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Abstract: Holographic gravity duals of deformations of CFTs formulated on de Sitter

spacetime contain FRW geometries behind a horizon, with cosmological big crunch sin-

gularities. Using a specific analytically tractable solution within a particular single scalar

truncation of N = 8 supergravity on AdS4, we first probe such crunching cosmologies with

spacelike radial geodesics that compute spatially antipodal correlators of large dimension

boundary operators. At late times, the geodesics lie on the FRW slice of maximal expan-

sion behind the horizon. The late time two-point functions factorise, and when transformed

to the Einstein static universe, they exhibit a temporal non-analyticity determined by the

maximal value of the scale factor ãmax. Radial geodesics connecting antipodal points nec-

essarily have de Sitter energy E . ãmax, while geodesics with E > ãmax terminate at the

crunch, the two categories of geodesics being separated by the maximal expansion slice.

The spacelike crunch singularity is curved “outward” in the Penrose diagram for the de-

formed AdS backgrounds, and thus geodesic limits of the antipodal correlators do not

directly probe the crunch. Beyond the geodesic limit, we point out that the scalar wave

equation, analytically continued into the FRW patch, has a potential which is singular at

the crunch along with complex WKB turning points in the vicinity of the FRW crunch.

We then argue that the frequency space Green’s function has a branch point determined

by ãmax which corresponds to the lowest quasinormal frequency.

Keywords: Gauge-gravity correspondence, AdS-CFT Correspondence, Spacetime Singu-

larities

ArXiv ePrint: 1510.03281

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2016)026



J
H
E
P
0
2
(
2
0
1
6
)
0
2
6

Contents

1 Introduction and summary 2

2 Euclidean AdS instantons and crunches 5

2.1 Conformal structure 7

2.2 Kruskal-like extension 8

2.3 Outwardly curved spacelike singularity 11

3 Spacelike geodesics 13

3.1 Spacelike geodesics and the maximal expansion slice 13

3.2 Spacelike geodesics in pure AdS 16

3.2.1 Geodesics with E < 1 16

3.2.2 Geodesic action for E < 1 18

3.2.3 Geodesics with E > 1 18

3.2.4 Map from global to dS-slicing of AdS 19

3.3 Geodesics in deformed AdS: a first pass 22

4 Deformed AdS4 example 24

4.1 Lorentzian continuation 25

4.2 Penrose diagram 28

4.3 Radial geodesics 29

4.3.1 Late time solution 30

4.4 Deformed AdS geodesics: general results 33

5 Correlators and WKB limits 33

5.1 Scalar wave equation 34

5.2 WKB limit 35

5.3 Retarded correlator and WKB limits 37

5.3.1 Pure AdS: a check 39

5.3.2 Beyond WKB 40

6 Discussion 42

A Transforming from dS-slicing to global coordinates 43

B Scalar wave modes 43

B.1 Temporal equation 44

B.2 Radial solution in undeformed AdS 45

– 1 –



J
H
E
P
0
2
(
2
0
1
6
)
0
2
6

C Euclidean AdS correlators and WKB 46

C.1 Correlator on Sd from holography 46

C.2 WKB limit of holographic correlator on Sd 49

1 Introduction and summary

Understanding the physics in the vicinity of spacelike singularities within a well-defined mi-

croscopic framework for gravity is one of the outstanding challenges in theoretical physics.

The AdS/CFT correspondence and holography [1, 2] provide some of the most promising

routes for exploring this and related questions. Several important advances in this direc-

tion have been made, within the general framework of strings and holography, e.g. [3–5],

and through the embedding of cosmological crunching geometries in Anti-de Sitter (AdS)

spacetime [6–9], and more recently in [10, 11]. The main goal in a holographic setting

of this type is to find out how a given bulk (cosmological) singularity makes itself known

within the dual quantum field theory. The answer to this question (at strong coupling

and/or large N) could then be used to eventually understand a potential resolution of the

bulk singularity via the specific holographic dictionary (as stringy and/or quantum effects).

While bulk singularities may or may not be cloaked behind a horizon, one expects

the information on the singularity to be encoded in some way within correlation functions

of the boundary field theory. For the black hole singularity in AdS, it was shown in [12]

that two-point thermal correlators of large dimension boundary operators (inserted on

the two boundaries of AdS-Schwarzschild), computed by spacelike bulk geodesics, subtly

encode information on the black hole singularity via a temporal non-analyticity. This was

expected primarily due to the fact that the geodesics in question penetrate the horizon and

can get arbitrarily close to the black hole singularity. The implication of the behaviour

of such probe geodesics for frequency space (thermal) Wightman functions was worked

out precisely in [13] applying a WKB approximation to wave equations in the bulk. The

general idea of probing bulk singularities with correlators in the geodesic limit has proved

to be extremely attractive and has been applied recently to deduce a direct signature of

singularities in anisotropic Kasner-AdS solutions within the holographic setting [10, 11, 14].

Cosmological singularities have also found a natural place within the AdS/CFT set-

ting following the works of [6, 7]. Such crunching AdS cosmologies arise naturally as FRW

geometries (with spatially hyperbolic sections) behind bulk horizons within gravity duals

of deformed CFTs placed in de Sitter (dS) spacetime [15, 16]. Following an appropriate

boundary conformal transformation, the same setup can be viewed as the gravity dual of a

deformed CFT on the boundary (R×Sd−1 or Einstein static universe) of global AdS space-

time. In this latter picture, the bulk singularity hits the boundary at finite global time, at

which point the field theory evolution has been argued to be singular [7–9, 17]. On general

grounds, the field theoretic “singularity” in the second picture (Einstein static universe)

has been related to time dependent couplings “driving” various condensates to diverge at

a finite value of the global time [17, 18]. In contrast, the field theoretic evolution in the
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de Sitter frame picture can be perfectly smooth and well defined for appropriately chosen

boundary conditions and sufficiently small (relevant) deformations, as was remarked in [15].

Given that thermal field theory correlators potentially encode (upon appropriate con-

tinuation) certain aspects of the black hole geometry behind the horizon [12, 13, 19], it is

natural to ask in what sense correlation functions of de Sitter space field theories probe

the FRW crunching patches behind the horizon of the dual gravity theories.1 The aim of

this paper is to initiate a study of correlators within strongly interacting deformed CFTs

on de Sitter spacetime with a view towards identifying certain aspects of observables that

have knowledge of the FRW geometry behind the bulk horizon. It is known that ex-

tremal surfaces of the kind that probe the FRW patch will generically be bounded by some

extremal slice away from the crunch singularity [20–23]. This makes the problem of ex-

amining the appropriate holographic correlators more challenging, and therefore worthy of

study. In particular, one would need to understand the issues involved in going beyond the

geodesic limit employing WKB-like approximations (as in [13, 19]) and connecting these

to well-defined field theoretic observables in de Sitter spacetime. Importantly, in order

to be in a position to identify the kinds of subtle features that were uncovered for the

AdS-Schwarzschild black hole, we also require an analytically tractable gravity background

exhibiting a genuine cosmological crunch in the FRW patch.

We first focus our attention on the two-point correlator in the boundary field theory

between spatially antipodal points (the North and South poles) of global de Sitter space-

time. The two points remain causally disconnected for all times (see e.g. [24]), and in this

sense the antipodal correlator is similar to the AdS black hole geodesic correlator across the

two boundaries. A key difference between the two systems is that the dS-sliced, asymptoti-

cally AdS backgrounds possess only one boundary, and their Penrose diagrams when drawn

with a “straightened” conformal boundary, render the spacelike crunch singularity curved

“outwards” (in contrast to AdS-Schwarzschild [12]). Spacelike geodesics which are radially

directed in dS-sliced backgrounds also possess a conserved “energy” E which can eventually

be identified with imaginary de Sitter frequency divided by the conformal dimension ∆ of

the operator in the boundary field theory.

We study in explicit detail the properties of the antipodal correlator in the geodesic

approximation and at late times, and make contact with the massive scalar wave equation

in the WKB limit, continued into the FRW patch. Whilst our analysis is general, for

concreteness we also focus attention on a specific analytically tractable deformation of AdS4

obtained within a particular single scalar truncation of N = 8 supergravity [25–27]. The

scalar in question has mass squared −2 in units of the AdS radius, exactly as the truncation

considered in the original works on crunching AdS cosmologies [6, 7], therefore permitting

two inequivalent quantisations. The scalar potentials in the two different truncations are,

however, different. The exact solution presented in [27, 28] yields a smooth deformation of

Euclidean AdS4 which we continue to Lorentzian signature in order to obtain the dS-sliced

deformed background and an FRW patch with hyperbolic (H3) slices behind a horizon.

1The question is inevitably posed in the strong coupling limit of the field theory and gauge/gravity

duality used to identify and compute the relevant boundary observables. This paves the way, at least in

principle, for eventually investigating ideas such as singularity resolution from the field theory side of the

gauge/gravity duality.
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Our main results and observations can be summarised as follows:

• As expected on general grounds, antipodal geodesics probing the FRW patch remain

bounded by the slice of maximal expansion with FRW scale factor ãmax. In particular,

in the late time limit, geodesics lie almost entirely on the slice of maximal expansion

and the corresponding correlator behaves as,

〈O∆(τ1, 0)O∆(τ2, π)〉ESU ∼
(π

2
− τ1

)∆(ãmax−1) (π
2
− τ2

)∆(ãmax−1)
(1.1)

〈O∆(t1, 0)O∆(t2, π)〉dS ∼ e−ãmax(t1+t2)∆ ,

in the Einstein static and de Sitter frames, respectively. Undeformed AdS has ãmax =

1 and therefore the limit τ1,2 → π
2 is smooth. In the presence of a deformation,

ãmax < 1, and the correlator on R× Sd−1 exhibits non-analytic behaviour when the

bulk singularity hits the boundary at finite time. In contrast the dS-space correlators

are always smooth. A second inference one may draw from the above behaviour

is that at late times, correlators appear to factorise, suggesting the presence of a

dominant, disconnected contribution i.e. growing condensates. This is in line with

the general arguments of [17] associating the crunch singularity at the boundary to

a “CFT fall” i.e. homogeneous condensates diverging at a finite time in the Einstein

static frame.

• The antipodal, radial geodesics have an associated conserved de Sitter energy E which

is bounded from above by ãmax. In particular, spacelike geodesics with E > ãmax

penetrate the bulk horizon and terminate at the crunch. Performing a de Sitter mode

expansion for a massive probe scalar in the bulk, the wave equation in the WKB limit

coincides with the geodesic equation, upon making the identification E = −iν/∆,

where ν denotes the frequency of appropriately defined de Sitter modes. The absence

of geodesics with two boundary endpoints for E > ãmax suggests the possibility of a

corresponding feature in appropriately defined frequency space correlators.

• The wave equation in the WKB limit exhibits nontrivial turning points upon analytic

continuation into the FRW patch. One of these is the continuation of the unique

WKB turning point outside the horizon. The merger of this turning point with a

complex turning point gives rise to branch points in WKB correlators. We make

this statement precise for the retarded, frequency space correlator on the boundary.

In particular, the branch point for purely imaginary frequency is associated to the

position of the lowest quasinormal pole [19], and the corresponding branch cut has a

natural interpretation in terms of discrete quasinormal modes forming a continuum in

the scaling limit required for implementing WKB. The singularity in the Schrödinger

potential, however, suggests further interesting physics.

• The scalar wave equation, when expressed in Schrödinger form and continued into

the FRW patch, exhibits a singular potential precisely at the crunch. In particular,

it universally diverges as the inverse square of the (tortoise) coordinate distance to

– 4 –
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the crunch. The coefficient and the sign of the divergent contribution are model

dependent. For the AdS4 deformation studied in this paper, the potential diverges to

negative infinity at the location of the crunch. This leading singularity in the potential

is formally subdominant in the WKB limit indicating that a proper inclusion of its

effects will become necessary to obtain the correct description of boundary correlators

for complex frequencies.

The layout of the paper is as follows: in section 2 we collect together basic aspects of

the crunching AdS backgrounds obtained by continuation from smooth Euclidean solutions.

Section 3 deals with the general features of antipodal geodesics and their explicit solutions

in AdS spacetime, both in global coordinates and in the dS-sliced picture. In section 4, we

provide a detailed description of the analytically tractable crunching model in deformed

AdS4. We plot the antipodal geodesics numerically and examine their late time behaviour.

Section 5 is aimed at making contact with the WKB limit of the wave equation and

properties of the Schrödinger potential near the crunch. Finally, in the appendix, we collect

together useful transformations, and properties of de Sitter mode expansions; appendix C

presents a detailed holographic derivation of the position-space antipodal correlator in a

WKB-like limit in Euclidean AdSd+1.

2 Euclidean AdS instantons and crunches

We begin by recalling certain basic elements of de Sitter-sliced, asymptotically AdS space

times. The main point of this section is to lay out coordinates and conventions appropriate

for analytic continuation into the FRW patch, and to explain the shape of the spacelike

crunch singularity in the corresponding Penrose diagram.

Asymptotically AdS spacetimes containing FRW crunches can be obtained by appro-

priate analytic continuation of asymptotically Euclidean-AdSd+1 (EAdSd+1) geometries

with the d-dimensional sphere as conformal boundary (see e.g. [15, 21]). The metric for an

asymptotically EAdSd+1 geometry, with the topology of a ball, can be taken to be of the

form

ds2
E = dξ2 + a(ξ)2 dΩ2

d , 0 ≤ ξ <∞ , (2.1)

along with the requirement of AdS asymptotics and smoothness at the origin

a(ξ) |ξ→∞ ∼ eξ , a(ξ) |ξ→0 ' ξ . (2.2)

Anti-de Sitter spacetime is obtained when

a(ξ) = aAdS(ξ) = sinh ξ , (2.3)

setting the AdS radius to unity. Such Euclidean AdS “instantons” have a natural place in

the study of vacuum decay in a theory of gravity (see e.g. [15, 29]). Within the context of

AdS/CFT duality, classical (super)gravity in the asymptotically EAdSd+1 background then

computes the observables of a CFT on the conformal boundary which is the d-dimensional

– 5 –
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sphere Sd. Upon appropriate analytic continuation to Lorentzian signature this setup

relates the CFT on a fixed de Sitter spacetime dSd to gravity in AdSd+1:

dΩ2
d = dθ2 + sin2 θ dΩ2

d−1 , (2.4)

θ → it+
π

2
, dΩ2

d → − dt2 + cosh2 t dΩ2
d−1 . (2.5)

With this continuation, the origin ξ = 0 becomes the lightcone or horizon of the Lorentzian

solution which splits the asymptotically AdSd+1 spacetime into two coordinate patches:

Exterior region (I): the exterior “bubble” or “Euclidean” region, outside the lightcone.

This is the straightforward continuation (2.5) of the Euclidean AdS instanton, and corre-

sponds to a patch of the asymptotically AdSd+1 spacetime with global de Sitter (dSd) slices

with SO(d, 1) isometry:

ds2 = dξ2 + a2(ξ)
(
−dt2 + cosh2 t dΩ2

d−1

)
. (2.6)

The coordinate ranges are 0 ≤ ξ < ∞ and −∞ ≤ t < ∞. This region has a(ξ)2 ≥ 0,

vanishing as a2 ' ξ2 at ξ = 0.

FRW region (II): the interior “FRW” or “cosmological” region inside the lightcone at

ξ = 0. To get to this patch we analytically continue the coordinates and scale factor in

region I as:

ξ → iσ , t→ χ − iπ

2
, a→ i ã . (2.7)

This yields an FRW universe with hyperbolic spatial slices Hd:

ds2 = −dσ2 + ã2(σ)(dχ2 + sinh2 χdΩ2
d−1) . (2.8)

The SO(d, 1) symmetry now acts on the Hd slices. The radial coordinate χ along the

non-compact spatial slices has infinite range, while the temporal coordinate σ is finite and

bounded by a crunch singularity at σ = σc where ã has a second zero:

0 ≤ χ <∞ , 0 ≤ σ < σc . (2.9)

For the undeformed AdSd+1 spacetime ã(σ) = sinσ, and although the FRW scale factor

vanishes at σ = σc = π this is only a coordinate singularity since AdS is nonsingular with

constant curvature R = −d(d + 1)/L2
AdS (we implicitly set the AdS radius LAdS = 1).

However, the situation changes in the presence of any deformation, relevant or otherwise.

The interior FRW region arises naturally in the study of vacuum decay a la Coleman and

de Luccia [29]. As originally argued in [29, 30], any deformation away from AdS will result

in ã(σ) first increasing from ã(0) = 0, reaching a maximum and subsequently decreasing

to zero at a big crunch singularity at σ = σc. The inevitability of such a singularity follows

from the existence of a closed trapped surface in the crunching regime (as argued by Abbott

and Coleman [30]).

– 6 –
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2.1 Conformal structure

The deformations of AdSd+1 that we are interested in have the property that they can

always be expressed as a conformal factor times the undeformed EAdS metric. This is

clear in Euclidean signature following a coordinate change,

ds2 = dξ2 + a(ξ)2 dΩ2
d = Λ(ξ̂)2

(
dξ̂2 + sinh2 ξ̂ dΩ2

d

)
, (2.10)

where ξ̂ and the conformal factor Λ are determined by solving the differential equations:

ξ̂ ′(ξ) =
sinh ξ̂

a(ξ)
, Λ =

1

ξ̂ ′(ξ)
. (2.11)

The radial coordinate ξ̂ of the EAdS metric lies in the range 0 ≤ ξ̂ <∞ with ξ̂ = 0 being

the origin. Now the full metric can be continued to Lorentzian signature as in the preceding

discussion leading to an exterior region I:

ds2 = Λ(ξ̂)2
[
dξ̂2 + sinh2 ξ̂

(
− dt2 + cosh2 t dΩ2

d−1

)]
, (2.12)

and the interior FRW patch, or region II:

ds2 = Λ̃(σ̂)2
[
−dσ̂2 + sin2 σ̂

(
dχ2 + sinh2 χdΩ2

d−1

)]
, (2.13)

Λ̃(σ̂) ≡ Λ(iσ̂) .

Therefore, the conformal (Penrose) diagram for these spacetimes is the same as AdS, except

that the range of the FRW time in region II is limited by the crunch singularity at some

σ̂ = σ̂c where the analytically continued conformal factor vanishes:

0 ≤ σ̂ ≤ σ̂c , Λ̃(σ̂c) = 0 . (2.14)

The Penrose diagram of AdSd+1 is shown in figure 1. This is obtained after transformation

to global coordinates (see appendix A for details), so that the conformal boundary is

naturally the cylinder R × Sd−1. The radial coordinate ψ ranges from 0 to π/2, and τ

is the global time. Region I is marked with contours of constant ξ̂ and t in red, while

region II is covered by the FRW coordinates with contours of constant σ̂ and χ in blue.

The diagram for undeformed AdS has a periodicity in global time τ , given by ∆τ = 2π,

resulting in an infinite number of such patches stacked on top of each other.

In contrast, the Penrose diagram of deformed AdSd+1 in figure 1 shows a jagged line

indicating the spacelike big crunch singularity at which spacetime ends, and cannot be

extended any further. Hence the diagram has only a single copy of the exterior and the

interior FRW patches for τ ≥ 0 and is no longer periodic.

Although the Penrose diagram bears similarities to the Schwarzschild-AdS black hole,2

it is different in two crucial ways:

2Particularly if we include its mirror image about the vertical axis corresponding to negative azimuthal

angles.
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II

I

Ψ=0 Ψ=Π�2

Τ=0

Τ=Π�2

Τ=Π
II

I

Ψ=0 Ψ=Π�2

Τ=0

Τ=Π�2

Figure 1. Left: Penrose diagram of AdSd+1. Right: Penrose diagram of deformed AdSd+1 with the

big crunch singularity represented by the jagged red line. In both diagrams the conformal boundary

is at ψ = π/2, each point representing a sphere Sd−1. Horizontal lines are contours of constant

global time τ while vertical lines are contours of constant global radial coordinate r = tanψ. In the

exterior region I, dashed red lines are contours of constant ξ̂, whilst dotted red lines are contours

of constant t. In the FRW region II, dashed blue lines are contours of constant σ̂, dotted blue lines

are contours of constant χ.

• There is only one asymptotic region unlike Schwarzschild-AdS which has two. This

observation is an immediate consequence of the fact that the deformed spacetime is

conformal to AdS.

• If the boundary is drawn straight, as shown, the singularity is curved outwards with

respect to the horizontal τ = π/2. For Schwarzschild-AdSd+1, it was shown in [12]

that the singularity is curved inwards.3 We will justify this statement below by

examining the geometry using a Kruskal-like extension.

2.2 Kruskal-like extension

The Lorentzian geometries with horizons permit natural Kruskal-like coordinates that can

describe both regions I and II. Suppressing the angular direction, the relevant pieces of the

3Provided d > 2; in the d = 2 case, the BTZ black hole, the diagram is square.
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ζ

a=0

Figure 2. The integration contour used to define the tortoise coordinate, covering regions I and II.

metric in the t− ξ section in Lorentzian signature are

ds2 = dξ2 − a2(ξ)dt2 . (2.15)

We now define the so-called “tortoise” coordinate

z(ξ) =

∫ ∞
ξ

dζ

a(ζ)
. (2.16)

The conformal boundary (ξ →∞) is at z = 0, and when ξ is in region I, i.e. ξ ∈ R+ then

z is real.

When ξ is in region II, i.e. ξ = iσ for σ ∈ R+, the integration contour in (2.16) assumes

the L-shape indicated in figure 2 in the complex ζ-plane. The contour starts at ξ = iσ,

comes down the imaginary axis, turns the corner at ζ = 0 and goes out to ∞ along the

real axis. Since we are considering regular solutions, the scale factor near the origin takes

the form a(ζ) = ζ + O(ζ3) and hence the integrand has a simple pole at ζ = 0. Cutting

the corner around the pole in a clockwise sense, z(ζ) acquires an imaginary part equal to

−iπ/2 (one quarter of (−2πi) times the residue). Thus in region II, the tortoise co-ordinate

z(ζ) has a constant imaginary part −iπ/2.

In the undeformed AdS spacetime the scale factor a(ξ) = sinh ξ and the tortoise

coordinate

z = − ln tanh
ξ

2
, (2.17)

which can be analytically continued to region II using ξ = iσ:

z = − ln tan
σ

2
− iπ

2
. (2.18)

In tables 1 and 2 we list the important sections of the space-time, for undeformed AdS

and the deformed geometries respectively. The locations of the conformal boundary and

the horizon can be fixed at the same coordinate values for both AdS and the deformed

geometries. Given this, the location of maximal scale factor in the FRW region and the

location of the crunch ã = 0, are both shifted by the deformation. Note that for pure

AdS, the “crunch” at ξ = iπ is just a coordinate singularity. By the Abbott-Coleman

argument, any deformation will lead to a curvature singularity at ξ = iσc with σc < π.
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Section of AdS ξ z

Boundary ∞ 0

Horizon from region I 0+ ∞

Horizon from region II i 0+ ∞− iπ
2

Maximal scale factor iπ
2 − iπ

2

“Crunch” iπ −∞− iπ
2

Table 1. Important sections of pure AdS (with de Sitter slices) in terms of ξ and z (tortoise)

coordinates.

Section of deformed AdS ξ z

Boundary ∞ 0

Horizon from region I 0+ ∞

Horizon from region II i 0+ ∞− iπ
2

Maximal scale factor iσm wm − iπ
2 , wm ∈ R

Crunch singularity iσc wc − iπ
2 , wm > wc ∈ R

Table 2. Sections of deformed AdS in terms of ξ and z (tortoise) coordinates. On general grounds

σc < π and wm > wc since the maximal scale factor must be attained before the crunch singularity.

We now proceed to formulate the Kruskal-like extension, by first defining the retarded and

advanced null coordinates as

u = t+ z , (2.19)

v = t− z ,

in terms of which the metric (suppressing the angular coordinates) takes the form

ds2 = −a(ξ)2du dv . (2.20)

Since the determinant vanishes at the horizon ξ = 0 this metric is singular there but we

can perform a further coordinate transformation to the Kruskal null coordinates

U = −e−u , V = ev . (2.21)

These coordinates are defined in region I where U < 0, V > 0 but we will show that they

can be extended across the horizon. The metric in the Kruskal coordinates is

ds2 = −a(ξ)2e2zdU dV . (2.22)

– 10 –
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The logarithmically divergent real part of z near ξ = 0 exactly cancels the zero of a and the

metric remains regular as we cross ξ = 0. This implies that we can extend it from U < 0,

V > 0 to U, V ∈ (−∞,∞). (Recall that, like the tortoise coordinate z, t also acquires an

imaginary part in region II, as t→ χ− iπ/2). In these coordinates curves of constant ξ or

equivalently z are hyperbolae,

UV = −e−2z . (2.23)

The conformal boundary is given by UV = −1. The horizon is described by the null

hypersurfaces UV = 0. The turnaround of the scale factor corresponds to UV = e−2wm

where wm = 0 for the undeformed case, while the crunch corresponds to UV = e−2wc

where wc → −∞ for the undeformed case. We cut off the two dimensional representation

(with the spatial angular directions suppressed) at the symmetry axis U = V , and rotate

it about the axis to generate the full higher dimensional Penrose diagram.

2.3 Outwardly curved spacelike singularity

In order to determine whether the spacelike crunch singularity curves inward or outwards

in figure 1, we need to first “straighten” the boundary. This is easily achieved by using an

angular parametrisation (U, V )→ (τ − ψ, τ + ψ) defined as,

U = tan
τ − ψ

2
, V = tan

τ + ψ

2
. (2.24)

The conformal boundary is now represented by the straight vertical lines ψ = ±π/2, and

the horizon is represented by the null lines τ ±ψ = 0. In undeformed AdS the turnaround

of the scale factor maps to the lines τ = ±π/2, and the “crunch” maps to the null lines

τ ±ψ = π. This takes us back to the Penrose diagram of AdS in figure 1.4 In the deformed

geometry, the turnaround of the FRW scale factor and the crunch are described in the

(ψ, τ) plane by the curve

tan
τ − ψ

2
tan

τ + ψ

2
= e−2w , (2.25)

where the maximal scale factor occurs at w = wm and the crunch at w = wc. Equivalently,

the equation can be rewritten as

cos τ = tanhw cosψ . (2.26)

For fixed w, this is a curve anchored between the points (ψ, τ) =
(
−π

2 ,
π
2

)
and (ψ, τ) =(

π
2 ,

π
2

)
. If w > 0 it lies below the horizontal τ = π/2 and curves inward whereas if w < 0

it lies above it, curving outward. Showing that the crunch singularity for deformed AdS

is outwardly curved boils down to arguing that the crunch is located at wc < 0. In the

limiting case where there is no deformation present, the so-called “crunch” in pure AdS is

a null surface as explained above and occurs as wc → −∞. It is intuitively reasonable to

expect that a small, finite deformation will render wc finite and negative. We now provide

supporting arguments for this and confirm the expectation in an analytically tractable

example that we will investigate in detail.

4This set of transformations (t, ξ) → (u, v) → (U, V ) → (τ, ψ) has unsurprisingly taken us back to the

AdS metric written in a form conformal to the Einstein static universe, quoted in eq. (A.3).
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The value of wc is computed by the real part of the integral of the inverse scale factor

over the whole space-time5

zc =

∫ ∞
iσc

dζ

a(ζ)
. (2.27)

Our argument consists of four key ingredients:

• We will assume that the scale factor in the FRW region has a second zero at σ =

σc < π, the first zero being at the origin. The value of σc turns out to be less

than π for the specific example we study in this paper, but also appears to be true

more generally.6 The second zero is the location of the crunch. The existence of the

crunch singularity at σc is guaranteed by the Abbott-Coleman argument [30] (see

also appendix A of [31]).

• The deformation can be taken to be small enough so that a perturbative solution

applies almost everywhere: the deviation of the scale factor from AdS is small every-

where except near the crunch singularity where the perturbation expansion breaks

down. This is again guaranteed on general grounds since the deformed geometries are

obtained by analytic continuation of a (relevant) deformation of EAdSd+1 where the

deformation can be made parametrically small everywhere in the Euclidean (exterior)

region.

• Close to the singularity as σ → σc the scale factor has the asymptotic power law

behaviour ã = ã0(σc−σ)γ where 0 < γ ≤ 1. This is true for the analytically solvable

example we study below in this paper, and appears to be true more generally, as will

be shown in detail elsewhere [32].

• Breaking up the zc integral into an AdS-like piece and a near-crunch portion, we

can then show that zc has a negative and finite real part i.e. zc = wc − iπ/2 where

−∞ < wc < 0.

The integral (2.27) for the coordinate of the crunch zc can be evaluated by breaking

it up into three pieces:

1. Near-crunch portion σc−δ < σ < σc where 0 < δ � 1 is the width of this asymptotic

region. Here ã = ã0(σc − σ)γ .

5Physically this is the coordinate time taken by a light ray to travel from the boundary to the singularity.
6This assumption is consistent with the fact that in a number of single scalar models ¨̃a < −ã in the

FRW patch. For AdS, ¨̃a = −ã and ã = sinσ. For models with more than one scalar this is empirically

observed to be the case [32]. For single scalar models, the relevant field equation in the FRW patch reads

¨̃a

ã
= − 2κ2

d(d− 1)

(
d− 1

2
Φ̇2 − VΦ

)
,

where we take VΦ to be a negative potential with a single AdS maximum where 2κ2

d(d−1)
VΦ = −1 and Φ̇ = 0.

It follows therefore that in the presence of deformations away from the AdS maximum,

¨̃a < −ã .

We have observed empirically that this condition leads to σc < π, assuming ã(σ) = σ + . . . for σ � 1.
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2. A transition region σc − δ − ε < σ < σc − δ where 0 < ε � 1 is the width of this

region.

3. The AdS-like part 0 < σ < σc − δ − ε in the FRW region, and continuing (ξ = iσ)

through the horizon into the exterior region 0 < ξ <∞. For small deformations the

scale factor here is well approximated by the AdS form a(ξ) = sinh ξ.

Therefore, for parametrically small deformations, and assuming the exponent γ < 1 we

obtain

zc =

∫ σc−δ

σc

dσ

ã(σ)
+

∫ σc−δ−ε

σc−δ

dσ

ã(σ)
+

∫ ∞
i(σc−δ−ε)

dξ

a(ξ)
(2.28)

=
−δ1−γ

(1− γ)ã0
+ ln

δ′ + δ + ε

2
+

∫ σc−δ−ε

σc−δ

dσ

ã(σ)
+ O

(
δ′ + δ + ε

)2 − iπ

2
,

where σc = π−δ′ with 0 < δ′ � 1 and we have kept the leading term for 0 < (δ′ + δ + ε)�
1. While the transition region can be parametrically small, the contribution from the

logarithm dominates the real part of zc, which will thus be negative and finite as required.

This completes the demonstration that for (small) deformations of AdS of the type being

considered the singularity is curved outwards with respect to the horizontal as indicated

in the Penrose diagram we have drawn in figure 1.

3 Spacelike geodesics

The primary goal of this paper is to examine correlators of the holographically dual QFT

on the conformal boundary of region I which is exterior to the bulk horizon. Specifically, we

would like to identify probes of the FRW region (region II). Below we calculate such corre-

lators in the geodesic limit, which corresponds to operators of sufficiently high dimension,

when a WKB-like approximation becomes applicable. We then attempt to interpret the

implications of the robust features of these for the appropriate frequency space correlation

functions of the boundary QFT. The conformal case, where the bulk is simply AdSd+1

spacetime with dSd slices, is useful for developing some intuition although the geometry is

completely smooth (and the “crunch” is non-singular). We will then apply the ideas to a

specific non-conformal, analytically tractable example with d = 3.

3.1 Spacelike geodesics and the maximal expansion slice

We examine geodesics that penetrate the horizon at ξ = 0 and thus enter into region II

of the bulk geometry, and which compute geodesic limits of correlation functions between

spatially antipodal points on the boundary. Given the metric for an asymptotically AdSd+1

geometry with (global) de Sitter slices,

ds2 = dξ2 + a2(ξ)
(
−dt2 + cosh2 t dΩ2

d−1

)
, (3.1)

in the exterior patch (ξ2 > 0), we can determine geodesic paths by extremizing the action

S = −M
∫ λf

λi

dλ

√(
−a2(ξ) ṫ2 + ξ̇2 + a2(ξ) cosh2 t φ̇2

)
. (3.2)
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Here λ is an affine parameter and M denotes the (large) mass of a bulk field which yields the

correlator of a corresponding high dimension operator in the boundary gauge theory. The

end-points of the geodesic are labelled λi and λf . We have also allowed for the trajectory

to have angular dependence — without loss of generality we take this to be along the polar

angle φ of the spatial sphere Sd−1. The geodesic has a conserved angular momentum,

conjugate to the angular coordinate φ:

L = a2(ξ) cosh2 t φ̇ . (3.3)

The equations of motion automatically imply, as a consequence of reparametrization in-

variance, the constraint (for spacelike geodesics),

− a2(ξ) ṫ2 + ξ̇2 + a2(ξ) cosh2 t φ̇2 = 1 . (3.4)

When the angular momentum L vanishes, the geodesics are radially directed, and there is

a natural conserved “energy”,7

E = a2(ξ) ṫ . (3.5)

This equation, in conjunction with the first order constraint when L = 0,

ξ̇2 − E2

a(ξ)2
= 1 , (3.6)

determines t(λ) and ξ(λ), and the trajectory of the radial geodesic. Equivalently, we may

directly obtain t(ξ) as a solution of the condition(
dt

dξ

)2

=
E2

a2(ξ) (E2 + a2(ξ))
. (3.7)

In certain situations, the second order form of the equation of motion (along with the

constraint (3.4)) may prove to be more convenient,

ξ̈ + E2 a
′(ξ)

a2(ξ)
= 0 . (3.8)

This holds for L = 0 and E = a2 ṫ .

We note that the radial geodesics (L = 0) naturally connect antipodal points of the

spatial sections ' Sd−1 of global de Sitter spacetime on the boundary. While φ̇ = 0 for

such trajectories, precisely when a(ξ) = 0, the polar angle φ can be consistently flipped

to π − φ, maintaining the requirement of L = 0. We first focus attention on two special

solutions which are the easiest to identify.

Zero-energy geodesics: these are solutions with ṫ = 0, passing right through a(ξ) = 0

which is the origin of the Euclidean region (region I). Explicitly, we have

ξ(λ) = |λ− λ0| , t = sgn(λ− λ0) t0 , E = 0 , (3.9)

where we have taken ξ = 0 to correspond to the Euclidean origin with a(ξ = 0) = 0. For a

smooth geodesic connecting antipodal points we need to append to this the trivial solution

for the angular coordinate,

φ(λ) = φ0 θ(λ0 − λ) + (π − φ0) θ(λ− λ0) . (3.10)
7Real values of E will turn out to correspond to imaginary frequencies in the boundary QFT.
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Maximal expansion FRW slice: this is a constant-ξ solution to the equation of mo-

tion (3.8) with

ξ = ξ0 a′(ξ0) = 0 , E2 = −a2(ξ0) . (3.11)

In region I, where a2(ξ) > 0, the scale factor a(ξ) is monotonic in general. However, as

reviewed above, in the FRW region obtained by analytic continuation (σ → iσ, a → iã),

the scale factor ã always attains a maximal value prior to the eventual crunch. This is an

immediate consequence of the fact that ã vanishes both at σ = 0 and at the crunch, when

σ = σc. Therefore the constant-ξ geodesic is precisely located on the slice of maximal

FRW expansion

ã′(σm) = 0 , ãmax ≡ ã(σm) , E2 = + ã2
max . (3.12)

Therefore the energy variable E for this solution is real and is given by the maximum value

attained by the scale factor in the FRW region. Finally, the geodesic extends along the

radial direction χ (see (2.8)) of the spatial hyperbolic slices ṫ = χ̇ = −1. Although the

maximal slice is actually hidden behind the bulk horizon, it has an important role to play

for finite energy radial geodesics joining antipodal points on the conformal boundary of the

exterior region.

It turns out that the two special solutions above describe limiting behaviours of generic

spacelike, radial geodesics connecting spatially antipodal points on the (global) de Sitter

conformal boundary. As we will demonstrate using specific examples, there are two cate-

gories of radial solutions with real energy E : those that have two end-points on the confor-

mal boundary and those with only one boundary end-point which fall into the FRW crunch

singularity. The former have a turn-around point with ξ̇ = 0. The first order equation (3.6)

tells us that this happens at some value of the radial coordinate ξ = ξr such that

a2(ξ) = −E2 . (3.13)

For real E , this equation is satisfied when the turning point lies behind the bulk horizon in

the FRW region. In the exterior (Euclidean) region or region I, the turn-around condition

is satisfied only if E is purely imaginary. We will see below that real values of E correspond

to imaginary frequencies (E ∼ iω) in boundary correlators.

In the analytically continued coordinates appropriate for region II, the geodesic turns

around at ξr = iσr with

ã2(σr) = E2 . (3.14)

For small positive E2, the turning point lies just behind the horizon at

E2 = ã2(σr) ≈ σ2
r , (3.15)

and the geodesic is close to the zero energy solution with constant t. The origin of the

exterior region (region I) is smooth and the scale factor a2(ξ) ' ξ2 for small enough ξ.

Analytic continuation past the horizon then yields ã2(σ) ' σ2 for sufficiently small σ. As

the energy is increased, the turning point approaches the maximum of the scale factor.

Geodesics with E . ãmax remain close to the maximal expansion slice in the FRW region.
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For energies bigger than this critical value E2 > ã2
max, there is no turning point and the

geodesics fall into the crunch.

To relate the geodesic to correlators in the boundary QFT,8 we need to calculate the

action for the geodesic solution, and further be able to relate the conserved ‘energy’ to

a frequency-like observable in the boundary theory. Before studying the deformed AdS

geometries, we first focus attention on the pure AdS theory.

3.2 Spacelike geodesics in pure AdS

Spacelike geodesics connecting two spacelike separated points on the boundary can be

studied in the de Sitter slicing of pure AdS spacetime, by taking a(ξ) = sinh ξ.

3.2.1 Geodesics with E < 1

Then the solution to the first order constraint (3.6), for a fixed energy E , is

cosh ξ =
√

1− E2 cosh(λ− λ0) , E < 1 . (3.16)

Here λ is the affine parameter along the geodesic and λ0, an arbitrary real constant which

can be set to zero without loss of generality. This solution assumes that E < 1, from which

it immediately follows that there are two values of λ corresponding to ξ = 0 which is the

horizon separating regions I and II. Of the two values of λ, the one with λ < λ0 yields the

point of entry into the horizon (when ξ̇ < 0) and the other corresponds to the exit point

(ξ̇ > 0) of the geodesic from the horizon.

The global de Sitter time coordinate t can also be solved for by combining eqs. (3.5)

and (3.6)
dt

dξ
= ± E

sinh ξ
√
E2 + sinh2 ξ

, (3.17)

which can be integrated to yield

t = t1(2) + tanh−1

(
E cosh ξ√

sinh2 ξ + E2

)
− tanh−1 E , (3.18)

in the exterior region picking the solution branch with dξ
dt < 0. The constants of integration

t1 and t2 are the values of the time coordinate at the two end-points of the geodesic on the

conformal boundary at ξ →∞. At its ‘starting point’ with λ→ −∞ we take t = t1.

Upon entering region II behind the horizon as λ is increased (in coordinate time this

occurs asymptotically as t → ∞), we can obtain the geodesic in the FRW region by the

straightforward analytic continuation ξ → iσ so that,

t = − iπ
2

+ t1 + coth−1

(
E cosσ√
E2 − sin2 σ

)
− tanh−1 E . (3.19)

The imaginary part here can also be understood in terms of the phase picked up whilst

traversing the L-shaped contour and avoiding ξ = 0 as shown in figure 2. In the FRW patch

8Note that holographic correlation functions for dS-sliced asymptotically AdS backgrounds can be defined

and computed rigorously using methods of holographic RG adapted to these slicings [28, 33–35].
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the spatial slices are hyperboloids with radial coordinate χ = t + iπ/2 as in eq. (2.7). We

note that since χ is a radial coordinate, it cannot be negative. In fact, when the geodesic

passes through the spatial origin at χ = 0, we are required to change the solution branch.

Assuming that the FRW patch solution (3.19) turns around before getting to the origin

(Re(t) = χ = 0), the turnaround point is reached when the affine parameter λ = λ0 in

eq. (3.16), so that

σ = σturn = sin−1 E , E < 1 , (3.20)

and

t = tturn = − iπ
2

+ t1 − tanh−1 E . (3.21)

Since the solution (3.19) turns around before χ reaches zero, we must require t1 > tanh−1 E .

Past this point, the FRW time σ along the geodesic and the radial coordinate χ simulta-

neously decrease so that we pick the branch of the solution that has dσ
dχ > 0:

t = − iπ
2

+ t1 − coth−1

(
E cosσ√
E2 − sin2 σ

)
− tanh−1 E . (3.22)

This branch of the solution is valid for 0 ≤ χ ≤ Re(tturn). After the geodesic reaches χ = 0,

the solution takes the form,

t = − iπ
2

+ t2 + coth−1

(
E cosσ√
E2 − sin2 σ

)
− tanh−1 E , (3.23)

which applies in the range 0 ≤ χ < ∞ i.e. between the origin of the hyperbolic slice and

the second horizon crossing. The constant of integration t2 is related to t1 and determined

by matching the two solutions at χ = Re(t) = 0:

t1 + t2 = + 2 tanh−1 E . (3.24)

After the second horizon crossing the ‘outgoing geodesic’ is described by the continuation

of (3.23) to the exterior region,

t = t2 + tanh−1

(
E cosh ξ√
E2 + sinh2 ξ

)
− tanh−1 E . (3.25)

The geodesic now approaches the conformal boundary ξ →∞ as t→ t2.

We have completely characterised the geodesic joining two spatially antipodal points

(with polar angles φ and π − φ) at (global) de Sitter times t1 and t2 on the conformal

boundary of the pure AdS geometry. Note that, given two such points, the energy E is

fixed by the mean value of the two times t1 and t2.

Figure 3 shows the behaviour of the spacelike geodesic in the FRW patch. In particular

as the energy E approaches the maximum value of the scale factor, which is ãmax = 1 for

pure AdS spacetime, the geodesic hugs the maximal expansion slice. An important corollary

of this is that for late (de Sitter global) times i.e. as t1,2 →∞, the geodesic energy E also

approaches unity and therefore the solution is well approximated by the slice of maximal

expansion behind the horizon. We will see that the behaviour persists for the deformed

AdS geometries as well.
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Figure 3. Left: the continuation of the spacelike geodesic into the FRW patch of pure AdS

spacetime with E = 0.1 and t1 = 0.5. Right: for energies E ' 1, the geodesic remains close to

the slice of maximum expansion σ = π
2 in the FRW patch. As the radial geodesics pass through

the origin χ = 0 their angular orientation changes from a given polar angle φ (portion in blue) to

(π − φ) (red portion), thus connecting antipodal points on the conformal boundary.

3.2.2 Geodesic action for E < 1

The action for the geodesic computes a two-point correlator of some operator with large

conformal dimension ∆. In the geodesic limit ∆ � 1, the corresponding bulk field will

have a large mass M ' ∆� 1 (in units where the AdS radius is set to one). The geodesic

length is obtained by integrating the regulated action along the L-shaped contour as the

geodesic enters and subsequently exits the horizon, effectively retracing the contour. In

the process the imaginary piece cancels and we find

S = 2M

∫ ξ∞

iσturn

dξ

(
1 +

E
sinh2 ξ

)−1/2

(3.26)

= M
[
2ξ∞ − ln

(
1− E2

)]
.

The integral is formally divergent and we have regulated it by introducing a (UV) cutoff ξ∞.

The divergent piece can be subtracted away unambiguously, up to finite terms that affect

the overall normalisation of the correlator in question. We define the regulated action as

Sreg ≡ S − M(2ξ∞ − 2 ln 2) . (3.27)

The two-point function of the dual operator O∆ (with ∆ 'M) is therefore

〈O∆(t1, φ)O∆(t2, π − φ)〉 = e−Sreg =

[
4 cosh2

(
t1 + t2

2

)]−M
. (3.28)

Here we have used the relation (3.24) between the geodesic energy and the temporal coor-

dinates of the geodesic end-points. As we explain below, this result can be deduced simply

as a consequence of conformal invariance. Prior to this, we examine the fate of geodesics

with E > 1.

3.2.3 Geodesics with E > 1

For energies bigger than the threshold value, E > 1, the first order equation (3.6) is solved by

cosh ξ =
√
E2 − 1 sinh |λ0 − λ| , (3.29)
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in the exterior region ξ2 > 0. Unlike the situation with E < 1, a solution that enters the

horizon does not turn around and exit. Instead, it reaches the point σ = π in the FRW

patch. The temporal coordinate in the exterior region is given by

t = t1 + coth−1

(
E cosh ξ√
E2 + sinh2 ξ

)
− coth−1 E , (3.30)

which, after horizon crossing becomes

t = t1 −
iπ

2
+ tanh−1

(
E cosσ√
E2 − sin2 σ

)
− coth−1 E . (3.31)

The geodesic has no turning point. It reaches the spatial origin χ = Re(t) = 0, beyond

which the solution continues (with a sign change since χ is a nonnegative radial coordinate)

onwards until it reaches the null surface at σ = π, never exiting region II.

3.2.4 Map from global to dS-slicing of AdS

Mapping correlators: de Sitter spacetime in d dimensions is conformal to the Einstein

static universe (ESU) or the flat cylinder R × Sd−1. The conformal map is achieved by a

simple coordinate transformation on the global de Sitter time

ds2 |dSd
= −dt2 + cosh2 t dΩ2

d−1 = Λ2
dS(τ)

(
−dτ2 + dΩd−1

)
, (3.32)

cos τ = sech t , ΛdS(τ) = sec τ .

This maps future and past infinities of global de Sitter time to the finite times τ = ±π
2 on

the cylinder. Therefore, in a conformal field theory on dSd, the two-point correlator of an

operator with conformal dimension ∆ satisfies

〈O∆(t1, φ1)O∆(t2, φ2)〉dSd = ΛdS(τ1)−∆ ΛdS(τ2)−∆ 〈O∆(τ1, φ2)O∆(τ2, φ2)〉ESU , (3.33)

where φ1,2 represent the (spatial) angular coordinates of the insertion points of the two

operators on Sd−1. Conformal invariance determines the form of the two-point correlator

on the cylinder R× Sd−1 which is conformal to Rd. For antipodal points φ2 = π − φ1, it

immediately follows that

〈O∆(τ1, φ2)O∆(τ2, φ2)〉ESU ∼ [1 + cos(τ1 − τ2)]−∆ . (3.34)

This is regular for all τ1, τ2, except when τ1 − τ2 = π, which is a lightcone singularity,

when the spatially antipodal points are null separated. Now the correlator in dSd is given

by the conformal transformation (3.33)

〈O∆(t1, φ1)O∆(t2, φ2)〉dSd ∼
(

1 + cos(τ1 − τ2)

cos τ1 cos τ2

)−∆

=

[
2 cosh

(
t1 + t2

2

)]−∆

. (3.35)

This precisely matches (up to a normalization), the result obtained by the geodesic com-

putation (3.28). There are two noteworthy points here: first, and this is specific to the

undeformed CFT (dual to AdS gravity), the geodesic approximation captures the exact
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CFT correlator on the de Sitter background. Secondly, for late global times t1,2 → ∞ or

equivalently, near the ‘end of time’ in the Einstein static universe τ1,2 → π
2 , the de Sitter

space correlation functions factorize and are vanishing:

〈O∆(t1, φ1)O∆(t2, φ2)〉dSd ∼ e−∆(t1+t2)/2 . (3.36)

It turns our that this behaviour persists with certain modifications in the presence of

relevant deformations in the CFT. Moving from the CFT on global de Sitter spacetime to

the description on the Einstein static universe can be understood in the bulk as a coordinate

transformation that takes AdS with dS-slicings to global AdS spacetime.

Geodesics in global AdS: AdSd+1 spacetime in global coordinates can be written in

coordinates that are conformal to the Einstein cylinder R × Sd (not to be confused with

the conformal boundary R× Sd−1):

ds2 = sec2 ψ
(
−dτ2 + dψ2 + sin2 ψ dΩ2

d−1

)
, 0 ≤ ψ < π

2
. (3.37)

These are related to the coordinates in the dS-slicing of AdS through

tanψ = sinh ξ cosh t , tan τ = tanh ξ sinh t . (3.38)

It is a very useful exercise to see how spacelike geodesics in global AdS relate to the ones

discussed above in the dS-sliced description. Taking λ as the affine parameter along the

geodesic, following standard steps, we obtain two conserved charges

E = sec2 ψ τ̇ , L = tan2 ψ φ̇ , (3.39)

the energy and angular momentum respectively in the global slicing. All derivatives are

with respect to the affine parameter. Focussing attention on radial geodesics (L = 0), the

first order equation for the radial coordinate ψ becomes

sec2 ψ ψ̇2 − E2 cos2 ψ = 1 . (3.40)

The solution for the radial geodesic with energy E is given by

tanψ = ±
√

1 + E2 sinh(λ− λ0) , tan(τ − τ0) = E tanh(λ− λ0) , (3.41)

which passes through the origin of AdS (ψ = 0) at τ = τ0 and affine parameter λ = λ0.

Eliminating the affine parameter, the solution can be represented compactly as

sinψ = ±
√

1 + E2

E
sin(τ − τ0) . (3.42)

This is the solution to the first order differential equation(
dτ

dψ

)
= ± E cosψ√

1 + E2 cos2 ψ
. (3.43)

Note that the solution with vanishing global energy E = 0 is the constant time geodesic

τ = τ0. On the other hand, a geodesic at constant de Sitter time t1 has de Sitter energy E =

– 20 –



J
H
E
P
0
2
(
2
0
1
6
)
0
2
6

0 whilst its global energy is given by E = sinh t1 (where we have used sin τ = tanh t sinψ).

The proper length of the geodesic (times the mass) is then

SESU = 2M

∫ π
2
−ε

0
dψ secψ

√
1− τ2

ψ (3.44)

= M(2 ln 2 − ln(1 + E2) − 2 ln ε ).

From eq. (3.41), taking the end-points (λ→ ±∞) of the geodesic to be at times τ1 and τ2,

we obtain the relation

τ2 − τ1 = 2 tan−1E . (3.45)

The regulated action obtained by subtracting the divergent piece yields the two-point

function of the dual CFT operator with conformal dimension ∆ 'M ,

〈O∆(t1, φ)O∆(t2, π − φ)〉ESU = e−SESU, reg =

[
4 cos2

(
τ1 − τ2

2

)]−M
. (3.46)

The result is, of course, guaranteed by conformal invariance. Note that here we set out to

compute CFT correlators on R× Sd−1. To directly obtain the same on dSd, but using the

global slicing, we would need to employ a cutoff at large fixed ξ = ξ∞. Then the cutoffs

on the two end-points of the geodesic ψ1,2 = π/2− ε1,2 get related to ξ∞ as

ε1,2 ' e−ξ∞ sech t1,2 . (3.47)

Plugging this into the geodesic action and subtracting off the piece proportional to ξ∞
yields the correct de Sitter space correlator.

Relating geodesics in global and dS-slicings: we can now identify the map between

geodesics in global AdS and the dS-sliced geometry via the two corresponding sets of

parameters (energy and the initial time):

E =
√

1 + E2 sin τ0 , sinh t1 =
tan τ0 − E

1 + E tan τ0
. (3.48)

Here E and t1 are the de Sitter energy and initial (de Sitter) time respectively, whilst

E and τ0 are the global energy and global time when the geodesic reaches the origin of

global AdS. The above map between the parameters (and its inverse) follow directly from

eqs. (3.24), (3.45), (3.42) and the transformation (3.38) between the two slicings of AdS.

A geodesic at constant global time τ = τ0 has zero global energy E = 0. It maps

to a geodesic in the dS-sliced geometry with de Sitter energy E = sin τ0 and initial time

sinh t1 = tan τ0. On the other hand, the geodesic with vanishing de Sitter energy E = 0

corresponds to a global AdS geodesic with energy E = − sinh t1, passing through τ0 = 0.

Figure 4 shows some geodesics in global AdS. The threshold between geodesics that

cross the horizon twice and return to region I, and those that fall into the “crunch” (pure

AdS is non-singular), is controlled by the de Sitter energy E . In the limit E →∞, the global

geodesics become null (3.42). As is apparent in figure 4, irrespective of their global energy

E, all geodesics passing through τ0 = 0 have both their endpoints in region I. In particular,
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through τ = 0 coincides with the horizontal red line. The dashed red lines are geodesics with global

energies E = 1/4 and E = 1, passing through τ0 = 0. Blue dashed lines show E = 0, E = 1/4 and

E = 1 geodesics with τ0 = π/4. The green dashed line shows an E =
√

3 geodesic with τ0 = π/3

that does not return to region I. The dotted line is a contour of constant σ in region II.

they have vanishing de Sitter energies and correspond to geodesics that do not penetrate

into the FRW region in the dS-sliced description. When the value of τ0 is changed, the

geodesics may or may not have both end-points in region I. For example, the geodesic with

E = 1/4 and τ0 = π/4 is shown dipping in and out of a contour of constant σ in region II.

There is, however, nothing special about the turnaround value of σ in global coordinates.

3.3 Geodesics in deformed AdS: a first pass

Before turning to a detailed study of spacelike correlators in the geodesic limit in an

analytically tractable example, we outline the general strategy for the analysis. As we

have explained in section 2 the deformed EAdS metric can be put into a form which is

conformal to AdS by transforming to the hatted coordinates

ξ̂ = 2 tanh−1 e−z(ξ) , (3.49)
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where z is the tortoise coordinate

z(ξ) =

∫ ∞
ξ

dζ

a(ζ)
. (3.50)

The deformed metric can be written in the form,

ds2 = Λ2
(
dξ̂2 + sinh2 ξ̂ (−dt2 + cosh2 t dΩ2

d−1)
)
, (3.51)

with the conformal factor given as

Λ(ξ̂) =
a
(
ξ(ξ̂)

)
sinh ξ̂

= a sinh z . (3.52)

For pure AdS, a = sinh ξ, z = − ln tanh 1
2ξ and Λ = 1. Since the deformations should be

asymptotically AdS, we require Λ→ 1 near the conformal boundary.

To solve for geodesics in the deformed space-time, we could use any of the different

coordinate systems employed for undeformed AdS, provided we also transform the con-

formal factor. The de-Sitter/FRW coordinates are not regular at the horizon. It is more

convenient to work in global coordinates, so that

ds2 = Λ2 sec2 ψ
(
−dτ2 + dψ2 + sin2 ψ dΩ2

d−1

)
, (3.53)

where the conformal factor is non-trivial,

Λ = Λ
(
cosh−1 (secψ cos τ)

)
, (3.54)

and explicitly depends on global time τ . The τ -dependence of the metric implies that there

is no longer a conserved global energy E, except asymptotically, and we do not have a first

integral of the equations of motion. For radially directed (spacelike) geodesics we can use

the square root action

S = M

∫ π
2
−ε

0
dψΛ secψ

√
1− τ2

ψ . (3.55)

The second-order equation of motion for the implicit geodesic τ(ψ) can be integrated

numerically from the boundary with the initial conditions

τ(π/2− ε) = τ1 , τ ′(π/2− ε) = −E ε . (3.56)

These initial conditions follow from AdS asymptotics using equation (3.43) which relates

the gradient τ ′ to the asymptotic global energy. As seen earlier for pure AdS geometries,

the cutoff ε in global coordinates should be chosen correctly so as to yield the correlator in

the dS-sliced deformed geometry. Note also that despite the absence of a conserved energy

E in (conformally) global slicing, radial geodesics in the dS-sliced deformed geometry (3.51)

will have an associated de Sitter energy E , as explained in section 3.1.
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4 Deformed AdS4 example

A very interesting, analytically tractable example of a deformation of EAdS4 is provided by

the supergravity solution discussed in [27] (see also [25, 26]). This arises from a consistent,

single scalar truncation of N = 8 gauged supergravity in four dimensions with the following

action and scalar potential (in Euclidean signature):

Struncated =

∫
d4x
√
g

[
− 1

2κ2
R +

1

2
gµν∂µΦ∂νΦ + V2/3(Φ)

]
, (4.1)

V2/3 = − 3

κ2L2
AdS

cosh

(√
2

3
κΦ

)
,

where κ2 = 8πG4 is the four dimensional Newton’s constant and the scalar Φ is minimally

coupled to the curvature. The potential is the specialisation to d = 3 of the so-called “2/3”

potential of [27]. It is worth emphasising that this particular truncation and its associated

scalar potential are distinct from the single scalar truncation considered in the original

works on big crunch duals [6, 7]. The scalar potential can be derived from a superpotential

W2/3 = − 1

2κ2LAdS
e
−
√

3
2
κΦ
(

1 + 3 e
2
√

2
3
κΦ
)
, (4.2)

assuming the supergravity coupling g = 2. Interestingly, there exists a field redefinition

which maps the above system to a scalar field conformally coupled to Einstein gravity with

negative cosmological constant and quartic scalar potential [36]. The scalar potential (4.2)

has an AdS4 maximum at Φ = 0 with small perturbations having mass M2L2
AdS = −2.

This value of the mass-squared lies in the window −9/4 < M2L2
AdS < −5/4, permitting

consistent quantization with two types of boundary conditions [35, 37]. The two boundary

conditions, Dirichlet and Neumann, lead to correspondence with a dual CFT operator of

dimension ∆ = 2 and ∆ = 1 respectively.

Choosing units where κ = 1, LAdS = 1, the above system has a one-parameter family

of regular solutions with S3 slices:

ds2 =

(
1− f(u)2

6

)[
du2

u2(1 + u2)
+

1

u2
dΩ2

3

]
, (4.3)

Φ =
√

6 tanh−1

(
f√
6

)
, f(u) =

f0 u√
1 + u2 + u

√
1 + f2

0 /6
.

The constant f0 is related to the value of the field at the Euclidean origin u → ∞, where

the metric is effectively flat. The conformal boundary is at u→ 0. This background is the

µ = 0, k = 1 and d = 3 case of the solutions presented in [27]. The metric is conformally

EAdS4 as is expected for a deformed EAdSd+1 geometry with Sd slices.9 In particular, the

metric multiplying the conformal factor in eq. (4.3) can be put in the standard AdS form

by the coordinate transformation u−1 = sinh ξ.

9A special feature of this solution is that upon performing the field redefinition [27, 36] which maps it

to the conformal frame, the metric becomes undeformed AdS4.
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Let us now try to understand the behaviour of the scale factor a(ξ) in the Euclidean

and FRW regions upon analytic continuation to Lorentzian signature. As before the a(ξ)

is defined via the deformed Euclidean geometry,

ds2 = dξ2 + a(ξ)2 dΩ2
3 . (4.4)

It is always possible to find the variable change from ξ to u, but this is not really necessary

at this juncture. The boundary asymptotics (u→ 0) yield

Φ(u) ' f0u− f0

√
1 +

f2
0

6
u2 , a(ξ(u)) ' 1

u
− f2

0

12
u . (4.5)

It was argued in [38] that for an AdS4 scalar with mass M2 = −2, there exists a one

parameter family of AdS-invariant quantisations. It is well known, following [35], that

given the two independent fall-offs

Φ ∼ αu + β u2 , (4.6)

one may interpret α as a deformation by a ∆ = 2 operator and β as the corresponding

VEV (Dirichlet boundary conditions). Alternatively, one may adopt Neumann boundary

conditions wherein β is viewed as a deformation by a ∆ = 1 CFT operator and α as its

VEV. In addition to these, as pointed out in [38], the asymptotic fall-off with β = f̃α2 for

some f̃ , may also be viewed as a one-parameter family of boundary conditions for a ∆ = 1

operator O in the CFT with a triple trace deformation ∼ f̃O3. We will, however, implicitly

have in mind the natural interpretation suggested in [15] that the boundary asymptotics

corresponds to a relevant deformation by the ∆ = 1 operator with a non-vanishing VEV

for the same. The question of stability depends on the choice of interpretation/boundary

conditions. In the paper, we will not focus on the issue of stability and interpretation. We

choose this specific background as an analytically tractable setting within which to explore

the properties of spacelike correlators of large dimension QFT operators that have geodesic

limits in the bulk.

At the Euclidean origin u→∞, the corresponding asymptotics are

Φ ' Φ0 + O(u−2) , a(ξ(u)) ' a0

u
+ O(u−3) , (4.7)

Φ0 =

√
3

2
ln

(
f0√

6
+

√
1 +

f2
0

6

)
, a0 =

√
2

(
1 +

√
1 +

f2
0

6

)−1/2

.

Thus f0 = 0 corresponds to undeformed AdS and the value of the field at the origin

increases monotonically with f0. Note also that near the origin u → ∞, the metric is

smooth and flat, for all values of f0.

4.1 Lorentzian continuation

The analytic continuation to Lorentzian signature proceeds as usual by taking the polar

angle on S3 to be the de-Sitter time coordinate θ = it+ π/2. The metric is

ds2 =

(
1 − f(u)2

6

) [
du2

u2(1 + u2)
+

1

u2
(−dt2 + cosh2 t dΩ2

2)

]
, (4.8)
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which is asymptotically AdS4 with global dS3 slices. This is valid in the exterior region

0 < u <∞. The Euclidean origin u→∞ maps to a light cone through which we continue

into the interior FRW region by taking u = −iv−1 and t = χ− iπ/2 to get the metric,

ds2 =

(
1 − f(−iv−1)2

6

) [
− dv2

1− v2
+ v2 (dχ2 + sinh2 χdΩ2

2)

]
. (4.9)

The horizon is at v = 0 and increasing v takes us away from the horizon into the FRW

region, while reality of the metric requires v ≤ 1. The Lorentzian continuation of the

metric in these coordinates presents a subtlety: the cosmological time σ, as a function of v,

is multivalued. This is most clear when the deformation f0 is turned off. In this situation,

to recover the standard form of the AdS metric in the FRW patch, the cosmological time is

given as σ = sin−1 v with 0 ≤ σ < π. In this range, v is positive (and less than unity), but√
1− v2 = cosσ changes sign at σ = π/2 which corresponds to the branch point at v = 1.

Upon turning on the deformation, the cosmological time σ continues to be a multival-

ued function of v, defined via the integral

σ =

∫ v

0

(
1 −

f
(
−iv−1

)2
6

)1/2

(1− v2)−1/2 dv . (4.10)

Denoting the cosmological time at which v(σ) attains its maximum value (unity) by σs,

v(σs) = 1 , (4.11)

when σ > σs, we are required to switch from one branch to the other of the square root in

the denominator of f(−i/v) ,

f
(
−iv−1

)
=

f0

±
√

1− v2 +
√

1 + f2
0 /6

. (4.12)

Close to the horizon, as σ → 0, we must pick the positive sign which ensures that both the

FRW patch scale factor ã and the scalar field Φ are real, while for σ > σs we must switch

to the negative branch.

Figure 5 shows the scale factor ã as a (multivalued) function of the coordinate v, and

as single valued function of cosmological time σ. As expected on general grounds, the scale

factor displays a maximum at σ = σm < π/2, and a crunch at σ = σc < π. The FRW scale

factor ã,

ã =

(
1− f(−iv−1)2

6

)1/2

v , (4.13)

is vanishing at the horizon v = 0 and increasing for small v > 0. It is straightforward to

find the location of the maximum and the crunch in terms of the v-coordinate. It turns

out that the maximum is always located on the branch with positive sign for the square

root in f(−i/v) and occurs at v = vm:

vm =

√
2

3
f0

(
C −

√
2C
)−1/2

, (4.14)
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Figure 5. Left: the scale factor ã, in the FRW patch for the deformed AdS4 solution with f0 = 1.5

as a function of the v coordinate. The scale factor is a double-valued function of v, with the two

branches indicated in blue and red. Right: the FRW scale factor as a function of cosmological time

σ with a maximum and a crunch.

C ≡ 1 +
1

2
f2

0 +

√
1 +

5

3
f2

0 +
1

4
f4

0 .

The location of the maximum10 satisfies the condition vm < 1, and exhibits the following

asymptotic behaviours for small (f0 → 0) and large (f0 →∞) deformations:

f0 � 1 : vm ' 1 − f4
0

72
, ãmax ' 1 − f2

0

12
, (4.15)

f0 � 1 : vm '
√

2

3
+

1√
3f0

, ãmax ' 25/4 1√
3f0

.

The crunch singularity (the second zero of ã) occurs when f(−i/v) =
√

6. At this point

the scalar field Φ =
√

6 tanh−1(f/
√

6) diverges. The location of the crunch is given by

v = vc with

vc =
√

2

(
f0√

6

)1/2
(
− f0√

6
+

√
1 +

f2
0

6

)1/2

. (4.16)

The crunch is located on the negative branch of the square root in f(−i/v). It can be

checked that curvature scalars of the metric diverge here. Importantly, using eq. (4.13) we

infer that in the vicinity of the crunch ã ∼
√

(v − vc) and together with the definition of

the cosmological time (4.10), we obtain

ã(σ) ∼ (σ − σc)1/3 , (4.17)

in the near crunch regime. For the specific example discussed here, this result validates the

assumption made in section 2.3 with regard to the exponent of the power law behaviour

in the vicinity of the crunch singularity.

10Note that the branch point at v = 1 is not a maximum of the scale factor because dã/dσ =

(dã/dv)(dv/dσ) has a non-zero limit here.
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4.2 Penrose diagram

We revisit the discussion in section 2.3 in order to confirm, within the context of the

deformed AdS4 background, the validity of the general arguments presented there. In

particular, the shape of the crunch singularity (curving inwards or outwards) was shown

to be determined by the real part of the tortoise coordinate at the crunch singularity. The

tortoise coordinate for our deformed AdS4 background (4.8) has a very simple form in

terms of the radial variable u in the exterior region,

z ≡
∫ ∞
ξ

dξ

a(ξ)
= −

∫ 0

u

du√
1 + u2

= sinh−1 u , 0 < u <∞ , (4.18)

since the conformal factor drops out. As before, the boundary is at z = 0, and the horizon

at z → ∞. Continuing past the horizon with v = iu the tortoise coordinate in the FRW

patch is then,

z = − iπ
2

+ ln
1±
√

1− v2

v
, 0 ≤ v ≤ 1 . (4.19)

Taking the positive branch of the square root, the horizon is approached from within the

interior region as z → −iπ/2+∞. At v = 1, the branch point of the square root corresponds

to z = zs = −iπ/2, separating the location of the maximum of the scale factor zm = z(vm)

from that of the crunch zc = z(vc) with Re(zc) < Re(zs) < Re(zm).

Crucially, Re(zc), which is evaluated with the negative sign for the square root in (4.19),

is strictly negative. According to the discussion in section 2.3, this immediately implies

that the spacelike crunch singularity is curved outwards as depicted in the Penrose diagram

in figure 1.

Given the simple form of the deformed metric, we can proceed to obtain the Kruskal

extension explicitly. For this purpose we suppress the spatial two-sphere in the geometry

and focus attention on the two dimensional subspace spanned by the t and u coordinates.

Using the substitution u = sinh z and subsequently the Kruskal null coordinates,

U = −e−t−z, V = et−z , (4.20)

the deformed AdS4 metric (4.8) becomes (suppressing angular coordinates),

ds2 =

[
− 4

(1 + UV )2
+

4g2
0

(1 + g2
0 UV )2

]
dUdV . (4.21)

The constant g0 provides a convenient parametrization of the deformation, and is related

to f0 through
f0√

6
=

2g0

1 − g2
0

, 0 ≤ g0 < 1 . (4.22)

Finally we compactify and straighten the boundaries using the coordinate change in

eq. (2.24) to yield

ds2 = Λ2(τ, ψ) sec2 ψ
(
−dτ2 + dψ2 + sin2 ψ dΩ2

2

)
, 0 ≤ ψ < π

2
, (4.23)

Λ2 = 1 − 4g2
0 cos2 ψ[

(1 + g2
0) cosψ + (1− g2

0) cos τ
]2 .
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Figure 6. The outwardly curved spacelike crunch singularity plotted on the Penrose diagram for

different values of the deformation, g0 = 0.3 (blue), 0.5 (green), 0.8 (red), 0.95 (brown). The

conformal boundary is located at ψ = π/2. As g0 is increased towards 1 (alternatively as f0 →∞),

the crunch singularity approaches τ = π/2.

In these coordinates, the conformal boundary is at ψ = π/2 and corresponds to the cylinder

(or Einstein static universe) R×S2. Since the crunch extends all the way to the boundary

and intersects it at τ = π/2, this is the “end of time” in the ESU picture. The shape of

the crunch singularity can be explicitly obtained by plotting the zeroes of Λ as displayed

in figure 6. The singularity is curved outwards as expected and flattens out towards τ = π
2

as g0 is dialled towards unity (equivalently, as f0 →∞).

4.3 Radial geodesics

As explained earlier, bulk global coordinates are regular (away from the crunch singular-

ity) and convenient for describing spacelike geodesics whilst the dS-sliced coordinates are

singular at the horizon. In global coordinates the conformal boundary is naturally the

cylinder R×S2 with an “end of time” at τ = π/2. Unlike pure AdS, in the presence of the

deformation, the bulk geometry is not static in global coordinates and there is no globally

conserved energy. In dS-sliced coordinates, there is always a conserved de Sitter energy E
which allows us to write down first order equations of motion (as in eq. (3.7)).

For the deformed geometry, the geodesic equations of motion do not appear to have

closed form analytical solutions. Therefore, we first solve the equations of motion nu-

merically in global coordinates for fixed de Sitter energy E . This is achieved by making

use of the fact that the geometry is asymptotically AdS4 and that fixing τ(ψ) and τ ′(ψ)

at the conformal boundary (at one end-point of the geodesic) fixes the de Sitter energy.

Specifically, we solve the second order equation of motion following from the action

SESU = M

(∫ π/2−ε1

0
+

∫ π/2−ε2

0

)
dψΛ(τ, ψ) secψ

√
1 − τ ′(ψ)2 , (4.24)

subject to the boundary conditions (ε1,2 � 1),

τ
(π

2
− ε1,2

)
= τ1,2 , τ ′

(π
2
− ε1,2

)
' −E1,2 ε1,2 , (4.25)
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Figure 7. Spacelike geodesics in the deformed AdS4 geometry with f0 = 10 or g0 ≈ 0.785.

The big crunch is shown as a thick black line while the orange line marks the slice of maximal

expansion behind the horizon ã = ãmax. The dotted black lines represent the horizon. Left: three

spacelike geodesics (dashed grey curves) are plotted with initial de Sitter time t1 = 0 at de Sitter

energies E = 0.7 ãmax, ãmax and 1.05 ãmax. Right: three spacelike geodesics (thick blue lines) for

E = 0.97 ãmax, 0.9995 ãmax, 1.001 ãmax and initial time t1 = 3.

fixing the behaviour at each one of the two boundary endpoints which the geodesic is

anchored to. The boundary behaviour is fixed by AdS asymptotics and the constant(s) of

integration E1,2 are related to the de Sitter energy E via

E = sin τ1,2 + E1,2 cos τ1,2 . (4.26)

The boundary time τ1 is related to the corresponding de-Sitter time by the boundary

transformation tan τ1 = sinh t1. Integrating “in” from the first boundary point, fixing τ1

and varying E (or E1, as dictated by eq. (4.26)), we numerically obtain a family of geodesics

(see figure 7). The global time and the asymptotic global energy E2 at the second endpoint

of each geodesic can be extracted from the solution using (4.25) at the second endpoint

and it can be verified that the condition (4.26) is satisfied automatically. A special exact

solution is the constant de-Sitter time geodesic sin τ = E/
√

1 + E2 sinψ which has E = 0

and does not penetrate the bulk horizon and for which the asymptotic global energies on

the two sides are equal E1 = E2 = E.

Figure 7 clearly demonstrates that only the spacelike geodesics with de Sitter energies

E < ãmax can go across the lightcone/horizon and connect the two antipodal points on the

boundary. Solutions with E > ãmax have only one boundary endpoint and “fall” into the

crunch singularity. Moreover, at late times t1,2 →∞ or τ1,2 → π/2, the geodesics hug the

slice of maximal expansion with E = ãmax.

4.3.1 Late time solution

The fact that late time geodesics approach the maximal expansion slice in the FRW patch

is crucial, as it allows us to obtain an analytical result for the corresponding correlator at

large times. In order to calculate the geodesic action on this slice, we move back to the
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tortoise coordinate behind the horizon:

z = − iπ
2
− w , cos τ = tanhw cosψ , w ∈ R . (4.27)

The maximal expansion slice is a slice of constant w satisfying

∂ã

∂w
=

∂

∂w

(
Λ(w)

coshw

)
= 0 . (4.28)

This is also a constant-w solution to the geodesic equations of motion, as can be straight-

forwardly checked. Explicitly, the value of w = wm at the maximal expansion slice is

determined by the largest real root of the algebraic equation

e8wm − (1 + g2
0) e6wm − 6g2

0 e
4wm − g2

0(1 + g2
0) e2wm + g4

0 = 0 . (4.29)

For arbitrarily small and large deformations, g0 � 1, and g0 → 1 (or equivalently, f0 � 1

and f0 → ∞ respectively), the asymptotic values of wm, the real part of the tortoise

coordinate at the time of maximal expansion are given by,

wm |g0�1 ≈ 4g2
0 , wm |g0→1 =

1

2
ln
(

2 +
√

3
)

+ O(1− g0) . (4.30)

In the undeformed, pure AdS geometry wm = 0 which corresponds to the global time slice

τ = π
2 . When the deformation is turned on, the maximal expansion slice dips below τ = π

2

as displayed in figure 7.

Asymptotically near ψ = π/2 where the geometry approaches AdS4 we should expect

divergences in the geodesic action to be regulated by exactly the same subtractions that

were performed for pure AdS. To understand how this works carefully, we note that the

late time geodesic solution naturally splits in two pieces. The first portion lies on the slice

of maximal expansion, up to some late global time specified by

ψ1,2 =
π

2
− δ1,2 , cos τ1,2 = tanhwm cosψ1,2 , δ1,2 � 1 , (4.31)

where we have explicitly written the relation between the tortoise coordinate behind the

horizon and the global variables (ψ, τ), on the maximal slice. As depicted in figure 7, the

second portion of the geodesic exits the lightcone and reaches the boundary with vanishing

derivative

τ
(π

2
− ε1,2

)
' τ1,2 , τ ′

(π
2
− ε1,2

)
' −E ε1,2 . (4.32)

This approximation becomes increasingly accurate in the limit that the two times τ1,2

approach π/2, the so-called “end of time”.

The action for the first portion of the late time geodesic that rests on the maximal

slice behind the horizon is easily evaluated:

S
(1)
ESU = M Λ(wm) sechwm

(∫ π
2
−δ1

0
+

∫ π
2
−δ2

0

)
dψ

secψ√
1− tanh2wm cos2 ψ

. (4.33)
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The integration can be performed exactly and expressed in terms of the maximum value

of the FRW scale factor as

S
(2)
ESU = M ãmax [2 ln 2− ln δ1 − ln δ2 + 2 ln coshwm] . (4.34)

The action for the second (infinitesimal) portion of the geodesic, that resides outside the

horizon for late times, can be determined by setting τ = τ1,2 and performing the inte-

gral (4.24) from ψ = π
2 − δ1,2 to ψ = π

2 − ε1,2. We find

S
(2)
ESU = M (ln δ1 + ln δ2 − ln ε1 − ln ε2) . (4.35)

The divergent contributions proportional to ln ε1,2 are precisely the same as in pure AdS

spacetime and are removed by the same subtraction that is performed in AdS. On the

cylinder R× S2, the regulated action for the late time geodesic is,

SESU, reg = M [−(ãmax − 1) ln δ1δ2 + ãmax ln 2 coshwm] . (4.36)

Identifying M with the conformal dimension of the dual operator ∆ for large ∆, we imme-

diately obtain the late time correlator on the cylinder,

〈O∆(τ1, φ)O∆(τ2, π − φ)〉ESU = e−SESU, reg (4.37)

∼
(π

2
− τ1

)∆(ãmax−1) (π
2
− τ2

)∆(ãmax−1)
.

The corresponding result as a function de Sitter times t1,2 can be derived by imposing the

UV cutoff at fixed radial coordinate ξ = ξ∞ in the dS-sliced asymptotically AdS geometry

(see eq. (3.47)):

〈O∆(t1, φ)O∆(t2, π − φ)〉dS ∼ e−ãmax(t1+t2)∆ . (4.38)

Although we have focussed attention on the situation with both endpoints t1 and t2 large

(or τ1 and τ2 approaching π/2), it is easily verified that the late time limit for any one of

the two points leads to the same behaviour:

〈O∆(τ1, φ)O∆(τ2, π − φ)〉ESU |τ1→π
2
∼
(π

2
− τ1

)∆(ãmax−1)
, (4.39)

〈O∆(t1, φ)O∆(t2, π − φ)〉dS |t1→∞ ∼ e−t1 ãmax∆ .

The late time asymptotics reveal certain key features. Boundary correlators on the cylinder

exhibit a non-analyticity as τ1,2 → π
2 . Since ãmax < 1, the non-analyticity is accompanied

by a divergence in the correlator. In contrast, for the undeformed CFT on R × S2 (pure

AdS), the limit τ1,2 → π
2 is smooth. The only singularity in the CFT is a lightcone

singularity (see (3.34)) when τ1 − τ2 = π. In the de Sitter space picture, the correlator

decays exponentially at late times, with an exponent dependent on ãmax. In both pictures

the correlator appears to factorise, suggesting that the late time behaviour is actually

dictated by a one-point function for the operator O∆.
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4.4 Deformed AdS geodesics: general results

The late time behaviour of the antipodal correlator in the specific example above can

be argued to be universal i.e. independent of the details of the model. We have shown

in section 3.1 that in a generic crunching AdS background, spacelike geodesics have a

turnaround point behind the horizon when E = ã(σ). Therefore, geodesics with E > ãmax

must end up at the crunch singularity behind the horizon, while the geodesic with E = ãmax

lies entirely on the maximal expansion slice. In global bulk coordinates, the maximal

expansion slice meets the boundary at the “end” of global time τ → π
2 . It is therefore

natural that late time geodesics (E . ãmax) in the dS-sliced picture which explore the

FRW patch will remain arbitrarily close to the slice of maximal expansion. They only

deviate from this slice close to the conformal boundary, when they must emerge into the

exterior region to connect their boundary endpoints. Given the metric in the FRW patch,

ds2 = −dσ2 + ã2(σ)
(
dχ2 + sinh2 χdΩ2

d−1

)
, (4.40)

the action for the geodesic on the maximal slice is

S = M ãmax

(∫ χ1

0
dχ +

∫ χ2

0
dχ

)
, (4.41)

where χ1,2 are the UV cutoffs as the slice approaches the boundary on both sides (from

within the FRW patch). Using the appropriate coordinate redefinitions (e.g. sec ψ sin τ =

sinσ coshχ), we can relate χ1,2 to the late time cutoffs:

χ1,2 = − ln (δ1,2) − ln tanhwm . (4.42)

Defining the regulated action exactly as before, we reproduce the late time nonalyticity

ensuing from eq. (4.36). It is also likely that the condition ãmax < 1 is a general feature.

While this is true in the example we discussed in this paper, we have also found it to be the

case in other, more complicated setups [32]. For single scalar models it should be possible to

argue this using the observation that ¨̃a < −ã (see footnote 5 for the origin of this inequality).

5 Correlators and WKB limits

We have seen that correlation functions in the bulk geodesic limit do not directly probe

the FRW crunch singularity behind the horizon. In this sense the situation differs sig-

nificantly from the AdS-Schwarzschild black hole [12]. Although the late time behaviour

of the correlators as a function of global time shows a non-analyticity due to the “end

of time” when the crunching surface intersects the conformal boundary, the strength of

this particular non-analyticity is only controlled by ãmax. The obvious question is whether

departures from the geodesic limit (or correlators of light operators) encode information on

the crunch singularity in a subtle fashion. Since the solutions to the wave equations are not

analytically tractable (with the exception of undeformed AdS), we need to understand how

the WKB approximation can be implemented in the present context so that departures

from the geodesic limit can eventually be explored. In this section, we take the first steps
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in this direction by making contact with the geometry behind the horizon in the WKB

limit. The discussion closely follows the methods of [13, 19]. In a separate discussion in

appendix C, we show how the calculation of the holographic correlator in position space

proceeds within the Euclidean setting, and for the case of undeformed AdS, yielding the

exact antipodal geodesic result after a WKB approximation followed by a steepest descent

evaluation of frequency/momentum integrals.

5.1 Scalar wave equation

We consider a scalar field ϕ of mass mϕ, dual to a boundary QFT operator O∆ with (UV)

conformal dimension ∆. The scalar ϕ satisfies the free wave equation on the (dS-sliced)

asymptotically AdSd+1 background,

ds2 = dξ2 + a2(ξ)
(
−dt2 + cosh2 t dΩ2

d−1

)
. (5.1)

To compute the QFT correlator, we need to solve the wave equation with the appropriate

boundary conditions at the conformal boundary and at the origin (horizon). In the case

of real time retarded correlators, we would need to impose infalling boundary conditions

at the horizon11 following the Son-Starinets prescription [39]. However, we note that spa-

tially antipodal points in global de Sitter spacetime are not causally connected [24], and

thus the non-vanishing antipodal correlators we have studied in the geodesic limit, cannot

correspond to the retarded boundary conditions. The issue is partially addressed if we

define correlation functions via analytic continuation from Euclidean ones (see appendix C

for the calculation in Euclidean AdS).

To solve the Klein-Gordon equation (�−m2)ϕ = 0 we use the manifest symmetries (in

Lorentzian signature) of the background to perform a separation of variables and express

the scalar field as a mode expansion:

ϕ(ξ, t,Ω) =
∑
lm

Ylm (Ω)

∫
dν

2π
Ξν(ξ) Tl(ν, t) , (5.2)

where Ylm are spherical harmonics12 on Sd−1, satisfying eqs. (B.2) and (B.3). The modes

Tl(ν, t) solve a temporal mode equation (B.4) with eigenvalue ∼ ν2, where ν plays the role

of a frequency. They are given by solutions to the Schrödinger problem in a Pöschl-Teller

potential, and can be expressed in terms of associated Legendre functions as explained in

detail in appendix B. For even d, the temporal modes are simple, with T νl ∼ P−iνµ (tanh t).

Both the late time limit, and the high frequency limit of these modes yields plane waves,

T νl → exp(−iνt).
The deformation of the background affects the radial dependence through a(ξ) and the

radial wave equation therefore plays the key role in defining WKB-like limits. The radial

11This approach was applied to the topological black hole which describes N = 4 SYM on dS3×S1 in [40]

to calculate retarded, real time correlation functions.
12The index m stands for the collection of indices {mi} in the representation of SO(d). We use standard

spherical harmonics.
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part Ξν of the scalar field satisfies,

Ξ′′ν + d
a′

a
Ξ′ν +

(
ν2 + 1

4(d− 1)2

a2
− m2

ϕ

)
Ξν = 0 , (5.3)

where the primes represent derivatives with respect to the radial coordinate ξ. Recall that

in pure AdS, the scale factor a(ξ) = sinh ξ. This equation can be put in Schrödinger form

by a rescaling of Ξν and simultaneously switching to the tortoise coordinate z,

Ψν = a(d−1)/2 Ξν , z =

∫ ∞
ξ

dζ

a(ζ)
. (5.4)

Now the radial equation (5.3) is transformed into the Schrödinger problem,

− d2Ψ

dz2
+ V (z)Ψ = ν2 Ψ , (5.5)

with the potential function V (z) defined as

V (z) = m2
ϕ a

2 + (d− 1)
1

2a

d2a

dz2
+ (d− 1)(d− 3)

1

4a2

(
da

dz

)2

− 1

4
(d− 1)2 . (5.6)

For asymptotically AdS geometries, the conformal boundary is at z = 0 where the

Schrödinger potential should have a second order pole, V ∼ z−2. Near the horizon which

is approached as z →∞, the function a(ξ(z)) vanishes exponentially with z and therefore

the potential V (z) tends to a constant exponentially. In particular, the undeformed AdS

potential is,

VAdS =
(q2 − 1

4)

sinh2 z
, q ≡

√
d2

4
+m2

ϕ , (5.7)

so that the conformal dimension of the dual operator O∆ is ∆ = d/2 + q.

5.2 WKB limit

In order to make contact with the geodesic picture, we need to examine a WKB-like limit.

This is the limit where the mass mϕ of the bulk field is taken to be large, with frequencies

and any non-vanishing angular momenta scaling in the same way with mϕ:

ν = q u , ν, q →∞ , u fixed . (5.8)

Noting that the variable q also scales as mϕ in the limit of large mass, we write

V (z) ≡ q2

(
V0(z) +

V2(z)

q2

)
, V0(z) = a2 . (5.9)

In the large q limit, the Schrödinger potential is given by V0 which depends only on a(ξ(z)).

Therefore the radial Schrödinger problem to be studied in the high frequency WKB limit is(
− d2

dz2
+ q2 a2

)
Ψwkb
u = q2u2 Ψwkb

u . (5.10)
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The dependence of the Schrödinger potential on the scale factor a has become remarkably

simple in the WKB limit. The WKB potential ∼ a2 is monotonic (in the exterior region I),

diverging as z−2 for small z and decaying exponentially ∼ e−2z near the horizon (z →∞).

Therefore, for real frequencies ν (so that u ∈ R), there is only one turning point at some

z = z∗ such that

u = a(z∗) , u ∈ R . (5.11)

The turning point separates the classically forbidden region z < z∗(u) from the classically

allowed region z > z∗(u). We write the solutions in these two regions as,

Ψwkb
u (z) = κ−1/2

(
A− e−qZu + A+ eqZu

)
, z < z∗(u) (5.12)

Zu(z) =

∫ z

z∗(u)
κu(z′) dz′ , κu(z) =

√
V0(z)− u2 ,

while in the classically allowed region, we make the following replacements using standard

WKB connection formulae as we go through the turning point:

κ−1/2
u eqZu −→ 2√

κ̃u
cos
(
q Z̃u −

π

4

)
, (5.13)

κ−1/2
u e−qZu −→ − 1√

κ̃u
sin
(
q Z̃u −

π

4

)
,

Z̃u(z) =

∫ z

z∗(u)
κ̃u(z′) dz′ , κ̃u(z) =

√
u2 − V0(z) .

In the leading order WKB approximation, the phase integral Zu in the forbidden region

obeys the equation

Z ′2u
a2

+
u2

a2
= 1 . (5.14)

This is to be compared with the first order constraint equation for the spacelike

geodesics (3.6), (
dξ

dλ

)2

− E
2

a2
= 1 , (5.15)

with E being the conserved energy variable. We are thus led to make the following

identifications:
Z ′u
a

=
dξ

dλ
, u = iE . (5.16)

Therefore, as expected, the proper velocity ξ̇ of the geodesic maps to the derivative of the

WKB phase. Furthermore, we learn that the precise relation of the geodesic energy E to

the de Sitter mode frequency (in the WKB limit q ' mϕ � 1) is,

E = −i ν
mϕ

. (5.17)

Hence, spacelike geodesics with real E correspond to modes with imaginary de Sitter

frequency, and the turnaround point of the geodesic with ξ̇ = 0 in the FRW patch should
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be equated to a WKB turning point for imaginary ν, i.e. when u2 < 0. In the WKB

language then, taking u2 = −E2, the relevant turning point is a solution to the equation

V0(z) = a2(z) = −E2 , E ∈ R . (5.18)

Clearly there are no solutions on the real z-axis, and the roots must lie in the complex

z-plane. In fact, we already know that this equation has solutions upon analytically

continuing into the FRW patch where z = − iπ
2 + w and a2 = −ã2 with ã, w ∈ R. In

particular, since ã has a maximum in the FRW patch, turning points on this slice only

exist if E < ãmax (when u2 < 0). This is the condition for the existence of spacelike

geodesics connecting antipodal points on the boundary. It is also important to recognize

that one of the turning points behind the horizon (for imaginary u) is the continuation of

the unique turning point in the exterior region (for real u) to (small) imaginary values of u.

WKB turning points in the complex plane are linked to the geometry behind the

horizon. The importance of these was underlined in the works of Festuccia and Liu [13, 19],

specifically within the context of AdS-Schwarzschild black holes dual to thermal states in

large-N CFTs. Such turning points play an important role in the structure of boundary

correlators.

5.3 Retarded correlator and WKB limits

The spatially antipodal de Sitter correlators that we have discussed in the geodesic limit

in the bulk should most naturally be associated to Feynman or Wightman functions in

the strongly coupled de Sitter space field theory. Calculating these from the bulk gravity

picture requires the identification of the correct boundary conditions at the horizon. We

postpone a careful analysis of these for future work. We can, however, readily calculate the

retarded Green’s function by employing the Son-Starinets prescription [39] which requires

incoming boundary conditions at the horizon for the bulk field ϕ. This means that the

frequency harmonics of ϕ (defined through the mode expansion (5.2)) must satisfy

Ξν |z→∞ ∼ eiνz . (5.19)

The near-boundary behaviour of Ξν(z) is fixed as usual by the AdS asymptotics of the

background,

Ξν |z→0 = C1 z
d
2
−q [1 +O(z2)

]
+ C2 z

d
2

+q
[
1 +O(z2)

]
, (5.20)

where C1, C2 are integration constants constrained by the requirement that Ξν = 1 at a

UV regulating cutoff surface at z = ε so that

Ξν =
Ξ1, ν + βν Ξ2, ν

ε
d
2
−q + βν ε

d
2

+q
, βν ≡

C2

C1
. (5.21)

Ξ(1,2), ν represent the two linearly independent solutions with the two distinct types of AdS

boundary asymptotics. All non-trivial information on the (retarded) boundary correlator

resides in the ratio βν viewed as a complex function of ν. The solution to the WKB

Schrödinger problem is related to the Fourier harmonic Ξν according to

Ψwkb
u (z) = a(d−1)/2 Ξν . (5.22)
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Figure 8. Left: the Schrödinger potential V (z) in the exterior region for the deformed AdS4

geometry of section 4 versus the tortoise coordinate z, for f0 = 1. The dashed red line corresponds

to a real frequency ν2 = 0.5. Right: the Schrödinger potential V (z) in blue, plotted along the

w-axis, the tortoise coordinate behind the horizon, z = − iπ2 + w. The WKB potential V0 behind

the horizon is shown as the dashed black curve. The dashed red line corresponds to an imaginary

frequency with ν2 = −0.5. The qualitative difference between V and V0 is pronounced near the

crunch, where V ∼ −(w − wc)−2 whilst V0 ∼ (w − wc).

Carefully using the WKB solutions (5.12), (5.13) in the classically forbidden and allowed

regions, we find

βν =
i

2
lim
z→0

exp

[
2q

(∫ z

z∗(u)
κu(z′)dz′ − ln z

)]
. (5.23)

Finally, the frequency space retarded correlator is obtained by substituting the WKB so-

lution for Ξν into the boundary action and then using the orthonormality of spherical and

temporal harmonic mode functions,

Sbdry ∼
∫

dSd

ddx
√
−g gzz ϕ∂z ϕ|z=ε . (5.24)

Up to additive contact terms, the frequency space Green’s function in the WKB limit is

given by

Gwkb(u) = 4q ε2q−d βν , (5.25)

where βν is defined as in (5.23). For a generic deformed background, its exact form and

singularities will depend on the scale factor a. However, we can draw some general infer-

ences about the frequency space Green’s function. Nontrivial dependence on the frequency

u = ν/mϕ enters in (5.23) through the dependence of the turning point z∗ on u. While

z∗(u) is single-valued along the real u-axis, this is no longer the case when u is complex.

For strictly imaginary values of u (so u2 < 0), there are two turning points z∗ satisfying

a(z∗)
2 = −E2 , u = iE . (5.26)

This is because in the FRW patch the scale factor ã = −ia has a single maximum and

therefore eq. (5.26) has two solutions when E < ãmax. Of the two turning points, both of

which lie on the line z = −iπ/2 +w , (w ∈ R), the one which is closer to the horizon is the

“physical” turning point according to the terminology adopted in [19] i.e. it is the analytic
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continuation of the unique WKB turning point in the exterior region for real u. Therefore

z∗(u) is not single-valued for imaginary u, and the two turning points merge precisely when

E = ãmax signalling a branch point singularity.

The complete analytic structure of Gwkb(u) will clearly be determined by the actual

functional dependence of the WKB potential ∼ a2 on z, the tortoise coordinate. This

not only affects the WKB phase integral Zu, but also determines whether there are other

branch points in the complex u-plane resulting from mergers of the physical turning point

with other complex roots of a(z∗)
2 = u2. Regardless, the presence of two WKB turning

points along the imaginary u-axis is always guaranteed by the fact that the FRW scale

factor has a single maximum and two zeroes (at the horizon and the crunch singularity).

Therefore the retarded Green’s function, which should have singularities only in the

lower half plane, has a branch point singularity when

ν

mϕ
= −i ãmax , (5.27)

in the large mass or WKB limit. The branch cut emanating from this branch point should

extend away from the real axis (for retarded correlators). For the case of the AdS black

hole, it could be argued in [13, 19] that branch cuts such as this actually arise due to the

infinite set of discrete quasinormal poles merging into a continuum in the WKB limit. By

analogy then, we are led to identify the branch point (5.27) with the lowest quasinormal

mode (corresponding to a large dimension boundary operator). We can provide some

supporting evidence for this expectation below by examining the same correlators for the

undeformed theory i.e. the pure AdS geometry.

As already alluded to above, the correlator may well have other branch point singu-

larities in the complex plane depending on the precise form of the scale factor a and the

number of roots for the WKB turning point condition a(z∗)
2 = u2 in the complex plane,

for generic complex u. According to the criteria of [19], such singularities can be related to

quasinormal modes if the branch points result from the merger of the analytic continuation

of the physical turning point (defined above) with some other complex turning point. The

exploration of the more general set of WKB turning points and their physical significance

is a potentially interesting exercise that can be carried out for the analytically solvable

AdS4 deformation we have discussed in this paper.

5.3.1 Pure AdS: a check

The WKB result: it can be verified that for pure AdS, the WKB approximation and

the exact result for the retarded correlator are mutually consistent, and lend support to

the general picture described above. Using a = 1/ sinh z for the AdS geometry, we perform

the WKB integral in eq. (5.23) exactly to obtain,

Gwkb(u) ∼ exp [q {(iu+ 1) ln(iu+ 1)− (iu− 1) ln(iu− 1)}] , (5.28)

where we have omitted overall normalisation factors. This expression displays a branch

point singularity at u = −i which is in accord with the fact that the maximal FRW patch

scale factor satisfies ãmax = 1 for AdS spacetime. Although there also appears to be a
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Figure 9. Quasinormal poles in the complex ν-plane merge into a continuum on the u-plane

(u = ν/q) in the large q limit. The resulting branch point appears at u ' −iãmax.

branch point at u = +i, it is easy to establish that in the q → ∞ limit, the branch cut

emanating from it has vanishing discontinuity. This situation was also encountered and

explained in detail in [40]. Let us now confirm that the WKB Green’s function above is

indeed the high frequency limit of the exact AdS Green’s function.

The exact AdS result: for a fixed frequency ν the solution to the Schrödinger problem

in the undeformed AdS geometry can be written in terms of two independent hypergeomet-

ric functions Ξ1,2 (B.16). From the near-horizon expansion of the hypergeometric functions,

and upon implementing the Son-Starinets prescription we obtain (appendix B.2)

βν =
2−2qΓ[−q] Γ[1

2 + q − iν]

Γ[q] Γ[1
2 − q − iν]

. (5.29)

This can be viewed as the frequency space retarded correlator in the boundary CFT on de

Sitter space.13 As a function of ν, it is analytic in the upper half-plane, and has poles in

the lower half plane at

ν = −i
(

1

2
+ q + n

)
, n = 0, 1, 2, . . . (5.30)

This is the spectrum of quasinormal frequencies in pure AdSd+1 with dS-slicings, which

should coincide with the spectrum of zero modes of the Laplacian for the field of mass mϕ

on Euclidean AdSd+1 [41]. Recall that q =
√
d2/4 +m2

ϕ. The high frequency WKB limit

then follows from Stirling’s approximation (ln Γ(z) ' z ln z) which yields

βν ∼ exp [q {(iu+ 1) ln(iu+ 1)− (iu− 1) ln(iu− 1)}] , (5.31)

matching the direct WKB calculation above.

5.3.2 Beyond WKB

We have shown that the leading order WKB approximation probes the geometry behind

the horizon through complex turning points. However, the limit does not probe the big

13There are certain subtleties relating to a finite, discrete set of temporal harmonics arising from bound

states in the Pöschl-Teller potential; these do not, however, affect the form of βν quoted above.
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Figure 10. The Schrödinger potential (solid blue) and the WKB potential (dashed black) for the

deformed AdS4 model with deformation parameter f0 = 30 and q = 10. The WKB potential V0
deviates significantly from the full potential V which has only a single turning point when u2 < 0.

This happens whenever the deformation f0 is dialled to large enough values.

crunch directly. One immediate reason for this is evident from figure 8 which shows the

qualitative difference between the WKB potential V0 = q2 a2 and the full Schrödinger

potential V (z) as a function of the tortoise coordinate in the FRW patch. For the single

scalar truncation of N = 8 supergravity studied in section 4 it turns out that the WKB

potential V0 vanishes linearly at the crunch while the formally subleading contribution V2

causes the full Schrödinger potential to be unbounded from below at the crunch, where

V ∼ −(w−wc)−2. In fact it also turns out that for sufficiently large deformation parameter

f0, the local maximum in V (z) completely disappears, so that V (z) is monotonic and

divergent at the crunch (see figure 10).

It is possible to make a simple and general observation about the behaviour of the

Schrödinger potential for a general scale factor that vanishes as ã(σ) ∼ (σ − σc)γ in the

FRW patch14 with γ < 1. Moving to tortoise coordinates, near the crunch we then have

a(w) = iã ∼ i(w−wc)γ/(1−γ). Plugging into the complete Schrödinger potential we find that

V

(
− iπ

2
+ w

)∣∣∣∣
w→wc

∼ (d− 1) [γ(d+ 1)− 2] γ

4(1− γ)2
(w − wc)−2 . (5.32)

The Schrödinger potential can thus diverge towards positive or negative infinity at the

crunch depending on the value of γ for a given d. For the deformed AdS4 model (where

d = 3 and γ = 1/3), the potential diverges to negative infinity15 as −1
4(w − wc)−2. This

divergence and its effect on the next to leading order terms within the WKB approximation

would be extremely interesting to understand. It is already interesting that the existence

of the crunch singularity is reflected by an inverse square divergence in the Schrödinger

potential for the radial wave equation.

Our discussion of frequency space correlators does not by itself establish a complete

link to geodesics probing the FRW patch. In order to achieve this link we need to transform

14Recall that σ is the continuation of the radial variable ξ into the FRW region.
15Note that the inverse square potential also appears in the asymptotically AdS exterior region. Obviously,

this bears no relation to the inverse square behaviour in the vicinity of the crunch. Recall that for pure

AdS where there is no crunch wc → −∞.
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to a position space representation in the WKB limit. In addition, as a starting point, we

need the correct prescription for Feynman or Wightman correlation functions. A somewhat

different route towards the same objective would be to first calculate Euclidean correlators

between the antipodal points and subsequently analytically continue to Lorentzian signa-

ture, thus yielding the desired boundary de Sitter space correlators. We initiate this study

in appendix C and in particular, we show how the correct position space correlator emerges

from a saddle point method applied to a spherical harmonic spectral sum obtained by the

standard holographic prescription in Euclidean AdSd+1.

6 Discussion

We have tried to argue in this work that while geodesic probes of crunching AdS geometries

do not get close to the singularity in the way that analogous probes do for AdS black

holes, there are interesting physical features encoded in their analysis. The most natural

interpretation of the late time behaviour of the antipodal correlator in Einstein static frame

appears to be in terms of a divergent condensate for models with ãmax < 1 which includes

the specific AdS4 model studied in this paper. It would be interesting to know if the upper

bound on ãmax is model independent; it appears to be true for the models we have looked

at in this paper and in [32]. The unbounded growth of one-point functions or the CFT

“fall” has been argued [17] to be a characteristic feature of the “end of time” in the Einstein

frame in deformed CFTs with crunching duals; this includes deformations that have stable

ground states in the dS-spacetime formulation.

It appears that the signature of the crunch singularity, if any, should be encoded in

frequency space Green’s functions. This is the immediate and most naive interpretation

of the behaviour of the antipodal geodesics as a function of de Sitter energy E . The fact

that geodesics with energy E > ãmax terminate at the crunch, suggests a potential non-

analyticity in frequency space correlators. Whether this non-analyticity can be identified

in a meaningful way depends on a direct analysis of frequency space Green’s functions of

the (strongly coupled) field theory on the de Sitter background. For AdS black-holes the

works of Festuccia and Liu [13, 19] showed how information on the singularity is encoded

in the high frequency falloff of the Green’s functions along the imaginary frequency axis.

Within the context of this paper on the other hand, it appears that if there is nontrivial

information on the singularity, it must be encoded in the behaviour of the Green’s functions

for imaginary frequencies |Im ν|/mϕ = |Imu| > ãmax. This is the indication given by the

Schrödinger equation that the analytically continued wave equation reduces to for imagi-

nary frequencies. The complex turning points of the WKB problem do imply a branch point

at |Imu| = ãmax. However, the behaviour of the Schrödinger potential for |Imu| > ãmax is

not accurately captured within the WKB approximation; the WKB potential deviates sig-

nificantly from the actual potential which is singular in the near-crunch region. In fact, the

full potential is not only singular but the number of its extrema in the FRW patch changes

with f0, the deformation parameter, as can be seen in figures 8 and 10. This is an indication

that next to leading order effects in the WKB approximation will become essential.
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The Schrödinger potential for the deformed AdS4 model appears to have several com-

plex turning points for general complex u. It would clearly be of interest to learn if some of

these turning points can merge with the “physical” turning point giving rise to new branch

points (accompanied by their respective branch cuts) in the complex u-plane.

The calculation of holographic correlators is really a problem that deals with the wave

equation outside the horizon i.e. the exterior region. Relating it to the Schrödinger-type

potential behind the horizon is subtle and is most naturally understood within the context

of complex WKB turning points and associated analytic continuations. It remains to be

seen whether the interesting aspects of the analytically continued wave equation actually

translate into concrete features in the frequency space Green’s functions.
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A Transforming from dS-slicing to global coordinates

Recall that the Penrose diagram of AdS spacetime (Λ = 1) is constructed starting from

global coordinates (r, τ) which are related to the coordinates of the exterior (dS-slicing)

and interior (FRW) patches as

r = sinh ξ̂ cosh t = sin σ̂ sinhχ , (A.1)

tan τ = tanh ξ̂ sinh t = tan σ̂ coshχ .

The metric in these coordinates takes the globally static form

ds2 = −(1 + r2) dτ2 + (1 + r2)−1 dr2 + r2 dΩ2
d−1 . (A.2)

The coordinate ranges are r ≥ 0, −∞ < τ < ∞, i.e. we are taking the universal cover of

AdS with τ unwrapped. Further compactification r = tanψ shows that AdS is conformal

to the region 0 ≤ ψ < π/2 of the Einstein static universe R× Sd

ds2 = sec2 ψ
(
−dτ2 + dψ2 + sin2 ψ dΩ2

d−1

)
. (A.3)

B Scalar wave modes

The scalar field on the dS-sliced, asymptotically AdS geometry satisfies the Klein-Gordon

equation, the general solutions to which are obtained by separation of variables:

ϕ(ξ, t,Ω) =
∑
lm

Ylm (Ω)

∫
dλ

2π
Ξ(λ, ξ) Tl(λ, t) . (B.1)

The Ylm are the spherical harmonics on Sd−1 satisfying

∇2
Sd−1 Ylm = −l(l + d− 2)Ylm , (B.2)
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with the normalisation conditions∫
dΩY ∗lm(Ω)Yl̄m̄(Ω) = δll̄δmm̄ (B.3)∫

dΩ
∑
m

Y ∗lm(Ω)Ylm(Ω) =
(2l + d− 2)(l + d− 3)!

l!(d− 2)!
.

B.1 Temporal equation

The temporal harmonics Tl(ν, t) satisfy the mode equation

1

(cosh t)d−1
∂t

[
(cosh t)d−1 ∂tTl(ν, t)

]
+
l(l + d− 2)

cosh2 t
Tl(ν, t) = (B.4)

−
(
ν2 +

1

4
(d− 1)2

)
Tl(ν, t) .

After a rescaling,

Tl = (cosh t)−(d−1)/2 Tl , (B.5)

the temporal equation is reduced to a Schrödinger problem in a Pöschl-Teller potential:

− T̈l −
µ(µ+ 1)

cosh2 t
Tl = ν2 Tl , µ =

1

2
(d− 3) + l, l = 0, 1, 2 . . . (B.6)

The solution to the Schrödinger problem above includes a discrete set of negative “energy”

i.e. ν2 < 0 bound states,

−iνn =

{
1, 2, . . . , µ integer µ
1
2 ,

3
2 , . . . , µ half-integer µ

(B.7)

T nl = P iνnµ (tanh t) , (B.8)

where P iνµ is the associated Legendre function. The lowest energy state is proportional to

(cosh t)−µ.16 The normalization of the discrete modes is fixed by

Nn
l ≡

∫
T nl (t)2 dt = − Γ[1 + µ+ iνn]

iνnΓ[1 + µ− iνn]
. (B.9)

In addition to the finite set of discrete states, the Pöschl-Teller potential possesses a contin-

uum of positive energy (ν2 > 0) scattering states.17 The basis for these states is provided

by two appropriate linearly independent combinations of the associated Legendre functions

P iνµ (tanh t), Qiνµ (tanh t), P−iνµ (tanh t), and Q−iνµ (tanh t). The Legendre P and Q functions

satisfy,

P−iνµ (tanh t) =
Γ[µ− iν + 1]

Γ[µ+ iν + 1]

(
coshπν P iνµ (tanh t)− 2i

π
sinhπν Qiνµ (tanh t)

)
(B.10)

16The solutions can also be expressed in terms of Gegenbauer polynomials via the relation C
n+1/2
µ−n (x) ∼

(1− x2)−n/2P−nµ (x) (Abramowitz and Stegun [42] p.780).
17When µ = 0 these are simple exponentials e±iνt, higher values of µ represent modulated exponentials

e.g. P iν1 (tanh t) ∼ (1 + iν−1 tanh t)eiνt.
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Q−iνµ (tanh t) =
Γ[µ− iν + 1]

Γ[µ+ iν + 1]

(
iπ

2
sinhπν P iνµ (tanh t) + coshπν Qiνµ (tanh t)

)
.

The far future asymptotics (t→∞) of the modes are given as:

P±iνµ (tanh t)|t→∞ =
e±iνt

Γ[1∓ iν]

Q±iνµ (tanh t)|t→∞ =
1

2
coshπνΓ[±iν]e±iνt +

sinπ(µ∓ iν)Γ[−µ± iν]Γ[∓iν]e∓iνt

2 sinπ(µ± iν)Γ[−µ∓ iν]
(B.11)

We see that P−iνµ (tanh t) is always positive frequency in this limit. We may choose to

expand the temporal dependence in terms of these positive frequency modes in the “far

future basis”,

T νl = Γ[1 + iν]P−iνµ (tanh t) , (B.12)

where the normalisation is fixed so that in the limit ν → ∞ the modes reduce to the flat

space ones:

lim
ν→∞

T νl = e−iνt ∀µ . (B.13)

For d odd, the {T νl } can be shown to be orthonormal using the integrals presented in [43].

When d is even, however, an orthornormal basis is given by the set

T̂ νl =

√
π

2

Γ[1
2 + iν] e

1
2
π|ν|

Γ[iν]

(
P iνµ (tanh t)− 2i sgn(ν)

π
Qiνµ (tanh t)

)
, (B.14)

〈T̂ νl T̂ ν
′

l 〉 ≡
∫ ∞
−∞
T̂ νµ (t) T̂ ν′µ (t) dt = 2π δ(ν + ν ′) . (B.15)

Modes with different values of µ are always orthogonal.

B.2 Radial solution in undeformed AdS

The radial wave equation (5.3) for the scalar field ϕ in the case of the pure AdS geometry

is solved by two independent hypergeometric functions

Ξ1=(cosh z)
1
2

(d−1)+iν(tanh z)
d
2
−q

2F1

(
1

4
− 1

2
(q+iν),

3

4
− 1

2
(q+iν); 1−q; tanh2 z

)
(B.16)

Ξ2=(cosh z)
1
2

(d−1)+iν (tanh z)
d
2

+q
2F1

(
1

4
+

1

2
(q − iν),

3

4
+

1

2
(q − iν); 1 + q; tanh2 z

)
,

which are well-defined for non-integer q.18 Near the horizon Ξν = C1Ξ1 + C2Ξ2 has the

expansion,

Ξν(z →∞) =
2−

d
2
−q

π3/2
e

1
2

(d−1)z−iνz
(
C1 cosπ(q + iν) Γ[1− q] Γ

[
1

2
+ q + iν

]
Γ[−iν] +

+22qC2 cosπ(q − iν) Γ[1 + q] Γ

[
1

2
− q + iν

]
Γ[−iν]

)
+ (ν ↔ −ν) (B.17)

18The integer case has additional poles which need to be handled separately. There are also some other

complications for half-integer q. We will concentrate on the case of generic real q > 0, as the final results

should be expected to be insensitive to this issue.
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The radial functions diverge as e
1
2

(d−1)z but provided Im(ν) > −1/2 they are still normal-

izable with the measure
√
−g ∼ ad ∼ e−dz. In accord with the Son-Starinets prescription,

we choose the ratio C1/C2 such that the solution goes as eiνz because this represents an

incoming wave at the horizon.

C Euclidean AdS correlators and WKB

Euclidean de Sitter spacetime is isomorphic to the d-sphere Sd. Specifying a point on Sd

by polar coordinates (θ, Ωd−1), where Ωd−1 stands for coordinates on the Sd−1 latitude,

the Euclidean correlator between two such points must have the form,

GE(θ1, θ2, δΩd−1) = g(Z12) , (C.1)

where Z12 is the SO(d+ 1)-invariant geodesic separation,

Z12 = cos θ1 cos θ2 + sin θ1 sin θ2 cos δΩd−1 , Z12 ∈ [−1, 1] . (C.2)

To continue to dSd we take θ = it+ π/2 yielding,

Z12 = − sinh t1 sinh t2 + cosh t1 cosh t2 cos δΩd−1 , (C.3)

which is now invariant under the de Sitter group SO(d, 1) with Z12 ∈ R. In particular when

the two points are coincident or lightlike separated Z12 = 1, and CFT correlators are typi-

cally rendered singular. We are primarily interested in the case where the two points are an-

tipodal on the spatial sphere Sd−1. In this instance Z12 = − cosh (t1 + t2) and the two-point

correlator of an operator with conformal dimension ∆ is fixed by conformal invariance to be

G12
∆ ∼ 1

(1− Z12)∆
=

1[
2 cosh2

(
t1+t2

2

)]∆ . (C.4)

C.1 Correlator on Sd from holography

Now we wish to understand the position space CFT result from a holographic standpoint.

This requires solving the wave equation �φ−m2ϕ = 0 on the Euclidean background

ds2 = a2(z)(dz2 + dΩ2
d) , (C.5)

where z is the tortoise coordinate. For EAdSd+1, the function a(z) = 1/ sinh z. We then

expand the field ϕ in Sd spherical harmonics,

ϕ =
∑
L

YL(Ω) ΞL(z) . (C.6)

YL is the spherical harmonic on Sd, satisfying

∇2
SdYL = −L(L+ d− 1)YL, L = 0, 1, 2 . . . (C.7)

The rescaled field ΨL = a(d−1)/2ΞL solves the radial equation

−d
2ΨL

dz2
+ VΨL = −ω2ΨL ,
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V = m2
ϕa

2 +
d− 1

2a

d2a

dz2
+

(d− 1)(d− 3)

4a2

(
da

dz

)2

− (d− 1)2

4
, (C.8)

where ω = L+ (d− 1)/2. In pure AdS the solution of the radial equation is

ΨL = C1P
−ω
q− 1

2

(coth z) + C2P
ω
q− 1

2

(coth z) . (C.9)

In EAdS we need solutions that are regular at the origin z → ∞. Only the first term is

regular in this limit and scales as e−ωz. It has the following expansion near the boundary

ΨL(z → 0) = C1i
ω
√

2

(
2−qΓ[2q]

Γ[1
2 + q]Γ[1

2 + q + ω]
z

1
2
−q +

2qΓ[−2q]

Γ[1
2 − q]Γ[1

2 − q + ω]
z

1
2

+q

)
. (C.10)

To compute the momentum space correlator, the regular solution (C2 = 0) must equal 1

at z = ε (near the conformal boundary). Normalizing appropriately, the near boundary

expansion is then

ΞL =
z
d
2
−q + βLz

d
2

+q

ε
d
2
−q + βLε

d
2

+q
, (C.11)

where

βL =
2−2qΓ[−q]Γ[1

2 + q + ω]

Γ[q]Γ[1
2 − q + ω]

. (C.12)

In the deformed case a similar treatment will apply, except that the βL will be different.

Therefore, in position space, the most general solution of the wave equation, correctly

normalized at the boundary and regular at the origin, is

ϕ(Ω, z) =
∑
LM

ALMYLM (Ω)ΞL(z) , (C.13)

where we have introduced the Fourier coefficients {ALM}. Since Y ∗LM = (−1)MYL,−M we

also require A∗LM = (−1)MAL,−M . The scalar action reduces on shell to the surface terms

S =

∫
dΩ sinh−(d−1) (z)ϕ∂zϕ|∞ε

=
∑

L,M,L̄,M̄

ALMA
∗
L̄M̄

∫
dΩYLM (Ω)Y ∗L̄M̄ (Ω) sinh−(d−1) (z) ΞL ∂zΞL̄|∞ε . (C.14)

There is no contribution from the origin provided ω > −(d− 1)/2 which always holds. For

the boundary contribution

ΞL(ε) = 1, (sinh ε)−(d−1) Ξ′L̄(ε) = 2qε2q−d , βL̄ (C.15)

discarding contact terms. Using orthogonality of the spherical harmonics we have

S = 2qε2q−d
∑
LM

ALMβLA
∗
LM . (C.16)

To determine the position space correlator, we functionally differentiate the action twice

with respect to the source

ϕb(Ω) =
∑
LM

ALMYLM (Ω) . (C.17)
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Inverting this relation, the functional derivative is δALM/δϕb(Ω) = Y ∗LM (Ω) and the Eu-

clidean correlator in position space is,

GE(Ω,Ω′) = 2qε2q−d
∑
LM

βLY
∗
LM (Ω)YLM (Ω′)

= 2qε2q−d
∑
L

βLWL(δΩ) . (C.18)

Here, ee have made use of the spherical harmonic sum rule to obtain WL:

WL =
∑
M

Y ∗LM (Ω)YLM (Ω′) =
(2L+ d− 1)

(d− 1)Ωd
C
d−1

2
L (cos δΩ) , (C.19)

with C a Gegenbauer polynomial, δΩ the angle between the two directions Ω and Ω′ and

Ωd =
∫
dΩ the total solid angle. The final expression for the holographic correlator on Sd is

GE(Z) =
2qε2q−d

(d− 1)Ωd

∞∑
L=0

βL(2L+ d− 1)C
d−1

2
L (Z) , (C.20)

where Z = cos δΩ is the SO(d+ 1)-invariant separation between the two points. This is a

completely general expression for the Euclidean correlator. All nontrivial information on

the deformations is contained in the function βL. In the conformal case βL is given by the

expression

βL =
2−2qΓ[−q]Γ[L+ q + d

2 ]

Γ[q]Γ[L− q + d
2 ]

, (C.21)

and the sum is symmetric under the reflection L→ −(L+ d− 1).

Special case (d = 2): when d = 2 the Gegenbauer functions reduce to ordinary Legen-

dre polynomials and we have

GE(Z) = 21−2qqε2q−2
∞∑
L=0

Γ[−q]
Γ[q]

Γ[L+ q + 1]

Γ[L− q + 1]
(2L+ 1)PL(Z) . (C.22)

Using the known result(
2

1− x

)q+1

=
∞∑
L=0

(2L+ 1)Γ[−q]Γ[L+ q + 1]

Γ[1 + q]Γ[L− q + 1]
PL(x) , (C.23)

which is divergent for q > −1/4, we get

GE(Z) =
22−qq2ε2q−2

(1− Z)q+1
, (C.24)

consistent with the result from conformal invariance. Recall that the conformal dimension

∆ = q + d/2.
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C.2 WKB limit of holographic correlator on Sd

Now we examine the WKB limit, by taking the angular momenta L and mass mϕ to scale

to infinity in the same way:

ω = qw , L = qw − d− 1

2
, q →∞ . (C.25)

The discrete sum over L becomes an integral over w and the (holographic) correlator on

Sd in the conformal case can be expressed as

GE(Z) = Ñ
∞∑
L=0

Γ[L+ q + d
2 ](2L+ d− 1)

Γ[L− q + d
2 ]

C
d−1

2
L (Z) , (C.26)

where Ñ is a normalisation:

Ñ =
21−2qqε2q−d

(d− 1)Ωd

Γ[−q]
Γ[q]

. (C.27)

At fixed Z and q the summand diverges at large L as L2q+ d−1
2 . Inserting a regulator e−Lζ

to make the sum converge we can write,

GE(Z) = lim
ζ→0
Ñ

∞∑
w= d−1

2q

e−qwζ
Γ[qw + q + 1

2 ](2qw)

Γ[qw − q + 1
2 ]

C
d−1

2

qw− d−1
2

(Z) , (C.28)

where the increments in w are δw = 1/q. Using Stirling’s approximation,

Γ[qw + q + 1
2 ]

Γ[qw − q + 1
2 ]
∼ eqX(w) ,

X(w) = (w + 1) ln (w + 1)− (w − 1) ln (w − 1) , (C.29)

and letting Z = cosφ, the correlator can be represented as the integral:

Gwkb
E (cosφ) ∼

∫ ∞
0

dw · w · eqX(w) · C
d−1

2

qw− d−1
2

(cosφ) . (C.30)

Next we make use an integral representation of the Gegenbauer function:

CλL(cosφ) =
Γ[L+ 2λ]

22λ−1Γ[L+ 1]Γ2[λ]

∫ π

0
dθ (cosφ+ i cos θ sinφ)L sin2λ−1 θ , (C.31)

which yields

C
d−1

2

qw− d−1
2

(cosφ) =
Γ[qw + (d− 1)/2]

2d−2Γ[qw − (d− 3)/2]Γ2[(d− 1)/2]

∫ π

0
dθ e−(qw− d−1

2
)f(θ) sind−2 θ

≈ (qw)d−2

2d−2Γ2[(d− 1)/2]

∫ π

0
dθ e−(qw− d−1

2
)f(θ) sind−2 θ , (C.32)

with

f(θ) = − ln (cosφ+ i cos θ sinφ) . (C.33)
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Interchanging the order of the w and θ integrations, we can do the integral over w first

using the steepest descent method:∫ ∞
0

dw · wd−1 · eqX(w) · e−qwf(θ) =

√
π

q

coshd−1 (f/2)

sinh2q+d (f/2)
, (C.34)

noting that Re(f) > 0. This leaves us with one final integration:

Gwkb
E (cosφ) ∼

∫ π

0
dθ e

d−1
2
f(θ) coshd−1 (f(θ)/2)

sinh2q+d (f(θ)/2)
sind−2 θ . (C.35)

We then write

1

sinh2q+d (f(θ)/2)
= 2q+d/2(cosh f(θ)− 1)−d/2e−q ln (cosh f(θ)−1) , (C.36)

and switch to the complex variable z = eiθ to yield

Gwkb
E (cosφ) ∼

∫
C
dz · g(z) · eq χ(z) . (C.37)

Here

g(z) =
1

z

(
z − 1

z

)d−2

e
d−1

2
f(z) coshd−1 1

2f(z)

(cosh f(z)− 1)d/2
,

χ(z) = − ln (cosh f(z)− 1) ,

f(z) = − ln (cosφ+
i

2
(z + 1/z) sinφ) , (C.38)

and C is the upper half of the unit circle centred on z = 0 traversed counterclockwise. The

two saddle points where χ′(z) = 0 are at z = 1 and z = −1. The values of χ and χ′′ at

these points are

χ(1) = − ln (cosφ− 1), χ′′(1) = −e−iφ(1 + cosφ)

χ(−1) = − ln (cosφ− 1), χ′′(−1) = −eiφ(1 + cosφ) (C.39)

and g(z) expanded around these points is

g(z) =
2
d−4

2

id
e−i

d−1
2
φ cosd−1 1

2φ

sind 1
2φ

(z − 1)d−2 + . . .

g(z) = −2
d−4

2

id
ei
d−1

2
φ cosd−1 1

2φ

sind 1
2φ

(z + 1)d−2 + . . . (C.40)

Finally, the WKB correlator comes out to be

Gwkb
E (cosφ) ∼ 1

sin2q+d 1
2φ

, (C.41)

in agreement with the exact CFT result. Therefore the WKB approximation is exact in

the conformal case.
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