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The deformation mechanisms of binary Ti-Al model alloys (0-13.1 at.% Aluminium) have been investi-
gated with respect to the twinning activity using in-situ loading in combination with neutron diffraction
as well as detailed post mortem electron backscatter diffraction analysis. A consistent starting grain size
and texture was generated for all alloys promoting tensile twinning during compression testing. Long-
wavelength neutron diffraction and selected area diffraction transmission electron microscopy analysis
were carried out to detect evidence of Aluminium ordering and TisAl formation.

It was found that raising the Aluminium content in Titanium does first slightly enhance twinning,
with {10 12}<10 11> tensile twinning being by far the dominant type, while the critical residual inter-
Ti-Al binary alloys granular strains for twin initiation decreases. This suggests that either the lowering of stacking fault energy
Neutron diffraction by Aluminium or its solute solution strengthening effect are important factors. At around 7 at.% Alu-
EBSD minium a turning point in twinning activity was noticed and a further increase in Aluminium did result
Short range ordering in a dramatic loss of twinning activity particularly when the material had been exposed to an addition-
al low temperature age. The dramatic decrease of twinning activity is strongly correlated with increasing
evidence of short range ordering and also early signs of TisAl-formation in case of the highest Alu-
minium content. In addition, electron backscatter diffraction analysis revealed that the formation of
Aluminium ordered zones do severely hinder growth of twin boundaries.

Keywords:
Deformation twinning

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Despite the importance of aluminium as an alloying element
in commercial titanium alloys, its effect on deformation mecha-
nism activity is still poorly understood. This is particularly true
regarding its effect on twinning. In metals with a hexagonal close
packed (hcp) crystal structure, twinning is often considered an im-
portant deformation mechanism as it offers shear with a <c>
component. The only other mechanism that includes <c> compo-
nent shear is pyramidal <c+a> slip, which is known to have a critical
resolved shear stress (CRSS) about 3-4 times that of prismatic <a>
slip in typical titanium alloys [1,2]. In principle, twinning im-
proves formability and impact resistance because it increases work
hardening rate during deformation [3]. Adding Al to Ti is known
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to reduce elongation to failure [4], cause unstable shear [1] and it
has been argued that 6 wt.% Al (10 at.% Al) completely switches
off twinning [2]. However, it is still unclear why Al affects twin-
ning in Ti alloys.

Aluminium and oxygen are potent solid solution strengthening
elements in o-Ti [5]. Aluminium is a substitutional element
whereas oxygen is interstitial [2]. The effect of Al on the slip and
twin activity has been studied in some detail in large single-
crystal compression samples [1]. This work showed that the
CRSS for basal and prismatic <a>-slip increases with increasing Al
content. It was also shown that at 12 at.% Al, CRSS for basal <a>
slip is slightly higher than prismatic <a> slip. In principle, this
trend can be explained by Al decreasing the stacking fault
energy on the basal plane [6,7], which is also known to have a
significant effect on the high-temperature creep performance
in o-Ti alloys [8,9]. The work of Williams et al. [1] also showed
that CRSS for <c+a> slip is consistently more difficult than
<a> slip.

1359-6454/© 2015 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Regarding twin activity and twin morphology, significant dif-
ferences have been observed when comparing commercially pure
(CP) Ti [10,11] and for instance Ti-6Al-4 V [12,13]. While in CP-Ti
twin activity tends to be very high during the early stage of defor-
mation and twins are readily observable, twin activity has often been
reported to be less frequent, or even absent, in Ti—-6Al-4 V [2]. The
reason for this is not entirely clear but it has been suggested it is
related to the smaller grain size, high Al content and the presence
of TisAl precipitates in Ti-6Al-4 V [2]. However, more recently, it
has been shown that compression testing of Ti-6Al-4 V at room tem-
perature leads to the development of a normal basal texture, which
is generally associated with activation of {10 12}<10 11> tensile twin-
ning. Moreover, the same study suggests that despite the difficulty
of twin nucleation in Ti-6Al-4 V, once twins have nucleated their
growth is very rapid resulting in the consumption of entire parent
grains, making the detection of twins by conventional means dif-
ficult [12].

For metals with an fcc crystal structure it has long been estab-
lished that the propensity for twin nucleation is related to the
stacking fault energy (SFE) as the stacking fault can act as a nucle-
ation site for twin formation [14-16]. Interestingly, in the absence
of ordering, Al does lower the SFE on the basal plane in Ti very sub-
stantially [9,17]. Although twins in Ti do not usually involve stacking
faults on the basal plane, according to one of the models of heter-
ogeneous twin nucleation, twins initiate and grow from stacking
faults on twinning planes, forming zonal dislocations with a <1011>
Burgers vector in the case of {10 12}<10 11> tensile twins [18]. Al-
though the effect of increasing Al content on this process cannot
be easily estimated, its effect on basal SFE suggests it should make
twin nucleation easier.

One way in which Al could affect twin activity is through
solute solution strengthening [4,5], however it is not immediately
clear whether this would promote or hinder twinning. On one
hand, if solid solution strengthening affects the CRSS for slip but
not for twinning, a higher flow stress should lead to higher
twinning activity, simply because plastic deformation occurs at
higher stress levels. However, adding Al not only strengthens the
material but also changes the character of slip. This is a conse-
quence of the tendency to create short range ordering (SRO)
followed by long range ordering (LRO), i.e. TisAl (0 — DO4g struc-
ture), depending on the level of Al addition and the heat treatment
procedure. Studying ordering in Ti-Al alloy systems is notoriously
difficult. A TEM study of Ti 15at.%Al (500 ppm O) after ageing for
80 h at 550 °C identified spherical o2 precipitates [19], which
coarsened to ellipsoidal precipitates along the <c>-axis during
continued ageing [19,20]. Signs of ordering have also been com-
monly reported at Al concentration as low as 8.5 at.% [2,4,21-23].
Namboodhiri et al. identified signs of SRO down to 7 at.% Al by
resistivity measurements [24]. An adapted version of the phase
diagram in Ref. [25] is presented in Fig. 1. Reported TisAl domain
sizes and ageing times are given for several concentrations and
temperatures as marked in the phase diagram [1,4,20]. For com-
parison, the heat treatments used in the current study are also
indicated.

These ordered domains or phases are expected to strengthen
the material as shearing will either result in the formation of a
diffuse anti-phase boundary (DAPB) in the case of SRO or the
more familiar anti-phase boundary (APB) when LRO is fully devel-
oped [26]. First principle calculations suggest that the energy for
the formation of a DAPB is about 4-8 times smaller than the APB
energy for TisAl It has long been suggested that ordering pro-
motes slip localisation [27] and more recent TEM investigations
have indeed confirmed the formation of coupled dislocations in
deformed Ti-6 wt.% Al [28]. The change in slip character to more
localized slip with increased Al content could make the accommo-
dation of the twinning strain in both the parent grain and the
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Fig. 1. Ti-rich side of the Ti-Al phase diagram adapted from Refs. [1,23,29,45,52]
showing positions of annealing and ageing temperatures.

twinned volume more difficult, hindering twin growth. In aged
material, the presence of TisAl particles will also have an effect.
Research on the TiAl-TisAl system has consistently demonstrated
that although TiAl forms deformation-twins, TisAl does not [29-34],
suggesting that ordering hinders twinning. In addition, some in-
teresting recent studies of twin boundary mobility in a Mg-Gd
alloy have also shown that ordering on twin boundaries exerts a
very strong pinning force [35].

In summary, there is no convincing explanation for how adding
Al to Ti affects twinning. Increasing the Al content increases the flow
stress and decreases the SFE, all of which should promote twin-
ning. On the other hand, it leads to slip localization and ordering,
both of which should suppress twinning. In light of this lack of a
clear understanding, and the absence of a systematic studies of the
effect of Al on polycrystalline materials, a series of deformation
studies were carried out on binary Ti-Al alloys with Al contents
ranging from O to 13 at.%. To facilitate a meaningful comparison,
great care was taken to generate starting microstructures with very
similar recrystallized grain size and macroscopic texture. The mi-
crostructure was first characterised by SEM/EBSD, TEM and long-
wavelength neutron diffraction to determine starting texture, grain
size, lattice spacing and provide evidence of o, and SRO. In-situ
neutron diffraction compression experiments were carried out to
quantify twin activity and measure elastic strains along the c-axis
in the grain family associated with the parent grains of twins. The
methodology used is similar to previous work carried out on com-
mercially pure Ti, Ti-6Al-4V, Zr alloys and Mg alloys [36-41] to
monitor the {10 12}<10 11> tensile twin activity during compres-
sion testing. In the present work, the twin analysis was further
complimented by detailed post-mortem EBSD analysis.

2. Materials and methods
2.1. Material preparation

For the purpose of this research, 200 g binary Ti-Al alloy buttons
with different Al content up to 13 at.% Al (8 wt.% Al), were double
melted in a tungsten arc furnace under an inert gas atmosphere.
This was followed by 3 forging at 1100 °C at the TIMET research
facility in Witton, UK. Subsequently, the buttons were cross-rolled
into a bar (14 x 14 x 260 mm) on a “2 high Robertson mill”
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(WHA Robertson & Co Ltd) at 750 °C in the case of the high purity
Ti button (from here on called Ti-0Al) and at 870 °C when con-
taining Al. Ti-0Al was recrystallised (RX) at 750 °C, 130 °C below
the B transus temperature, in a tube furnace under an argon shield
for 5 h followed by air-cooling, while recrystallisation treatments
for the Al containing bars were carried out 30 °C below the -transus,
followed again by air cooling. The B-transus depends on Al content
and therefore, Ti-3Al, Ti-7Al, Ti-10Al and Ti-13Al (all at.%) were
recrystallized at 895 °C, 933 °C, 968 °C and 990 °C, respectively. The
B-transus temperatures were determined using Thermocalc, which
is known to provide reasonably accurate results for this range of
alloys [25,42,43]. Ti-0Al was annealed at a lower temperature rel-
ative to the B-transus than the binary alloys in order to achieve a
similar final grain size. In addition, some Ti-7Al and Ti-10Al samples
were cooled at 10 °C/h from RX temperature to 380 °C and 420 °C
respectively, around 30 °C below the o,-solvus temperature [25],
and aged for 120 h to promote o, formation. The different heat treat-
ment procedures are listed in Table 1. Chemical analyses were
performed after annealing by TIMET, Savoie, France using induc-
tively coupled plasma mass spectrometry on a HORIBA Ultima2 for
the analysis of metallic elements, on a HORIBA EIMA 820 V for carbon
analysis and on a LECO EF-400 for oxygen and nitrogen analysis.
Table 2 lists the measured chemical composition of the binary alloys
displaying oxygen (O) concentration of 1000 + 500 ppm, while carbon
and nitrogen are below 100 ppm. Rectangular and cylindrical samples
of 6 x 6 x 9 mm?> and 6 mm diameter and 9 mm length were ma-
chined for ex-situ compression testing while for in-situ loading, using
neutron diffraction, cylindrical samples of 8 mm diameter and 12 mm
length were required.

2.2. Microstructure analysis

Cross sections with the plane normal parallel to the rolling di-
rection (RD) were cut from the middle of non-deformed and
deformed samples and prepared by standard mechanical grinding
followed by oxide particle suspension (OPS) polishing with inter-
mediate Kroll's etching for 10 s (3% hydrofluoric acid, 6% nitric acid
and balance water) to produce mirror finish for optical microsco-
py (OM), x-ray diffraction (XRD) and electron backscattered
diffraction (EBSD). The texture was measured using EBSD on a
CamScan Maxim 2500FEG SEM operated at 20 kV and equipped with
a NordLYS detector. Measurements were carried out using a 40 um
step size on areas of at least 4 x 4 mm?, covering more than 3500
grains. The macrotexture measurements were used to approxi-
mate the {10 12}<10 11> twin activity A, based on texture changes
by using Equation (1), where Nix is all indexed EBSD data points
before deformation, ngx is a subset within 30° to the loading direc-
tion (LD), N; is all EBSD data points of the deformed sample and n;
is a subset within 30° to LD.

Awwin =15 /N5 =gy /Ny (1)
Table 1
Heat treatment and grain size.
Alloy a-solution Ageing Mean grain
anneal size [um]
T[°C] t[h] T[°C] t[h]
Ti-0Al 750 5 - - 94
Ti-3Al 895 5 - - 82
Ti-7Al 933 5 - - 73
Ti-7Al-aged 933 5 380 120 74
Ti-10Al 968 5 - - 71
Ti-10Al-aged 968 5 420 120 77
Ti-13Al1 990 5 - - 78

It should be pointed out that any great degree of reorientation
of the hexagonal close packed (hcp) crystal at small strain levels
is unlikely to be related to slip, as slip creates a more gradual texture
change [44]. It should also be noted that 65° compression twins
({11 22}<1123>) would decrease A, while 35° tensile twins
({11 21}<1126>) could increase it [44].

Detailed orientation maps were recorded on a FEI Sirion FEG SEM
using a step size of 1 um and recording maps covering typically 100
grains or more. Data were cleaned and analysed using the com-
mercial software package HKL. Twin boundary criteria, as given by
Bozzolo et al. [45], were used to identify and quantify relative area
fractions of twin systems.

Thin foils for transmission electron microscopy (TEM) were pre-
pared for selected conditions by electro polishing (6% perchloric
acid (60%) and 94% methanol) between -50 and -35 °C at 15 V
using a Tenupol 5. A FEI Tecnai T20 equipped with a LaB6 filament
was used at 200 kV and selected aperture electron diffraction images
were taken using Ditabis image plates that provide a high
dynamic range enabling the detection of faint TisAl superlattice
reflections.

Long-wavelength powder diffraction type measurements were
carried out at the time-of-flight (ToF) beam line WISH, based at the
ISIS neutron spallation facility, UK, to assess the state of ordering
(SRO, LRO) [46]. Cylindrical bulk samples of 8 mm diameter and
40 mm length were loaded in one of two Vanadium cans of 150 um
wall thickness and mounted on an Al candlestick. Boron nitride
shielding was used to avoid scattering from the Al holder. The
samples were aligned in the centre of the beam gauge volume
(20 x 40 mm) and 60 min long measurements were taken at pres-
sures below 0.05 bar. Background subtracted spectra from bank 3
(at 90° from the incident beam), which provided the highest flux
for the d-spacing region of interest, were smoothed with averag-
ing over 20 points.

2.3. Mechanical testing

Standard room temperature compression tests were conducted
on an Instron 5569 at an initial strain rate of 10~ 1/s. The use of
Lubriplate grease minimized barrelling of the sample and helped
ensure an uniaxial stress state during deformation. Samples for mi-
crostructural and texture observation were strained monotonically
to plastic strains of e = 1.7%, 3.7% and 8.7% along the rolling direc-
tion (RD).

2.4. In-situ loading using neutron diffraction

In-situ compression experiments using neutron diffraction were
carried out at the ENGIN-X beam line, which is also based at the
neutron spallation facility ISIS, UK. ENGIN-X is also a ToF instru-
ment with two detectors installed at 90° to the incoming beam
[47,48]. With a loading rig (an Instron 8562 with 100 kN load cell)
positioned at a 45° angle to the incident neutron beam, as shown
schematically in Fig. 2, the two detectors allow recording of dif-
fraction spectra parallel (red areas) and transverse (blue areas) to
the loading direction (LD). The samples were incrementally loaded
but the measurements were carried out in the unloaded condi-
tion to avoid significant cold creep during neutron diffraction
measurements. For each loading experiment about 14 diffraction
measurements were carried out within the plastic regime up to 9%
plastic strain. A current of 30 HA was collected for each data point
to ensure a good signal-noise ratio, which took 24 min under optimal
beam conditions.

The axial detector was used to monitor twinning. Since the most
common twinning mode in Ti alloys is the {10 12}<10 11> tensile
twin, which provides a near 90° rotation of the c-axis from a tensile
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Table 2
Measured chemical composition and lattice parameters of model alloys.
Alloy Al [wt.%] Al [at.%] C [ppm] N [ppm] O [ppm] Ti a[A] c[A]
Ti-0Al 0.00 0.0 55 13 507 bal. 2.949 4.683
Ti-3Al 2.00 3.49 72 39 474 bal. 2.942 4.681
Ti-7Al 3.90 6.67 50 23 413 bal. 2.935 4.678
Ti-7Al-aged 3.90 6.80 50 23 592 bal. 2.935 4.677
Ti-10Al 5.88 10.01 76 53 756 bal. 2.929 4.675
Ti-10Al-aged 5.88 9.99 76 53 567 bal. 2.928 4.673
Ti-13Al 7.85 1313 55 94 377 bal. 2.925 4.669
Basic neutron diffractometer design Ti Al concentration [wt%]
(pulsed source) 0 2 4 6 8 10 12 14 16 18
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Fig. 2. Shematic of experimental setup at ENGIN-X, ISIS for in-situ loading exper-
iment with detector areas axially in red and transverse in blue and {0002 }-pole figure
before (left) and after loading (right). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

to a compressive stress condition, twinning causes an increase in
the 0002 peak intensity along the loading direction during com-
pression loading. In addition the transverse detector was used to
monitor the (residual) elastic strain of the grains that are most likely
to twin by measuring shifts in the position of the 0002 reflection.
Single peaks were fitted using the in-house ISIS software Open Genie.
The lattice strain evolution was calculated as described by Warwick
et al. [38]. In addition, the diffraction elastic constant (DEC) re-
corded for the 0002 reflection of the individual alloys was used to
calculate the 0002 intergranular strains in the loaded condition.

The initial lattice spacing of each alloy was determined by Rietveld
analysis of the spectra recorded on each detector before loading and
averaging the results.

3. Results
3.1. Starting material

Neutron diffraction results presented in Table 2 show that the
a lattice parameter decreases comparatively linearly with increas-
ing Al content while the c lattice parameter decreases more rapidly
at high Al concentrations. The corresponding c/a ratios are plotted
in Fig. 3, and are in excellent agreement with previously reported
values [49,50]. The data show a clear non-linear relationship between
Al concentration and c/a ratio, which indicates that with increas-
ing Al content some of it is not kept in solution. Interestingly, when
extrapolating the nonlinear trend to higher Al levels, the c/a ratio
approaches the values in the literature for TisAl [51,52].

Fig. 4a and b displays the diffraction profiles recorded on WISH
focussing on the large d-spacing range in order to identify a pos-
sible {1120} o, superlattice reflection. The profiles are presented

Fig. 3. Calculated c/a ratio as function of the aluminium concentration in compar-
ison to literature values.

separately in terms of effect of Al addition (Ti-0Al, Ti-7Al, Ti-10Al
and T-13Al), Fig. 4a, and comparing between annealed and aged
conditions, Fig. 4b. None of the patterns showed any evidence of
distinct o, superlattice reflections. However, a broad intensity in-
crease becomes noticeable in the region where one would expect
the {1120} and {1011} o reflection in the case of Ti-10Al and Ti-
13A], Fig. 4a. Ageing of Ti-7Al also causes a small intensity increase
in this range while ageing Ti-10Al makes this shoulder even more
pronounced, Fig. 4b.

Extensive TEM analysis was carried out in order to detect o
superlattice reflections in the binary alloys with relatively high Al
content. Selective area electron diffraction pattern analyses with the
zone axis along [ 101 0] showed no indication of an o, superlattice
reflection in Ti-10Al, Fig. 5a, while the aged Ti-10Al displayed a very
weak superlattice reflection spot, Fig. 5b. In both cases very signif-
icant scattering was seen in the region of the expected superlattice
reflection, which impaired the clear visualisation of the superlattice
spot in the aged Ti-10Al.

EBSD was used to map the starting microstructure and at strains
of 0.02, 0.04 and 0.09 (ex-situ). The first row of Fig. 6 (small crop
from significantly larger EBSD maps) shows representative inverse
pole figure (IPF) colour orientation maps of the starting microstruc-
tures, with the corresponding 0002 and 1010 pole figures (obtained
from larger areas) shown in Fig. 7a. While the grain size distribu-
tion appears to be somewhat heterogeneous for all alloys, no
significant differences were noticeable between alloys, including with
respect to macrotexture. Large EBSD maps did not reveal any regions
of strong microtexture (macrozones). The mean grain size in all alloys
was about 80 um with very low misorientations (<2°) within grains.
All starting microstructures displayed a very low mud (multiples
of uniform density) value along RD in the 0002 pole figure, Fig. 7a.
The distribution of the basal poles within the clockwork texture is
rather random in Ti-0Al and Ti-3Al and Ti-13Al, while Ti-7Al and
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Fig. 4. Long-wavelength diffraction spectra showing a) effect of Al concentration and b) effect of ageing.

a) Ti-10Al: RX b) Ti-10Al: Aged

Fig. 5. Selected area electron diffraction pattern images recorded on the (1010) zone axis using a camera length of a) Ti-10Al in annealed condition and b) after ageing.
Note the faint diffuse o, reflections marked by the white arrow.

{0002} {1120}
IIRD {1070}  Ti-0Al

Fig. 6. Orientation maps in IPF colouring//LD//RD of the starting conditions (Ti-OAl-Ti-13Al) and at compressive strains of 0.02, 0.04 and 0.09. Please note that these are
ex-situ measurements, i.e. different samples for each strain value. Twin boundaries are indicated as: Black={10 12}<10 11>, Grey = {11 21}< 1126>, White = {11 22}< 1123>.
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Fig. 7. a) Pole figure maps of the starting microstructure and b) after approximately 9% compression parallel to RD. In addition, c) displays close up band contrast maps
highlighting twin types by different boundary colours: Red = {10 12}<10 11>, Green = {11 21}< 1126>, Blue = {11 22}< 1123>. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

Ti-10Al display intensity maxima 45° between both ND direc-
tions. In Ti-0AI and Ti-3Al the 1010 pole figures show a slight
alignment along RD, while in the other alloys the 1010 poles along
RD are more split.

3.2. Flow curves

The flow curves for uniaxial compression along the rolling di-
rection (RD) are presented in Fig. 8a). The mechanical response
during the interrupted in-situ loading experiment using neutron dif-
fraction reflects the behaviour of monotonic compression tests well,
as indicated by the crosses for Ti-13Al. As one would expect, the
yield strength increases significantly with Al content. It is notice-
able that the increase in strength is most significant until 10 at.%
Al, but far less pronounced with a further increase to 13 at.% Al.
Ageing does not increase the 0.2% yield strength but causes a no-
ticeable drop in work hardening rate. Fig. 8b) plots the work
hardening rate as a function of compression strain. It can be seen
that the ability to work harden increases with Al content but

reaches a maximum for Ti-7Al. Higher Al contents give lower work
hardening ability, as does ageing with the aged Ti—10Al material dis-
playing the minimal work hardening rate 6., during the early stage
of plasticity.

3.3. Deformation microstructures and textures

As described earlier, the texture development during uniaxial
compression testing gives a good indication of the development
of {101 2}<10 11> tensile twinning. Any rotation caused by tensile
twinning will result in the c-axis “rotating” towards the loading
direction (LD), and a corresponding increase in intensity in the basal
pole figures. Fig. 7b shows the 0002 and 10 10 pole figures after
true strain compression of about 0.09. It can be clearly seen that a
strong basal pole does indeed develop along LD for Ti-0Al, Ti-3Al
and T-7Al In contrast, the 0002 pole figure of Ti-10Al only
exhibits a very weak pole parallel to LD while for Ti-13Al the pole
figure appears relatively unchanged compared to the starting
condition.
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RD. In the case of Ti-13Al data points from the in-situ loading experiment using
neutron diffraction has been added to demonstrate similarity. b) Work hardening
rate 6 as function of the true strain.

These differences in texture evolution are consistent with ob-
servation from the orientation maps. Fig. 6 displays representative
IPF colour orientation maps after about 0.02, 0.04 and 0.09 true strain.
It is noticeable that for Ti-Al binary alloys with up to 7 at.% Alu-
minium several twins have formed within individual grains during
the early stage of plastic deformation, which seem to grow in width
during further straining to 0.09. This trend becomes more pro-
nounced with increasing Al content, eventually showing large
fractions of grains being consumed by twins, particularly for Ti-
7Al. A further increase of Al concentration reduces the twinning
activity Taking the example of Ti-13Al, there is still a significant
number of twins that form but they have only just started to grow
from one side of the grain boundary and have not grown in width.
Accordingly, the data recorded for Ti-10AIl and Ti-13Al, particular-
ly after very small levels of plastic deformation, suggest that twins
have predominantly nucleated from grain boundaries. Fig. 6 also il-
lustrates that most grains that twin have one of their {10 10} normal
nearly parallel to the loading direction (blue parent grains). Fig. 7c
confirms the dominance of {10 12}<10 11> tensile twinning. Overall,
the EBSD analysis suggests an increasing fraction of {10 12}<10 11>
twins until 7 at.%Al, which drops dramatically with further Al ad-
dition. Only in the case of Ti-0AI about 4% {11 22}<1123> were
compression twins observed. The analysis also revealed that there
is a very small fraction of {11 21}<1126> tensile twins, which in-

creases slightly with Al concentration, especially from Ti-3Al to Ti-
7Al and again peaks for Ti-7Al.

The maximum accommodated strain from twinning can be ap-
proximated by using Equation (2), where s is the twin shear for a
specific twinning systems and the corresponding twinning volume
fraction Vg, [52].

Emax; = 2 (\/l/_ZSVTwin )i (2)

Emax =+1/20.176- Vi +/1/20.630- Vipy +4/1/20.217 -V (3)

Assuming that the measured area fractions by EBSD equal the
volume fraction Vy,;,, and considering the shear values associated
with the three identified twin systems, the total twin strain &y
was calculated for each alloy. This analysis revealed that after 0.09
true strain, 50-60% of the total strain had been accommodated by
twinning in the case of Ti-0Al, Ti-4Al and Ti-7Al while this number
dropped very rapidly to values of around 30% and 15% for Ti—10Al
and Ti-13Al respectively.

3.4. Diffraction peak evolution

The starting texture of the different alloys and the choice of
loading direction (RD) meant that the initial 0002 diffraction peak
measured along the loading direction (axial detector) was too weak
to be fitted satisfactorily. Once twinning initiated, a sufficiently strong
0002 reflection was measured along LD and the change in 0002
integrated intensity is given as a function of true strain in Fig. 9.
The slope in Fig. 9 is an indication of the twinning activity. Fig. 9a
shows the effect of Al content on twinning activity while Fig. 9b
illustrates the effect of ageing for Ti-7Al and Ti-10Al The slopes
for Ti-0Al, Ti-3Al and Ti-7Al are essentially identical in Fig. 9a,
indicating similar twinning activities. However, when the Al content
is further increased, the twinning activity is substantially reduced
with almost no sign of twinning for Ti-13Al. In addition, the crit-
ical true strain for twinning increases to more than 0.04 for Ti-
13Al compared to around 0.01 for the other alloys. Fig. 9b
demonstrates that ageing Ti-7Al has only a minor effect on twin-
ning activity, while ageing Ti-10Al causes a more significant drop
in twinning activity.

The 0002 diffraction peak along the transverse direction in-
cludes the grains ideally orientated for tensile twinning. Because
of the starting texture, these grains make up the majority of the
grains in this family. As the measurements were carried out in the
unloaded condition, the peaks shifts are a measure of the residual
lattice strains in the 0002 grain family. As it can be seen in Fig. 10,
these grains are in residual tension after unloading. This residual
strain increases until twinning starts, which can be inferred from
the intensity plots in Fig. 9. During further deformation and un-
loading, the residual lattice strain decreases steadily. As with Figs. 9
and 10 is split into comparing the effect of Al (Fig. 10a) and the effect
of ageing treatment (Fig. 10b). The maximum residual lattice strain
in this grain family first decreases with Al content before increas-
ing dramatically for Ti-10Al and Ti-13Al. With the exception of Ti-
13Al, the onset of twinning represents a sharp turning point
regarding the residual lattice strain evolution. Ageing increases the
critical residual lattice strain at twin initiation significantly for both
Ti-7Al and Ti-10Al

3.5. Summary of results
A summary of the results obtained from Ti and Ti-Al binary alloys

is presented in Fig. 11. It demonstrates that the greatest gain in 0.2%
yield strength was achieved between Ti-3Al and Ti-10Al while the
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ageing procedure applied for Ti-7Al and Ti-10Al had no notice-
able effect on strength, Fig. 11a. The minimum work hardening rate
Omin, Which for uniaxial compression along RD is in principle ob-
tained before the onset of twinning, showed a slight maximum for
Ti-7Al. Here, ageing resulted in a very significant drop of 6y, par-
ticularly in the case of Ti-10Al, Fig. 11b. The approximated
{10 12}<10 11> twin fraction suggests an increase of twinning ac-
tivity with increasing Al content up to Ti-7Al but a sharp fall after
that resulting in almost no twinning for Ti-13Al. Ageing of T-7Al
and Ti-10Al further reduces twinning, Fig. 11c. Analysis of de-
tailed orientation maps revealed some {11 22}<1123> compression
twins only in the case of the high purity Ti sample and a small
volume fraction of {11 21}<1126> tensile twins increasing with Al
content and seemingly independent of the final heat treatment con-
dition, Fig. 11d. Overall, similar trends were seen when monitoring
the evolution of the change of (0002) integrated intensity during
the in-situ loading experiments using neutron diffraction. In Fig. 11e
the {10 12}<10 11> tensile twin activity is represented by a simple
linear regression of 8Al(n002)/d € for each alloy composition. Al-
though the increasing twinning activity from Ti-0Al to Ti-3Al or
even Ti-7AL is not obvious, the drop after that is dramatic. The

corresponding macroscopic stress values for twin initiation are
plotted in Fig. 11f demonstrating a significant increase in macro-
scopic stress level with Al addition. The intercept of that slope with
Alooo2) = 0 indicates the critical plastic strain for the onset of twin-
ning as shown in Fig. 11g. It can be seen that the critical plastic strain
decreases initially until 7 at.% Al. For Ti-13Al a sharp increase is
noted.

Finally, Fig. 11h summarises the critical twin nucleation resid-
ual lattice strain el o0y along the c-axis in the grain family that
includes the grains most likely to twin. This value seems to be lowest
for Ti-3Al but increases significantly beyond Ti-7Al. Ageing Ti-
7Al or Ti-10Al slightly increases the critical lattice strain value.

4. Discussion

The initial slight increase in twinning activity followed by the
dramatic drop implies that adding Al to Ti promotes twinning at
lower Al contents and hinders it after a critical Al content is reached.
In order to elucidate this observation, the different microstruc-
tural and plasticity aspects are critically discussed in terms of their
possible contribution to twinning activity.
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4.1. Ordering in Ti-Al binary alloy

Several of the experimental results provide evidence of order-
ing starting with Ti-10AL In the case of Ti-7Al, the aged condition
seems to show a very slight indication of ordering in the long-
range diffraction pattern. However, the long-wavelength neutron
diffraction data provide no clear evidence of o, superlattice reflec-
tions but rather a broad increase in intensity. The detailed TEM
analysis only revealed very weak o reflections once Ti-10Al had
been aged. Hence, both characterisation studies combined might
suggest that once the Al content reaches 7 at.% SRO develops during
ageing, which clearly becomes very dominant with increasing Al
content and ageing. From about Ti-10Al aged, in addition to SRO,
a small degree of LRO seems to be present. It is particularly inter-
esting to note that the start of LRO does not result in a reduction
of SRO. These observations are further supported by a more indi-
rect observation in Fig. 2 showing a non-linear relationship between
c/a ratio and Al concentration. Such deviation from linearity has been
previously attributed to increased levels of ordering in other systems,
for example in Ref. [53] where it was attributed to CusAu forma-
tion in the Cu-Au system. The present observations are also
consistent with results from Nambodhiri’s resistivity measure-
ments, showing effects of SRO down to 6.8 at.% Al [24], as indicated
in Fig. 1.

It might be surprising that Ti-10Al and particularly Ti-13Al did
not form o, more readily. However, the reader is reminded here that
cooling rates from recrystallisation temperatures were in the range
of 100 K/min (air cool of 14 x 14 mm? cross sectional samples) and
ageing temperatures were substantially lower (see Table 1) than in
cases when o has been observed previously. For instance, o, in
primary o of Ti-6Al-4V is normally induced by ageing at
500 °C [2].

Regarding the effect of SRO on deformation mechanisms and
twinning, the dramatic increase of 0.2% yield strength between Ti—
3Al and Ti-10Al demonstrates that SRO does have a strong
strengthening effect. However, it also clearly reduces work hard-
ening rates and promotes planar slip as pointed out previously in
Ref. [26].

4.2. Twinning in Ti-Al binary alloys

When studying the effect of alloying elements on twin activity
it is important to ensure that the starting texture and grain sizes
are similar for all compositions, as both aspects will affect twin-
ning activity to some extent. In this work, a common starting texture
was achieved via careful thermomechanical processing, which has
a strong preferred alignment of the c-axis perpendicular to the
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compressive loading direction and high Schmid factors for pris-
matic slip and tensile twinning.

The mechanisms of twin nucleation and growth in metals with
an hcp crystal structure are still not well understood. The hetero-
geneous twin nucleation and growth have been discussed in terms
of formation of zonal twinning dislocations and stress concentra-
tions at grain boundaries [18]. These considerations ignore the need
for the local twin shear to be accommodated so that any back stresses
inhibiting twin growth are relaxed. This means that ease of defor-
mation by slip in the parent grain will also impact twin activity. On
the other hand, since in Ti, like in Zr, twinning is preceded by slip,
an increase of the yield strength also means that twinning occurs
at higher stresses.

Combining information from neutron diffraction and EBSD sug-
gests that the initial slight increase of twinning activity with
increasing Al content is related to easier growth rather than more
nucleation. It is not clear at the moment if this observation is driven
by a decrease in SFE [6,7,9,17,54], which in principle affects disso-
ciation of basal rather than prismatic dislocations or if growth is
driven simply by higher stresses at which plasticity starts and misfit
strains are generated. It is however noticeable that the residual
lattice strain for twin nucleation does initially decrease giving in-
dication that twin formation becomes easier before ordering is
observed.

Once ordering is observed, there is a clear reduction in twin-
ning activity and with increasing evidence of ordering, this trend
becomes more pronounced resulting in almost a complete sup-
pression of twinning for Ti-13Al. Interestingly, ordering in the present
case might mean mainly SRO. Calculations of the anti phase bound-
ary (APB) energy created by a single basal or prismatic dislocation
shearing SRO (diffuse) in the Ti-Al system gave a value of 25 m]/
m?, which compares with 100-250 m]/m? when shearing o,. Those
calculations suggest that any diffuse APB energy required for twin-
ning a SRO cluster is comparatively small. However, it is worth
remembering that TisAl as an alloy does not twin [29-34] and the
EBSD maps of the deformed samples show very clearly that once
ordering is observed, twin growth declines very sharply. In the case
of Ti-13Al, many twins seem to nucleate from a grain boundary but
have not grown lengthwise to reach the opposite grain boundary,
suggesting that any type of ordering has a significant impact on twin
boundary migration as previously reported for Mg-Gd alloys [35].
Another factor for the dramatic decline of twinning activity might
be found in the promotion of severe slip planarity in the presence
of SRO and o,. Figs. 8b and 11b demonstrate that ordering reduces
the work hardening capability of the material, which has also been
reported previously [4,28]. The absence of cross slip and disloca-
tion interaction might reduce the ability of heterogeneous twin
nucleation by twin dislocations. A suppression of cross slip makes
dislocation jogs less common, which have been described as pos-
sible twin nuclei [55]. The jogs lower the energy for the separation
of partial dislocations, and facilitate twin growth. In any case, or-
dering appears to be the reason why twinning is suppressed in Ti
at high Al contents, either because it pins twin boundaries or because
it promotes slip localization.

5. Conclusion

A systematic study of twin activity in Ti binary alloys with
0-13 at.% Al during uniaxial compression testing has been carried
out in order to provide new insight into the effects of Al on twin
activity in these alloys. Care was taken to obtain similar starting mi-
crostructures including textures to enable such comparison. One of
the key microstructural features, ordering of Al in Ti, was
characterised using large d-spacing neutron diffraction and selec-
tive diffraction aperture pattern imaging in the TEM. It is important

to note that while Ti 10 at.% Al and Ti 13 at.% Al are known to form
o when aged in a certain temperature range and for long time, the
heat treatments applied in the present study focused the work more
on the effect of short range ordering. In order to monitor twin evo-
lution in-situ loading experiments were carried out in combination
with neutron diffraction in order to capture peak intensity changes,
and the evolution of intergranular strains. In addition, detailed post
mortem microstructure analysis by EBSD was carried out in order
to identify twin types and quantify them. The main findings of the
work can be summarised as follows:

e The neutron diffraction study on WISH revealed that Ti-Al binary
alloys with up to 7 at.% Al showed practically no indication of
SRO after annealing heat treatment followed by air cooling
(100’sK/min). In contrast, Ti-10 at.% Al showed clear indication
of short range ordering that became stronger with ageing or by
further increasing Al content to 13 at.%. Aged Ti-7 at.% Al also
showed a very slight indication of SRO. Long range ordering, i.e.
o, was only identified for aged Ti 10 at.% Al and recrystallised
Ti 13 at.% Al In both cases only weak o, reflections were iden-
tified by TEM analysis and o, formed additionally to SRO.

e In the absence of ordering, alloys showed an increase in work
hardenability with rising Al content, which can be correlated
to a slight increase in {10 12}<10 11> tensile twin activity
confirmed by neutron diffraction and EBSD analysis. The in-
crease in twin activity can be associated with ease of twin
growth.

e In addition to the extremely dominant {10 12}<10 11> tensile
twinning mode, about 4% {11 22}< 1123> compression twins were
observed in Ti without any Al addition after a true strain of 0.09.
In addition, EBSD analysis also revealed a small fraction of
{11 21}<1126> tensile twins, which increases slightly with Al con-
centration, especially from to Ti-3Al to Ti-7AL
SRO significantly reduces the work hardenability of these alloys,
which, apart from increased strain localisation, can be related
to a dramatic reduction of twinning activity as identified during
the in-situ loading experiments using neutron diffraction and post
mortem EBSD analysis. Additional o, formation further empha-
sis this trend.

It was found that with increasing Al content, in the absence of

ordering, the critical residual intergranular strain required for

twin nucleation decreases. This observation was interpreted as
an indication that with increasing Al content in solution the in-
trinsic energy requirement for twin formation reduces, which
could be due to an increase in stacking fault energy. However,
the generally higher stress with increasing Al solute solution

strengthening at which plasticity occurs might be the most im-

portant factor to increase twinning activity.

e The dramatic fall in twin activity in the presence of ordering, in-
cluding short range ordering, is accompanied by a dramatic
decrease in twin growth. It seems most likely that ordering dra-
matically reduces twin boundary mobility.

It should be noted that the initial increase in twinning activity
with increasing Al content has not been shown previously as most
studies have only focused on either commercially pure Ti or Ti with
6-7 wt.% Al. Considering the significant impact on work hardenability
identified in the present study, Ti alloys with Al content not ex-
ceeding 7 at.% might be of particular importance when considering
formability and sudden impact applications.
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