symmetry [9]. Here, we adopt a

minimalist approach: we focus on symmetric setup in which six new vector bosons fill out

a representation of a new SU(2)L′ × SU(2)R′ symmetry. We impose on the EFT a parity

symmetry broken only by the standard-model interactions and we introduce only a mini-

mal set of new couplings required to describe di-boson resonant behavior. This naturally

restricts the electroweak precision parameters to within current bounds. Higgs boson decay

widths remain in agreement with experiment provided that the coupling strength of the

new vector bosons is in the range for which we can reasonably trust perturbation theory.

We devote Sections 2–5 to introducing the model and deriving and discussing analyt-

ical expressions for the physically relevant quantities. In Section 2, we describe the EFT

including its mass parameters and couplings. In Section 3, we describe the constraints on

the couplings arising from the precision measurement of processes involving standard-model

particles. The decay widths of the new, heavy resonances are discussed in Section 4, and

the fine tuning required to maintain the Higgs mass at 125 GeV is described in Section 5.

In Section 6 we perform a numerical study of the properties of the model. In particular we

compute LHC production cross sections for the new resonances and show that the model

could explain excesses such as those possibly seen at LHC Run 1. We summarize and

discuss our findings in Section 7.

2 The Effective Field Theory

The ingredients of our EFT are listed in Table 1. The columns and the moose diagram at

the top correspond to the global symmetry group SU(2)L×SU(2)L′ ×SU(2)R′ ×SU(2)R×
U(1)B−L, in which the SU(2)L × SU(2)L′ × SU(2)R′ × U(1)Y subgroup is gauged. The

hypercharge Y = T 3+ 1
2 (B−L) is a combination of the T 3 generator of the SU(2)R group

and U(1)B−L. We write the gauge-boson field Bµ ≡ B3
µ[T

3 + 1
2(B − L)]. The gauge fields

of SU(2)L are Wµ ≡ W a
µT

a. The additional vector fields are Lµ ≡ LaµT
a and Rµ ≡ RaµT

a.

The normalization is Tr
[

T aT b
]

= δab/2.
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ΦL Φ ΦR

SU(2)L SU(2)L′ SU(2)R′

SU(2)L SU(2)L′ SU(2)R′ SU(2)R

U(1)Y

Fields SU(2)L SU(2)L′ SU(2)R′ SU(2)R U(1)B−L U(1)Y

ΦL 2 2 1 1 0 0

Φ 1 2 2 1 0 0

ΦR 1 1 2 2 0 ±1/2

qL 2 1 1 1 1/3 1/6

qR 1 1 1 2 1/3 1/6± 1/2

ℓL 2 1 1 1 −1 −1/2

ℓR 1 1 1 2 −1 −1/2 ± 1/2

Wµ 3 1 1 1 0 0

Lµ 1 3 1 1 0 0

Rµ 1 1 3 1 0 0

Bµ 1 1 1 ∗ 0 0

Table 1. Diagramatic representation and field content of the model. In the figure, the global

symmetries are on the top, the gauge symmetries on the bottom. The hypercharge is Y = T 3 +
1

2
(B − L), with T 3 the generator of the SU(2)R group. The fields ΦL, Φ and ΦR are complex

scalars, the quarks qi and leptons ℓi are Weyl spinors, while Wµ, Lµ, Rµ and Bµ are gauge bosons.

We complete the lepton doublet by adding right-handed neutrinos, which are singlets under all the

gauge symmetries and hence inert. The ∗ highlights the fact that we gauge only the U(1)Y subgroup

of SU(2)R ×U(1)B−L, which implies that the individual Bµ gauge boson transforms as incomplete

representation of SU(2)R. The presence of Bµ explicitly breaks the global SU(2)R symmetry.

The Lagrangian for the bosons, including operators up to dimension 4, is

Lb = +2gTrW µJLµ + 2g′TrBµJY µ (2.1)

− 1

2
TrWµνW

µν − 1

2
TrLµνL

µν − 1

2
TrRµνR

µν − 1

2
TrBµνB

µν

+
1

4
Tr|DΦL|2 +

1

4
Tr|DΦ|2 + 1

4
Tr|DΦR|2 − V (Φi) .

The field strength tensors are defined so that the gauge bosons are canonically normalized

and we denote with g, gL, gR and g′ the four gauge couplings. JLµ and JY µ are electroweak

matter currents bilinear in the SM fermion fields. Their mass terms will be discussed later.

The covariant derivatives for the scalars are

DµΦL ≡ ∂µ ΦL − i (gWµ ΦL − gL ΦLLµ) ,

DµΦ ≡ ∂µ Φ − i (gL Lµ Φ− gR ΦRµ) , (2.2)

DµΦR ≡ ∂µ ΦR − i
(

gRRµ ΦR − g′ ΦRBµ
)

.
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We write the potential for the scalars in the following way:

V =
λL
16

(

Tr
[

ΦLΦ
†
L − F 2

L I2

])2
+

λ

16

(

Tr
[

ΦΦ† − f2 I2

])2

+
λR
16

(

Tr
[

ΦRΦ
†
R − F 2

R I2

])2
, (2.3)

which means we do not include mixing terms in the potential between the scalars. These will

be loop generated, and potentially require fine tuning, but in the coupling-strength range

allowed phenomenologically this will be less than the amount of fine tuning we discuss in

Section 5.

Taking λL = λR, FL = FR ≡ F and gL = gR = gV , the EFT is left-right symmetric,

except for the weak gauging g and g′ of the SM groups SU(2)L and U(1)Y . The coupling

strength gV is a free parameter that we will allow to range from electroweak strength to

O(4π). The potential induces symmetry breaking at the scale F in the case of ΦL and ΦR,

at the scale f in the case of Φ, and consequently generates the electroweak scale vW ≃ 246

GeV.

The bifundamental Φ describes the Nambu-Goldstone bosons (NGBs) associated with

the scale f along with the physical Higgs particle h. The bifundamentals ΦL and ΦR
play a similar role with respect to the scale F . Altogether the NGBs provide longitudinal

components for all the gauge fields except for the massless photon. For simplicity, we take

λL = λR → ∞, freezing out the corresponding physical scalars and imposing the nonlinear

constraints ΦLΦ
†
L = F 2

I2 = ΦRΦ
†
R. In unitary gauge we replace ΦL = F I2 = ΦR and

Φ = (f + h) I2, with h the (real and canonically normalized) Higgs field.

The 4× 4 mass matrix for the neutral vector bosons in the basis (W µ, Lµ, Rµ, Bµ) is

M2
0 =

1

4











g2F 2 −ggV F 2 0 0

−ggV F 2 g2V (f
2 + F 2) −g2V f2 0

0 −g2V f2 g2V (f
2 + F 2) −g′gV F 2

0 0 −g′gV F 2 g′ 2F 2











, (2.4)

while the 3× 3 mass matrix M2
+ for the charged vectors can be obtained by removing the

last row and column.

The eigenvalue structure of the 3× 3 charged-vector mass matrix depends on the two

ratios g2/g2V and f2/F 2, where g ≈ 0.6. The lightest eigenvalue is fixed to be MW = 80.4

GeV and the next to lightest eigenvalue MV1 is taken to be at least of order 2000 GeV. In

this range, at least one of the two ratios g2/g2V or f2/F 2 must be small.

We next exhibit explicitly the mass eigenvalues of the charged sector. With some

abuse of notation, we denote the mass eigenstate W+ with the same symbol as the original

interaction eigenstate, though it results from mixing with the heavy vectors. In the regime

g ≪ gV the eigenvalues are given by the following relations:

M2
W+ ≃ 1

4
g2

f2F 2

F 2 + 2f2
, M2

V +

1

≃ 1

8
(2g2V + g2)F 2 ,

M2
V +

2

≃ 1

4
g2V (F

2 + 2f2) +
1

8
g2

F 4

F 2 + 2f2
, (2.5)
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and the heavy eigenstates for all charge assignments are given by V1 ≃ (L + R)/
√
2, and

V2 ≃ (L−R)/
√
2. In the regime f ≪ F , we find

M2
W+ ≃ 1

4

g2g2V
g2 + g2V

f2 , M2
V +

1

≃ 1

4
g2V (F

2 + f2) ,

M2
V +

2

≃ 1

4
(g2V + g2)F 2 +

1

4

g4V
g2 + g2V

f2 , (2.6)

where V +
1 ≃ R+ and V +

2 ≃ (gW+ − gV L
+)/
√

g2 + g2V .

For the neutral gauge bosons, in addition to the massless photon and Z boson, there are

two heavy states V 0
1 and V 0

2 with masses nearly degenerate with their charged counterparts

in the parameter range of interest. We exhibit here only an approximate expression for the

mass of V 0
1 , valid for f ≪ F :

M2
V 0
1

=
1

4

[

g2V (F
2 + f2) + g′ 2(F 2 − f2)

]

, (2.7)

where approximately V 0
1 ≃ (g′B − gVR

0)/
√

g′2 + g2V .

To describe fermion masses in our model, we note that the combination ΦLΦΦR trans-

forms as the Higgs field in the standard model. Hence we include the terms

Lf = − 1√
2F 2

q̄LΦLΦΦRtqqR − 1√
2F 2

ℓ̄LΦLΦΦRtℓℓR + h.c. , (2.8)

where tq =

(

yt 0

0 yb

)

, tℓ =

(

yτ 0

0 y3

)

and we show explicitly only the third standard-

model family. There are also fermion kinetic terms with covariant derivatives as dictated by

the quantum numbers of Table 1. Having imposed the nonlinear constraints on ΦL and ΦR
and working in unitary gauge, these terms yield directly fermion mass expressions such as

mt = ytf/
√
2 along with corresponding formulae for the bottom quark, τ lepton and third-

generation neutrino ν3. The relation between the VEV f and the electroweak scale will

be described in the next section. The generalization to three standard-model families with

CKM flavor mixing is straightforward. There remains one scalar field h in the spectrum

with mass m2
h = 2λf2, which we identify as the the particle discovered by ATLAS [10] and

CMS [11] with mass mh ≈ 125 GeV.

The fine-tuning necessary to stabilize the Higgs mass in the standard model remains an

issue also for the current model. After determining the allowed range of parameters in the

EFT, we conclude that the amount of fine-tuning needed is no worse than in the standard

model itself.

3 Bounds from Standard Model Processes

We first discuss constraints from electroweak precision measurements. We then turn to

constraints arising from the coupling of the Higgs boson to W pairs and from its decay to

two photons.
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Electroweak precision parameters can be discussed conveniently by examining the low-

energy EFT written in terms of new gauge fields V̄ i = (W̄ 1, W̄ 2, W̄ 3, B̄) and their propaga-

tors, obtained by expanding about q2 = 0 the two-point functions derived from Eq. (2.1).

We focus on the transverse polarizations of the gauge bosons and on the coupling to the

currents made of standard-model fermions:

L =
Pµν
2
V̄ i,µ(−q)π̄ij(q2)V̄ j,ν(q) + (3.1)

ḡ

2

[

W̄ i µ(q)JL i µ(−q) + W̄ i µ(−q)JL i µ(q)
]

+
ḡ′

2

[

B̄µ(q)JY µ(−q) + B̄µ(−q)JY µ(q)
]

,

where Pµν ≡ gµν − qµqν/q2. The π̄ij(q
2) functions can be expressed in terms of the

parameters g, g′, gV , f and F . For our purposes, we will retain their q2-dependence only

up to O(q2). We follow the conventions of Ref. [12], except that we rescale the gauge fields

(and the gauge couplings ḡ and ḡ′) such that π̄′33(0) = 1 = π̄′BB(0).

All the information we need for universal precision electroweak constraints is contained

in the functions π̄ij(q
2) [12]: our model falls into this universal class because of the charge

assignments of all the fields, in particular the fact that there are no direct couplings of

the SM fermions to the SU(2)L′ × SU(2)R′ gauge bosons. 1 The Ŝ parameter, related

to the S parameter by Peskin and Takeuchi [14] and the α1 parameter of the EW chiral

Lagrangian [15] as Ŝ = −ḡ2α1 = α
4 sin2 θW

S , is defined with these conventions as

Ŝ =
ḡ

ḡ′
π̄′3B(0) , (3.2)

where π̄′ indicates derivative of π̄ in respect to q2.

In the neutral sector, the function π̄(q2) can be extracted from the matrix-valued

functions π0(q2) ≡ q2 I4 − M2
0, written in the basis (W,L,R,B), by inverting π0(q2), by

retaining only the four corners of the result, by inverting again and finally by expanding

in small-q2. In the charged sector π+(q2) is obtained by restricting to the first 3 rows and

columns of π0(q2), and the analogous π̄+(q2) for the charged sector is obtained by inverting

the 11 element of 1/π+, and then again Taylor expanding in small-q2 and truncating at

O(q2).

We will impose the bound Ŝ < 0.0039. 2 The other universal precision parameters

are discussed elsewhere [12], and we expect them to be suppressed as long as gV >∼ 1.

For our purposes we need only to stress that the T parameter does not receive important

contributions, as the new gauge bosons preserve the SU(2)R custodial symmetry that is only

broken by g′ in the gauge sector (models in which custodial symmetry is not implemented

can also be considered, as for instance suggested in [16]).

1Generalizations of the model in which fermions couple directly to the new gauge bosons require a more

general formalism for electroweak precision physics [13].
2This is the 3σ bound for a light Higgs from [12], obtained in a global fit of all the precision parameters

that includes 1-loop corrections from loops of SM fields, h and top quark in particular. The bound has to

be taken as indicative since the loop-level analysis of SM radiative corrections, which must be included to

establish an experimental limit on Ŝ, will involve modified couplings.
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The result for the Ŝ parameter is

Ŝ =
2f2g2

(

f2 + F 2
)

gV 2 (2f2 + F 2)2 + g2 (2f4 + 2f2F 2 + F 4)
. (3.3)

Generically, this is O(1), but we have already noted that to accommodate the requirement

M
V +

1

>∼ 2000 GeV, we must take either g2 ≪ g2V or f2 ≪ F 2. For g2 ≪ g2V this becomes

Ŝ ≃ 2f2(f2 + F 2)g2

(2f2 + F 2)2g2V
, (3.4)

which can also be derived in an alternative way that we summarize in Appendix A, while

for f2 ≪ F 2 it becomes

Ŝ ≃ 2g2f2

(g2V + g2)F 2
. (3.5)

In either limit, the expressions for the Ŝ parameter can be combined with earlier ex-

pressions for the masses of the vector bosons, to conclude that throughout the parameter

space Ŝ <∼ 2M2
W /M

2
V1,2

. Thus for MV1,2
>∼ 2 TeV one finds Ŝ <∼ 0.003. This has to do with

the way in which we built the model itself: due to our set-up, all effects of new physics

are suppressed by O(M2
W /M

2
Vi
) coefficients. 3 The same applies to other coefficients of the

electroweak chiral Lagrangian at O(p4), for which the bounds are weaker [17].

From the expression for the charged π̄+(q2) we can extract the Fermi constant, GF /
√
2 ≡

1/(2v2W ), where vW ≃ 246 GeV is given by

v2W = lim
q→0

4

ḡ2
(

q2 − π̄+
)

=
f2F 2

F 2 + 2f2
. (3.6)

The low energy effective theory includes also the Higgs h. The coupling of the Higgs

to the fermions ψ is controlled by the fermion mass mψ

Lf = · · · − c
h

vW
mψψ̄ψ , (3.7)

related to the SM prediction by the factor

c ≡ vW /f . (3.8)

The coupling of h to two W bosons is rescaled with respect to the standard-model

coupling M2
W /vW by a multiplicative factor a. We find the approximate relations

a ≃







F 3

(F 2+2f2)3/2
= c3 , (g ≪ gV )

1 − (2g4+4g2g2V +3g4V )f2

(g2+g2V )2F 2 , (f ≪ F )
, (3.9)

3For the precision parameters W and Y defined in Ref. [12], for gV >
∼

1 we find the approximate relations

W ∼ g2/(4g2V )Ŝ and Y ∼ g′ 2/(4g2V )Ŝ, which make them further suppressed with respect to Ŝ.
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and analogous expressions hold for the coupling to two Z bosons. For any range of g/gV ,

there is significant suppression of the Higgs coupling to the W bosons, relative to the

standard model, unless f ≪ F . We impose this restriction, ensuring compatibility with

current data from ATLAS and CMS [19]. Then, as we will see in Section 6, maintaining a

fixed ratio MW /MV1 leads to an upper bound on gV .

A similar calculation yields the couplings a1 and a2 of the Higgs to the heavy vectors

V ±
1 and V ±

2 , all of which are suppressed. We do not report them here, but we find that

these coefficients satisfy the sum rule a + a1 + a2 = c. This allows us to write the decay

rate of the Higgs to two photons approximately as

Γ(h→ γγ) =
GFα

2m3
h

128
√
2π3

∣

∣cAt(τt)NcNfQ
2 + aAW (τW ) + (c− a)AW (0)

∣

∣

2
, (3.10)

where At(τt) ≃ 1.38, AW (τW ) ≃ −8.3, and AW (0) = −7. The three terms represent the

contribution of the top loop (which implies Nc = 3, Nf = 1 and Q2 = 4/9), of the W loops

and the loops of heavy charged vectors, respectively. For a = c = 1 this is the SM rate.

4 Decay Processes of Heavy Vectors

We take the masses of the heavy vector bosons of our EFT to be at least as large as

suggested by the ATLAS and CMS di-boson excesses [1, 2]. Depending on parameter

values, the masses of the six particles can be well split or nearly degenerate. In either case

the dominant decays will be two-body, to either a pair of SM fermions or a pair of SM

bosons. To determine the fermionic decay width of the charged vector states, we start from

the full π+(q2) matrix function in the (W,L,R) basis of our EFT, and make use of the

replacement
(

1

q2 −M2
W

)

SM

→
(

1

π+(q2)

)

WW

(4.1)

≡ 4
(

F 2g2V − 4q2
) [

g2V
(

2f2 + F 2
)

− 4q2
]

f2g2V
[

−g2g2V F 4 + 8F 2q2
(

g2 + g2V
)

− 32q4
]

+ 4q2
(

F 2g2V − 4q2
) [

F 2
(

g2 + g2V
)

− 4q2
] ,

≃ rW
q2 −M2

W

+
r
V +

1

q2 −M2
V +

1

+
r
V +

2

q2 −M2
V +

2

, (4.2)

in the relevant amplitude. The residues are approximately given by the following expres-

sions, valid for g ≪ gV :

rW ≃ 1 − g2

g2V

[

1− 2f2(f2 + F 2)

(2f2 + F 2)2

]

, rV +

1

≃ g2

2g2V
, rV +

2

≃ g2F 4

2g2V (2f
2 + F 2)2

, (4.3)

while in the limit f ≪ F we have

rW ≃ g2V
g2V + g2

+
2f2g2g4V

F 2(g2 + g2V )
3
, rV +

1

≃ g2V f
4

g2F 4
, rV +

2

≃ g2

g2V + g2
− 2f2g2g4V
F 2(g2 + g2V )

3
.(4.4)

Both satisfy the sum rule 1 = rW + rV +
1

+ rV +
2

. These approximations have to be used

carefully: the two limits do not commute, as for instance taking the g → 0 limit of the

second set of approximations would yield an incorrect result.
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The partial width of the charged gauge bosons into standard-model fermions can be

obtained directly from the corresponding width of the W boson, with three modifications:

the mass of the gauge bosons has to be replaced, the coupling is suppressed by
√
rV , and all

heavy fermions have to be included. The result for the decay of the charged heavy vectors

to e+νe is

Γ
(

V +
1,2 → e+νe

)

= rV +

1,2

g2M
V +

1,2

48π
, (4.5)

and the total decay rate to SM fermions is Γ
(

V +
1,2 → ψ′ψ̄

)

= 3(1 +Nc)Γ
(

V +
1,2 → e+νe

)

.

In the case of the neutral vectors, the analogue of Eq. (4.1) involves mixing matrices. We

do not report the details, but we perform an exact numerical study later in the paper.

Because the masses of all the new spin-one states are much larger than the masses of

the electroweak gauge bosons, the Goldstone boson equivalence theorem applies. Decay

rates involving W and Z are dominated by the contribution of the longitudinally polarized

particles, while we neglect the contribution of transverse polarizations. In a somewhat

similar manner, the fact that the Higgs particle has a mass at least 15 times lighter than the

new spin-one states means that decay rates involving the Higgs particle can be computed

(at leading order) by setting f = 0. For these reasons we estimate the di-boson decay

rates with f = 0, so that the relatively small amount of electroweak symmetry breaking is

neglected.

The electroweak bosons in this limit are massless, and we reinstate all the degrees of

freedom of Φ. We write

Φ =

(

h0 + ih3 ih1 + h2
ih1 − h2 h0 − ih3

)

, (4.6)

with canonically normalized, real hi. The couplings of the neutral, heavy spin-one states

to the scalars are

Lb = · · · + gV√
2

[

R3 + L3

√
2

(h1∂h2 − h2∂h1) +
R3 − L3

√
2

(h0∂h3 − h3∂h0) + · · ·
]

. (4.7)

In these approximations, the partial width (at leading order in f ≪ F ) is given by

Γ(V +
1 → di-bosons) ≃ g2V

96π
MV +

1

. (4.8)

For the other vector bosons, even in the f = 0 limit we must retain the mixing due to the

gauge couplings, and find accordingly that

Γ(V + , 0
2 → di-bosons) ≃

(

g2V
g2V + g2

)

g2V
96π

M
V

+,0
2

, (4.9)

for both the charged and neutral vectors, and for the neutral state V 0
1

Γ(V 0
1 → di-bosons) ≃

(

g2V
g2V + g′ 2

)

g2V
96π

MV 0
1
. (4.10)

When the mass splitting is large enough, there exist also decays of the type V2 →
V1 + h,X, where X is a SM gauge boson. These decays contribute negligibly to the total

width.
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5 Fine Tuning

Before presenting phenomenological and numerical estimates, we discuss briefly the amount

of fine tuning intrinsic to our model. As with any EFT, this discussion can provide only

general guidance on the issue of fine tuning and the scale of new physics. A specific UV

completion could modify the discussion. Nevertheless, an EFT-based discussion has the

virtue of generality and it reveals some interesting features. The tree-level scalar potential

reproduces the standard model. The general form of the one-loop potential in the external

field language is

V1 =
Λ2

32π2
ST rM2 +

1

64π2
ST r

[

(M2)2
(

ln
M2

Λ2
+ ci

)]

, (5.1)

where Λ is the UV cutoff, ST r is a trace in which fermionic degrees of freedom have negative

weight, M2(h) is the second derivative of the interaction part of the Hamiltonian, evaluated

for general h, and ci are scheme-dependent and field-dependent constants.

In the standard model, the dominant quadratically divergent part of the potential

contributes to the Higgs mass [18]

∆m2
h(SM) =

Λ2

32π2

[

3

2
(3g2 + g′ 2) +

6m2
h

v2W
− 24m2

t

v2W

]

+ · · · . (5.2)

For mh ≃ 125 GeV, and Λ ≃ 10 − 30 TeV, this results in |∆m2
h| ≃ 2.5 − 25 TeV2. This

necessitates a counter-term chosen with fine-tuning Z ≡ |m2
h/∆m

2
h| ≃ 0.006 − 0.0006.

In our model, for f ≃ vW :

∆m2
h ≃ Λ2

32π2

(

9g2V +
6m2

h

v2W
− 24m2

t

v2W

)

+ · · · . (5.3)

Notice that g and g′ do not appear at this order, while they do in the log-divergent and

finite corrections.

A comparison of these two expressions reveals that for gV ≃ g, the magnitude and

sign of required fine tuning are the same. For larger gV , the possibility of some accidental

cancellation with the top-quark term arises in our EFT. It would be almost exact for

gV ≃ 1.05. For the range gV ≥ 2.0, to emerge from our phenomenological study in the

next section, the first term in Eq. (5.3) dominates, reversing the sign of the quadratically

divergent contribution to ∆m2
h. For gV not too far above 2.0, the magnitude of the required

fine tuning is approximately the same as in the standard model.

6 Phenomenology and Numerical Study

We first look at the constraints on the model from precision electroweak physics and from

the properties of the Higgs particle, and then at the signatures of the new particles in direct

searches at high energies. We are mostly interested in the regime f ≪ F , in which limits

from electroweak precision tests are satisfied, in which the Higgs couplings are close to the

standard model ones, and in which fine-tuning is at a comparable level with the standard

model.
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Figure 1. Mass spectrum (in GeV) of the heavy vector bosons in the model, as a function of gV ,

for the choices of parameters discussed in the text. The left panel shows the masses for µ = 1.8

TeV, the right panel for µ = 3.0 TeV. The blue continuous curves show the mass of V ±

1 , the black

dashes line the mass of V ±

2 , the green continuous lines show the mass of V 0
1 and the red dot-dashed

line the mass of V 0
2 .

There are five parameters, g, g′, gV , f and F . We keep fixed the indicative scale of

the new particles µ ≡ 1
2gV F . For each choice of gV we then use Eq. (3.6), together with

the exact diagonalization of the mass matrices in order to fix the parameters f , g and g′ so

that we reproduce the standard model values MW ≃ 80.4 GeV, MZ ≃ 91.2 GeV, vW ≃ 246

GeV. With all of this in place, all the new physics depends on only one parameter, namely

gV . In the following, we make two representative choices µ = 1.8 TeV and µ = 3.0 TeV.

We compute the spectrum by diagonalizing numerically the mass matrices. The results

are shown in Fig. 1. Notice that V ±
2 and V 0

2 are so close in mass that they appear as just

one line (the heaviest mass). Their masses come close to the masses of the lighter V1 bosons

for intermediate values of gV , but differ substantially both for large gV and small gV . While

for large gV one can choose f and F to be of similar order, when gV becomes smaller one

is forced towards the f ≪ F limit in which the masses of V1 and V2 become degenerate.

But having kept µ fixed, as well as having imposed the requirement that the light masses

agree with the standard-model bosons, the limit of small gV is a limit in which the explicit

breaking of the left-right symmetry due to the g and g′ couplings is enhanced.

The mass of V ±
1 is approximately degenerate with V 0

1 for large gV , but the degeneracy is

lifted at small gV . This charged-neutral splitting is due to the fact that the diagonalization

of the mass matrix for the neutral vectors differs by effects that are controlled by the g′

coupling. These effects are hence negligible when gV ≫ g′, but are enhanced when gV is

small.

6.1 Constraints from Indirect Searches

For the electroweak precision parameter Ŝ, we use Eq. (3.3), and we show the results in the

top left panel of Fig. 2. We also look at the couplings of the Higgs h, making use of the

exact result for c = vW /f and numerical results for a.

The measurements of cross sections times decay rates of processes involving the Higgs

place important bounds on our model parameter space. The processes in which a Higgs
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Figure 2. Bounds from indirect searches. The top left panel show Ŝ as a function of gV , and for

the choices of parameters described in the text (in black). The top right panel shows µγγ for the

same choices of parameters and the last panel shows µWW . The continuous lines are for µ = 1.8

TeV, the dashed lines for µ = 3.0 TeV. In all plots we compare to the 3σ (red) and 2σ (red long

dashing) indicative bounds discussed in the text.

decays to W bosons or photons are particularly important. To derive these bounds, we look

at the signal strength as measured by the ATLAS and CMS collaborations in Run 1. The

signal strength µi is defined as the number of observed events of a given type i, normalized

relative to the prediction from the standard model computed with Higgs mass 125 − 126

GeV. Thus µi = 1 indicates perfect agreement with the standard model. The use of the

signal strength originates from the fact that the combined 2-parameter fits in [19], cannot

be used, as our expression for the h→ γγ rate contains contributions from the heavy vector

bosons, which are absent in the combination done by the experimental collaborations.

We compare the signal strength µγγ to the weighted average of the signal strengths

measured by CMS and ATLAS, that we find to be µγγ = 1.13± 0.17 from [19], by making

use of the rough approximation

µγγ ≃ c2

0.75 c2 + 0.25 a2
Γ(h→ γγ)

Γ(h→ γγ)SM
, (6.1)

together with Eq. (3.10).

This approximation for h → γγ has the following origin (see also Appendix B). The

factor of c2 arises from the fact that the dominant production cross section comes from

gluon-gluon fusion (ggF ), in which the coupling of the Higgs particle to the gluons is due
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to a loop of top quarks. The coupling of the Higgs to top quarks is suppressed in our model

by a factor of c with respect to the standard model. The denominator is an approximation

of the rescaling of the total width of the Higgs particle in our model: neglecting the small

contribution from γγ itself. For mh ∼ 125 GeV in the standard model the branching ratio

(BR) is approximately 75% in bb, cc, ττ and gg, all of which are suppressed as c2, while 25%

comes from decays into WW ∗ that are suppressed by a2 with respect to the standard model,

together with a smaller ZZ∗ fraction, suppressed in a similar way. Finally the ratio of the

γγ rate with respect to the standard model has been discussed earlier in the paper. Here

and in the following c and a are computed numerically, without any of the approximations

we discussed in Section 3.

Finally, we compare the signal strength µWW to the weighted average of CMS and

ATLAS µWW = 1.07 ± 0.15 from [19], by making use of the rough approximation

µWW ≃ c2a2

0.75 c2 + 0.25 a2
. (6.2)

The results of both analysis are shown in Fig. 2, from which we deduce the bound

gV <∼ 4.2 at 3σ. The behavior of the curves follows from the fact that for f/F → 0 our

EFT coincides with the standard model. In this limit f → vW and hence c = 1. Because

we keep µ = 1
2gV F fixed, this is the limit in which gV becomes small. By contrast, taking

gV large for fixed µ means lowering F to the point where the modifications of the Higgs

couplings become large, conflicting with the experimental bounds.
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Figure 3. The total widths (in GeV) of the charged particles V ±

1
(blue), V ±

2
(black). V 0

1 (dashed,

green) and V 0
2 (dashed, red). The left panel shows µ = 1.8 TeV, the right panel µ = 3.0 TeV.

6.2 Direct Searches

We next study the strength of the coupling to the currents JL and JY . We do so by

numerically computing the residues at the poles in the propagators for charged and neutral

gauge bosons, as in Eq. (4.1). The results affect the production cross sections, as well as

the partial widths of the particles. We do not report these intermediate results, except for

commenting on the fact that we checked explicitly that the couplings of the physical W and
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Z bosons reproduce the standard-model values, within the accuracy required by precision

physics.

The widths of the heavy particles are shown in Fig. 3. The total widths include all

the di-boson channels (computed with the equivalence theorem in Section 4) as well as the

decay to all standard-model fermion pairs. The total widths range from tens of GeV to

100 − 200 GeV. Because the width of the neutral particles is close to that of their charged

partners, we focus our attention on the charged particles in this discussion. The width of the

V +
1 decreases as gV is reduced for two reasons. Firstly, its bosonic width is proportional

to g2V . Secondly, in the small gV limit, the quantity f/F becomes small, and the V +
1

becomes predominantly the R+ state, as discussed in Section 2. Its coupling to fermion

pairs is suppressed by the factor rV +

1

shown in Eq. (4.4). The bosonic width of the V +
2 also

decreases with gV but then the width to fermion pairs kicks in. The mass eigenstate V +
2

becomes a linear combination of L+ and W+ in this limit, and its fermionic width is not

suppressed. This can be seen from the factor rV +

2

in Eq. (4.4). As a result, the width of

V +
2 has a minimum around gV ≈ 1.5.
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Figure 4. Branching fractions for µ = 1.8 TeV. Top to bottom, left to right, the branching ratios

of V 0
1 , V 0

2 , V +

1 and V +

2 .

To provide more detail, we next look at the branching ratios of all the heavy particles,

including the neutral ones, in Fig. 4 for µ = 1.8 TeV. The branching fractions for µ = 3

TeV have similar behavior and we do not show them. The suppressed branching fractions
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of the heavy neutral and charged V2 particles to V1 particles and SM bosons have not been

included in Fig. 4. For the V +
1 , the di-boson channels dominate the decay width throughout

the exhibited gV range due to the suppressed coupling to standard model fermions discussed

above. For the V 0
1 , the standard-model fermion channel is generally suppressed but becomes

comparable to the di-boson channel for very small gV . The reason is that in this limit the

V 0
1 becomes a linear combination of R0 and B, both of which couple to SM-fermion pairs

with electroweak strength. For both the V 0
2 and V +

2 , which become linear combinations of

L and W in the small-gV limit, the SM-coupling to the fermions is somewhat stronger than

for the V 0
1 , so these modes dominate below gV ≈ 1.5. Each of these features has important

consequences for the various production cross sections.
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Figure 5. Production cross sections in Drell-Yan processes for the heavy vector bosons in pp

collisions at 4 + 4 TeV, for µ = 1.8 TeV (top left) and at 6.5 + 6.5 TeV for µ = 1.8 TeV (top right)

and µ = 3.0 TeV (bottom).

In Fig. 5, we show the Drell-Yan (DY) production cross sections for the six heavy

particles at both 8 TeV and 13 TeV at the LHC. The MSTW 2008 PDFs [20] have been

used in our numerical calculations with the renormalization scale chosen to be the reso-

nance mass. Following the strategy in [21], we have checked that the vector-boson-fusion

(VBF) production cross sections are relatively suppressed, always below 1 fb, throughout

the parameter range. In the pp collisions of the LHC, the negatively charged particles,

which otherwise have the same properties as the positively charged ones, have smaller DY

production cross sections. In the parameter range gV . 3, where f ≪ F , the production

of the V ±
1 is strongly suppressed relative to the V2. The reason is that V ±

1 ≈ R± in this
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range, and is therefore not directly coupled to the quarks. At 8 TeV, the production of the

V 0
1 is also suppressed relative to the V2 due to the smallness of the neutral EW coupling

relative to the charged EW coupling.
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Figure 6. Cross section times branching fractions for the heavy particles, for µ = 1.8 TeV for

the 8 TeV LHC. The top-left panel shows V 0
1 , top-right shows V 0

2 , bottom-left shows V +

1 and the

bottom-right panel shows V +

2 .

In Fig. 6, we show cross sections times branching fractions for the case µ = 1.8 TeV,

for 8 TeV at the LHC. Results are shown for the V +
2 , which has the largest production

cross section for much of the gV range, as well as for the V 0
2 , V 0

1 and V +
1 . First of all, by

requiring that the cross section for pp → V +
2 → e+νe is bounded by σ × BR <∼ 0.5 fb [22],

we deduce the approximate bound gV >∼ 2. Similarly, by requiring that the cross section for

pp → V 0
2 → e+e− is bounded by σ × BR ≤ 0.2 fb [23], we deduce the approximate bound

gV >∼ 1.6.

We conclude that for µ = 1.8 TeV, the bounds from standard-model processes and from

direct searches involving new spin-one particles are satisfied provided that the coupling gV
is in the range

2.0 <∼ gV <∼ 4.2 , (6.3)

with the lower bound being a 95% bound from direct searches, and the 3σ upper bound

coming from pp → h → WW . The bounds on the Ŝ parameter are always satisfied at the

3σ level. We note that this allowed coupling range broadly agrees with the range emerging

from a fit performed in Ref. [24] in the context of W ′ models.
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In our allowed parameter range, and with µ = 1.8 TeV, the mass of the V2 is 1.9− 2.0

TeV while the mass of the V1 is close to 1.8 TeV. Despite the relative heaviness of the V +
2 ,

it is its production and subsequent decay to WZ and Wh that could be prominent enough

to explain the observed excess in Run 1 of the LHC, at least for gV near the lower end of

the above range gV ≃ 2. The cross section times branching ratio in these two cases is 6− 7

fb and 10 fb respectively (see also the model-independent analysis in [25, 26]). The fact

that this particle is degenerate with the V 0
2 and V −

2 yields a modest enhancement in these

events. By contrast, for small gV , the production of the V 0
1 and V ±

1 followed by di-boson

decay is too small to be observable in Run 1 of the LHC.
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Figure 7. Cross section time branching fractions for the heavy particles, for µ = 1.8 TeV at the 13

TeV Run 2 at LHC. Top-left panel shows V 0
1 , top-right panel shows V 0

2 , bottom-left panel shows

V +

1 and bottom-right panel shows V +

2 .

Despite the fact that we have introduced six new vector bosons, for gV in the lower part

of the allowed range only the heaviest, positively charged one is actually observable with

the energy and integrated luminosity of Run 1 at the LHC. Its coupling being relatively

weak, this particle resembles a heavy W ′ proposed in other contexts [24, 25, 27]. The main

difference is that we predict the existence of five additional particles. In particular, the three

V1 particles have a mass that is 100 to 200 GeV smaller, and might have escaped detection

because of suppressed couplings to SM fermions and hence suppressed production rates.

On the other hand, for larger allowed values of gV , for example gV & 3, both V +
1 →W+Z

and V +
2 → W+h have cross-section times branching ratios around 4 fb, and hence might
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provide a different, more conventional, explanation for the currently observed anomalies.

A distinctive feature of our model is that the new vectors couple to the SM fermions

only via mixing with SM gauge bosons, as explained earlier. As a consequence, all the

new charged vectors couple only to left-handed fermionic currents. This is atypical for W ′

models. The coupling of the neutral heavy vectors to the SM fermions depends on the

value of gV . For the smallest allowed values, the V 0
2 couples predominantly to left-handed

fermionic currents and the V 0
1 couples to a left-right admixture.

In Fig. 7, we show the product of production cross section times branching ratio for

the new particles with µ = 1.8 TeV, but in collisions at 13 TeV. For large enough integrated

luminosities, all the particles become visible, including V +
1 and V 0

1 . At the time in which

we are editing this paper, the LHC collaborations are in the process of collecting data at

13 TeV center-of-mass energy: once their combined searches in leptonic as well as di-boson

final states are published, it will be possible to draw exclusion regions in the (gV , µ) plane,

and test the viability of the present model.

7 Discussion

Motivated by tentative signals from the ATLAS and CMS experiments [1, 2] for high-mass

resonant production of WW , WZ, ZZ and Wh pairs, we have developed a simple effective

field theory that extends the standard model to include new vector resonances. A set of

additional SU(2)L′ × SU(2)R′ gauge fields is included, preserving custodial electroweak

symmetry in the new sector. The ingredients and structure of the EFT are shown in

Table 1. The standard model sector of the EFT is described by the usual parameters:

gauge couplings g and g′, an electroweak-scale VEV f , and fermion Yukawa couplings. In

addition, a left-right symmetric gauge coupling gV and a vacuum expectation value F ≫ f

characterize the new sector.

The structure of the EFT is explored keeping fixed the electroweak gauge-boson masses,

the electroweak VEV vW ≈ 246 GeV, and the characteristic scale of new physics. This we

take to range upward from the 2 TeV scale suggested by the ATLAS and CMS excesses. For

each choice of this scale, the structure of the EFT then depends on one parameter, which

we take to be gV . It can a priori range from electroweak strength up to O(4π) where the

new gauge bosons are strongly coupled. As gV /g increases, the ratio F/f must decrease to

keep fixed the scale of new physics µ = gV F/2. With this scale taken to be approximately

2 TeV, it turns out that at least one of the two conditions f/F ≪ 1 or g/gV ≪ 1 must be

met. Standard model precision physics, in particular the coupling of the Higgs boson to

the W± then restricts the value of gV to the range gV . 4.2. By contrast, direct searches

in leptonic channels lead to a lower bound gV & 2.0, for µ = 1.8 TeV, in order to suppress

adequately these branching fractions.

In the allowed region of parameter space, the model exhibits approximate parity dou-

bling, in the sense that all the new vector bosons have masses that differ by no more than

100 − 200 GeV, and similar widths. Furthermore, for gV in the lower part of the range

shown in Eq. (6.3), the heaviest charged resonance V +
2 has a production cross section and

di-boson branching fraction that could account for both the anomalies reported by ATLAS
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and CMS, while lighter new particles, in particular the V ±
1 , have a suppressed production

cross section, putting them below observability at the LHC Run 1. By contrast, for gV & 3

the process pp → V +
2 → Wh and pp → V +

1 → WZ might separately be observable. These

features of the model lead to the exciting prospect that future LHC exploration at higher

energy and luminosity could reveal a rich phenomenology of heavy vector states.

To conclude, the model proposed and studied here is a simple representation of new

physics that could arise at higher mass scales, such as the 2-TeV scale already accessible in

Run 1 of the LHC. There, some possible excesses have been reported, and future studies

in the 13 TeV Run 2 of the LHC could be even more interesting. The model could also

describe new physics accessible only at these higher energies. We have used the mass scale

3 TeV in our model as an example of this. There, some of the bounds imposed on the

parameters of our model would become weaker. Whatever the intrinsic scale of our model,

it could originate microscopically in a variety of ways. While the coupling gV is constrained

to be relatively weak in our 2-TeV model, the underlying dynamics could be weakly coupled

or strongly coupled, even at experimentally accessible energies.
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A Relation to Weinberg Sum Rules

The approach described here is in line with that often followed in the context of dynamical

electroweak symmetry breaking. This amounts to computing current-current correlation

functions in the new strongly-coupled sector responsible for electroweak symmetry breaking,

and relating this to the propagators of the electroweak gauge bosons by assuming that the

SU(2)L×U(1)Y gauge group is a subgroup of the symmetry group of the new sector. This

maps onto our framework in the limit g ≪ gV , where V1 ≈ (L+R)/
√
2, V2 ≈ (L−R)/

√
2,

and the new gauge-boson coupling is relatively strong.

A familiar expression for the S parameter in the Weinberg-sum-rule context is

S ≡ 4π
∑

(

f2ρ
M2
ρ

− f2a1
M2
a1

)

, (A.1)

where the sum is over all heavy spin-1 bosons, Mρ and Ma1 are the masses of the vector

and axial-vector resonances, respectively, while fρ and fa1 are their decay constants.
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In terms of Σ+ (the current-current correlation function of the theory with g = 0 = g′)

we find

Σ+ ≡ F 2 +
M2
ρ f

2
ρ

2(q2 −M2
ρ )

+
M2
a1
f2a1

2(q2 −M2
a1
)
, (A.2)

where one can explicitly show that

M2
ρ =

1

4
g2V F

2 , M2
a1

=
1

4
g2V (F

2 + 2f2) , f2ρ =
F 2

2
, f2a1 =

F 4

2(F 2 + 2f2)
. (A.3)

The first and second Weinberg sum rules follow :

f2a1 − f2ρ = − f2F 2

F 2 + 2f2
= −f2π , (A.4)

M2
a1
f2a1 − M2

ρf
2
ρ = 0 . (A.5)

The pion decay constant is defined in the body of the paper limq→0Σ
+ = f2F 2

F 2+2f2
= f2π ,

where we identify it with the electroweak scale fπ = vW = 246 GeV. Notice that this

relation is actually exact, and does not rely on taking g = 0.

Using the above expressions, the Ŝ parameter becomes:

Ŝ ≡ 1

4
g2

(

f2ρ
M2
ρ

− f2a1
M2
a1

)

=
g2

g2V

2f2(F 2 + f2)

(F 2 + 2f2)2
, (A.6)

in agreement with Eq. (3.4), appropriate for the limit g, g′ ≪ gV .

B Indirect Bounds from Higgs Physics

All the production and decay rates of the Higgs boson are affected by the way in which

the couplings to the SM fields are suppressed in our model. We saw that the coupling to

fermions is suppressed by the coefficient c = vW /f . This suppression in turns affects the

hgg coupling to the gluons that is responsible for the main contribution to the production

cross-section of the Higgs particle,

σ(gg → h) = c2σ(gg → h)SM , (B.1)

as well as the associated production with top quarks:

σ(pp → htt̄) = c2σ(pp→ htt̄)SM . (B.2)

The same coupling c affects the decay rates into SM fermions, as well as gluons (via the

top loop):

Γ(h→ ψψ̄) = c2 Γ(h→ ψψ̄)SM , (B.3)

Γ(h→ gg) = c2 Γ(h→ gg)SM . (B.4)
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The coupling to SM weak gauge bosons is suppressed by the factor a. It affects the

production cross section of processes involving electroweak gauge bosons, such as vector-

boson fusion and associated production with electroweak gauge bosons V =W,Z

σ(pp→ hjj) = a2σ(pp→ hjj)SM , (B.5)

σ(pp→ V h) = a2σ(pp→ V h)SM . (B.6)

It also affects the decay to pairs of electroweak gauge bosons:

Γ(h→WW ∗) = a2 Γ(h→WW ∗)SM , (B.7)

and an analogous formula for ZZ∗.

Finally, the h → γγ process is additionally affected by the Higgs coupling to heavy

vectors, loops of which contribute to the h → γγ amplitude. In the standard model the

rate is dominated by the contribution of loops of heavy particles:

Γ(h→ γγ)SM =
GFα

2m3
h

128
√
2π3

∣

∣At(τt)NcNfQ
2 + AW (τW )

∣

∣

2
, (B.8)

where Nc = 3, Nf = 1 and Q = 2/3 descend from the contribution of top loops, with

τt = m2
h/(4m

2
t ) and

At(τt) =
2

τ2t

[

τt + (τt − 1)arcsin2
√
τt

]

. (B.9)

The contribution of W loops is controlled by

AW (τW ) = − 1

τ2W

[

2τ2W + 3τW + 3(2τW − 1) arcsin2
√
τW

]

, (B.10)

with τW = m2
h/(4M

2
W ). Notice that AW (τW ) ≃ −8.3, while AW (0) = −7. In our model,

the rate is

Γ(h→ γγ) =
GFα

2m3
h

128
√
2π3

∣

∣cAt(τt)NcNfQ
2 + aAW (τW ) + (c− a)AW (0)

∣

∣

2
, (B.11)

where besides the modifications of the couplings to the top and photon, we include the

loops of the two charged heavy vectors, and take the limit MV1,2 ≫ mh. The couplings

satisfy a1 + a2 = c− a.

The contribution of the di-photon channel to the total width is negligibly small. In

the standard model the BR to WW ∗ or ZZ∗ sum up to approximately 25%, while the

remaining 75% comes primarily from bb, cc, ττ and gg, meaning that in our model the total

width scales as

Γ

ΓSM
≃ 0.75 c2 + 0.25 a2 . (B.12)

– 21 –



References

[1] G. Aad et al. [ATLAS Collaboration], arXiv:1506.00962 [hep-ex].

[2] CMS Collaboration [CMS Collaboration], CMS-PAS-EXO-14-010.

[3] See for instance E. Accomando, L. Fedeli, S. Moretti, S. De Curtis and D. Dominici, Phys.

Rev. D 86, 115006 (2012) [arXiv:1208.0268 [hep-ph]], and references therein, in particular

E. Accomando, S. De Curtis, D. Dominici and L. Fedeli, Phys. Rev. D 79, 055020 (2009)

[arXiv:0807.5051 [hep-ph]].

[4] K. Lane and A. Martin, Phys. Rev. D 80, 115001 (2009) [arXiv:0907.3737 [hep-ph]].

[5] K. Lane and L. Prichett, arXiv:1507.07102 [hep-ph]; M. Low, A. Tesi and L. T. Wang, Phys.

Rev. D 92, no. 8, 085019 (2015) [arXiv:1507.07557 [hep-ph]]; D. B. Franzosi, M. T. Frandsen

and F. Sannino, Phys. Rev. D 92, 115005 (2015) doi:10.1103/PhysRevD.92.115005

[arXiv:1506.04392 [hep-ph]].

[6] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B 513, 232 (2001)

[hep-ph/0105239]; N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, T. Gregoire and

J. G. Wacker, JHEP 0208, 021 (2002) [hep-ph/0206020]; N. Arkani-Hamed, A. G. Cohen,

E. Katz and A. E. Nelson, JHEP 0207, 034 (2002) [hep-ph/0206021]; I. Low, W. Skiba and

D. Tucker-Smith, Phys. Rev. D 66, 072001 (2002) [hep-ph/0207243]; H. C. Cheng and

I. Low, JHEP 0309, 051 (2003) [hep-ph/0308199]. For a review see also M. Perelstein, Prog.

Part. Nucl. Phys. 58, 247 (2007) [hep-ph/0512128].

[7] T. Appelquist, H. C. Cheng and B. A. Dobrescu, Phys. Rev. D 64, 035002 (2001)

[hep-ph/0012100].

[8] B. Holdom, Phys. Lett. B 150, 301 (1985); K. Yamawaki, M. Bando and K. i. Matumoto,

Phys. Rev. Lett. 56, 1335 (1986); T. W. Appelquist, D. Karabali and

L. C. R. Wijewardhana, Phys. Rev. Lett. 57, 957 (1986). For reviews see also

R. S. Chivukula, hep-ph/0011264; K. Lane, hep-ph/0202255; C. T. Hill and E. H. Simmons,

Phys. Rept. 381, 235 (2003) [Phys. Rept. 390, 553 (2004)] [hep-ph/0203079]; A. Martin,

Subnucl. Ser. 46, 135 (2011) [arXiv:0812.1841 [hep-ph]]; F. Sannino, Acta Phys. Polon. B 40,

3533 (2009) [arXiv:0911.0931 [hep-ph]]; M. Piai, Adv. High Energy Phys. 2010, 464302

(2010) [arXiv:1004.0176 [hep-ph]].

[9] M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Phys. Rev. Lett. 54, 1215

(1985); R. Casalbuoni, S. De Curtis, D. Dominici and R. Gatto, Phys. Lett. B 155, 95

(1985); M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988); H. Georgi, Nucl.

Phys. B 331, 311 (1990); M. Harada and K. Yamawaki, Phys. Rept. 381, 1 (2003)

[hep-ph/0302103].

[10] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2013) [arXiv:1207.7214 [hep-ex]].

[11] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2013) [arXiv:1207.7235

[hep-ex]].

[12] R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Nucl. Phys. B 703, 127 (2004)

[hep-ph/0405040].

[13] W. Buchmuller and D. Wyler, Nucl. Phys. B 268, 621 (1986); Z. Han and W. Skiba, Phys.

Rev. D 71, 075009 (2005) [hep-ph/0412166].

[14] M. E. Peskin and T. Takeuchi, Phys. Rev. D 46, 381 (1992).

– 22 –



[15] T. Appelquist and C. W. Bernard, Phys. Rev. D 22, 200 (1980); A. C. Longhitano, Phys.

Rev. D 22, 1166 (1980); Nucl. Phys. B 188, 118 (1981); T. Appelquist and G. H. Wu, Phys.

Rev. D 48, 3235 (1993) [hep-ph/9304240]; T. Appelquist and G. H. Wu, Phys. Rev. D 51,

240 (1995) [hep-ph/9406416].

[16] A. Carmona, A. Delgado, M. Quirós and J. Santiago, JHEP 1509, 186 (2015)

[arXiv:1507.01914 [hep-ph]].

[17] M. Fabbrichesi, M. Pinamonti, A. Tonero and A. Urbano, arXiv:1509.06378 [hep-ph].

[18] M. B. Einhorn and D. R. T. Jones, Phys. Rev. D 46, 5206 (1992).

[19] The ATLAS and CMS Collaborations, ATLAS-CONF-2015-044.

[20] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur. Phys. J. C 63, 189 (2009)

[arXiv:0901.0002 [hep-ph]].

[21] S. Dawson, Nucl. Phys. B 249, 42 (1985); Z. Kunszt and D. E. Soper, Nucl. Phys. B 296,

253 (1988); D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, JHEP 1409, 060 (2014)

[arXiv:1402.4431 [hep-ph]].

[22] G. Aad et al. [ATLAS Collaboration], JHEP 1409, 037 (2014) [arXiv:1407.7494 [hep-ex]].

[23] G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 90, no. 5, 052005 (2014)

[arXiv:1405.4123 [hep-ex]].

[24] A. Thamm, R. Torre and A. Wulzer, arXiv:1506.08688 [hep-ph].

[25] J. Brehmer, J. Hewett, J. Kopp, T. Rizzo and J. Tattersall, arXiv:1507.00013 [hep-ph].

[26] B. C. Allanach, B. Gripaios and D. Sutherland, Phys. Rev. D 92, no. 5, 055003 (2015)

[arXiv:1507.01638 [hep-ph]].

[27] K. Cheung, W. Y. Keung, P. Y. Tseng and T. C. Yuan, arXiv:1506.06064 [hep-ph];

B. A. Dobrescu and Z. Liu, arXiv:1506.06736 [hep-ph]; Y. Gao, T. Ghosh, K. Sinha and

J. H. Yu, Phys. Rev. D 92, no. 5, 055030 (2015) [arXiv:1506.07511 [hep-ph]]; Q. H. Cao,

B. Yan and D. M. Zhang, arXiv:1507.00268 [hep-ph]; B. A. Dobrescu and Z. Liu,

JHEP10(2015)118 [arXiv:1507.01923 [hep-ph]]; L. Bian, D. Liu and J. Shu, arXiv:1507.06018

[hep-ph]; P. S. Bhupal Dev and R. N. Mohapatra, Phys. Rev. Lett. 115, no. 18, 181803

(2015) [arXiv:1508.02277 [hep-ph]].

– 23 –


